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Abstract
Rainfed agriculture in Ethiopia is critical for food security and the national economy. Ethiopia naturally experiences high 
climate variability, which has historically exposed its rainfed agriculture to severe dry shocks. Climate change stands to 
exacerbate this challenge and intensify vulnerability. Therefore, it is essential to evaluate the impact of climate change on all 
crops in Ethiopia. In this study, the crop water requirement (CWR) was used as a proxy to water stress. An ensemble modeling 
based on HYDRUS-1D was used to evaluate the impact of climate change on CWR for 36 crops in Ethiopia. The analysis 
explores the response of mean annual CWR to the historical climate and dry, most probable, and wet climate projections, 
prioritized based on Aridity Index (AI). The three models at a national level predict wetter-than-normal conditions, however, 
detecting critical hotspots where drier conditions may increase crop-specific drought stress is important. A non-linear decay 
in CWR was detected as a function of historical and projected AI. Sensitivity of CWR to changes in AI identified the most 
vulnerable hotspots to drought for perennial crops while weak sensitivity was observed in annual crops. This analytical study 
will be instrumental in detecting vulnerable crops to climate change, explore areas of intervention, and identify potential 
deep-dives. The reliance on global datasets and the use of one-dimensional hydrological model represent the main limitations 
of this study. 
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1. Introduction 
Ethiopia is heavily dependent on agriculture for the overall 
economy, livelihoods, and food security. Agriculture accounts for 
nearly 40% of the Ethiopian gross domestic product (GDP), 90% 
of exports, and approximately 66% of employment in 2020 [1,2]. 
Approximately 80% of Ethiopians live in rural areas and mostly 
rely on rainfed agriculture for their livelihoods. 

The national average landholding per household in 2012 was just 
1.15ha with the Southern Nations Nationalities People Region 
accounting for the least average landholding at less than 0.5 ha 
per household [3]. The population of Ethiopia has more than 
doubled since the 1970s from 55 million in 1970 to 117 million in 
2020 and is expected to double to more than 200 million by 2050 
putting further constrictions in landholding and livelihoods [4]. 
Low productivity and growing population pressures have created 
the conditions for internal strife and conflict, serious internal 

displacement often to already densely populated cities, and 
illegal migration to Europe and North America through extremely 
dangerous means and pathways.

Food security in Ethiopia is a critical concern due to high rainfall 
variability both in time and space, small landholding per household, 
degraded lands and poor land management practices,limited 
agricultural input, and the subsistence nature of farming across 
the country [5-9]. While rainfed agriculture is estimated to be 
approximately 20 million ha of land, irrigation only accounts 
for around 1 million ha (~5%) of current farmland. Grain crop 
yields from smallholder farmlands (2.8 tons per ha) on average 
are well below the global (4 ton per ha) and high-income country 
(8 tons per ha) averages [10,11]In addition, market supply chain 
development is in its infancy and applications of improved seed 
varieties, fertilizer input, and pesticides remain limited.

Journal of Water ResearchJournal of Water Research

Jo
urn

al o
f Water Research

ISSN: 2994-7510

ISSN: 2994-7510



J Water Res, 2024 Volume 2 | Issue 1 | 2

Ethiopian farmers and producers heavily rely on rainfed agriculture, 
which is highly susceptible to climate change [12]. Vulnerability to 
climate in Ethiopia is often associated with high rainfall variability 
including change in the timing and intensity of precipitation. The 
impact of climate change on crop yield can include water stress, 
seasonal shift resulting in altered planting times and length of 
growing period, which may require increased water storage 
capacity, crop shifting, and other adaptation mechanisms. 

The climate has been historically highly variable across the 
country and will likely remain variable through time. Climate 
projections indicate that climate change will cause a slight decrease 
to an increase in precipitation (FDRE MoFED) while others also 
suggest seasonal shifts in precipitation and more intense rainfall 
in humid parts of Ethiopia. While there is no consensus in rainfall 
projections, models consistently predict an increase in temperature 
including a rise in average temperature by 1.3 oC since 1960 [13]. 

An increase in temperature induces an increase in atmospheric 
demand and incrop evapotranspiration. A shift in precipitation 
pattern, magnitude, and intensity will also impact availability of 
water for crops during the growing period, increase likelihood of 
water surplus stress (floods) and water deficit stress (droughts), 
which can lead to root water stress and potential crop failures.  

Progress in yield related to increased cultivated area for cereals has 
been considerable over past decades [14]. However, productivity 
measured by yield per hectare is still markedly low compared 
to global averages and highly susceptible to dry shocks. Thus, 
improving production levels and reducing vulnerability to climate 
shocks are essential components to enhance food security in 
Ethiopia in terms of sufficient food availability and securing 
rural livelihoods. While climate change and rainfall variability 
impacts are directly related to water availability for crops, crop 
productivity and yield also rely on other factors including soil 
fertility, agricultural inputs such as fertilizer and pesticides, and 
suitable land management and agricultural practices. 

Efforts focusing on the impact of climate change on water supply 
in Ethiopia are plethora [15]. Similarly, efforts exploring rainfed 
agriculture in Ethiopia are equally ubiquitous. However, despite 
the importance of understanding the impact of climate change 
on rainfed agriculture and the need for adaptation and mitigation 
measures for food security across the country, the existing body of 
work on climate change and rainfed agricultural and development 
in Ethiopia has mostly focused on specific crop types and in narrow 
geographic areas [16,17].

This study instead will explore the complete list of dominant crop 

types currently present in Ethiopia and evaluate the impact of 
climate change on water availability for rainfed agriculture over 
the entire country. This initial broad analysis can help identify 
both the crop type and specific geographic locations that require 
greater attention for food security concerns amid climate change 
and further support deep dive analyses of targeted research as well 
as policy development for climate adaptation and resilience.

The objective of this paper is two-fold. First, compare the observed 
historical time serieswith the climate change scenarios in terms 
of rainfall andtemperature-based reference evapotranspiration. 
The FAO aridity index, AI is used as climate descriptor and 
identify extremely dry, most probable, and extremely wet climate 
projections [18]. Second, understand the impact of climate change 
on crop water requirement of the main 36 crops in the agro-
ecological zones of Ethiopia. 

2. Materials and Methods 
2.1 Study Area 
Ethiopia is a landlocked country located in the Horn of Africa and 
extends from 15 N 3N to 33E 48E (Figure 1). It is the second 
most populous (120 million) and second largest country with 
approximately 1.1 million km2 land coverage in Africa. The 
landscape ranges from lowlands to highlands and ranges from –125 
m in the Afar Region (the Dalol Depression in the northeastern 
Lowlands) to 4,550 m (Mount Ras Dashen in the northern 
Highlands). TheEast African Rift Valley crosses the country on a 
northeast-southwest axis [19]. 

The climate ranges from arid in the southeastern part to humid, 
sub-humid, and tropical in most parts of Ethiopia. While the 
annual rainfall average is approximately 850 mm per year, it is 
variable over space and time with the dry and wet parts of the 
country receiving as low as 300 mm and more than 2000 mm per 
year, respectively [11]. Rainfall amounts are characterized bytwo 
rainy seasons namelyBelg (February to May)andKiremt (June 
to September). Most of the annual rainfall occurs in the Kiremt 
season. The dry season known as Bega occurs between October 
and January. Ethiopia has 12 river basins (8 are wet and 4 are 
relatively dry), of which the western part of the country accounts 
for 70% of the total river flow [20].

The agricultural land coverage in Ethiopia is approximately 94% 
rainfed with 20 million ha and 6% irrigated land (Figure 1). Land 
uses in Ethiopia include cropland, forest, grassland, shrubland, 
water bodies (Figure 2a).Similarly, the agro-ecological zones of 
Ethiopia are diverse and range from arid, semi-arid, humid to 
moist (Figure 2b).
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Figure 1: Rainfed and Irrigated Areas in Ethiopia:Food and Agriculture Organization (FAO)Water Productivity (WaPOR) and Hillshade 
of the Digital Elevation Model (DEM). The Red Borders Delineate the 13Administrative Regions of Ethiopia (SNNP Denotes Southern 
Nations, Nationalities, and Peoples).

Figure 1.Rainfed and irrigated areas in Ethiopia:Food and Agriculture Organization(FAO)Water 127 
Productivity (WaPOR)andhillshade of the Digital Elevation Model (DEM). The red borders delineate the 128 
13 administrative regions of Ethiopia (SNNP denotes Southern Nations, Nationalities, and Peoples). 129 
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133 
Figure 2.Land cover classification and agro-ecological zones of Ethiopia. Source: Land cover 134 
classification from Food and Agriculture Organization (FAO)Water Productivity (WaPOR) 2022 and 135 
agro-ecological zone data from the International Food Policy Research (IFPRI) and FAO. 136 
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Policy Research (IFPRI) has documented the most important36 crops using the Spatial Production 140 

Allocation Model (SPAM) planted and harvested across the country (IFPRI, 2019). Ethiopia has a diverse 141 
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Figure 2: Land Cover Classification and Agro-Ecological Zones of Ethiopia. Source: Land Cover Classification from Food and 
Agriculture Organization (FAO) Water Productivity (WaPOR) 2022 and Agro-Ecological Zone Data from the International Food Policy 
Research (IFPRI) and FAO.
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2.2 Crop Distribution in Ethiopia
Ethiopia has a diverse climate and landscapes leading to diverse 
crops and flora. The International Food Policy Research (IFPRI) 
has documented the most important 36 crops using the Spatial 
Production Allocation Model (SPAM) planted and harvested 
across the country [21,22]. Ethiopia has a diverse and complex 
landscape, climate, and agro-ecological conditions. This results in 
substantial variation in crops produced across the country (Figure 
4). The five major cereals (teff, wheat, maize, sorghum, and barley) 
constitute the core of agriculture and food economy accounting for 

77% of the total area cultivated and 29 percent of GDP [23,24].

