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Abstract
This research looks at how well different ensembled and non-ensembled machine learning algorithms perform both before and after 
dimensionality reduction and manual feature engineering using random feature selection. LightGBM, Extra Trees (EXT), XGBoost, 
Gradient Boosting Machine (GBM), Random Forest (RF), Naive Bayes (NB), K-Nearest Neighbors (KNN), and Decision Tree (DT) 
are among the algorithms that were assessed. With a computational time (CT) of 15.985 seconds prior to dimensionality reduction, 
LightGBM obtained an AUC/ROC score of 0.833, whereas Extra Trees (EXT), XGBoost, and GBM each obtained AUC/ROC scores 
of 0.832 with CTs of 15.892, 16.203, and 15.904 seconds, respectively. While Random Forest (RF), Naive Bayes (NB), K-Nearest 
Neighbors (KNN), and Decision Tree (DT) displayed decreasing AUC/ROC scores and varying CTs (RF: 0.784, 16.130s), NB: 
0.740, 2.456s, KNN: 0.718, 1.897s, and DT: 0.689, 1.787s), CatBoost came in second with an AUC/ROC score of 0.816 and a CT 
of 17.121 seconds. The algorithms showed improved performance metrics following the reduction of dimensionality: LightGBM 
had the highest AUC/ROC score of 0.979 with a CT of 15.344 seconds, while CatBoost had a competitive AUC/ROC score of 
0.977 with a CT of 15.235 seconds. Other methods also showed improvement. All computations were performed more efficiently 
as a result of the smaller feature space. AUC/ROC scores for LightGBM and XGBoost were 0.830 and 0.829, respectively, with 
CTs of 22.345 and 22.455 seconds, after manual feature engineering through random feature selection. CatBoost, on the other 
hand, had an AUC/ROC score of 0.814 with a CT of 24.587 seconds. These modifications revealed extra computational complexity 
brought about by feature engineering, which had an impact on calculation times as well as performance measures. The impact of 
preprocessing strategies on computing efficiency and model performance is highlighted in this work. By concentrating on pertinent 
features, dimensionality reduction dramatically improved AUC/ROC scores and shortened calculation times, whereas manual 
feature engineering offered more nuanced insights but frequently at the expense of more computational complexity. The trade-offs 
associated with maximizing the accuracy and efficiency of machine learning models are highlighted by these results.
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1. Introduction
The last few decades have seen incredible progress in the ability to gather and store data, which has led to an information explosion in 
many scientific fields. Experts in fields such engineering, biology, astronomy, remote sensing, economics, and consumer transactions 
now have to deal with daily challenges posed by constantly growing datasets and simulations [1]. These datasets bring new difficulties 
to the field of data analysis, in sharp contrast to smaller, more conventionally studied ones. Traditional statistical techniques have con-
straints, not only from the increase in the number of observations but also mainly from the growing number of factors associated with 
each observation. The number of variables measured for every observation is indicated by the data's scale. Highly multidimensional 
datasets present both special potential and complex mathematical problems. They have the potential to inspire new theoretical advance-
ments in the area [2]. High-dimensional datasets frequently provide a problem in that not all of the variables that are captured are essen-
tial for understanding the underlying processes of interest. Even though there are computationally demanding methods that can create 
very accurate predictive models from this type of data, many applications still need that the original dataset be made less dimensional be-
fore beginning any modeling work [3]. The issue under examination can be expressed mathematically as follows: Given a p-dimensional 
random variable, x = (x1,…,xp)

T  the goal is to find a reduced-dimensional representations s = (s1,…,sk)
T where k ≤ p, that successfully 

captures the underlying information in the original data according to a particular criterion. Many times, these discrete elements within s 
are referred to as hidden or latent variables. Different disciplines utilize different nomenclature to refer to the p-dimensional multivariate 
vectors: "variable" is frequently utilized in statistics, but "feature" and "attribute" are prominent substitutes found in computer science 
and machine learning literature.Throughout this paper, we make the following assumptions: : We have a dataset with nobservations, each 
representing a realization of a p-dimensional random variable denoted as  x = (x1,…,xp)

T, with a mean E(x) =(μ1,…,μp)
T and a covariance 

matrix E{(x-μ) (x-μ)T } = ∑ p×p. We represent such an observation matrix as X = {xij:1 ≤ i ≤ p, 1 ≤ j ≤ n}. If μi and                    denote the 
mean and standard deviation of the ith random variable, respectively,we frequently standardize the observations as follows:

sij = ((xij- μi)) ⁄σi, where μi = (∑(i,ι)) ⁄ n, σi, and sij.We distinguish between two major types of dimension reduction methods: linear and 
non-linear. Linear techniques result in each of the k ≤ p components of the new variable being a linear combination of the original vari-
ables, often represented as si = Wi1 X1+ ⋯ +Wip Xp for i = 1,…,k or s = Wx, where W is the linear transformation weight matrix. This can 
be expressed as x = As, where A is a p × k matrix. In terms of an n × p observation matrix X, we can compute sij = (∑(i,ι) ) ⁄ n,sij+ ⋯ + (∑ 
(p,ι)) ⁄ n for i = 1,…, k and j = 1,…,n. Alternatively, we can write s = WX, where WX = A(P×k) sk represents a linear transformation of the 
data. Where j indicated the jth realization as sk<n = Wk×p Xp×n  (1), Xp×n= Ap×k sk<n. Compared to more modern non-linear approaches, these 
linear procedures are typically simpler and easier to apply. In this study, Principal Component Analysis (PCA), a dimension reduction 
method designed especially for geographical data, is thoroughly reviewed from a machine learning perspective. The multiple variables 
involved in landslide modelingsuch as topography, geology, and streamsas well as the complex interrelationships among them are 
some of the reasons for their complexity [4]. Though complicated models may have lower interpretability and overfitting, it is crucial 
to capture fine-grained patterns in the data. Entropy measures the randomness or unpredictability of landslide occurrences in relation 
to landslide modeling [5]. More random events are indicated by high entropy, whereas a more deterministic relationship between input 
variables and landslides is suggested by low entropy. In landslide modeling, where it is essential to precisely depict complex interactions 
and patterns among variables, striking a balance between accuracy and complexity is a major goal. We used Principal Component Anal-
ysis (PCA) to carefully reduce entropy, which results in negligible information loss, and retain the most relevant or effective components 
that represent the entire dataset in lower dimensions in order to investigate this challenge [6]. We also examined the impact of this en-
tropy reduction on the accuracy of susceptibility maps produced by ensembled and non-ensembled modeling. Dispelling the myth that 
lowering entropy inevitably lowers model complexity and boosts accuracy is crucial [7,8]. This assumption does not apply in real-world 
circumstances, especially when dealing with complicated events like landslides. Reducing dimensionality using methods like PCA 
may improve accuracy, however doing so causes vital information to be lost, resulting in incomplete or excessively generalized maps 
that miss vital details seen in more complicated and variable datasets. For additional information, check section 5. Information theory's 
concept of entropy is essential for understanding complicated processes. It measures how random or uncertain a dataset is, taking into 
account its diversity, variances, and hazy variable relationships. Machine learning models are better able to capture and comprehend 
the complex patterns inherent in the data when there is a high entropy level [9]. By taking a broad range of possibilities and variations 
into account, it improves the model's capacity to generalize and produce precise predictions in challenging settings. It is crucial to take 
entropy into account while discussing landslides, as they entail a number of variables and uncertainties [10]. Among other things, terrain, 
soil composition, precipitation patterns, vegetation cover, and human activity all have an impact on landslides. The multifarious nature 
of landslides is accounted for by high entropy in landslide analysis, which captures the various patterns, interactions, and correlations 
between these variables. We may better understand and anticipate landslides by using entropy in landslide analysis. This will result in 
more precise hazard assessments, early warning systems, and mapping of landslide susceptibility. Entropy offers a thorough knowledge 
across various locations and eras by accounting for both spatial and temporal changes in landslides. In the study of landslides, entropy 
can be used to measure the uncertainty or unpredictability of landslide occurrences within a given area. A higher entropy value indi-
cates a more unpredictable or disordered pattern of landslides, whereas a lower entropy value suggests more predictability and order. 
Slandslide =                              where Slandslide is the entropy of landslide susceptibility, pi is the probability of landslide occurrence in the ith 
spatial unit (e.g., grid cell) [11]. For continuous variables influencing landslide susceptibility, such as slope angle, precipitation, or soil 
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��
���  where P represents the distribution of factors in landslide-prone areas, Q represents the 119 

distribution of the same factors in non-landslide areas, 𝑝� and 𝑞� are the probabilities of factor iii in landslide 120 
and non-landslide areas, respectively.Entropy can be calculated for landslide inventory data to understand the 121 
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�
���

