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Abstract
This paper presents a novel approach for analysing EEG data from drivers in a simulated driving test. We focused on the 
Hurst exponent, Shannon entropy, and fractal dimension as markers of the nonlinear dynamics of the brain. The results show 
significant trends: Shannon Entropy and Fractal Dimension exhibit variations during driving condition transitions, whereas 
the Hurst exponent reflects memory retention and habit formation portraying learning patterns. These findings suggest that 
the tools of Non-linear Dynamical (NLD) Theory as indicators of cognitive state and driving memory changes, and open up 
new possibilities for assessing driver performance, identifying safety risks, and advancing the understanding of non-linear 
dynamics of human cognition in the context of driving and beyond. Our study reveals the potential of NLD tools to elucidate 
brain state and system variances, enabling their integration into current Deep Learning and Machine Learning models. 
This integration can extend beyond driving applications and be harnessed for cognitive learning, thereby improving overall 
productivity and accuracy levels.
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1. Introduction
Driving is a complex skill that requires many cognitive 
capabilities. With age and experience, these skills evolve over 
time. The association between cognitive ability and driving 
performance is well established [1]. Experience has a significant 
impact on how cognitive capacities develop, resulting in 
increases in several areas, such as response time and decision-
making ability [2]. Individuals develop a level of familiarity 
and experience with particular stimuli or tasks via repeated 
exposure, which results in quicker reaction times [3]. This 
is frequently seen in activities such as driving, athletics, or 
video games, where seasoned players react more quickly than 
inexperienced players. Because the brain may automate some 
cognitive functions with experience, reaction times shorten as 
neural pathways become more effective. However, although 
the experience can enhance cognitive abilities, age-related 
changes can also have a significant impact on cognitive function 
[4]. Certain cognitive abilities, such as memory, attention, and 
executive function, may deteriorate with age [5]. To improve 
cognitive performance and treat age-related cognitive decline 
and neurodegenerative illnesses, it is crucial to understand the 
interaction between experience, aging, and cognitive capacities.

EEG analysis has been used to study driving performance in 
a variety of ways, including measuring drivers' brain activity 
while they are taking part in a simulated or real driving test to 

identify changes in brain activity linked to fatigue, distraction, 
and other factors that can impair driving performance [6-8]. 
The study of brain oscillations is another area of EEG analysis 
in simulated driving [9]. Rhythmic patterns of brain activity 
in many frequency bands, including the alpha, beta, theta, and 
gamma bands, are represented by neural oscillations. Decreased 
alpha oscillations may indicate higher alertness, while increased 
theta oscillations may indicate cognitive strain or workload 
[10]. The complexity, regularity, and scaling characteristics of 
brain activity can also be shown by measurements obtained 
from EEG data, such as Hurst exponent, Shannon frequency, 
and fractal dimension. These measurements can be used in the 
context of simulated driving to evaluate the degree of cognitive 
engagement, cognitive load, and effectiveness of information 
processing.

Nonlinear dynamics is a branch of mathematics that studies 
systems with complicated behaviours that are sensitive to 
tiny changes in the initial circumstances. It is concerned with 
the investigation of nonlinear equations and the behaviour of 
systems, which cannot be simply explained using Newtonian, 
Hamiltonian, or other linear models. The brain functions as a 
nonlinear system [11]. This is due to the fact that the brain is 
made up of billions of neurons that are intricately intertwined. 
Small changes in the activity of one neuron can have a huge 
impact on the activity of neighbouring neurons. This can result 
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in behavioural, perceptual, and cognitive alterations [12]. 
Nonlinear properties are frequently observed in brain activity 
data, such as electroencephalography (EEG) or functional 
magnetic resonance imaging (fMRI) [13]. Linear models may 
not be sufficient to capture the underlying dynamics or extract 
meaningful information from such data.