Pulses, oilseeds, and fruits and vegetables account for 5%, 3%, 
1.5% of the agricultural GDP, respectively. Cash crops such as 
coffee, cotton, and khat account for a significant portion of the 
agricultural and total GDP. Coffee, for example, accounts for 
4–5% of GDP, 10% of total agriculture production, 40% of total 
exports, 10% of total government revenue, and 25–30% of total 
export earnings [25]. 
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 152 

Figure 3: Estimated distribution of total cereals (a)pulses, nuts, legumes, and oilseeds (b),fruits and 153 
vegetables, (c) coffee, (d), sugarcane, (e)tea, (f) and cotton, (g) growing areas per each region of Ethiopia. 154 

Source: International Food Policy Research Institute; Spatial Production Allocation Model (SPAM) 155 
dataset 156 
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2.2 Available data in Ethiopia 159 

Several datasets were used to explore the impact of climate change on rainfed agriculture (Table 1). 160 

Datasets for current crop distribution of 36 crops across Ethiopia were obtained from IFPRI at 10 km 161 

resolution (Figure 3). Crop coefficient (Kc) values, root zone depths, and length of growing periods for 162 

each crop were gathered from the body of literature. Soil distribution data was obtained from International 163 

Soil Reference and Information Centre (ISRC) while irrigated and rainfed areas were obtained from 164 

Figure 3: Estimated Distribution of Total Cereals (a) Pulses, Nuts, Legumes, and Oilseeds (b), Fruits and Vegetables, (c) Coffee, (d), 
Sugarcane, (e) Tea, (f) and Cotton, (g) Growing Areas Per Each Region of Ethiopia.

Source: International Food Policy Research Institute; Spatial Production Allocation Model (SPAM) Dataset
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2.3 Available Data in Ethiopia
Several datasets were used to explore the impact of climate 
change on rainfed agriculture (Table 1). Datasets for current 
crop distribution of 36 crops across Ethiopia were obtained 
from IFPRI at 10 km resolution (Figure 3). Crop coefficient 
(Kc) values, root zone depths, and length of growing periods 
for each crop were gathered from the body of literature. Soil 
distribution data was obtained from International Soil Reference 
and Information Centre (ISRC) while irrigated and rainfed areas 
were obtained from International Water Management Institute 

(IWMI) and FAO monitor Water Productivity Open Access portal 
(WaPOR). WaPOR alsoprovidedgeneral land use land cover 
data for the country. Historical climate data were obtained from 
Ethiopian Meteorological Institute and Climate Hazards Group 
InfraRed Precipitation with Station (CHIRPS) and Modern-Era 
Retrospective Analysis for Research and Applications (MERRA) 
data. Downscaled CMIP5 climate projections data were obtained 
from IPCC. Each dataset is described in detail in its respective 
section within the methodology.

Data Source Resolution Type
Crop coefficient (Kc)
Growing period
Root depth (zr)
Leaf area index (LAI)
Maximum root depth (zr,max)

Literature
Literature
Literature
Literature
Literature

Various
Various
Various
Various
Various

Various
Various
Various
Various
Various

Historical climate 
Projected climate

EMI/CHIRPS/MERRA
IPCC/Downscaled CMIP5

station points/~4 km
~ 25 km

Point/Raster 
Raster

Crop Planting/Harvesting dates 
Agro-Ecological Zone (AEZ)
Rainfed area
Irrigated area
Land use land cover
36 Crop Types
Soil Distribution
Administrative Boundaries 

FAO
FAO
IWMI/FAO WaPoR
IWMI/FAO WaPoR
FAO WaPOR
IFPRI/SPAM
ISRIC world soil information
Central Statistics Agency 

-
-
100 m
100 m
30m
10km
-
-

CSV
Vector 
Raster
Raster
Raster
Raster 
Vector
Vector 

Table 1: Summary of Data Sources, Literature, Resolution, and Type
2.4 Modeling Approach
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 181 
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 184 
 185 
Figure 4. Schematic overview of the model approach used in this study. The IFPRI crop distribution map in 186 
Ethiopia comprises a total of 6,495 pixels in which the following data and information are available: i) the soil 187 
physical properties, namely sand (Sa, %), silt (Si, %), clay (Cl, %), organic carbon (OC, %) and soil bulk density 188 
(BD, g cm-3) for topsoil (0-30 cm soil depth) and subsoil (30-100 cm soil depth) used as predictors in three 189 
pedotransfer functions (PTFs) to estimate the soil hydraulic properties (VG SHPs, namely θr, θs, α, n and Ks) 190 
proposed by van Genuchten (1980) (brown box); ii) the minimum (min T) and maximum (max T) temperature and 191 
precipitation/rainfall (P) at daily time resolution were taken from ten General Circulation Models (GCMs) with two 192 
contrasting representative concentration pathways (RCPs) (red box); iii) crop characteristics compiled from 193 
literature for the main five land cover classes, namely the crop coefficient (Kc), leaf area index (LAI), maximum root 194 
depth (zr,max), root distribution, and prescribed soil matric potential values controlling root water uptake stress 195 
(Feddes parameters) (green box). An ensemble of simulations in HYDRUS-1D were run (cyan box) by changing 196 
daily P and crop-specific potential evapotranspiration (ETp) in 2005-2050 derived from historical and three 197 
contrasting projected (5th, 50th, 95th percentiles of AI distribution) scenarios based on the FAO aridity index (AI). In 198 
each model simulation the actual evaporation (Ea), actual transpiration (Ta), drainage (D) and crop water 199 
requirement (CWR) were stored as model output. A total of 935,280 (6495 pixels × 36 crops × 4 modeling 200 
scenarios) numerical simulations were carried out in HYDRUS-1D. 201 
 202 
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Ep=ETpe[0.463LAI(t)]P

Ea DModel output

Model input
Tp=ETp-Ep

Ta

ETp=Kc(t) ET0

Min T 
Max T
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Topsoil

Subsoil

zr,max max root depth

P 

Ten GCMs
(rcp4.5 and rcp8.5)

AI 
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(2006-2020)

Climate projections
(2021-2070)
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(5th percentile 
AI distribution)

Median scenario
(50th percentile 
AI distribution)

Wet scenario
(95th percentile 
AI distribution)

Land cover scenarios
1) Vegetables and fruit
2) Cereals and grains
3) Pulses and legumes
4) Oil seeds
5) Cash crops

Kc(t), LAI (t), zr, root 
distribution and Feddes
stress for each of the 36 

crops

Three 
PTFs

Sa, Si, 
Cl, BD, 
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Topsoil VG SHPs

(r, s, , n, Ks)

CWR

Soil hydraulic properties Crop properties

Climate models

HYDRUS-1D

Three 
PTFs

Sa, Si, 
Cl, BD, 

OC

Subsoil VG SHPs
(r, s, , n, Ks)

Figure 4: Schematic Overview of the Model Approach Used in this Study. 

The IFPRI Crop Distribution Map in Ethiopia Comprises a Total 
of 6,495 Pixels in Which the Following Data and Information are 
Available: i) The Soil Physical Properties, Namely Sand (Sa, %), 
Silt (Si, %), Clay (Cl, %), Organic Carbon (Oc, %) and Soil Bulk 

Density (Bd, G Cm-3) for Topsoil (0-30 Cm Soil Depth) and Subsoil 
(30-100 Cm Soil Depth) Used as Predictors in Three Pedotransfer 
Functions (Ptfs) to Estimate the Soil Hydraulic Properties (Vg 
Shps, Namely Θr, Θs, Α, N And Ks) Proposed by Van Genuchten 
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(1980) (Brown Box); Ii) The Minimum (Min T) and Maximum 
(Max T) Temperature and Precipitation/Rainfall (P) at Daily Time 
Resolution Were Taken from Ten General Circulation Models 
(GCMs) with Two Contrasting Representative Concentration 
Pathways (Rcps) (Red Box); iii) Crop Characteristics Compiled 
from Literature for the Main Five Land Cover Classes, Namely 
the Crop Coefficient (Kc), Leaf Area Index (LAI), Maximum 
Root Depth (Zr,Max), Root Distribution, and Prescribed Soil Matric 
Potential Values Controlling Root Water Uptake Stress (Feddes 
Parameters) (Green Box). An Ensemble of Simulations in Hydrus-
1d Were Run (Cyan Box) By Changing Daily P and Crop-Specific 
Potential Evapotranspiration (Etp) In 2005-2050 Derived from 
Historical and Three Contrasting Projected (5th, 50th, 95th Percentiles 
of Ai Distribution) Scenarios Based on the Fao Aridity Index (AI). 
In Each Model Simulation the Actual Evaporation (ea), Actual 
Transpiration (ta), Drainage (d) and Crop Water Requirement 
(CWR) Were Stored as Model Output. A Total of 935,280 (6495 
Pixels × 36 Crops × 4 Modeling Scenarios) Numerical Simulations 
Were Carried Out in HYDRUS-1D. 