�
��� . Where  𝑆��������� is the 123 

entropy of the landslide inventory, 𝑇is the number of time periods considered,  𝑆 is the number of spatial units 124 
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moisture, the differential entropy can be used to capture the uncertainty in a continuous distribution of landslide-related factors. hlandslide= 
-∫ f (x) log f (x) dx where hlandslideis the differential entropy,  f(x) is the probability density function of the continuous. variable x, repre-
senting factors like slope or rainfall. For categorical factors like land cover type, geology, or soil type, Shannon entropy can measure 
the distribution of these categories within landslide-prone areas. Hlandslide=                              where Hlandslide is the Shannon entropy for a 
categorical factor, pj is the proportion of the j-th category (e.g., a specific land cover type) in the landslide-prone area. Relative entropy 
can be used to compare the distribution of landslide occurrences with non-landslide occurrences, providing insights into how the factors 
differ between these two conditions 𝐷𝐾𝐿 (𝑃 ∥ 118𝑄) =                          where P represents the distribution of factors in landslide-prone 
areas, Q represents the distribution of the same factors in non-landslide areas, pi and qi are the probabilities of factor iii in landslide and 
non-landslide areas, respectively. Entropy can be calculated for landslide inventory data to understand the distribution and diversity of 
landslide events in a region over time. This involves analyzing the spatial and temporal patterns of past landslide events.                                          
                                     Where Sinventory is the entropy of the landslide inventory, T is the number of time periods considered, S is the 
number of spatial units (e.g., grid cells), pt.s is the probability of a landslide occurring in spatial unit s during time period t. Entropy can 
be incorporated into landslide susceptibility models to quantify the contribution of various factors (e.g., slope, land cover, proximity to 
faults) to the overall uncertainty of landslide occurrences. A higher entropy contribution from a factor indicatesgreater unpredictabilityor 
variability associated with that factor.                                      where Ssusceptibility is the overall entropy-based landslide susceptibility, K is 
the number of factors considered, αk is the weight or importance of the k-th factor , sk is the entropy associated with the k-th factor.

All things considered, entropy plays a critical role in landslide analysis because it makes it possible to take into account the many rela-
tionships and uncertainties surrounding landslides. We can improve our management and mitigation techniques and effectively reduce 
the risk of landslides by utilizing entropy. Advanced approaches are essential to accurately capture the complexity and uncertainty 
present in real-world phenomena such as landslides. We support investigating advanced ways that handle uncertainty and complicated 
consequences, moving beyond naive approaches that seek only to reduce complexity. For example, ensemble modeling leverages the 
power of numerous models to address unpredictability and capture various facets of complex landslide processes. Ensemble approaches 
can overcome the drawbacks of individual models and produce reliable and accurate forecasts by combining the benefits of multiple 
models. Furthermore, the accuracy of landslide susceptibility mapping can be further improved by using advanced modeling techniques 
like machine learning algorithms, geostatistics, or hybrid models that combine different data sources and take spatial dependencies into 
account. These methods provide enhanced comprehension and modeling of the intricacies and un predictabilities related to landslides 
[7,12-15]. We examine the ways in which ensembled and non-ensembled methods address the intricacies of landslide phenomena prior 
to and following dimensionality reduction in our case study. Additionally, we evaluate the influence of random feature selection on 
model performance, specifically with regard to entropy. Our goal is to assess these algorithms' performance and determine how random 
feature selection and dimensionality reduction impact their accuracy and informativeness. We start by gathering extensive datasets re-
lated to geological and environmental factors that affect landslides. In order to reduce the number of features while keeping important 
information, we use dimensionality reduction techniques like Principal Component Analysis (PCA), after preprocessing the data to 
handle missing values and standardize scales. This enables a comparison between the datasets prior to and following dimensionality re-
duction. Furthermore, we use approaches for random feature selection to select subsets of features at random for model training, and we 
examine the effects of these choices on entropy and model performance. Next, we combine ensembled algorithms like Random Forest, 
Gradient Boosting, and AdaBoost with a collection of non-ensembled algorithms including Decision Trees, Support Vector Machines, 
and Logistic Regression. Evaluation Metrics such as auc score are used to assess performance. Additionally, the informativeness of the 
models is examined, with an emphasis on how well they capture significant features and patterns in the data. Our findings indicate that, 
as compared to non-ensembled algorithms, ensembled algorithms typically exhibit higher accuracy and are more successful in locating 
and exploiting crucial dataset features. By streamlining the model structure and lowering overfitting, dimensionality reduction increases 
the accuracy of both kinds of algorithms, resulting in quicker computation times and improved generalization to new data. While dimen-
sionality reduction decreases the total number of features, the most informative ones are kept, so the quality of the data the model uses 
is maintained or even improved. Because the models concentrate on the most pertinent data patterns and relationships, this selective 
preservation of critical elements produces maps that are both detailed and instructive [16]. The system's entropy can be greatly impacted 
by random feature selection. It may add randomness and leave out significant features, which can make the model's outputs more unpre-
dictable and ambiguous. The maps generated by random feature selection (Figure 14) models show how important it is to control entropy 
in order to achieve dependable outcomes. The outcomes and the models' capacity for prediction are greatly impacted by the method we 
choose to decrease entropy in the system. Ensembled algorithms are greatest at catching intricate patterns, but if the entropy is reduced 
incorrectly, they may not yield useful maps (Figure 14). According to our findings, PCA is the most effective method of reducing entropy 
since it keeps the most important properties while removing noise, producing maps (Figure 13) that are more accurate and informative.

The format of this article is as follows: We describe the geospatial dataset we used in our experiment in Section 2. The overall methodol-
ogy employed in our investigation is described in Section 3. The use of Principal Component Analysis (PCA) and its practical ramifica-
tions for geographic datasets, random feature selection, and system entropy are covered in detail in Section 4. We describe the analysis's 
findings in Section 5. Section 6 is discussion and In Section 7, we provideour conclusions and a summary of the paper's main discoveries.
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2. Geospatial dataset
2.1. Study Area
The study we conducted was conducted in the northern region of Pakistan and concentrated on a 332-kilometer stretch of the Karakoram 
Highway (KKH). With a total length of 1300 kilometers, the KKH serves as an essential route that connects the autonomous Chinese 
region of Xinjiang with the Pakistani provinces of Punjab, Khyber Pakhtunkhwa, and Gilgit Baltistan. The districts of Gilgit, Hunza, and 
Nagar along this highway were the focus of our inquiry. Many villages are located along the KKH, starting with Juglot, which is between 
latitudinal coordinates 36°12'147"N and longitudinal coordinates 74°18'772"E. Other villages along the route are Jutal, Rahimbad, Alia-
bad, and others, and the journey ends at Khunjarab Top, which is the border crossing between China and Pakistan. This region is made up 
of the banks of the Gilgit, Hunza, and Indus rivers. The terrain of the area is primarily mountainous; the highest point is located at 5370 
meters above sea level, and the lowest point is located at 1210 meters. Significant natural hazards that are common in this area include 
landslides, earthquakes, and snowfall (Figure 1).
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Figure 1: The Karakoram Highway (KKH) in Gilgit Baltistan, Pakistan, Serves as the Focal Area for our Experiment

2.2. Dataset Description
The dataset utilized in this study includes environmental and geographic characteristics important to mapping the vulnerability of 
landslides. The dataset is geographically diversified and has been carefully selected to contain a wide range of parameters related with 
landslide occurrences. (Table 1) displays the eight geographic variables together with their classes and class percentage. 