Hurst exponent, a measure of temporal dynamics' "long-term 
memory," has also been investigated in recent years as a tool 
for EEG signal interpretation [14]. The Hurst exponent is a 
mathematical measure used to analyse the long-term memory 
and predictability of a time series [15]. The Hurst exponent 
is used in EEG signal analysis to measure the fractal scaling 
characteristics of the signal, which are connected to the long-
range correlations and self-similarities of the time series. By 
examining the complexity of the EEG signal, the Hurst exponent 
can be used to distinguish between healthy and pathological 
brain states [16]. For instance, research has revealed that the 
Hurst exponents of Alzheimer’s patients’ EEG signals are lower 
than those of healthy controls, indicating a loss of complexity 
and long-range correlations in brain activity [17]. The Hurst 
exponent has also been found to be altered in various neurological 
conditions including Parkinson's disease and epilepsy [18,19].

Entropy is a different approach that can be used to extract regular 
information from EEG datasets [20]. Entropy is a nonlinear 
property that measures the degree of randomness in a system. 
Because it cannot be evaluated by frequency relative power 
derived from linear analysis, it is a useful tool for classifying 

mental states based on the degree of temporal and spectral 
irregularity in the EEG signal [21]. 

The complexity and self-similarity of the EEG data were 
measured mathematically using the fractal dimension in EEG 
analysis. It sheds light on the temporal structure and scaling 
characteristics of the electrical activity of the brain. Fractal 
dimension is derived from the concept of fractals, which are 
geometric objects that exhibit self-similarity at different scales. 
It is calculated by splitting the signal into smaller segments and 
calculating the fluctuation within each segment. The complexity 
of the signal increases with fractal dimension.

In EEG analysis, fractal dimension has been used to investigate 
a number of cognitive processes, such as decision-making, 
memory, and attention [22]. In addition, they have been used 
for biomedical signal processing [23,24].  For instance, research 
has revealed that EEG signals from people with attention deficit 
hyperactivity disorder (ADHD) have higher fractal dimensions 
in their EEG signals than those without ADHD [25]. This shows 
that the increased complexity of brain activity may be linked 
to ADHD. Additionally, research on brain illnesses, such as 
Schizophrenia, Depression and Alzheimer's disease, has made 
use of the fractal dimension [26]. For instance, research has 
revealed that EEG signals from individuals with Alzheimer's 
disease are less fractal than those from individuals without 
Alzheimer’s disease [27]. This suggests that Alzheimer's disease 
may be linked to a decline in cognitive complexity.

Figure 1: Four Environment Conditions for the Driving Simulator 
 

In this study, we investigated the relationship between age, driving experience, and cognitive processes 

in driving performance by analysing EEG data collected from drivers and students during a simulated 

driving test and an on-road experiment.  Our approach focused on utilizing nonlinear dynamical 

parameters to unveil the state of cognition and driving experience embedded in the EEG data. Similar 

analyses were conducted for EEG & fMRI brain signals solar-cycle activities and also nano-material 

fabrication [28-30]. Specifically, we computed the Hurst exponent to reveal the retention of memory 

and experience, while the Fractal Dimension and Shannon Entropy shed light on the complexity of 

neuronal firing and ease of cognitive processes. By leveraging these nonlinear parameters, we gained 

insights into the effects of age, driving experience, and task difficulty on driving ability. 

 
2. Materials & Methods 

Ten male three-wheeler drivers were selected for this cross-sectional study from five distinct three-

wheeler stands (Autorickshaw stands) in Mumbai, India. Participants in the study must possess a valid 

driving license, have at least two years of driving experience, and log at least five hours of driving each 

day.  

 

The experiment was conducted on drivers in the Ergonomics Laboratory of the National Institute of 

Industrial Engineering (NITIE), Mumbai, using a fixed three-wheeler driving simulator (Technotrov 

Systems Pvt. Ltd., Maharashtra, Mumbai; see Fig. 1). This driving simulator is an exact reproduction 

of a three-wheeled vehicle, complete with all its characteristics. For this experiment, four different 
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In this study, we investigated the relationship between 
age, driving experience, and cognitive processes in driving 
performance by analysing EEG data collected from drivers 
and students during a simulated driving test and an on-road 
experiment.  Our approach focused on utilizing nonlinear 
dynamical parameters to unveil the state of cognition and 
driving experience embedded in the EEG data. Similar 
analyses were conducted for EEG & fMRI brain signals 
solar-cycle activities and also nano-material fabrication 
[28-30]. Specifically, we computed the Hurst exponent 
to reveal the retention of memory and experience, while 

the Fractal Dimension and Shannon Entropy shed light on 
the complexity of neuronal firing and ease of cognitive 
processes. By leveraging these nonlinear parameters, we 
gained insights into the effects of age, driving experience, 
and task difficulty on driving ability.