Figure 4 displays the modeling approach used in this study. The 
FAO crop distribution map (10 km grid size) in Ethiopia comprises 
a total of 6,495 pixels. In each pixel data retrieved:i) the soil 
physical properties, namely sand (Sa, %), silt (Si, %), clay (Cl, 
%), organic carbon (OC, %), and soil bulk density (BD, g cm-3) for 
topsoil (0-30 cm soil depth) and subsoil (30-100 cm soil depth) as 
predictors in three well-established Pedotransfer Functions (PTFs) 
to estimate the soil hydraulic properties (SHPs); ii) the minimum 
and maximum temperature and precipitation data at daily time 
resolution taken from ten General Circulation Models (GCMs) 
with two contrasting representative concentration pathway 
(RCPs); iii) crop characteristics taken from literature, namely the 
crop coefficient (Kc), leaf area index (LAI), maximum root depth 
(zr) and prescribed soil matric potential values controlling root 
water uptake stress (Feddes parameters) for each of the 36 crops. 

An ensemble of numerical simulations in HYDRUS-1D was run 
(cyan box) in each pixel by changing daily precipitation (P) and 
crop-specific potential evapotranspiration (ETp) from 2006 to 
2070 (65 year-long time series) to get simulation output (Ea, Ta, 
D, and CWR). The output data were aggregated in annual sums. 

The historical climate scenario (ranging between 2006 and 2020; 
15-year-long time series) was compared with three projected 
climate scenarios (ranging between 2021 and 2070; 50-year-long 
time series) based on the aridity index (AI) frequency distribution: 
1) dry climate scenario (5th percentile of AI distribution); 2) 
median climate scenario (50th percentile of AI distribution); 3) 
wet climate scenario (95th percentile of AI distribution). Finally, a 
total of 935,280 (6,495 pixels × 36 crops × 4 modeling scenarios) 
numerical simulations were carried out in this study.

 2.5 Climate Change Scenario Modeling
Ten General Circulation Models (GCMs) that have performed well 
in the country and are considered representative by the Ethiopian 
Meteorological Institute (EMI) and the Ministry of Water and 

Energy (MoWE) were selected for water supply projection to 
evaluate the impact of climate change on rainfed agriculture in 
Ethiopia[26]. Because the climate change scenarios were designed 
to help in future water resources planning and management 
purposes the moderate representative concentration pathway 
(RCP4.5) and the most pessimistic scenario (RCP8.5)were selected 
as climate change scenarios for the analysis. 

The RCPs represent possible ranges of radiative forcing values in 
the year 2100 relative to pre-industrial values of +4.5 and +8.5 
W/m2, respectively). Emissions in RCP4.5 peak around 2040 and 
2080 then decline while the RCP 8.5 scenarios assume emissions 
continue to rise throughout the 21st Century. A total of 20 climate 
projections (2 emission scenarios over 10 climate models) were 
evaluated. The FAO AI was used to rank the twenty climate models 
and select the 5th, 50th, and 95th percentiles to represent extremely 
dry, median (most probable), and extremely wet climate scenario 
conditions [27,28].

The aridity index is described as the annual mean P over the annual 
mean grass-reference evapotranspiration, ET0 (AI = P/ET0) and is 
commonly used for climate classification [29]. AI distinguishes 
between arid or semi-arid (ASA, 0.05 <AI0.50), dry or sub-
humid (DSH, 0.50 <AI0.75), and humid (H, AI > 0.75) climate 
classes. Both historic and projected climate data contain daily 
values of precipitation, and minimum and maximum temperatures 
obtained from CHIRPS and IPCC. Due to lack of data for wind 
speed, relative humidity, and solar radiation, it was necessary to 
use the temperature-based Hargreaves equation rather than the 
data intensive Penman-Monteith formula to estimate reference 
crop evapotranspiration, ET0 [30,31]. 

The formula only requires minimum and maximum temperature 
data while the extraterrestrial radiation is estimated by using 
study site (pixel) latitude and day of the year 	 [32]. The 
crop coefficient (Kc) converts ET0 (index of climatic demand of 
reference grass) into specific-crop potential evapotranspiration 
(ETp) under standard conditions and without water limitations. 
The leaf area index (LAI) is used to partition ETp into potential 
evaporation (Ep) and potential transpiration (Tp) by using the 
following equation:

                            EP = ETp e
-kLAI	   	    	 [1]

where κ (-) is the dimensionless extinction coefficient for global 
solar radiation inside the canopy and is assumed to be equal to 0.463 
[33]. The LAI determines the amount of precipitation interception 
(PI) that is subtracted from P to obtain net precipitation (Pnet) 
falling on the soil surface:

  

where a (cm d-1) is an empirical coefficient, assumed as 0.025 cm 
d-1 and b (-) denotes the soil cover fraction given by:
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It is worth noting that considering Pnet instead of total precipitation accounts for precipitation that can be 269 

intercepted by foliage cover and does not reach the soil surface (Adane et al., 2018). The main crop 270 
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Table 2. Crop coefficient (Kc), leaf area index (LAI) and maximum root depth (zr,max) at initial (IS), development 274 
(DS) and late growing stage (LGS) used for the 36 crops in Ethiopia. 275 
    Kc LAI zr,max 

Crop Classification IS DS LGS IS DS  LGS   
          m2 m-2 m2 m-2 m2 m-2 m 

Apple Vegetable and fruit 0.60 0.95 0.65 0.00 2.46 2.46 1.10 

Banana Vegetable and fruit 0.50 1.10 1.00 0.62 2.57 2.57 0.90 

Barley Cereals/grains 0.30 1.13 0.33 0.10 0.80 0.80 1.50 

Bean Pulses, nuts, or legumes 0.40 1.15 0.90 0.50 2.00 2.00 0.70 

Cabbage Vegetable and fruit 0.45 1.00 0.95 0.10 4.00 4.00 0.80 

Cassava Vegetable and fruit 0.30 0.80 0.30 0.10 7.00 7.00 1.00 

Chickpea Pulses, nuts, or legumes 0.40 1.00 0.35 0.50 3.50 3.50 1.00 

Cocoa Vegetable and fruit 1.00 1.05 1.05 0.10 4.00 4.00 1.00 

Coconut Vegetable and fruit 0.54 0.73 0.65 0.10 2.40 2.40 1.00 

Coffee Cash crops 1.05 1.10 1.10 0.10 4.40 4.40 1.50 

Cotton Cash crops 0.35 1.17 0.60 0.11 5.57 5.57 1.70 

Cowpea Pulses, nuts, or legumes 0.40 1.00 0.35 0.50 3.50 3.50 1.00 

Groundnut Pulses, nuts, or legumes 0.40 1.15 0.60 0.10 5.90 5.90 1.00 

Lentil Pulses, nuts, or legumes 0.40 1.15 0.30 0.10 7.00 7.00 0.80 
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where a (cm d-1) is an empirical coefficient, assumed as 0.025 cm d-1 and b (-) denotes the soil cover 264 

fraction given by: 265 

 266 
𝑏 = 1 − 𝑒�����        [3] 267 

 268 
It is worth noting that considering Pnet instead of total precipitation accounts for precipitation that can be 269 

intercepted by foliage cover and does not reach the soil surface (Adane et al., 2018). The main crop 270 

characteristics (Kc, LAI, and zr,max) of the 36 crops in Ethiopia are listed in Table 2 according to different 271 

growth stages (initial, development and late growing stage). 272 

 273 

Table 2. Crop coefficient (Kc), leaf area index (LAI) and maximum root depth (zr,max) at initial (IS), development 274 
(DS) and late growing stage (LGS) used for the 36 crops in Ethiopia. 275 
    Kc LAI zr,max 

Crop Classification IS DS LGS IS DS  LGS   
          m2 m-2 m2 m-2 m2 m-2 m 

Apple Vegetable and fruit 0.60 0.95 0.65 0.00 2.46 2.46 1.10 

Banana Vegetable and fruit 0.50 1.10 1.00 0.62 2.57 2.57 0.90 

Barley Cereals/grains 0.30 1.13 0.33 0.10 0.80 0.80 1.50 

Bean Pulses, nuts, or legumes 0.40 1.15 0.90 0.50 2.00 2.00 0.70 

Cabbage Vegetable and fruit 0.45 1.00 0.95 0.10 4.00 4.00 0.80 

Cassava Vegetable and fruit 0.30 0.80 0.30 0.10 7.00 7.00 1.00 

Chickpea Pulses, nuts, or legumes 0.40 1.00 0.35 0.50 3.50 3.50 1.00 

Cocoa Vegetable and fruit 1.00 1.05 1.05 0.10 4.00 4.00 1.00 

Coconut Vegetable and fruit 0.54 0.73 0.65 0.10 2.40 2.40 1.00 

Coffee Cash crops 1.05 1.10 1.10 0.10 4.40 4.40 1.50 

Cotton Cash crops 0.35 1.17 0.60 0.11 5.57 5.57 1.70 

Cowpea Pulses, nuts, or legumes 0.40 1.00 0.35 0.50 3.50 3.50 1.00 

Groundnut Pulses, nuts, or legumes 0.40 1.15 0.60 0.10 5.90 5.90 1.00 

Lentil Pulses, nuts, or legumes 0.40 1.15 0.30 0.10 7.00 7.00 0.80 
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                         b = 1-e-kLAI			       	 [3]
It is worth noting that considering Pnet instead of total precipitation 
accounts for precipitation that can be intercepted by foliage 
cover and does not reach the soil surface [34,35]. The main crop 

characteristics (Kc, LAI, and zr,max) of the 36 crops in Ethiopia 
are listed in Table 2 according to different growth stages (initial, 
development and late growing stage).