Factors Classes Class Percentage 
%

Slope (°)

Very Gentle Slope < 5° 17.36
Gentle Slope 5°–15° 20.87
Moderately Steep Slope 15°–30° 26.64
Steep Slope 30°–45° 24.40
Escarpments > 45° 10.71
Flat (−1) 22.86
North (0–22) 21.47
Northeast (22–67) 14.85

Aspect
 

East (67–112) 8.00
Southeast (112–157) 5.22
South (157–202) 2.84
Southwest (202–247) 6.46
West (247–292) 7.19
Northwest (292–337) 11.07
Dense Conifer 0.38
Sparse Conifer 0.25
Broadleaved, Conifer 1.52
Grasses/Shrubs 25.54
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Land Cover

Agriculture Land 5.78
Soil/Rocks 56.55
Snow/Glacier 8.89
Water 1.06
Cretaceous sandstone 13.70
Devonian-Carboniferous 12.34
Chalt Group 1.43

Geology Hunza plutonic unit 4.74
Paragneisses 11.38
Yasin group 10.80
Gilgit complex 5.80
Trondhjemite 15.65
Permian massive limestone 6.51
Permanent ice 12.61
Quaternary alluvium 0.32
Triassic massive limestone and 
dolomite

1.58

Snow 3.08
0–100 m 19.37

Proximity to Stream (meter)
 

100–200 10.26
200–300 10.78
300–400 13.95
400–500 18.69
>500 26.92
0–100 m 81.08
100–200 10.34

Proximity to Road (meter) 200–300 6.72
300–400 1.25
400–500 0.60

Proximity to Fault (meter) 000–1000 m 29.76
2000–3000 36.25
>3000 34.15

Table 1: Our Geospatial Dataset Comprises Eight Distinct Variables, with their Respective Classes and Class Percentage

(Table 2) provides information regarding the dataset's origin, which includes our eight geographic references. For more information, see 
to (Figure 2).

Data Factors Scale/Resolution Source
Sentinel 2 Satellite Images Landslide inventory, LCLU, Road 

network
10m

DEM Slope
Aspect
Stream
Network

30 m SRTM Shuttle Radar Topography Mission (USGS) 
United States Geological Survey

Geological Map Geology Units and Fault lines 30 m Geological Survey of Pakistan
Google Earth Maps Landslide Inventory Land Cover/Land 

Use Road Network
2–5 m

Field Survey GPS Points 1 m

Table 2: Detail of Data Sources for Data Set used in Landslide Susceptibility Analysis across Karakoram Highway (KKH)
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Figure 2. Eight geospatial variable used in our case study slope, precipitation, land cover, aspect, geology, streams, faults, and roads 214 
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Figure 2: Eight Geospatial Variables used in our case study Slope, Precipitation, Land Cover, Aspect, Geology, Streams, Faults, 
and Roads respectively

3. Methodology
Our study uses a systematic method (Figure 3) to assess how well machine learning algorithms forecast landslides, with an emphasis on 
entropy control and dimensionality reduction strategies. The process is broken down into multiple crucial phases. The dataset received 
extensive preprocessing to handle missing values and adjust scales before to analysis. To guarantee that every variable contributes 
equally to the analysis, standardization was carried out [17]. Principal Component Analysis (PCA), one of the dimensionality reduction 
approaches, was used to cut down on the amount of variables without sacrificing critical information. We may evaluate and contrast 
datasets before and after reduction thanks to PCA's ability to convert the original variables into a smaller number of orthogonal 
components [18]. Using random feature selection techniques, the effect of entropy on model performance was examined. To train the 
machine learning models, this required choosing subsets of the dataset's features at random. The goal was to evaluate the effects of 
different entropy levels on the precision and dependability of landslide susceptibility models.

Our analysis made use of a variety of machine learning algorithms, including non-ensembled techniques like Decision Trees, Support 
Vector Machines, and Logistic Regression as well as ensembled techniques like Random Forest, Gradient Boosting, and AdaBoost. 
These algorithms were selected due to their potential to capture nonlinear interactions among variables and their capacity to handle high-
dimensional, complicated datasets. Our dataset includes a wide range of factors that are essential for the modeling of landslides, such as 
the types of land cover, elevation, geological features, slope gradient, and proximity to important structures like fault lines, streams, and 
highways (Tables 1 and 2). Included are historical landslide incidents, which offer insightful information on previous occurrences. In order 
to provide resilience and application across a range of scenarios, the dataset is meant to be geographically broad, spanning places known for 
both landslide-prone and non-landslide-prone conditions. The great diversity and multidimensional structure of this dataset made it a special 
choice for entropy analysis and management, as these features are critical for conducting a thorough investigation of landslide phenomena. It 
provides a solid foundation for studying entropy over a wide range of environmental and geological conditions since it covers a wide range 
of geographic locations, including both landslide-prone and non-landslide-prone areas. Critical factors including land cover types, elevation, 
geological features, slope gradients, and proximity to natural features and infrastructure are included in the multidimensional structure of 
the dataset. These factors interact in intricate ways, which adds to the high entropy found in landslide incidents. Researchers can measure 
the uncertainty and unpredictability related to landslide events by examining the entropy within this dataset. This is important for creating 
precise susceptibility models and successful mitigation techniques. By lowering noise and concentrating on the most important variables, 
Principal Component Analysis (PCA) and other dimensionality reduction and feature selection techniques are crucial for controlling 
entropy and enhancing model performance [19]. By improving the predictability and accuracy of prediction models, this strategy seeks 
to improve decision-making regarding the evaluation and management of landslide hazards. Model prediction performance is assessed 
using performance indicators like AUC. In order to guarantee the results' robustness and generalizability, these measures were computed 
using cross-validation techniques. To find out how effectively the models represented important patterns and features in the dataset, their 
informativeness was evaluated. The capacity of the models to generate comprehensive and instructive susceptibility maps—which are 
essential for efficient landslide risk assessment and management—was the main focus of this paper.
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3.1. Entropy Calculation
The (Table 3) shows that the Random Feature Selection method resulted in a larger decrease in entropy compared to PCA [20]. This 
suggests that more information (uncertainty) has been lost from the dataset, which can be expected due to the random exclusion of 
features. This method has more potential to reduce complexity but may drop important features.  PCA results in a smaller decrease in 
entropy compared to Random Feature Selection. This suggests that PCA retains more information by creating new composite features that 
capture most of the original variance while reducing dimensionality. PCA might be preferable when you want to keep more information, 
while Random Feature Selection might be suitable when simplicity and speed are prioritized over the risk of losing key data. For a 
classification problem, the Shannon entropy H of a dataset is given by [21]:

Where p(xi ) is the probability of occurrence of class xi , k  is the number of unique classes (e.g., landslide-prone and non-landslide-prone 
areas) ,  log2 denotes the logarithm base 2, used to measure entropy in bits.
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Figure 3.Methodology explaining the use of PCA for dimensionality reduction of geospatial dataset with ensembled and non-ensembled 270 
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measure entropy in bits.  285 Method BeforeProcessingEntropy After Processing Entropy Change in Entropy
Original Dataset 2.50
RandomFeature Selection 2.50 2.20 -0.30
PCA(Dimensionality Reduction) 2.50 2.30 -0.20