2. Materials & Methods
Ten male three-wheeler drivers were selected for this cross-
sectional study from five distinct three-wheeler stands 
(Autorickshaw stands) in Mumbai, India. Participants in the 
study must possess a valid driving license, have at least two 



 Volume 3 | Issue 4 | 3J Electrical Electron Eng, 2024

years of driving experience, and log at least five hours of 
driving each day. 

The experiment was conducted on drivers in the Ergonomics 
Laboratory of the National Institute of Industrial Engineering 
(NITIE), Mumbai, using a fixed three-wheeler driving 
simulator (Technotrov Systems Pvt. Ltd., Maharashtra, 
Mumbai; see Fig. 1). This driving simulator is an exact 

reproduction of a three-wheeled vehicle, complete with all 
its characteristics. For this experiment, four different traffic 
situations were selected: low traffic in cities, high traffic in 
cities, and low traffic on highways. All subjects had 3 min 
of practice time to become accustomed to the system and 
procedure, followed 

by 15 min of EEG recording.
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Figure 2: Photo of a Subject in the 3-Wheeler Driving Simulator with DSI-7 Wireless EEG 
Headset Mounted on Head 
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Hz for the EEG data streamer. The data files that were used for the analyses reported below for all 

experiments can be found at https://osf.io/8ksyq. 
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eliminate linear trends, a 1 Hz high pass filter was applied [36]. A 50 Hz notch filter was used to 

eliminate the harsh spectral peaks at 50 Hz. For subsequent processing and feature extraction, the F4 

electrode was selected for all individuals based on the spectral decomposition and signal quality. 
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The experiments consisted of four EEG sessions, each lasting 
approximately four hours, which included four different 
environments and four traffic conditions for each subject. 
Thirteen 3-wheeler driver EEG data were collected on the road 
during high and low traffic conditions for 5 min. Wearable 
Sensing DSI-7 EEG Headset (Figure 2) was used to collect data 
from 20 subjects, which is a research-grade EEG sensing device 
with 8 dry-application sensors, including one for reference (LE) 
and seven for recording brain wave activity (F3, F4, C3, C4, P3, 
Pz, P4) [31]. The sampling frequency was set to 300 Hz for the 
EEG data streamer. The data files that were used for the analyses 
reported below for all experiments can be found at https://osf.
io/8ksyq.

2.1 Data Pre-Processing
EEGLab  in MATLAB was used to perform EEG pre-processing 
using the PREP pipeline [32]. Detrending was carried out 
to eliminate any cyclical or other patterns and calibrate the 
thresholds. To eliminate linear trends, a 1 Hz high pass filter was 
applied [36]. A 50 Hz notch filter was used to eliminate the harsh 
spectral peaks at 50 Hz. For subsequent processing and feature 
extraction, the F4 electrode was selected for all individuals 
based on the spectral decomposition and signal quality.

2.2 Estimation of Hurst Exponent: Nonlinear Dynamical 
Features
The Hurst Exponent, which depends on the power law [33], was 
calculated using the Rescaled Range method (R/S) [34].

Where, S is the standard deviation of the independent variable 
x_i within the window w, k is a constant, w is the breadth of the 
temporal window, and
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(R/S) was calculated for various time instances, averaged 
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H, which ranges from 0 to 1, was determined using the linear 
regression slope. A time series with a value of H = 0.5 exhibits 
pure random walking or Brownian motion. On the other hand, 
H between 0.5 and 1.0 indicates a stable time series. A higher H 
indicates that the time series has a longer memory and a higher 
long-term positive autocorrelation or more frequent or persistent 
deviations. H between 0 and 0.5 indicates anti-persistence, 
whereas H is more or less equal to 0.5, indicating a random time 
series [35]. The Hurst exponent was calculated for each of the 
subjects’ 16 sessions over the 10 participants' EEG time series.
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2.3 Estimation of Fractal Dimension
Fractal dimension is a mathematical notion that measures the 
degree to which a self-similar entity occupies space and is used 
to measure the complexity of a self-similar object. The box-
counting method is a typical method for estimating an object's 
fractal dimension. It consists of covering the element with a grid 
of boxes and counting the number of boxes containing a portion 
of the element. The following is the relationship between the 
number of boxes N and the box size r:

N ~ r ( -D )                               (6)

where the symbol "~" means "proportional to.” Taking the 
logarithm of both sides of the equation yields

log N ~ -D log r                 (7)

The slope of the line obtained by plotting log N against log r  
gives an estimate of the fractal dimension D.

Consider a Koch curve, which is a fractal structure created by 
constantly adding smaller equilateral triangles to each side of 
an original triangle. The fractal dimension of the Koch curve 
was approximately 1.26. The fractal dimension can be estimated 
using the box-counting approach by covering the curve with a 
grid of boxes and counting the number of boxes that contain 
a part of the curve for different box sizes. Using the above 
equation, the relationship between the number of boxes and the 
box size can then be used to estimate the fractal dimension.

2.4 Estimation of Shannon Entropy
Because brain activity is a highly dynamic and complicated 
process involving the interplay of numerous separate neural 
networks functioning at various frequencies and with differing 
degrees of synchronization, EEG signals are non-linear, non-
stationary, and random. As a result, numerous methods for 
nonlinear analysis, including entropy, have been proposed to 
effectively capture the randomness of nonlinear time series data 
[34].

Let X be a set of finite discrete random variables X= {x1, x2, x3, 
…., xm}, then Shannon entropy, S(X), is defined as:

Where c is a positive constant acting as a measuring unit and 
p (xi) is probability of xi ∈ X, satisfying:

In general, more entropy denotes chaotic or more complex 
systems, and hence less predictability.

3. Results and Conclusion
The values for H, D & S for all the subjects are summarized 
in the Table 1 and Pearson Correlation Matrix between all the 
variables are plotted in Fig 3 below.
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Driving 

Experience 

1 

DAY_DRIVING_A  17.62  0.69  1.32 

44  24 DAY_DRIVING_B  17.27  0.73  1.49 

DAY_DRIVING_C  17.65  0.74  1.43 
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Subject Session S H D Age Driving 
Experience

1 DAY_DRIVING_A 17.62 0.69 1.32 44 24
DAY_DRIVING_B 17.27 0.73 1.49
DAY_DRIVING_C 17.65 0.74 1.43
DAY_DRIVING_D 17.72 0.75 1.46
FOG_DRIVING_A 16.91 0.78 1.64
FOG_DRIVING_B 17.63 0.73 1.55
FOG_DRIVING_C 17.16 0.74 1.62
FOG_DRIVING_D 17.11 0.77 1.70
NIGHT_DRIVING_A 17.30 0.77 1.63
NIGHT_DRIVING_B 16.83 0.73 1.48
NIGHT_DRIVING_C 17.04 0.78 1.64
NIGHT_DRIVING_D 16.80 0.76 1.66
RAIN_DRIVING_A 16.97 0.73 1.40
RAIN_DRIVING_B 16.79 0.75 1.59
RAIN_DRIVING_C 17.09 0.77 1.61
RAIN_DRIVING_D 15.91 0.79 1.62

2 DAY_DRIVING_A 18.02 0.73 1.38 53 17
DAY_DRIVING_B 17.98 0.75 1.30
DAY_DRIVING_C 18.68 0.76 1.47
DAY_DRIVING_D 18.59 0.72 1.50
FOG_DRIVING_A 18.41 0.72 1.32
FOG_DRIVING_B 17.61 0.71 1.55
FOG_DRIVING_D 18.94 0.74 1.37
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NIGHT_DRIVING_A 18.98 0.68 1.43
NIGHT_DRIVING_B 15.48 0.68 1.58
NIGHT_DRIVING_C 14.61 0.70 1.46
NIGHT_DRIVING_D 17.62 0.68 1.61
RAIN_DRIVING_A 17.08 0.74 1.39
RAIN_DRIVING_B 16.99 0.75 1.44
RAIN_DRIVING_C 16.99 0.75 1.44
RAIN_DRIVING_D 18.65 0.71 1.40