  Kc LAI zr,max

Crop Classification IS DS LGS IS DS LGS  
     m2 m-2 m2 m-2 m2 m-2 m
Apple Vegetable and fruit 0.60 0.95 0.65 0.00 2.46 2.46 1.10
Banana Vegetable and fruit 0.50 1.10 1.00 0.62 2.57 2.57 0.90
Barley Cereals/grains 0.30 1.13 0.33 0.10 0.80 0.80 1.50
Bean Pulses, nuts, or legumes 0.40 1.15 0.90 0.50 2.00 2.00 0.70
Cabbage Vegetable and fruit 0.45 1.00 0.95 0.10 4.00 4.00 0.80
Cassava Vegetable and fruit 0.30 0.80 0.30 0.10 7.00 7.00 1.00
Chickpea Pulses, nuts, or legumes 0.40 1.00 0.35 0.50 3.50 3.50 1.00
Cocoa Vegetable and fruit 1.00 1.05 1.05 0.10 4.00 4.00 1.00
Coconut Vegetable and fruit 0.54 0.73 0.65 0.10 2.40 2.40 1.00
Coffee Cash crops 1.05 1.10 1.10 0.10 4.40 4.40 1.50
Cotton Cash crops 0.35 1.17 0.60 0.11 5.57 5.57 1.70
Cowpea Pulses, nuts, or legumes 0.40 1.00 0.35 0.50 3.50 3.50 1.00
Groundnut Pulses, nuts, or legumes 0.40 1.15 0.60 0.10 5.90 5.90 1.00
Lentil Pulses, nuts, or legumes 0.40 1.15 0.30 0.10 7.00 7.00 0.80
Maize Cereals/grains 0.30 1.20 0.45 0.12 5.98 5.98 1.70
Millet Cereals/grains 0.30 1.13 0.33 0.20 4.90 4.90 2.00
Palm oil Oil seeds 0.30 0.87 0.80 0.10 5.00 5.00 1.00
Olive Vegetable and fruit 0.65 0.70 0.70 0.20 5.80 5.80 1.70
Orange Vegetable and fruit 0.80 0.80 0.80 0.10 8.60 8.60 1.70
Pigeonpea Pulses, nuts, or legumes 0.40 1.00 0.35 0.50 3.50 3.50 1.00
Plantain Vegetable and fruit 0.50 1.10 1.00 0.62 2.57 2.57 0.50
Potato Vegetable and fruit 0.50 1.15 0.75 0.10 5.00 5.00 0.60
Rapeseed Oil seeds 0.35 1.07 0.35 0.10 3.80 3.80 1.50
Rice Cereals/grains 1.05 1.20 0.75 0.12 5.98 5.98 1.00
Sesameseed Oil seeds 0.35 1.10 0.25 0.10 3.58 3.58 1.50
Sorghum Cereals/grains 0.45 1.18 0.78 0.20 4.90 4.90 2.00
Soybean Pulses, nuts, or legumes 0.40 1.15 0.30 0.10 5.51 5.51 1.30
Sugarbeet Vegetable and fruit 0.35 1.20 0.70 0.10 3.00 3.00 1.20
Sugarcane Cash crops 0.40 1.25 0.75 0.10 4.50 4.50 2.00
Sunflower Oil seeds 0.35 1.07 0.25 0.10 4.20 4.20 1.50
Sweet potato Vegetable and fruit 0.50 1.15 0.65 0.10 6.50 6.50 1.50
Tea  Cash crops 0.95 1.00 1.00 0.20 4.90 4.90 1.50
Teff  Cereals/grains 0.60 1.10 0.80 0.10 5.36 5.36 1.00
Tobacco  Cash crops 0.35 1.10 0.95 1.00 2.50 2.50 0.70
Wheat Cereals/grains 0.30 1.15 0.32 0.10 6.00 6.00 1.80
Yams Vegetable and fruit 0.50 1.15 0.65 0.10 6.37 6.37 0.40

Table 2: Crop Coefficient (kc), Leaf Area Index (lai) and Maximum Root Depth (zr,max) at Initial (is), Development (ds) and 
Late Growing Stage (lgs) Used for the 36 Crops in Ethiopia.
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 2.6 Numerical Modeling Using HYDRUS 1-D
The water balance in the soil-plant-atmosphere system was 
numerically evaluated using HYDRUS 1-D in each pixel by using 
the Richards equation:

where t (d) is time, z (cm) is soil depth (positive upward), ψ is the 
soil water pressure head (cm), θ (cm3 cm-3) is the soil volumetric 
water content, and ξ (z, ψ, Tp) is the actual root water uptake 
sink term (d-1) depending on soil depth, soil pressure head and 
potential transpiration (Tp). The soil water retention function θ(ψ) 
is described by van Genuchten’s equation [36,37].

 
				  

where α (cm-1), m (-) and n (-) are water retention shape parameters, 
θr (cm3 cm-3) and θs(cm3 cm-3) are residual and saturated water 
contents, respectively. The two parameters m and n are related 
with the condition m = 1-1/n[37,38].

Considering the degree of saturation, Se = (θ-θr) / (θs-θr), which 
varies from 0 (θ = θr) to 1 (θ = θs), the unsaturated hydraulic 
conductivity function, K(Se) is given by the following equation:    
	

where Ks (cm d-1) is the saturated hydraulic conductivity and τ (-) 
represents the tortuosity parameter that is assumed to be τ = 0.5 [38].
In data-poor countries such as Ethiopia, the direct measurement of 
several gridded soil hydraulic properties would be impractical and 
unfeasible, therefore the four unknown (θr, θs, α, n) soil hydraulic 
parameters of the van Genuchten’s water retention function were 
estimated by using three well-established Pedotransfer Functions 
(PTFs) based on easily reproducible empirical regression 
relationships: i) WOS99 PTF; ii) ROSETTA PTF; iii) WEY09 PTF 
[39-43]. These three PTFs were used to predict the water retention 
in each pixel of the FAO soil distribution map providing sand, silt, 
clay, organic carbon, and soil bulk density. 

The water content values corresponding to 30 prescribed pressure 
head values, ranging from near-saturation (ψ =100 cm) to wilting 
point (ψ =104.2) cm,were calculated from each of the three sets of 
parameters. A total of 90 water retention data pairs was obtained in 
each pixel. The four soil hydraulic parameters(α, n, θr, θs) were fit 
to obtainthe water retention function in each pixel.

The last unknown parameter, Ks, is even more difficult to estimate 
from easily available soil physical properties [44]. In this study 
Ks was estimated by using the Guarracino’s formula based on θs 
and α[40,45]. This formula proved to be reliable as prediction 
uncertainty was bounded within three orders of magnitude in two 
international datasets [46].

The depth of the soil profile was assumed to be 200 cm and divided 
in topsoil (z = 0-30 cm) and subsoil (z = 30-200 cm). When the 
FAO map does not report subsoil soil physical-chemical properties, 
a homogenous soil profile with topsoil parameters was assumed. 
The lower boundary condition was set to free drainage to obtain 
downward water flux (D) across the soil profile bottom while Pnet 
and Ep represent the system-dependent time-variable daily water 
fluxes of the upper boundary condition. Tp determines the potential 
root water uptake and depends on time-variant root depth (zr). 

Root distribution was assumed to be linear along the soil profile 
by varying from maximum at the soil surface to minimum at 
time-variant zr. Both Ep and Tp are reduced by water limitation 
into actual evaporation (Ea) and actual transpiration (Ta).The 
stress response function is a piecewise linear reduction function 
proposed by, which depends on prescribed pressure head values 
[47]. HYDRUS 1-D includes a dataset of specific-crop root water 
stress parameters.Initial conditions were set in terms of pressure 
head values along the soil profile to set hydraulic equilibrium.

The input (P, Ep, Tp) and output (Ta,E
a, and D) fluxes simulated 

in Hydrus-1D were aggregated in annual sums for further data 
analysis.

2.7 Crop Water Requirement (CWR) Analysis 
Crop water requirement (CWR) is usually referred to crop-specific 
potential evapotranspiration, however in this study we opt to 
define CWR as the difference between potential (Tp) and actual 
(Ta) transpiration:

                                  CWR = Tp - Ta     	   	            [7]

In other words, CWR refers to the amount of water required to 
minimize drought stress. This amount of water depends on climate-
dependent soil water storage dynamics and also on soil hydraulic 
properties (Eq. 5 and Eq. 6) and crop characteristics (Kc, LAI, zr,max, 
Feddes parameters). The model setup in HYDRUS 1-D allows the 
use of time-variant vegetation parameters of the 36 crops, which 
was obtained from values in the scientific body of literature. As 
the crop develops, ground cover, crop height, LAI, and root depth 
change in time. Therefore, we distinguished between annuals and 
perennials for different crop growing stages (initial phase, crop 
development, and late season) and for the dormant season.

The total number of numerical simulations in HYDRUS-1D 
included: (a) numerical simulation under “historic” climate 
conditions (a total of 5,479 days between 2006 and 2020) for 36 
crops; (b) three numerical simulation scenariosunder future climate 
projections (a total of 18,262 days between 2021 and 2070).