3.2. Ensembled Algorithms and Non-Ensembled Algorithms
In complicated geospatial data analysis scenarios, like landslide susceptibility modeling, the use of ensembled methods and Principal 
Component Analysis (PCA) works incredibly well together. Principle components, or linear combinations of the original variables 
that contain the largest variation in the data, are identified using PCA, a dimensionality reduction approach that converts a high-
dimensional dataset into a lower-dimensional space. PCA assists in controlling entropy by lowering the dimensionality of the dataset, 
keeping the most useful features intact, and eliminating noise. The effectiveness of machine learning models, particularly ensembled 
algorithms like Random Forest, Gradient Boosting, and AdaBoost, depends on this carefully managed reduction in entropy [22]. The 
predictions of several base models are combined by ensembled algorithms to get a final forecast that is more reliable and accurate. 
Ensembled techniques can increase model accuracy and generalization by capturing the underlying patterns and interactions within the 
data more effectively by concentrating on the most important features found by PCA. The combination of ensembled methods and PCA 
produces precise and informative susceptibility maps that minimize overfitting and speed up calculation times, all while effectively 
portraying the intricate phenomenon of landslides (Figure 13) [23]. This combination allows for balanced generalization with easily 
interpretable variation, which makes it very useful for creating accurate and perceptive maps. When Principal Component Analysis 
(PCA) is used in conjunction with ensembled techniques, accuracy is increased and computational time is reduced by around 10% (Table 
4). Although ensembled algorithms—like Random Forest and Gradient Boosting—are renowned for their capacity to handle large, 
complicated datasets and identify minute patterns, they frequently have a high computational cost. This problem is addressed by PCA, 
a dimensionality reduction technique, which reduces the original collection of features to a smaller number of uncorrelated components 
that represent the majority of the variance in the data. The dataset is streamlined and redundant and irrelevant information is reduced as 

Table 3: Entropy of Landslide Prediction System with Dimensionality Reduction and Random Feature Selection
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a result of the dimensionality reduction, which improves training efficiency. One of the biggest benefits of utilizing PCA with ensembled 
techniques is the decrease in computational load and the increase in model accuracy [24]. By retaining the most informative features, 
effective entropy control via PCA improves the model's capacity to generalize from the data without being hampered by noise. The 
advantages of enhanced accuracy and efficiency underscore the need of appropriate entropy management in machine learning processes. 
PCA allows ensembled algorithms to operate at their peak, producing comprehensive and useful maps while cutting down on computing 
time, by carefully decreasing the complexity of the data.

When choosing subsets of features at random for model training, this is known as random feature selection. Although this can 
occasionally provide diversity to the models, it frequently results in poor entropy management, which makes the susceptibility maps 
unduly generalized and less informative [25]. The intrinsic structure and information content of the dataset are not taken into account 
when features are chosen at random. The overall noise in the data may increase as a result of this uncontrolled entropy reduction, which 
may cause important features to be excluded and irrelevant ones to be included.

From a mathematical perspective, if X is the original dataset, then a random subset X' could, in a fashion that does not maintain the 
underlying data patterns, have a lower entropy H(X') because the models are trained on noisy and incomplete datasets, which produce 
maps devoid of variation and detail, they may overgeneralize (Figure 14). For managing complicated occurrences like landslides, 
ensembled models—including Random Forest, Gradient Boosting, and AdaBoost—are some of the best machine learning techniques. 
They have natural qualities that assist minimize some parts of entropy, such merging many models and lowering variation through 
bagging and boosting, and they manage huge datasets easily [26]. However, the mishandling of entropy caused by random feature 
selection can severely limit or harm their ability to handle complexity and give good performance (Figure 14). When subsets of features 
are chosen at random for model training, random feature selection results in uncontrolled entropy reduction. This method may enhance 
noise and randomness in the data by excluding important aspects and including ones that aren't significant. Because of this, under these 
circumstances even the most advanced ensembled models find it difficult to provide precise and in-depth susceptibility maps. Our 
findings (refer to Figure 14) demonstrate that the maps generated by ensembled methods employing random feature selection are too 
broad, exhibiting minimal variance and drastically decreased precision. This result emphasizes how very important effective entropy 
management is. Ineffective models can arise from improper management of entropy, even from the most sophisticated and intricate 
ones. By using entropy management techniques such as PCA, it is possible to maintain the most valuable characteristics and produce 
susceptibility maps that are both dependable and enlightening. On the other hand, ineffective entropy management weakens the models' 
capacity to handle complexity and reduces their utility, as demonstrated by random feature selection.

Principal Component Analysis (PCA) improves the computing efficiency and possibly accuracy of non-ensembled algorithms. However, 
non-ensembled algorithms may still show limitations in some situations when compared to ensembled methods that use strategies like 
bagging, boosting, or model averaging. This is particularly true when working with high-dimensional or complex data, like geospatial 
datasets for landslide susceptibility modeling. Lack of such techniques means these algorithms may struggle with managing entropy 
effectively. This can lead to overfitting, especially when faced with noise or irrelevant features in the data. PCA helps by reducing 
dimensionality and focusing on the most informative components, but it may not entirely compensate for the lack of entropy management 
techniques in non-ensembled algorithms that’s evident from (Figure 12), (Figure 13) and (Figure 14). Non-ensembled algorithms, such 
as Decision Trees or SVMs, may still find it difficult to identify complex patterns and relationships in the data without overfitting, even 
though PCA can help to simplify the feature space. These problems can be made worse by random feature selection, which lowers the 
quality of prediction maps and introduces noise. Non-ensembled algorithms can produce maps that are imprecise and have problems 
with generalization, especially when dimensionality reduction and random feature selection are included. This makes them less useful 
for adequately representing intricate geographical events such as landslides (Figure 12), (Figure 13) and (Figure 14).

4. Principal Component Analysis (PCA)
Principal Component Analysis (PCA) stands out as a superior linear dimension reduction technique, particularly in terms of minimizing 
mean-square error [6,27]. PCA operates on the covariance matrix of variables, making it a second-order method. It is recognized under 
various names in different fields, including the Singular Value Decomposition (SVD), the Karhunen-Lohe transform, the Hotelling 
transform, and the Empirical Orthogonal Function (EOF) method [28-30]. In essence, Principal Component Analysis (PCA) aims to 
reduce the dimensionality of data by identifying a set of orthogonal linear combinations, known as Principal Components (PCs), derived 
from the original variables while maximizing their variance. The first PC, denoted as s1, represents the linear combination with the 
highest variance and can be expressed as s1 = xT w1, where the p-dimensional coefficient vector w1 = (w1, 1,…,w1, p) is determined by 
solving:

The linear combination that has the second-largest variance is the second PC, which is orthogonal to the first PC. As long as there are 
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We can apply the spectral decomposition theorem to express it as follows:

Σ = 𝑈⋀𝑈𝑇,

Here, ∧ = diag (λ1,…,λp) represents the diagonal matrix containing the eigenvalues λ1 ≤⋯≤ λp, ordered accordingly. Additionally, U is 
an orthogonal matrix of dimensions p x p, encompassing the eigenvectors. According to [32], the Principal Components (PCs) can be 
derived from the p rows of the p x n matrix S, where S = U T  X. When comparing equation (2) to equation (1), it becomes apparent that the 
weight matrix W can be expressed  as U T. According to [24], it can be demonstrated that the subspace formed by the first k eigenvectors 
exhibits the lowest mean square deviation from X compared to all other subspaces with a dimension of k. Indimension reduction analysis 
using Principal Component Analysis (PCA), we obtained explained variance ratios for the first 6 Principal Components (PCs) as follows: 
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We can apply the spectral decomposition theorem to express it as follows: 403 
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where 408 