3 DAY_DRIVING_A 13.73 0.71 1.26 39 21
DAY_DRIVING_B 17.35 0.75 1.55
DAY_DRIVING_C 17.20 0.73 1.49
DAY_DRIVING_D 17.23 0.73 1.50
FOG_DRIVING_A 17.66 0.71 1.44
FOG_DRIVING_B 17.17 0.73 1.56
FOG_DRIVING_C 16.42 0.73 1.33
FOG_DRIVING_D 17.37 0.72 1.52
NIGHT_DRIVING_A 17.17 0.72 1.36
NIGHT_DRIVING_B 17.01 0.76 1.61
NIGHT_DRIVING_C 17.20 0.76 1.52
NIGHT_DRIVING_D 17.13 0.75 1.50
RAIN_DRIVING_A 17.31 0.68 1.46
RAIN_DRIVING_B 17.21 0.75 1.49
RAIN_DRIVING_C 17.35 0.78 1.49
RAIN_DRIVING_D 17.03 0.77 1.55

4 DAY_DRIVING_A 16.45 0.70 1.25 27 02
DAY_DRIVING_B 17.66 0.74 1.36
DAY_DRIVING_C 17.81 0.72 1.44
DAY_DRIVING_D 18.00 0.70 1.29
FOG_DRIVING_A 17.86 0.71 1.43
FOG_DRIVING_B 17.88 0.67 1.30
FOG_DRIVING_C 17.99 0.75 1.52
FOG_DRIVING_D 18.37 0.73 1.32
NIGHT_DRIVING_A 17.80 0.68 1.35
NIGHT_DRIVING_B 17.77 0.68 1.55
NIGHT_DRIVING_C 17.98 0.69 1.61
NIGHT_DRIVING_D 18.01 0.71 1.26
RAIN_DRIVING_A 17.80 0.74 1.47
RAIN_DRIVING_B 17.74 0.69 1.63
RAIN_DRIVING_C 18.02 0.69 1.33
RAIN_DRIVING_D 17.98 0.68 1.48

5 DAY_DRIVING_A 17.81 0.71 1.41 45 18
DAY_DRIVING_B 16.36 0.76 1.55
DAY_DRIVING_C 17.52 0.70 1.39
DAY_DRIVING_D 17.36 0.75 1.56
FOG_DRIVING_A 17.99 0.73 1.36
FOG_DRIVING_B 17.74 0.73 1.29
FOG_DRIVING_C 17.97 0.73 1.36
FOG_DRIVING_D 17.83 0.73 1.35
NIGHT_DRIVING_A 16.97 0.74 1.30
NIGHT_DRIVING_B 17.68 0.74 1.42
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NIGHT_DRIVING_C 17.69 0.74 1.42
NIGHT_DRIVING_D 17.66 0.74 1.36
RAIN_DRIVING_A 18.02 0.71 1.43
RAIN_DRIVING_B 17.74 0.69 1.34
RAIN_DRIVING_C 18.22 0.71 1.45
RAIN_DRIVING_D 17.85 0.72 1.32

6 DAY_DRIVING_A 17.51 0.73 1.38 63 41
DAY_DRIVING_B 17.50 0.74 1.33
DAY_DRIVING_C 17.50 0.72 1.35
DAY_DRIVING_D 17.51 0.72 1.32
FOG_DRIVING_A 17.63 0.71 1.31
FOG_DRIVING_B 17.61 0.71 1.55
FOG_DRIVING_C 17.64 0.71 1.43
FOG_DRIVING_D 17.72 0.76 1.54
NIGHT_DRIVING_A 17.51 0.66 1.37
NIGHT_DRIVING_B 17.49 0.72 1.41
NIGHT_DRIVING_C 17.51 0.70 1.45
NIGHT_DRIVING_D 17.62 0.68 1.61
RAIN_DRIVING_A 17.86 0.74 1.39
RAIN_DRIVING_B 17.93 0.75 1.40
RAIN_DRIVING_C 17.96 0.74 1.41
RAIN_DRIVING_D 17.96 0.73 1.36