The crop water requirement (CWR) was calculated for each 
pixel and each crop by considering crop growing season and 
crop characteristics such as leaf area index and root depth. The 
relationship between mean annual CWR and AI was expressed 
with the following exponential regression equation:
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The water balance in the soil-plant-atmosphere system was numerically evaluated using HYDRUS 1-D 280 
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where t (d) is time, z (cm) is soil depth (positive upward), ψ is the soil water pressure head (cm), θ (cm3 287 

cm-3) is the soil volumetric water content, and 𝜉 (z, ψ, Tp) is the actual root water uptake sink term (d-1) 288 

depending on soil depth, soil pressure head and potential transpiration (Tp). The soil water retention 289 

function θ(ψ) is described by van Genuchten’s equation (van Genuchten, 1980). 290 
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where t (d) is time, z (cm) is soil depth (positive upward), ψ is the soil water pressure head (cm), θ (cm3 287 

cm-3) is the soil volumetric water content, and 𝜉 (z, ψ, Tp) is the actual root water uptake sink term (d-1) 288 

depending on soil depth, soil pressure head and potential transpiration (Tp). The soil water retention 289 

function θ(ψ) is described by van Genuchten’s equation (van Genuchten, 1980). 290 
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where α (cm-1), m (-) and n (-) are water retention shape parameters, θr (cm3 cm-3) and θs(cm3 cm-3) are 293 

residual and saturated water contents, respectively. The two parameters m and n are related with the 294 

condition m=1-1/n(van Genuchten, 1980), (Mualem, 1976). 295 

Considering the degree of saturation, Se=(θ-θr)/(θs-θr), which varies from 0 (θ=θr) to 1 (θ=θs), the 296 
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where Ks (cm d-1) is the saturated hydraulic conductivity and τ (-) represents the tortuosity parameter that 300 

is assumed to be τ = 0.5 (Mualem, 1976). In data-poor countries such as Ethiopia, the direct measurement 301 

of several gridded soil hydraulic properties would be impractical and unfeasible, therefore the four 302 

unknown (θr, θs, α, n) soil hydraulic parameters of the van Genuchten’s water retention function were 303 

estimated by using three well-established Pedotransfer Functions (PTFs) based on easily reproducible 304 
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parameters(α, n, θr, θs) were fit to obtainthe water retention function in each pixel. 312 

The last unknown parameter, Ks, is even more difficult to estimate from easily available soil physical 313 

properties (Zhang &Schaap, 2019). In this study Ks was estimated by using the Guarracino’s formula 314 
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parameters(α, n, θr, θs) were fit to obtainthe water retention function in each pixel. 312 

The last unknown parameter, Ks, is even more difficult to estimate from easily available soil physical 313 

properties (Zhang &Schaap, 2019). In this study Ks was estimated by using the Guarracino’s formula 314 
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                                    CWR = a ebAI	 	  	         [8]

with a and b are regression parameters optimized on observed 
AI and simulated CWR data pairs and corresponding coefficient 
of determination (R2) expressing the model fitting quality. The 
coefficient a is a proxy of the maximum CWR while the coefficient 
b controls the sensitivity between AI and CWR. In other words, 
CWR decays exponentially from arid to humid conditions for the 
same crop and more negative b implies a steeper decay in CWR 
wherelower CWR implies less root water uptake stress.

2.8 Sensitivity Analysis
The sensitivity analysis helpsanalyze the CWR changes in response 
to spatio-temporal changes in precipitation, and evapotranspiration. 
In this study, AI was considered the main systemic driving force 
related to changes in CWR. The relationship between change in 
AI (∆AI) and in CWR (∆CWR) was expressed with the following 
linear regression equation:

                                 ∆CWR= c∆AI + d	  	         [9]

where c and d are regression parameters fitted on observed ∆AI 
and simulated ∆CWR data pairs. The corresponding coefficient of 
determination (R2) expresses the model fitting quality. 

3. Results and Discussion
3.1 Historical Climate Conditions 
Ethiopia is markedly heterogeneous and geographical 
characteristics such as variable orography and continental-scale 
atmospheric processes (Indian and tropical configurations) induce 
highly variable temperature (T; Figure.5a) and rainfall (P; Figure. 
5b) patterns.The spatial-average mean annual grass-reference 

potential evapotranspiration (ET0; Figure.5c) is 1,763.9 mm with a 
standard deviation (SD) of 166.7 mm and a coefficient of variation 
(CV) of about 10%. This low spatial variability is explained 
mostly by the mean annual temperature patterns,which varies over 
space depending on different elevations in mountainousEthiopia 
(Figure.5a). 

According to the temperature-based Hargreaves formula, daily 
ET0 is calculated usingdaily minimum, maximum and mean air 
temperature, and location latitude. The coldest temperatures 
(8.7-19.3°C corresponding to 1st - 25th percentiles) were recorded 
over mountainous regions in central, northern, and northeastern 
Ethiopia, while the warmest temperatures (23.6-31.0°C 
corresponding to 75th - 99th percentiles) were generally found in the 
lowlands of northeast and southeast.

The mean annual rainfall in Ethiopia ranged between 119.3 - 631.2 
mm (1st - 25th percentiles) in the eastern lowlands to 1,089.5-2,419.0 
mm (75th - 99th percentiles) in the southwestern region with a mean 
value of 1,074.8 mm under the historical conditions. Rainfall is 
influenced by tropical and extratropical circulations (ENSO) as 
well as the Indian monsoon system that brings substantial moisture 
from the Indian Ocean [48]. 

The mean annual FAO AI mostly reflects the spatial patterns of 
the mean annual rainfall in Ethiopia. The spatial-average mean 
annual AI is 0.609 indicating dry climate class in Ethiopia with 
humid zones in the central and western parts and arid regions in the 
eastern lowlands (Figure. 5d). Nearly 53% of the national territory 
is under arid conditions (AI<0.5) while the remaining portion 
of Ethiopia lies under mid (35%) and humid (12%) conditions 
(Figure. 5e).
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Figure 5: Spatial Distribution of Mean Annual a) Air Temperature, T (°C), b) Rainfall, P (mm), c) Grass-Reference Potential 
Evapotranspiration, Et0 (Mm), D) Fao Aridity Index (Ai) And E) Frequency Distribution of Fao Aridity Index (Ai) Under Historical 
Climate Conditions (2006-2020) in Ethiopia. Vertical Dashed Lines Delimit Arid or Semi-Arid (ASA, 0.05 < AI ≤ 0.50), Dry or Sub-
Humid (Dsh, 0.50 < Ai ≤ 0.75), and Humid (H, Ai > 0.75) Climate Classes [29].
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3.2 Projected Climatic Conditions 
The GCMs were ranked according to the FAO AI and the majority 
forecast generally a more humid climate in Ethiopia with rise of 
mean annual P and ET0 (Table 3). Only the CSIRO_MK360 (both 
RCPs), CCSM4 (both RCPs) and GFDL_ESM2M (RCP8.5) rank 
below historical climate by forecasting drier-than-normal climatic 
conditions in Ethiopia.Generally, pronounced reductions in 
rainfall are predicted in the arid lowlands near Somalia.The results 
agree with existing studies that reported reduction in rainfall and 
increased frequency of droughts in the Ethiopian lowlands [49-

51].The IPSL_CM5A_LRand IPSL_CM5A_MR under both 
RCP4.5 and RCP8.5 forecast much wetter conditionsby 32 to 47% 
increase compared to the historical rainfall. The wetter conditions 
are predicted to intensify in the highlands of Ethiopia.A general 
increase in rainfall was also reported by [52]. All the GCMs 
predicted higher temperatures than the historicalby a range of 
0.31 °C (CSIRO_MK360 RCP4.5) to 2.06 °C (IPSL_CM5A_LR 
RCP8.5). This result is consistent with a World Bank report that 
forecasted temperature rise in Ethiopia will range between 0.7 and 
2.9 °C. 

RCP GCM P T ET0 AI
  mm °C mm  
4.5 CSIRO_MK360 1000.5 21.00 1843.5 0.543
8.5 CSIRO_MK360 1089.0 22.16 1847.4 0.589
8.5 CCSM4 1101.3 21.83 1842.2 0.598
4.5 CCSM4 1109.4 21.36 1835.9 0.604
8.5 GFDL_ESM2M 1117.9 22.11 1837.2 0.608
** Historical 1074.8 20.69 1763.9 0.609
4.5 GFDL_ESM2M 1121.2 21.39 1830.3 0.613
4.5 GFDL_CM3 1149.7 21.91 1862.7 0.617
8.5 GFDL_CM3 1148.1 22.21 1858.9 0.618
8.5 CNRM_CM5 1144.7 21.73 1809.4 0.633
4.5 CNRM_CM5 1182.7 21.42 1804.4 0.655
8.5 MPI_ESM_LR 1255.5 22.57 1874.6 0.670
4.5 MPI_ESM_MR 1251.4 22.13 1859.4 0.673
4.5 MPI_ESM_LR 1256.0 22.10 1854.7 0.677
8.5 MPI_ESM_MR 1269.0 22.38 1869.8 0.679
4.5 CanESM2 1284.4 21.72 1814.9 0.708
8.5 CanESM2 1384.5 22.39 1835.2 0.754
4.5 IPSL_CM5A_LR 1418.0 22.21 1807.6 0.784
4.5 IPSL_CM5A_MR 1430.2 22.17 1805.4 0.792
8.5 IPSL_CM5A_MR 1546.0 22.59 1811.8 0.853
8.5 IPSL_CM5A_LR 1584.9 22.75 1835.5 0.863
** Historical data inserted for comparison

Table 3: General Circulation Models (GCMs) Ranked by Using the Fao Aridity Index (AI). Representative Concentration Pathways, 
RCP, Spatial-Average Mean Annual Rainfall, P (mm), Temperature, T (°C), Grass-Reference Potential Evapotranspiration, ET0 
(mm), and Aridity Index, Ai, Are Reported for Each GCM. AI Distinguishes Between Arid or Semi-Arid (ASA, 0.05 < AI ≤  0.50), 
Dry or Sub-Humid (DSH, 0.50 < AI ≤  0.75), and Humid (H, AI > 0.75) Climate Classes [29].