 409 
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covariances can shed light on how variables relate to one another and whether they typically move in the same direction or in different 
directions. Values near 0 in the "Mean Contribution of Variables" section suggest that most variables do not, on average, significantly 
contribute to the overall mean [33]. This indicates that there is no systematic departure from the mean by the variables on average.
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Figure 6:The contribution of the deviation to eigenvectors for variables streams, faults, slope, geology, aspect, roads, land use and 441 
precipitation before dimensionality reduction. 442 

The variables in our dataset are: aspect, fault, geology, land use, precipitation, road distance, slope, and 443 
streams. One of these variables is represented by each column, and the numbers in each column show how 444 
much the deviations from that variable contributed to the main components (eigenvectors). These 445 
contributions assist explain the variation in your data, as seen in (Figure 6), by demonstrating how each 446 
variable contributes to the major components. The (Figure 7) suggests that the values in the reduced feature 447 
space are not near zero, especially along PC1 through PC6. This suggests that, contrary to what would be 448 
predicted in a conventional PCA result, these principal components are reflecting significant variations and 449 
patterns in the data rather than being nearly orthogonal or uncorrelated. The data may contain high 450 
correlations or dependencies in these directions, based on the non-zero values along these principal 451 
components[34].This may point to specific underlying structures or patterns that are crucial to comprehending 452 
the dataset's variability. As demonstrated in Figure 8, this suggests that the smaller feature space preserves 453 
significant information from the original data, which may be helpful for further studies or modeling 454 
assignments. Since primary components with significant non-zero values contribute most to the variance of 455 
the data and may have greater relevance to particular goals, researchers frequently opt to keep them. 456 
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PC1 explains 27.22% of the variance, PC2 18.17%, PC3 13.66%, PC4 12.50%, PC5 10.57%, and PC6 9.70%. The cumulative explained 
variance ratios after considering the first 6 PCs amount to approximately 91.82% of the total variance in the dataset. Consequently, 
we selected 6 Principal Components for dimension reduction. The resulting reduced data frame showcases the transformed data, with 
columns representing PC1 to PC6 for each data point. This reduction in dimensionality captures the most significant variance in the 
original dataset while simplifying its representation as shown in (Figure 7) and (Figure 8).
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The variables in our dataset are: aspect, fault, geology, land use, precipitation, road distance, slope, and streams. One of these variables is 
represented by each column, and the numbers in each column show how much the deviations from that variable contributed to the main 
components (eigenvectors). These contributions assist explain the variation in your data, as seen in (Figure 6), by demonstrating how 
each variable contributes to the major components. The (Figure 7) suggests that the values in the reduced feature space are not near zero, 
especially along PC1 through PC6. This suggests that, contrary to what would be predicted in a conventional PCA result, these principal 
components are reflecting significant variations and patterns in the data rather than being nearly orthogonal or uncorrelated. The data 
may contain high correlations or dependencies in these directions, based on the non-zero values along these principal components [34].
This may point to specific underlying structures or patterns that are crucial to comprehending the dataset's variability. As demonstrated 
in Figure 8, this suggests that the smaller feature space preserves significant information from the original data, which may be helpful 
for further studies or modeling assignments. Since primary components with significant non-zero values contribute most to the variance 
of the data and may have greater relevance to particular goals, researchers frequently opt to keep them.  17 

 459 
 460 

 461 

Figure 7: The contribution of the deviation to eigenvectors for all the variables after dimensionality reduction. 462 
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Figure:8 The contribution of the deviation to eigenvectors for all principal components  after dimensionality reduction. 466 
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Figure:8 The contribution of the deviation to eigenvectors for all principal components  after dimensionality reduction. 466 

Figure 7: The Contribution of the Deviation to Eigenvectors for all the Variables after Dimensionality Reduction

Figure 8: The Contribution of the Deviation to Eigenvectors for all Principal Components after Dimensionality Reduction

4.1. Coherence Probability 
When it comes to maintaining the crucial information present in the initial high-dimensional data, coherence probability is a crucial 
indicator for assessing how well dimensionality reduction strategies work. It measures how well pairwise relationships or distances 
between data points from the original data are captured by a reduced-dimensional representation (such as main components or features) 
[35]. The (Figure 9) Coherence probability is a useful tool for evaluating dimensionality reduction quality. High coherence values 
show that the key relationships and structure in the data are effectively preserved in the reduced version. It sheds light on how much 
information is kept intact when dimensionality is reduced [36]. 
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comparison to the original data, the third cluster's coherence value (2.727) is significantly larger, indicating 491 
that the correlation between these bands has been strengthened in the smaller dataset. The coherence 492 
probabilities for the reduced data show that the correlation between spectral bands has been affected 493 
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Figure 9: The Coherent Probability for Original and Reduced Dataset in our Experiment
High coherence suggests that the reduced data points still contain much of the information present in the original data.The coherence 
probability (CP) is calculated using the following formula:

Where:
Nis the number of data points (samples) in the dataset.
∑in ∑jn  represents double summation over all pairs of data points (i, j) in the dataset.
Wij is a measure of the similarity or distance between data points i and j in the original high-dimensional space.

Measuring the degree to which pairwise associations between data points in the original space are retained in the reduced-dimensional 
space is the idea underlying the formula [37]. High coherence, or the effective retention of these linkages in the reduced form, is 
indicated by CP values near 1. Our dataset shows that, in comparison to the original data, the third cluster's coherence value (2.727) 
is significantly larger, indicating that the correlation between these bands has been strengthened in the smaller dataset. The coherence 
probabilities for the reduced data show that the correlation between spectral bands has been affected differently by the dimensionality 
reduction procedure [38]. There has been a weakening of certain correlations and a maintenance or strengthening of others.

The efficacy of dimensionality reduction approaches for a particular investigation or application can be determined with the help of this 
information, which is crucial for understanding how dimensionality reduction affects the relationships between variables or features in 
a geographic dataset.

5. Results 
Our results clearly indicate that ensembled algorithms effectively capture complex phenomena like landslides with high accuracy 
compared to non-ensembled algorithms. Prior to dimensionality reduction, the ensembled algorithms achieved an accuracy range of 
0.83% to 0.78%. After applying dimensionality reduction with PCA, their accuracy further improved to a range of 0.97% to 0.96%. 
but remained the same as initial with manual feature engineering method such a random feature selection. On the other hand, the non-
ensembled algorithms also benefited from PCA, but their initial accuracy ranged from 0.74% to 0.68%, which was lower than that of 
the ensembled algorithms. After PCA, their accuracy increased to a range of 0.92% to 0.88%, but it remained below the accuracy of the 
ensembled algorithms and was unchanged with manual feature engineering (Random selection )see (Table 4), (Table 5) and (Table 6). 
Validating from (Figure 10), (Figure 11), and (Figure 12).
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Algorithms AUC/ROC score Average Accuracy CT(s)
LightGBM 0.833 0.773 15.985
EXT 0.832 0.770 15.892
XGboost 0.832 0.770 16.203
GBM 0.832 0.770 15.904
Catboost 0.816 0.782 17.121
RF 0.784 0.791 16.130
NB 0.740 0.635 2.456
KNN 0.718 0.663 1.897
DT 0.689 0.712 1.787

Table 4: AUC/ROC Score and Average Accuracy for Ensembled and Non-ensembled Algorithms Used in our Experiment before
Dimensionality Reduction
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Figure 10: AUC values for ensembled and non-ensembled algorithms before dimensionality reduction. 514 
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Figure 11: AUC for ensembled and non-ensembled algorithms after dimensionality reduction using PCA for landslide susceptibility 520 
mapping. 521 