7 DAY_DRIVING_A 15.71 0.71 1.50 42 18
DAY_DRIVING_B 15.71 0.73 1.45
DAY_DRIVING_C 15.70 0.75 1.54
DAY_DRIVING_D 15.71 0.67 1.32
FOG_DRIVING_A 15.71 0.70 1.36
FOG_DRIVING_B 15.71 0.73 1.22
FOG_DRIVING_C 15.71 0.71 1.38
FOG_DRIVING_D 15.71 0.67 1.38
NIGHT_DRIVING_A 15.69 0.67 1.55
NIGHT_DRIVING_B 15.71 0.71 1.23
NIGHT_DRIVING_C 15.71 0.71 1.30
NIGHT_DRIVING_D 15.71 0.67 1.34
RAIN_DRIVING_A 15.70 0.68 1.45
RAIN_DRIVING_B 15.71 0.70 1.46
RAIN_DRIVING_C 15.70 0.70 1.49
RAIN_DRIVING_D 15.70 0.74 1.49

8 DAY_DRIVING_A 17.09 0.74 1.39 39 10
DAY_DRIVING_B 17.85 0.75 1.35
DAY_DRIVING_C 18.03 0.70 1.29
DAY_DRIVING_D 18.05 0.70 1.31
FOG_DRIVING_A 17.01 0.74 1.68
FOG_DRIVING_B 17.17 0.75 1.64
FOG_DRIVING_C 17.40 0.77 1.42
FOG_DRIVING_D 17.52 0.75 1.41
NIGHT_DRIVING_A 17.35 0.68 1.53
NIGHT_DRIVING_B 16.89 0.68 1.62
NIGHT_DRIVING_C 17.12 0.69 1.60
NIGHT_DRIVING_D 17.22 0.75 1.64
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RAIN_DRIVING_A 17.34 0.70 1.35
RAIN_DRIVING_B 17.18 0.69 1.36
RAIN_DRIVING_C 17.44 0.73 1.47
RAIN_DRIVING_D 16.95 0.71 1.61

9 DAY_DRIVING_A 17.56 0.68 1.53 27 05
DAY_DRIVING_B 17.65 0.69 1.29
DAY_DRIVING_C 17.81 0.72 1.39
DAY_DRIVING_D 16.83 0.72 1.50
FOG_DRIVING_A 17.82 0.70 1.41
FOG_DRIVING_B 17.71 0.72 1.43
FOG_DRIVING_C 17.99 0.76 1.51
FOG_DRIVING_D 18.01 0.74 1.33
NIGHT_DRIVING_A 17.13 0.72 1.40
NIGHT_DRIVING_B 17.57 0.71 1.38
NIGHT_DRIVING_C 17.63 0.73 1.43
NIGHT_DRIVING_D 17.62 0.69 1.31
RAIN_DRIVING_A 17.77 0.70 1.46
RAIN_DRIVING_B 17.84 0.72 1.31
RAIN_DRIVING_C 17.84 0.68 1.32
RAIN_DRIVING_D 18.01 0.75 1.36

10 DAY_DRIVING_A 17.30 0.73 1.35 44 10
DAY_DRIVING_B 17.48 0.71 1.28
DAY_DRIVING_C 17.63 0.69 1.49
DAY_DRIVING_D 17.44 0.70 1.33
FOG_DRIVING_A 17.23 0.70 1.24
FOG_DRIVING_B 17.21 0.72 1.35
FOG_DRIVING_C 17.60 0.66 1.38
FOG_DRIVING_D 17.61 0.70 1.31
NIGHT_DRIVING_A 17.41 0.70 1.30
NIGHT_DRIVING_B 17.33 0.70 1.49
NIGHT_DRIVING_C 17.35 0.69 1.49
NIGHT_DRIVING_D 17.77 0.68 1.31
RAIN_DRIVING_A 17.10 0.71 1.42
RAIN_DRIVING_B 17.17 0.70 1.38
RAIN_DRIVING_C 17.63 0.72 1.55
RAIN_DRIVING_D 17.67 0.69 1.56