Despite the increasing trend of spatial-average mean annual ET0 
induced by warming temperatures, the three climate projections 
provided wetter-than-normal conditions under the median and wet 
scenario and kepta climate class similar to the historical situation 
only under the dry climate scenario (Figure .6).The most probable 
climate projection (with median AI) indicatesthat the areas under 
arid conditions are likely to halve from 53% to about 25%, 
especially in the central-eastern part of the country.Meanwhile, the 
dry or sub-humid, and humid regions will cover 35% and 37% of 
the national area, respectively. 

The wet climate scenario projections indicatethat the regions 
under arid, dry or sub-humid, and humid conditions will be 20%, 
18% and 62% of the country, respectively, whilethe dry scenario 
indicates that the regions under arid, dry or sub-humid, and humid 
conditions will be 37%, 41% and 22% of the country, respectively.
Assessing drought changes using an ensemble of five Global 
Climate Models (GCMs) in the Coupled Model Intercomparison 
Project (CMIP5) over East Africa,found that drought will generally 
decrease in the Ethiopian highlands [53]. 
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Figure 6 Spatial distribution of FAO AI over the 6,495 pixels in Ethiopia by using a) dry climate scenario (5th 436 
percentile GCM), c) median climate scenario (50th percentile GCM), e) wet climate scenario (95th percentile GCM), 437 
and frequency distribution of FAO aridity index (AI) by using b) dry climate scenario (5th percentile GCM, red 438 
histograms), c) median climate scenario (50th percentile GCM, green histograms), e) wet climate scenario (95th 439 
percentile GCM, cyan histograms). Vertical dashed lines delimit arid or semi-arid (ASA, 0.05 < AI  0.50), dry or 440 
sub-humid (DSH, 0.50 < AI  0.75), and humid (H, AI > 0.75) climate classes (Spinoni et al., 2015).  441 
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induced by warming sea surface temperatures in the east Pacific and north Indian Ocean (Jury, 447 
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Figure 6: Spatial Distribution of Fao Ai Over the 6,495 Pixels in Ethiopia By Using A) Dry Climate Scenario (5th Percentile Gcm), 
C) Median Climate Scenario (50th Percentile Gcm), E) Wet Climate Scenario (95th Percentile Gcm), and Frequency Distribution of Fao 
Aridity Index (Ai) By Using B) Dry Climate Scenario (5th Percentile Gcm, Red Histograms), c) Median Climate Scenario (50th Percentile 
Gcm, Green Histograms), e) Wet Climate Scenario (95th Percentile Gcm, Cyan Histograms). Vertical Dashed Lines Delimit Arid or 
Semi-Arid (ASA, 0.05 < AI ≤ 0.50), Dry or Sub-Humid (DSH, 0.50 < AI ≤ 0.75), and Humid (H, AI > 0.75) Climate Classes [29].

Analysis of historical data from 1999 to 2014 shows that western 
regions are getting wetter and eastern regions are getting more 
arid [5]. Raised concern on the drying conditions in southern 
Ethiopia by analyzing gauged-based precipitation data during 
1971-2011[54].However, several studies agree that rainfall is 
increasing in most parts of Ethiopia (except the eastern lowlands) 
induced by warming sea surface temperatures in the east Pacific 
and north Indian Ocean [55-57]. Further, the results also confirmed 
that changes in East Africa, including Ethiopia, follow the “dry 
gets drier and wet gets wetter” paradigm. The main advantage of 
selectingthree climate scenarios (dry, median, and wet climate 
scenarios) is thata range of climate conditions can be covered to 
account for variability while simultaneously reducing the number 
of model simulations [27,28].

3.3 The Relationship Between Crop Water Requirement and 
Aridity Index 
The relationship between annual mean AI and CWR over the 6,495 
pixels helpsprovide insight into any shift in climate conditions 
and related change in CWR. It is worth noting that the crop 
characteristics influencing root water stress are time-variant and 
change over different seasons (Table 2). Table 4 lists the CWR, 

the exponential regression(Equation. 8) coefficients (a and b)fitted 
on the data under historical and projected climate conditions for 
all crops.

The majority (34 out of 36) of crops are likely to experience a 
decrease in projected mean annual CWR induced by projected 
wetter climate. Only barley and plantain are likely to experience 
annual average increasesin root water stress induced by projected 
climate change. The increase in root water stress in barley 
compared to wheat could be related to thecrop characteristics 
(e.g.,LAI, Kc, and zr,max) used in this study. For instance, if LAI and 
Kc are lower, the evapotranspirationdemand and partitioning will 
likely be more dominated by evaporation rather than transpiration. 
Under such circumstances, evaporation will not be sensitive to 
an increase in projected precipitation. However, the increase in 
projected stress in barley compared to wheat is likely related to the 
geographic coverage of barley crop plantation. Compared to barley, 
significantly more wheat is planted in the wet EthiopianHighlands 
that are projected to get wetter.As a result, wheat shows reduced 
crop water demand compared to the barley, which is planted in less 
abundance in the humid zones (Figure. 7).
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Figure 7: Coverages of Barley and Wheat Crop Planting Areas in Ethiopia.

FAO reports the crop water requirement for barley and wheat 
ranges between 450 mm to 600 mm for the total growing period 
and 1,200 mm to 2,200 mm for banana [58]. The CWR for plantain 
ranges between 900 mm to 1,700 mm in plantain, but its rainfed 
coverage in Ethiopia is insignificant [59]. Moderate decrease 
in CWR (less than 10%) is forecasted for apple, banana, cocoa, 
coconut, coffee, palm oil, tea, and tobacco. 

The regression coefficients fitted on AI-CWR data highlight two 
aspects: i) coefficient a determines a scaling effect on the CWR 
and the comparison between historical and projected a coefficients 
indicates an upward or downward shift on the y-axis if projected 
a is higher or lower than historical a, respectively; ii) coefficient 
b dictates the shape of the decay function and the comparison 
between historical and projected b coefficients indicates a steeper 
or smoother decay if projected b is lower or higher than historical 
a, respectively; if b gets to 0, it signifies no sensitivity of CWR to 
AI.The analysis of a and b coefficients for the 36 crops revealed 
interesting dynamics.

The projected a coefficient of banana, bean, cassava, coconut, 
cowpea, millet, orange, sesameseed, sugarbeet, sugarcane, and 
sunflower, were lower than the corresponding historical values. 
This is expected because it reflected the corresponding decrease 
in mean annual CWR (Table 4). The projected a coefficient of the 
remaining crops contrasted the corresponding decreases in mean 
annual CWR. This result implies that,although a general wetting of 
the projected climate and a general decrease in CWR is observed, 
the projected root stress is likely to increase significantly over the 

arid regions of Ethiopia. 

Further, this indicates that the most arid zones in the northern and 
eastern parts of the country are likely to experience dry shocks and 
droughtsunder the extremely dry conditionscenario. By contrast, 
the analysis of coefficient b reveals other dynamics. Apple, cabbage, 
groundnut, lentil, potato, rice, sweet potato, teff, and yams indicate 
the projected b coefficient that islower than the historical value.
This result indicates that such crops will likely bemore sensitive to 
climate change in arid regions and less sensitive in humid regions 
of Ethiopia. 

The remaining crops get the projected b value greater than the 
historical value where sensitivityof CRW to AI is reversed (i.e., 
crops are less sensitiveto climate change in the arid regions and 
highersensitivity in the humid regions). Therefore, the b coefficient 
might be informative to discriminate crops that are more sensitive 
in arid zones or those that are more sensitive in humid regions of 
Ethiopia.

The fitting quality was quantified through the coefficient of 
determination (R2) and ranges between 0.02 (cowpea) and 0.93 
(orange) in the baseline scenario and between 0.29 (potato) and 
0.91 (orange) in the projected scenario. The fitting was generally 
good, especially for perennial crops and trees, with some few 
exceptions where R2 values were very low, indicating poor 
relationship between AI and CWR (e.g., cowpea, groundnut, and 
potato) in the historical scenario.
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Figure 8. Relationship between mean annual FAO aridity index and crop water requirement (CWR) under the 505 
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solid line indicates the exponential equation (Eq. 8) fitted on the data. 508 
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Figure 8: Relationship Between Mean Annual Fao Aridity Index and Crop Water Requirement (cwr) Under the Baseline (Historical) 
Scenario (Yellow Circles) For A) Maize, c) Bean, E) Sesameseed, G) Coffee, and I) Sugarcane, and Under Projected Scenario (Green 
Circles) For B) Maize, d) Bean, F) Sesameseed, H) Coffee, and J) Sugarcane. The Black Solid Line Indicates the Exponential Equation 
(eq. 8) Fitted on the Data.