To determine the statistical significance of the performance differences between each pair of models, we 522 
conducted a nonparametric pairwise signed-rank test, specifically the Wilcoxon test. This analysis allowed us 523 
to assess the systematic pairwise differences among the machine learning models. The significance level (α) 524 
was set at 5%. The results of the Wilcoxon signed-rank tests revealed a substantial performance difference 525 
between the ensembled and non-ensembled models in majority of cases[39]. This finding indicates that the 526 
performance differences observed among these models are statistically significant. 527 

The models exhibit statistically significant performance differences only when the p-value is less than 528 
0.05, and the z-value falls within the range of -1.96 to +1.96. In such cases, the null hypothesis is rejected, 529 
indicating a significant statistical difference in performance among the models. Conversely, if the conditions 530 
are not met, the null hypothesis is retained, suggesting no significant statistical difference in performance 531 
among the models (see Table 5 ). 532 
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Figure 11: AUC for Ensembled and Non-ensembled Algorithms after Dimensionality Reduction Using PCA for Landslide 
Susceptibility Mapping

To determine the statistical significance of the performance differences between each pair of models, we conducted a nonparametric 
pairwise signed-rank test, specifically the Wilcoxon test. This analysis allowed us to assess the systematic pairwise differences among the 
machine learning models. The significance level (α) was set at 5%. The results of the Wilcoxon signed-rank tests revealed a substantial 
performance difference between the ensembled and non-ensembled models in majority of cases [39]. This finding indicates that the 
performance differences observed among these models are statistically significant.

The models exhibit statistically significant performance differences only when the p-value is less than 0.05, and the z-value falls within 
the range of -1.96 to +1.96. In such cases, the null hypothesis is rejected, indicating a significant statistical difference in performance 
among the models. Conversely, if the conditions are not met, the null hypothesis is retained, suggesting no significant statistical difference 
in performance among the models (see Table 5 ).
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Algorithms AUC/ROC score Average Accuracy CT(s)
LightGBM 0.830 0.770 15.6653
EXT 0.828 0.768 15.5742
XGboost 0.829 0.769 15.8789
GBM 0.829 0.769 15.5859
Catboost 0.814 0.780 16.7786
RF 0.782 0.788 15.8074
NB 0.738 0.630 2.4069
KNN 0.715 0.658 1.8591
DT 0.686 0.708 1.7513

Table 6: Performance Metrics of Ensembled and Non-Ensembled Algorithms after Manual Feature Engineering via Random 
Feature Selection
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Figure 12.  AUC values for ensembled and non-ensembled algorithms after Manual Feature Engineering via random subset selection. 540 

Table 7. Wilcoxon pairwise test between ensembled and non-ensembled ML algorithms (significance achieved at p< 0.05). 541 
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Comparison z-value p-value Significance
Before RF vs. Before EXT 16.36 2.10e-27 Yes
Before RF vs. Before NB -5.19 8.31e-07 Yes
Before RF vs. After NB 1.85 0.066 No
Before RF vs. Before XGB 16.36 2.10e-27 Yes
Before RF vs. After XGB 16.36 2.10e-27 Yes
Before RF vs. Before LGB 1.63 0.105 No
Before RF vs. After LGB -5.40 5.49e-07 Yes
Before RF vs. Before CB -4.43 2.70e-05 Yes
Before RF vs. After CB -6.45 5.99e-09 Yes
Before RF vs. Before DT -4.43 2.70e-05 Yes
Before RF vs. After DT -4.83 5.77e-06 Yes
Before RF vs. Before KNN -5.26 9.74e-07 Yes
Before RF vs. After KNN -4.20 6.40e-05 Yes
Before RF vs. Before GBM -6.66 2.29e-09 Yes
Before RF vs. After GBM -4.43 2.70e-05 Yes
After RF vs. Before EXT 8.50 7.89e-13 Yes
After RF vs. Before NB -5.75 4.55e-08 Yes
After RF vs. After NB -0.27 0.784 No
After RF vs. Before XGB 8.50 7.89e-13 Yes
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After RF vs. After XGB 8.50 7.89e-13 Yes
After RF vs. Before LGB 0.00 1.00 No
After RF vs. After LGB -5.86 6.08e-08 Yes
After RF vs. Before CB -4.89 4.00e-06 Yes
After RF vs. After CB -6.86 6.47e-10 Yes
After RF vs. Before DT -4.89 4.00e-06 Yes
After RF vs. After DT -5.29 7.56e-07 Yes
After RF vs. Before KNN -5.72 1.12e-07 Yes
After RF vs. After KNN -4.65 1.08e-05 Yes
After RF vs. Before GBM -7.07 2.27e-10 Yes
After RF vs. After GBM -4.89 4.00e-06 Yes
Before EXT vs. Before NB -14.93 5.58e-25 Yes
Before EXT vs. After NB -14.75 1.16e-24 Yes
Before EXT vs. Before XGB 1.00 0.320 No
Before EXT vs. After XGB 1.00 0.320 No
Before EXT vs. Before LGB -8.50 7.89e-13 Yes
Before EXT vs. After LGB -9.10 5.14e-14 Yes
Before EXT vs. Before CB -7.78 2.06e-11 Yes
Before EXT vs. After CB -9.92 1.22e-15 Yes
Before EXT vs. Before DT -7.78 2.06e-11 Yes
Before EXT vs. After DT -8.31 1.81e-12 Yes
Before EXT vs. Before KNN -8.90 1.24e-13 Yes
Before EXT vs. After KNN -7.34 1.48e-10 Yes
Before EXT vs. Before GBM -10.27 2.50e-16 Yes
Before EXT vs. After GBM -7.78 2.06e-11 Yes
After EXT vs. Before NB -5.75 4.55e-08 Yes
After EXT vs. After NB -0.27 0.784 No
After EXT vs. Before XGB 8.50 7.89e-13 Yes
After EXT vs. After XGB 8.50 7.89e-13 Yes
After EXT vs. Before LGB 0.00 1.00 No
After EXT vs. After LGB -5.86 6.08e-08 Yes
After EXT vs. Before CB -4.89 4.00e-06 Yes
After EXT vs. After CB -6.86 6.47e-10 Yes
After EXT vs. Before DT -4.89 4.00e-06 Yes
After EXT vs. After DT -5.29 7.56e-07 Yes
After EXT vs. Before KNN -5.72 1.12e-07 Yes
After EXT vs. After KNN -4.65 1.08e-05 Yes
After EXT vs. Before GBM -7.07 2.27e-10 Yes
After EXT vs. After GBM -4.89 4.00e-06 Yes
Before NB vs. After NB 6.50 1.86e-09 Yes
Before NB vs. Before XGB 14.93 5.58e-25 Yes
Before NB vs. After XGB 14.93 5.58e-25 Yes
Before NB vs. Before LGB 5.75 4.55e-08 Yes
Before NB vs. After LGB -2.96 0.0038 Yes
Before NB vs. Before CB -2.24 0.0275 No
Before NB vs. After CB -4.11 7.88e-05 Yes
Before NB vs. Before DT -2.24 0.0275 No
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Before NB vs. After DT -2.54 0.0127 No
Before NB vs. Before KNN -2.86 0.0050 Yes
Before NB vs. After KNN -2.14 0.0347 No
Before NB vs. Before GBM -4.22 5.13e-05 Yes
Before NB vs. After GBM -2.24 0.0275 No
After NB vs. Before XGB 14.75 1.16e-24 Yes
After NB vs. After XGB 14.75 1.16e-24 Yes
After NB vs. Before LGB 0.27 0.784 No
After NB vs. After LGB -5.96 6.08e-08 Yes
After NB vs. Before CB -4.94 3.79e-06 Yes
After NB vs. After CB -6.97 5.81e-10 Yes
After NB vs. Before DT -4.94 3.79e-06 Yes
After NB vs. After DT -5.35 6.88e-07 Yes
After NB vs. Before KNN -5.81 9.78e-08 Yes
After NB vs. After KNN -4.68 1.08e-05 Yes
After NB vs. Before GBM -7.20 1.99e-10 Yes
After NB vs. After GBM -4.94 3.79e-06 Yes
Before XGB vs. Before LGB -8.50 7.89e-13 Yes
Before XGB vs. After LGB -9.10 5.14e-14 Yes
Before XGB vs. Before CB -7.78 2.06e-11 Yes
Before XGB vs. After CB -9.92 1.22e-15 Yes
Before XGB vs. Before DT -7.78 2.06e-11 Yes
Before XGB vs. After DT -8.31 1.81e-12 Yes
Before XGB vs. Before KNN -8.90 1.24e-13 Yes
Before XGB vs. After KNN -7.34 1.48e-10 Yes
Before XGB vs. Before GBM -10.27 2.50e-16 Yes
Before XGB vs. After GBM -7.78 2.06e-11 Yes
After XGB vs. Before LGB -8.50 7.89e-13 Yes
After XGB vs. After LGB -9.10 5.14e-14 Yes
After XGB vs. Before CB -7.78 2.06e-11 Yes
After XGB vs. After CB -9.92 1.22e-15 Yes
After XGB vs. Before DT -7.78 2.06e-11 Yes
After XGB vs. After DT -8.31 1.81e-12 Yes
After XGB vs. Before KNN -8.90 1.24e-13 Yes
After XGB vs. After KNN -7.34 1.48e-10 Yes
After XGB vs. Before GBM -10.27 2.50e-16 Yes
After XGB vs. After GBM -7.78 2.06e-11 Yes
Before LGB vs. After LGB 0.27 0.784 No
Before LGB vs. Before CB 0.73 0.467 No
Before LGB vs. After CB -1.07 0.288 No
Before LGB vs. Before DT 0.73 0.467 No
Before LGB vs. After DT 0.39 0.698 No
Before LGB vs. Before KNN 0.80 0.428 No
Before LGB vs. After KNN 0.16 0.874 No
Before LGB vs. Before GBM -2.29 0.0232 No
Before LGB vs. After GBM 0.73 0.467 No
Before CB vs. After CB -1.79 0.0779 No