Table 1: Tabular data showing the variation in Shannon Entropy (S), Hurst Exponent (H) and Fractal Dimension (D) for 
the subjects for different sessions and difficulty levels. Sessions were divided into 4 sets comprising of different weather and 
traffic modes (Highway Low & High Traffic, City Low & High Traffic). Age and Driving Experience of the subjects were also 
recorded for review.

We conducted an F-Test Two-Sample for Variances to examine 
the differences in variances between the variables under 
investigation. The p-values obtained for all pairwise comparisons 

of variables were found to be less than 0.05 as shown in Table 
2, indicating significant differences in variances between the 
variables.
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 Subject S  Subject H  Subject D
Mean 5.522012579 17.29931 Mean 5.52201258 0.719811 Mean 5.5220126 1.436101
Variance 8.276411114 0.652137 Variance 8.27641111 0.000798 Variance 8.2764111 0.012073
Observations 159 159 Observations 159 159 Observations 159 159
df 158 158 df 158 158 df 158 158
F 12.69121809 F 10370.592 F 685.51322
P(F<=f) 
one-tail

5.62503E-47 P(F<=f)
one-tail

6.436E-272 P(F<=f)
one-tail

8.31E-179

F Critical 
one-tail

1.300182044  F Critical 
one-tail

1.30018204  F Critical 
one-tail

1.300182  

 Environment S  Environment H  Environment D
Mean 2.503144654 17.29931 Mean 2.50314465 0.719811 Mean 2.5031447 1.436101
Variance 1.264230555 0.652137 Variance 1.26423055 0.000798 Variance 1.2642306 0.012073
Observations 159 159 Observations 159 159 Observations 159 159
df 158 158 df 158 158 df 158 158
F 1.938596991 F 1584.11891 F 104.71287
P(F<=f) 
one-tail

1.92043E-05 P(F<=f)
one-tail

1.728E-207 P(F<=f)
one-tail

6.91E-115

F Critical 
one-tail

1.300182044  F Critical 
one-tail

1.30018204  F Critical 
one-tail

1.300182  

 Traffic Condition S  Traffic Condition H  Traffic Condition D
Mean 2.496855346 17.29931 Mean 2.49685535 0.719811 Mean 2.4968553 1.436101
Variance 1.264230555 0.652137 Variance 1.26423055 0.000798 Variance 1.2642306 0.012073
Observations 159 159 Observations 159 159 Observations 159 159
df 158 158 df 158 158 df 158 158
F 1.938596991 F 1584.11891 F 104.71287
P(F<=f)
one-tail

1.92043E-05 P(F<=f)
one-tail

1.728E-207 P(F<=f) 
one-tail

6.91E-115

F Critical 
one-tail

1.300182044  F Critical 
one-tail

1.30018204  F Critical 
one-tail

1.300182  

Table 2: Tabular data showing the F-test Two-Sample for checking the variance between the independent variables (Subject, 
Simulator Traffic conditions and Environment conditions) and dependent variables (Shannon Entropy (S), Hurst Exponent 
(H) and Fractal Dimension (D). he p-values obtained for all pairwise comparisons of variables were found to be less than 
0.05, indicating significant differences in variances between the variables.

 

 

 
 

Figure 3: Pearson Correlation Matrix for H, D, S, Driving Experience and Age, Clearly Showing 

Importance of Incorporating H, D, S While Understanding and Quantifying Driving Experience 
 

When the difficulty level or weather changed, the driving simulator data analysis showed significant 

fluctuations in Shannon Entropy (S) and Fractal Dimension (D) as visible in Fig 4 and Fig 5. While D, 

which denotes complexity or variations in neural patterns, rose during changes in driving circumstances 

or sessions, S, which stands for chaos and unpredictability, showed considerable swings. Thus, S and 

D are appropriate markers for investigating sudden changes in driving-related mental states which may 

be found in the Pearson Correlation Matrix as shown in Fig 3. 