Figure. 8 displays the exponential decay of CWR with respect to AI 
for maize, bean, sesameseed, coffee, and sugarcane representing 
important crop classesfor the cereals/grains, pulses/nuts/legumes, 
oilseeds, export commodity, and cash crops, respectively, under 
historical (Figure. 8, left panel, yellow circles) and projected 
(Figure. 8, right panel, green circles) climate conditions. The shift 
toward more humid climate conditions in the next decades reflects 
a decrease in crop root water stress and a different sensitivity 
between historical and projected conditions. Precipitation under 
climate change conditions has a positive and significant effect on 
water availability ofshort and long-term cereal crops production 
in Ethiopia [60].Coffee for instance is water-demanding (coffee 
has the highest CWR) and the climate shift toward more humid 

conditions is likely to induce a decrease in water stress and a weaker 
sensitivity of projected CWR to AI (Figure. 8g) when compared to 
the historical relationship (Figure. 8h).also reported that climate 
variables are the determining factorsfor coffee growing area 
suitability and that the combined (climate, topography, and soil 
characteristics) modeling variables predict suitability will increase 
[61].In contrast, also reported high correlation between climate 
change and coffee production but forecasted decrease in coffee 
production in Ethiopia [62]. It is also important to note that, except 
coffee, the crop water requirement of the crops (e.g., sugarcane) 
exponentially increases as aridity increases from sub-humid to 
semi-arid and arid conditions.

 Historical (2006-2020) Median scenario projection (2021-2070)
Crop Spatial-average CWR a b R2 Spatial-average CWR a b R2
 mm    mm    
Apple 368.25 537.72 -0.75 0.38 345.85 588.60 -0.84 0.40
Banana 323.65 932.31 -2.16 0.88 301.88 903.49 -1.71 0.86
Barley 0.38 175.55 -13.17 0.83 0.48 102.93 -8.75 0.75
Bean 4.04 39.85 -4.95 0.41 2.76 34.80 -3.61 0.52
Cabbage 7.46 30.06 -2.31 0.14 4.34 70.48 -3.69 0.44
Cassava 8.16 309.20 -7.48 0.59 3.62 285.75 -5.83 0.68
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Chickpea 11.75 68.61 -3.58 0.35 8.53 78.30 -3.18 0.50
Cocoa 937.67 1845.65 -1.36 0.83 911.30 1879.06 -1.10 0.84
Coconut 378.98 986.82 -1.90 0.80 354.35 978.66 -1.53 0.80
Coffee 1027.51 2057.77 -1.40 0.85 970.02 2105.71 -1.16 0.86
Cotton 17.00 459.31 -6.13 0.74 6.53 502.36 -5.55 0.76
Cowpea 7.12 73.82 -4.99 0.02 4.98 69.47 -3.82 0.57
Groundnut 16.50 84.81 -3.11 0.05 8.09 135.29 -3.79 0.52
Lentil 79.32 211.55 -1.95 0.24 52.12 335.72 -2.77 0.46
Maize 4.15 216.72 -7.12 0.80 1.78 223.45 -5.80 0.72
Millet 0.93 133.72 -8.84 0.78 0.66 116.84 -6.78 0.91
Palm oil 752.19 1590.89 -1.49 0.82 718.99 1608.34 -1.22 0.82
Olive 66.28 911.93 -5.15 0.82 29.32 979.34 -4.89 0.86
Orange 129.74 993.75 -4.20 0.93 60.98 950.79 -4.16 0.91
Pigeonpea 11.75 68.63 -3.58 0.35 8.53 78.30 -3.18 0.50
Plantain 3.53 272.34 -10.43 0.75 5.70 159.62 -5.80 0.79
Potato 30.95 58.54 -1.20 0.03 24.02 74.01 -1.61 0.29
Rapeseed 17.76 178.10 -4.92 0.40 9.81 202.39 -4.30 0.60
Rice 139.44 209.37 -0.83 0.18 110.99 260.16 -1.27 0.30
Sesameseed 1.14 101.79 -9.45 0.81 0.79 77.50 -6.65 0.86
Sorghum 19.67 276.18 -5.51 0.70 10.25 289.81 -4.71 0.77
Soybean 24.40 126.54 -3.36 0.46 17.39 141.92 -3.13 0.58
Sugarbeet 1.79 140.12 -8.69 0.75 1.03 124.58 -5.97 0.65
Sugarcane 9.63 604.93 -8.85 0.90 8.37 519.31 -6.89 0.91
Sunflower 1.38 107.91 -9.20 0.80 0.92 83.25 -6.43 0.85
Sweet potato 78.09 302.75 -2.79 0.42 46.69 428.14 -3.31 0.57
Tea 911.65 1921.83 -1.50 0.86 856.56 1949.97 -1.24 0.86
Teff 36.16 87.38 -1.73 0.33 28.63 108.27 -1.98 0.41
Tobacco 808.11 1569.54 -1.33 0.80 790.33 1589.83 -1.06 0.83
Wheat 22.48 375.31 -5.74 0.67 9.35 416.62 -5.03 0.70
Yams 126.90 236.37 -1.28 0.19 108.13 329.79 -1.76 0.39

Table 4: Spatial-Average Mean Annual Crop Water Requirement (Cwr), Regression Coefficients (A And B) Fitted on Ai and 
Cwr Data for the 36 Crops in Ethiopia Under the Historical (2006-2020) and the Most Probable Projected (2021-2070) Climate 
Conditions and Corresponding Coefficient of Determination (R2).

3.4 Sensitivity Analysis
The relationship between change in AI (∆AI)and change in 
CWR (∆CWR) describes the sensitivity of root water stress to 
climate characteristics in Ethiopia. In the linear regression model, 
the coefficient c denotes the slope of the regression line and d 
represents the intercept (Equation. 9). The steeper the slope, the 
more sensitive the change in CWR to the change in AI. Generally, 
the c coefficients are negative for all crops (Table 5) meaning thatan 
increasein climatic humidityis accompanied with a decrease in 
root stress. In other words, the more positive the change in AI, the 
more negative the change in CWR. Palm oil, apple, cocoa, coffee, 

plantain, rice, tea, and tobacco obtained the highest (less negative)
c coefficientindicating relatively low sensitivity to climate change. 
The high R2-values (R2 >0.70) indicate that annual level analysis 
may be enough to explain the relationship between CWR and AI 
in crops such as banana, cocoa, coconut, coffee, palm oil, tea, 
and tobacco. Most of the non-perennial crops, however, indicate 
low relationship (R2 < 0.50) between CWR and AI. The crops 
with low R2-values require detailed examination into the impact 
of seasonality of climate change with higher temporal resolution 
analytics.
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Crop c d R2
Apple -0.408 9.23 0.50
Banana -0.632 20.23 0.68
Barley -0.623 18.43 0.20
Bean -0.856 12.59 0.43
Cabbage -0.847 8.09 0.46
Cassava -0.855 2.62 0.40
Chickpea -0.872 15.76 0.47
Cocoa -0.502 19.16 0.72
Coconut -0.654 22.67 0.73
Coffee -0.520 18.74 0.73
Cotton -0.896 1.19 0.43
Cowpea -0.892 14.54 0.44
Groundnut -0.905 6.08 0.52
Lentil -0.795 6.86 0.54
Maize -0.795 -7.83 0.34
Millet -0.731 -7.97 0.28
Palm oil -0.542 19.02 0.74
Olives -0.952 6.54 0.53
Orange -0.903 -0.92 0.62
Pigeonpea -0.872 15.76 0.47
Plantain -0.562 37.20 0.22
Potato -0.677 10.26 0.42
Rapeseed -0.934 11.41 0.51
Rice -0.578 6.80 0.51
Sesameseed -0.808 4.34 0.34
Sorghum -0.948 9.32 0.49
Soybean -0.889 15.03 0.50
Sugarbeet -0.788 3.78 0.30
Sugarcane -0.905 29.21 0.43
Sunflower -0.808 2.32 0.34
Sweet potato -0.907 9.42 0.59
Tea -0.548 18.91 0.74
Teff -0.761 14.68 0.48
Tobacco -0.492 19.33 0.72
Wheat -0.990 8.39 0.48
Yams -0.649 13.09 0.48

Table 5: Regression Coefficients (C And D) Fitted on Change in Ai (∆Ai) and in Cwr (∆cwr) Data for the 36 Crops in Ethiopia 
and Corresponding Coefficient of Determination (R2).

Figure. 9 illustrates the linear relationship occurring between 
the change in AI (∆AI) and CWR (∆CWR) for maize, bean, 
sesameseed, coffee, and sugarcane representing cereals/grains, 
pulses/nuts/legumes, oil seeds, export commodity, and cash crops, 
respectively. The figure shows that only coffee is characterized 
by low scatter (R2 = 0.73) indicating that climate change impact 
on water stress in Ethiopia can be clearly observed. Meanwhile 

maize, bean, sesameseed, and sugarcane are affected by large 
data scattering depicting R2-values of 0.34, 0.43, 0.34, and 
0.30, respectively. This result indicates deep-dive studies into 
the seasonal dynamics of climate variability and the impact of 
related water stress onthese crops is critical to understand their 
vulnerability to climate change.
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Figure 9: Relationship Between Change in Fao Aridity Index (∆Ai) and Crop Water Requirement (∆CWR) for a) Maize, B) Bean, C) 
Sesameseed, D) Coffee, E) Sugarcane.

The spatial distribution of simulated CWR for each crop 
depended on soil properties, crop characteristics, and local climate 
conditions. Figure. 10 displays the distribution of CWR of the 
selected five important crops in each crop classification (maize, 
bean, sesameseed, coffee, and sugarcane) in Ethiopia under 
historical climate conditions (left panel).