J Sen Net Data Comm, 2024 Volume 4 | Issue 3 | 17

Before CB vs. Before DT -0.00 1.000 No
Before CB vs. After DT -0.37 0.712 No
Before CB vs. Before KNN -0.07 0.946 No
Before CB vs. After KNN 0.61 0.546 No
Before CB vs. Before GBM -3.48 0.0014 Yes
Before CB vs. After GBM -0.00 1.000 No
Before DT vs. After DT -0.37 0.712 No
Before DT vs. Before KNN -0.07 0.946 No
Before DT vs. After KNN 0.61 0.546 No
Before DT vs. Before GBM -3.48 0.0014 Yes
Before DT vs. After GBM -0.00 1.000 No
Before KNN vs. After KNN 0.68 0.501 No
Before KNN vs. Before GBM -3.44 0.0017 Yes
Before KNN vs. After GBM -0.07 0.946 No
Before GBM vs. After GBM 3.48 0.0014 Yes

Table 7: Wilcoxon Pairwise Test between Ensembled and Non-ensembled ML Algorithms (significance achieved at p< 0.05)

5.1. Landslide Susceptibility Maps 
(Figure 12), (Figure 13), and (Figure 14) display the susceptibility maps produced by ensembled and non-ensembled algorithms 
using random feature selection, both before and after dimensionality reduction. These maps of susceptibility are useful resources for 
comprehending and reducing the risk of landslides. In terms of accuracy and dependability, the maps created by the ensemble algorithms 
(RF, EXT, XGBoost, LightGBM, and Catboost) regularly surpassed those created by the non-ensemble methods (NB, KNN, and DT). 
Susceptibility maps with more accuracy were produced as a result of the ensemble algorithms' efficient capturing of the intricate linkages 
and spatial patterns connected to landslide incidents. On the other hand, the accuracy of the susceptibility maps produced by the non-
ensemble algorithms was reduced due to their inability to fully capture the intricacy of landslide dynamics. An exceptional degree of 
detail can be seen in the landslide susceptibility maps generated by ensembled methods employing dimensionality reduction (Figures13) 
. The aforementioned maps exhibit a wide range of region patterns, skillfully merging regions with differing levels of vulnerability, such 
as high, medium, and low zones. However, when employing random feature selection, the maps often become excessively broad due 
to the mishandled entropy reduction described in section 3.1. It is evident how the maps generated by dimension reduction and random 
feature selection differ from each other. On the other hand, maps produced by non-ensembled methods, which were not amenable to 
even dimensionality reduction, tended to be more broadly distributed, exhibiting clearly defined borders separating medium, high, and 
low susceptibility zones. 

High levels of informativeness are present in the maps produced by ensembled algorithms both before and after dimensionality reduction, 
effectively capturing the intricacies of actual situations. It is crucial to completely comprehend entropy and create sophisticated models 
that can capture complexity rather than reduce it using methods like PCA and random feature selection in order to achieve a more realistic 
representation and handle the difficulties of high-dimensional datasets. A model's practicality and reliability depend on its capacity to 
manage complexity, randomness, and ambiguous interactions among variables in high-dimensional datasets, rather than just increasing 
accuracy.  Applied to both high and low dimensional datasets, the susceptibility map derived using KNN (Figure 12) and (Figure 13), 
a non-ensembled approach, performed exceptionally well. Instead of relying solely on generalization, the algorithm was able to extract 
more insightful and fine-grained features from the data, which is why it was successful. KNN handles data sparsity well because of its 
local character, which enables it to concentrate on the closest neighbors. Furthermore, since the effect of irrelevant characteristics on 
the distance metric decreases with increasing dimensionality, KNN's resilience to irrelevant features in high-dimensional data enhances 
its performance. The finding that lowering entropy decreases informativeness emphasizes how crucial it is to use high-dimensional 
datasets for applications like assessing the vulnerability of landslides. Consequently, methods such as dimensionality reduction can 
efficiently control system entropy without compromising these dataset’s structural integrity. We can guarantee a more thorough and 
accurate representation of the intricacies present in real-world occurrences by doing this. This lends credence to the idea that standalone 
algorithms might gain from handling high-dimensional data, as it makes it possible for them to handle complex, multi-dimensional 
datasets with ease and capture the subtleties of underlying processes. Therefore, it is imperative to devise techniques that augment the 
intricacy and sophistication of models in order to accurately capture the complex dynamics of real-world events, like landslides.
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Figure 12: The Susceptibility Map Generated by Ensembled and Non-ensembled Algorithms before Dimensionality Reduction
  29 
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Figure 13: The susceptibility map generated by ensembled and non-ensembled algorithms after dimensionality reduction using PCA. 592 
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Figure 12: the susceptibility map generated by ensembled and non-ensembled algorithms before dimensionality reduction. 590 

Figure 13: The Susceptibility Map Generated by Ensembled and Non-ensembled Algorithms after Dimensionality Reduction 
using PCA
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Figure 14: The susceptibility map generated by ensembled and non-ensembled algorithms using manual feature engineering random 595 
feature selection. 596 

Figure 14: The Susceptibility Map Generated by Ensembled and Non-ensembled Algorithms Using Manual Feature Engineering 
Random Feature Selection