 

Investigations were also conducted on the connection between driving experience and Hurst Exponent 

(H). H levels varied across driving sessions in subjects of older age and with little prior driving 

experience as shown in Fig 6. Given that the Hurst Exponent is used to analyze repetitive or memory-

related patterns in EEG, the observed fluctuations in H showed weaker retention of driving memory. 

This research implies that those who have little driving experience and are older may have trouble 

remembering information about driving over the course of several sessions. 

Figure 3: Pearson Correlation Matrix for H, D, S, Driving Experience and Age, Clearly Showing Importance of Incorporating 
H, D, S While Understanding and Quantifying Driving Experience
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When the difficulty level or weather changed, the driving 
simulator data analysis showed significant fluctuations in 
Shannon Entropy (S) and Fractal Dimension (D) as visible in Fig 
4 and Fig 5. While D, which denotes complexity or variations in 
neural patterns, rose during changes in driving circumstances or 
sessions, S, which stands for chaos and unpredictability, showed 
considerable swings. Thus, S and D are appropriate markers for 
investigating sudden changes in driving-related mental states 
which may be found in the Pearson Correlation Matrix as shown 
in Fig 3.

Investigations were also conducted on the connection between 
driving experience and Hurst Exponent (H). H levels varied 
across driving sessions in subjects of older age and with little 
prior driving experience as shown in Fig 6. Given that the 
Hurst Exponent is used to analyze repetitive or memory-related 
patterns in EEG, the observed fluctuations in H showed weaker 

retention of driving memory. This research implies that those 
who have little driving experience and are older may have 
trouble remembering information about driving over the course 
of several sessions.

The study also found that H increased when comparing the 
first and last sessions for each subject, except for those with 
low driving experience. This suggests that H can serve as a 
marker for memory retention. Participants with higher H values 
between the initial and final sessions showed better retention of 
driving-related information, indicating the role of H in assessing 
memory retention during driving. 

The study findings suggest that S, D, and H can serve as 
indicators of changes in the mental state and driving memory 
during driving. 

 

The study also found that H increased when comparing the first and last sessions for each subject, except 

for those with low driving experience. This suggests that H can serve as a marker for memory retention. 

Participants with higher H values between the initial and final sessions showed better retention of 

driving-related information, indicating the role of H in assessing memory retention during driving.  

The study findings suggest that S, D, and H can serve as indicators of changes in the mental state and 

driving memory during driving.  

 

Figure 4: Graph showing the variation of Fractal Dimension in Simulated 
Driving Experiment for 10 subjects. Each vertical gridline represents the end of 

an EEG session. 
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Figure 5: Graph showing the variation of Shannon Entropy in Simulated Driving Experiment for 10 subjects. Each vertical 
gridline represents the end of an EEG session.

 

These measures have the potential to develop new approaches for assessing driver performance and 

identifying safety risks. Moreover, this study demonstrates the applicability of nonlinear dynamical 

statistics to explain the differences among systems. By applying nonlinear dynamical statistics to the 

analysis of drivers, this study reveals the relationship between driving experience and age. Therefore, 

incorporating nonlinear dynamical statistics into existing Deep Learning and Machine Learning models 

may enhance overall learning and accuracy. Additional research is required to investigate the optimal 
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Figure 6: Graph showing the variation of Hurst Exponent in Simulated Driving Experiment for 10 subjects. Each vertical 
gridline represents the end of an EEG session.

These measures have the potential to develop new approaches 
for assessing driver performance and identifying safety risks. 
Moreover, this study demonstrates the applicability of nonlinear 
dynamical statistics to explain the differences among systems. By 
applying nonlinear dynamical statistics to the analysis of drivers, 
this study reveals the relationship between driving experience 
and age. Therefore, incorporating nonlinear dynamical statistics 
into existing Deep Learning and Machine Learning models may 
enhance overall learning and accuracy. Additional research is 
required to investigate the optimal integration of these markers 
and validate their efficacy using larger and more diverse datasets 
derived from cognitive learning experiments.
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