The colors in the figure vary from reddish to bluish indicating high 
or low CWR in the left panel, respectively. In general, the highest 
CWR values are detected over the arid regions in Ethiopia. The 
lowest spatial-averageCWR belongs to sesamseed which appears 
less sensitive to droughtcompared to the other crops in this group. 
The fact that sesameseed has better capacity to withstand droughts 
and arid conditions more than other crops have also been reported 
by [63]. The panels on the right report the difference between 
projected (dry, median, wet scenarios) and historical CWR for 
each of the five analyzed crops. The difference in historical and 
projected CWR of maize, bean, sesameseed, and sugarcane vary 
over the same order of magnitudes (-20 to 20 mm) while CWR for 
coffee is much higher (-500 to 500 mm). 

The regions that change color to yelloware those most sensitive 
to the projected climate. Northern Ethiopia appearsmore sensitive 
to climate change for maize, coffee, and sugarcaneand less 
sensitive for bean and sesamseed. By contrast, maize, coffee, and 
sugarcane in the central highlands of Ethiopia seem to reduce 
drought stressunder projected climate conditions, while bean 
and sesamseed keep CWR dynamics under both historical and 
projected climate conditions. 

The impact of climate change on coffee is particularly observed 
in Southeastern Ethiopia where most of the Ethiopian coffee is 
produced. This region also hosts the Kaffa Biosphere Reserve 
known for its significant biodiversity and as theorigin of arabica 
coffee.

 The best region for coffee in southwestern Ethiopia under historical 
climate conditions (bluish color in Figure. 10, fourth subplot in 
the left panel) is likely to undergo drier-than-normal climate by 
inducing increase in drought stress.This critical hotspot merits in-
depth analysis to get a better understanding of potential impact of 
drought on water availability and crop production.



J Water Res, 2024 Volume 2 | Issue 1 | 17

 584 

Figure10. Crop water requirement (CWR) for maize, bean, sesameseed, coffee, and sugarcane under 585 
historical climate conditions (colorbar from blue to red) and difference between projected and historical 586 
CWR under dry, median, and wet climate scenarios (colorbar from blue to yellow). 587 

 588 

5.0 Limitations 589 

This study is intended as a preliminary analysis to explore potentially critical hotspots and identify 590 

vulnerable crops to a changing climate in Ethiopia. As such,there are several limitations that should be 591 

considered when evaluating the results and derived conclusions and recommendations. These limitations 592 

include crop properties obtained from the literature, relatively coarse resolution for crop distribution, and 593 

soil properties obtained from Pedotransfer Functions.For example, the PTFs applied in this study are 594 

developed and calibrated in Europe and North America. Tropical PTFs are scarce and with even fewer 595 

Maize

Historical Median projection Wet projection

Bean

Sesameseed

Dry projection

Coffee

Sugarcane

C
W

R
(m

m
)

Pr
oj

ec
te

d
H

is
to

ric
al

C
W

R
 (m

m
)

Latitude

Lo
ng

itu
de

Figure 10: Crop Water Requirement (Cwr) for Maize, Bean, Sesameseed, Coffee, and Sugarcane Under Historical Climate Conditions 
(Colorbar from Blue to Red) and Difference Between Projected and Historical Cwr Under Dry, Median, and Wet Climate Scenarios 
(Colorbar From Blue to Yellow).

4. Limitations
This study is intended as a preliminary analysis to explore 
potentially critical hotspots and identify vulnerable crops to a 
changing climate in Ethiopia. As such,there are several limitations 
that should be considered when evaluating the results and derived 
conclusions and recommendations. These limitations include crop 
properties obtained from the literature, relatively coarse resolution 
for crop distribution, and soil properties obtained from Pedotransfer 
Functions.For example, the PTFs applied in this study are 
developed and calibrated in Europe and North America. Tropical 
PTFs are scarce and with even fewer validated datasets limiting 
the capacity to predict crop water requirements. The availability of 
global-scale digital maps of soil physical and chemical properties 
provides information at high-spatial-resolution to support the 
implementation of PTFs for modeling applications, such as Soil 
Grids 250mand its recently updated version, Soil Grids 2.0 [64-
66]. However, such dataset in a large country like Ethiopia may 
have computational efforts with limited quality control. 

Further, the soil physical and chemical properties obtained may 
not reflect the real heterogeneous spatial variability and as a result 
crop water demands may be dominated by climate patterns. The 
role of soil structure is alsoignored, and preferential flow was 
not modeled. This is a serious limitation in Ethiopia where crop 
tilling and similar crop field management are frequently practiced. 
Missing information on farm management, crop yield, and soil 
conservation practices was not included but can potentially be 
incorporated by coupling Hydrus-1D with DSSAT [67].

HYDRUS-1D is a well-known process-oriented, physically-
based hydrological model applied in a myriad of studies. The 
application of a one-dimensional model over a heterogenous 
landscape (in terms of orography) by ignoring the effect of terrain 
attributes on surface and sub-lateral flow might compromise the 
model simulations. This aspect may be significant in the Ethiopian 
Highlandsand other areas where steep slope farming is practiced. 

Concentrating on lowresolution temporal dynamics (i.e., annual 
averages) may also overlook the impact of seasonal variation in 
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rainfall induced by climate change. High spatial and temporal 
resolution analytics in critical hotspots (e.g., arid and semi-arid) 
and vulnerable crops (e.g., coffee and maize)will follow this 
preliminary analysis.In addition, this approach will beenhanced in 
the future through more direct observations and including on-the-
ground information on farming management practices.

5. Conclusion and Recommendations
Given the drastic impact of climate change on water resources, 
it is critical to understand the historical and projected crop water 
requirement in vulnerable countries such as Ethiopia. This exercise 
can help identify susceptible crops and vulnerable zones to water 
scarcity. Detailedanalysis on specific crops and seasonal dynamics 
can then focus on areas with high risk to climate impact. 

In this study, the aridity index derived from potential evapotrans-
piration and precipitation was evaluated under historical and pro-
jected (dry, most probable, and wet) climate conditions. There 
is unanimous consensus among the 20 climate models that tem-
peratures will riseranging from 0.3 to approximately 2 oC by the 
21st Century. Almost all the climate models predict that rainfall 
is likely to increase in the central highlands of Ethiopia leading 
to a more humid climate condition. Because the changes in av-
erage annual temperatures are relatively low, the transformation 
toward increased or decreased aridity mainly depended on spatial 
changes in rainfall. While the most probable climate projection in-
dicates that humid area coverage will likely increase from 25% to 
37%, increases in temperature and pronounced reduction in rain-
fall around the northern, southern, and eastern borders will likely 
intensify aridity in the dryparts of Ethiopia. Further, pronounced 
reductions in rainfall are predicted in the arid lowlands near Soma-
lia requiring further attention due to its historical vulnerability to 
dry shocks and potential intensification of droughts in the forecast. 

Theimpact of climate change on the crop water requirement of the 
36 major crops in Ethiopia was evaluated by comparing the crop 
water requirementunder the same historical and projected (dry, 
median, and wet) climate conditions. An ensemble of thousands 
numerical simulations in HYDRUS-1D was carried out by ensuring 
spatial distribution of soil hydraulic properties in a 2-m-thick 
layered soil profile (topsoil and subsoil) and spatio-temporal 
dynamics of crop characteristics (time-variant crop coefficient, 
leaf area index, maximum root depth, and crop-specific Feddes 
parameters) of each of the 36 crops. 

The results indicate that, except for barley and plantain, most crops 
are likely to experience a decrease in projected mean annual crop 
water stressattributed to projected wetter climate. Because barley 
iscritical to food security in Ethiopia, deeper analytics may need to 
be carried out to fully understand vulnerability to food insecurity, 
livelihoods, and the national economy. 

The relationship between crop water requirement and aridity index 
appears to be informative in discriminating between crops that are 
more sensitive to climate change in arid regions (e.g., teff, lentils, 
and potatoes) to those that are more sensitive in humid regions 

of Ethiopia. Teff, for instance, is the main staple food in Ethiopia 
grown by 6 million farmers and consumed by more than 50 million 
people and is critical for food security and livelihoods. As such, 
deeper analysis is imperative to understand its vulnerability to 
climate change in all regions. Similarly, the change in crop water 
requirement between historical and projected climate conditions 
for coffee was significant ranging -500 mm to 500 mm, indicating 
high vulnerability compared to other crops that ranged between 
-20 m and 20 mm. Because of the significance of coffee for the 
Ethiopian economy, deeper analyses with observation data and 
robust modeling are warranted. 

The relationship between annual average crop water requirement 
and aridity index inmost of the non-perennial crops was not robust 
(R2 < 0.50).The low relationship indicates that annually averaged 
values are not good predictors of susceptibility to climate change. 
The crops where low R2-values were observed require detailed 
examination into the impact of seasonality of climate change with 
higher temporal resolution analytics. 

While this study provides valuable insights into the impact 
of climate change on crops in Ethiopia, it should be noted that 
the analysis is subject to several limitations related to data and 
modeling approaches. Coarse spatial and temporal analytical 
resolutions,heavy reliance on global datasets, lack of farming 
practices information, and the 1-dimensional nature of the 
analytical model are limitations that require due considerations. 
Detailed analyses that address some of the described limitations 
will follow to further select few crops and critical hotspots that are 
most vulnerable to climate change and pose greater risk to food 
insecurity and the overall Ethiopian national economy.
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