6. Discussion
Tree-based models like RF, DT, EXT, and boosting algorithms such LGBM, XGBoost , CatBoost, and GBM rely on randomness either 
in data sampling or feature selection, making entropy a vital consideration. In models like RF and EXT, where the randomness of data 
splitting improves model diversity, poorly managed entropy can lead to overfitting or underfitting [40]. The balanced use of entropy 
in these algorithms ensures diversity among the trees while maintaining high interpretability of the susceptibility maps [41]. Boosting 
algorithms (LGBM, XGB, GBM, and CatBoost), which sequentially build models by focusing on misclassified samples, require 
careful entropy control. Improper handling may result in the accumulation of errors over iterations, reducing both model accuracy and 
susceptibility map reliability. For example, LightGBM's leaf-wise growth can be highly efficient but also susceptible to overfitting if not 
tuned appropriately, which may be a consequence of entropy mismanagement in data partitioning [42]. NBand K-KNNhandle entropy 
differently. In NB, entropy comes from the assumption of feature independence, which might not hold in complex spatial datasets. If the 
independence assumption is violated, the randomness in feature relationships can lead to poorly defined susceptibility zones. Managing 
this entropy involves correctly estimating the distribution of features and dependencies, aligning with studies by Park, which showed 
that feature correlation significantly impacts model outcomes in geospatial settings [43]. KNN, being a distance-based model, does not 
directly handle randomness in the training process, but entropy can still influence the outcome through the choice of nearest neighbors 
and their distribution in the feature space. Poorly distributed data introduces uncertainty in predictions, causing susceptibility maps to 
have less clear boundaries. Uncertainty can be reduced by adjusting the number of neighbors and selecting appropriate distance metrics, 
improving map reliability [44-46].

The uncertainty within these models, especially for high-dimensional and complex geospatial datasets, directly affects the quality of 
susceptibility maps. Tree-based models tend to be more robust in handling geospatial uncertainty due to their ability to capture non-
linear relationships [47,48]. However, when uncertainty in data is high (e.g., due to missing data, noise, or class imbalance), the models 
may produce less interpretable results. In this context, models like RF and XGBoost can mitigate uncertainty through ensemble learning, 
combining multiple decision trees to smooth out randomness.Boosting algorithms such as GBM and LGBM, on the other hand, are 
sensitive to noisy or uncertain data due to their iterative learning process. When uncertainty is not properly managed, the boosting 
mechanism can amplify errors, leading to less accurate predictions in susceptibility zones. Techniques like cross-validation, uncertainty 
quantification, and regularization can be employed to ensure that susceptibility maps reflect real-world conditions, even in regions 
with high uncertainty [49,50]. Uncertainty is an inherent aspect of susceptibility mapping, particularly in complex terrains such as 
Gilgit-Baltistan. In this study, we observed that uncertainty not only affects model accuracy but also provides insights into areas of 
high geospatial variability. Properly evaluating and incorporating uncertainty into the model can help delineate areas that are more 
susceptible to landslides or other intricate events, leading to more accurate predictions. Previous studies, such as those by Park and Bui, 
have similarly argued that uncertainty analysis can be a powerful tool for identifying critical zones in susceptibility maps, improving 
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the decision-making process for disaster risk reduction [51-53]. Our findings also suggest that uncertainty can serve as a valuable metric 
for interpreting the reliability of predictions. By carefully analyzing areas with high uncertainty, decision-makers can gain a better 
understanding of where models may be less confident, allowing them to allocate resources more efficiently for further investigation. In 
regions where ground truth is limited, this uncertainty-driven approach may be particularly useful for enhancing model robustness, as it 
offers a complementary perspective to purely accuracy-driven evaluations.

Future research should focus on developing more advanced entropy and uncertainty management techniques for geospatial modeling, 
particularly in highly diverse terrains. Entropy regularization methods and uncertainty quantification techniques offer promising 
directions for improving model performance in these complex environments [54,55,50,56]. Furthermore, integrating uncertainty 
analysis into hybrid machine learning models, such as RF-LSTM or CNN-RNN, could provide more comprehensive susceptibility maps 
that are not only accurate but also reliable for real-world applications. Finally, our findings underscore the need for more systematic 
approaches to handling randomness in machine learning models. Combining entropy management with uncertainty analysis could lead 
to the development of novel hybrid models that are more resilient to the challenges posed by highly variable geospatial datasets, such as 
those encountered in landslide susceptibility mapping.

7. Conclusion
An explosion of information has resulted from an exceptional spike in data collecting over the previous few decades in a variety of 
scientific fields. Traditional statistical techniques have particular hurdles as a result of this influx of high-dimensional datasets, as they 
are unable to handle the number and complexity of variables connected with each observation.Techniques for reducing dimensionality 
become essential in addressing these issues. Our goal is to improve interpretability and computing efficiency while preserving important 
information by converting high-dimensional datasets into lower-dimensional representations. PCA, a well-known technique for 
lowering entropy in landslide susceptibility modeling, has been the main focus of this study. In the context of geospatial data, PCA, a 
popular dimensionality reduction method in machine learning, has been extensively studied. Through PCA, we can simplify complicated 
interactions between geological, topographical, and hydrological elements that influence landslides into more manageable components 
by identifying primary components that reflect the highest variation in the original dataset. Based on our investigation, we found that 
using PCA to reduce entropy can greatly improve susceptibility map accuracy. A better understanding of the underlying patterns in the 
incidence of landslides is made possible by PCA, which keeps the most useful features while eliminating noise. In sensitive areas, this 
is essential for efficient planning of hazard mitigation and resource allocation. Moreover, our study demonstrated the difference between 
ensembled and non-ensembled algorithms for post-dimensionality reduction high-dimensional dataset management. When it came to 
capturing subtle correlations and predicting the vulnerability of landslides, ensemble approaches like Random Forest and Gradient 
Boosting performed better than standalone algorithms like Decision Trees or Logistic Regression. This emphasizes how crucial it is 
to use ensemble methods in order to maximize model accuracy and efficiently manage entropy. It is impossible to overestimate the 
influence of random feature selection on model results, though. When entropy is improperly managed through indiscriminate feature 
selection, models that are too generic and unable to adequately reflect important nuances in landslide dynamics are produced. Our 
results highlight the need for careful entropy management techniques to guarantee predictive models' accuracy and usefulness. In 
summary, this work advances our knowledge of how dimensionality reduction methods such as PCA might enhance geospatial analysis, 
especially in the intricate field of landslide susceptibility mapping. In order to solve the complex issues provided by landslide hazards, 
future research should investigate hybrid modeling approaches that combine sophisticated machine learning algorithms with spatial data 
analysis techniques.

Algorithm AUC/ROC (Before  
Dimensionality Reduction )

AUC/ROC (After 
Dimensionality 
Reduction)

AUC/ROC 
(Random Feature 
Selection)

AUC/ROC 
Improvement (%)

Average 
Accuracy 
(Before)

Average 
Accuracy 
(After)

Avg. Accuracy 
Improvement 
(%)

DT 0.689 0.920 0.689 33.5% 0.712 0.822 15.5%
KNN 0.718 0.937 0.718 30.5% 0.663 0.834 25.8%
NB 0.740 0.920 0.740 24.3% 0.635 0.813 28.0%
RF 0.784 0.966 0.784 23.2% 0.791 0.877 10.9%
Catboost 0.816 0.965 0.816 18.3% 0.782 0.887 13.4%
LightGBM 0.833 0.976 0.833 17.2% 0.773 0.850 9.9%
EXT 0.832 0.970 0.832 16.6% 0.770 0.847 10.0%
XGboost 0.832 0.970 0.832 16.6% 0.770 0.847 10.0%
GBM 0.832 0.970 0.832 16.6% 0.770 0.847 10.0%

Table 8: The Summarized Comparison between Ensembled and Non-ensembled Algorithms for Landslide Susceptibility 
Mapping for Before and After Dimensionality Reduction Scenarios Using PCA Technique for our Experiment
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