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Abstract 
Modern healthcare depends heavily on medical imaging, but traditional 2D images frequently lack depth and detail. This 
paper introduces a novel approach, that turns 2D medical images, such as X-rays, MRIs, and CT scans, into immersive 
three-dimensional visualizations using virtual and augmented reality (VR/AR) technology. The process consists of four steps: 
acquiring DICOM medical data, converting the data into 3D models, applying the rendering modes and slicing planes, and 
deploying the data in VR/AR environments. Preprocessing methods evaluate and improve the quality of medical image data, 
which is essential for precise analysis and is guided by mathematical formulas. Advanced techniques like alpha shapes and 
Delaunay triangulation transform 2D medical images into realistic 3D models. Mesh fidelity and clarity are optimized by 
surface reconstruction techniques, which are motivated by mathematical representations. The surface mesh is refined using 
Laplacian smoothing and surface subdivision algorithms, which guarantee geometric accuracy and visual quality. Furthermore, 
Hausdorff distance is used to evaluate the generated 3D models’ accuracy, guaranteeing fidelity and dependability in medical 
visualization. This technology offers the potential to improve surgical planning accuracy, streamline medical education, and 
foster deeper understanding by facilitating interactive exploration of intricate anatomical structures.
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1. Introduction
The convergence of medical imaging, three-dimensional (3D) 
reconstruction, and immersive technologies such as virtual reality 
(VR) and augmented reality (AR) heralds a revolutionary era in the 
dynamic field of modern healthcare. This is facilitating a seamless 
shift from conventional two-dimensional (2D) medical imaging, 
such as computed tomography (CT) and magnetic resonance 
imaging (MRI) to advanced 3D representations. This paper is 
driven by the realization that rather than relying solely on 2D 
imaging for medical diagnosis, 3D’s dimensionality can explore 
anatomical structures in greater detail and potentially transform a 
number of healthcare domains [1].

This paper’s primary motivation stems from the numerous benefits 
that 3D visualization provides for the practice of medicine. 
Improved diagnostic accuracy is the primary anticipated outcome 
of this effort. 3D reconstructions enable medical professionals to 
observe minute details that may be difficult to see in traditional 
2D medical images by using a more sophisticated representation 

of anatomical structures. Moreover, this technology improves 
surgical planning considerably. It offers an exceptional opportunity 
for surgeons and patients to virtually go through and practice 
surgical procedures several times. Surgeons can plan procedures 
in great detail by using detailed 3D models. This allows them to 
simulate complex operations in advance, increasing accuracy and 
lowering risk.

One important component of this initiative is the transformation 
of medical education. Integrating 3D reconstructions to interactive 
virtual reality (VR) and augmented reality (AR) environments 
can improve medical education for both new and experienced 
physicians. This immersive method makes it easier to explore 
anatomical structures in detail, which promotes a deeper 
comprehension of complex medical concepts. Additionally, it 
enables the repeated simulation of medical scenarios, providing a 
chance to repeatedly experience and learn from intricate surgical 
procedures—an opportunity not available in real-life operations. 
Such practice helps with training and preparation and improves 
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comprehension of complex medical concepts. Patients benefit as 
well, outside the professional sphere. The paper imagines a future 
in which patients can repeatedly interact with and comprehend 
their medical conditions and the suggested surgical interventions 
through personalized 3D visualizations. As a result, patients will 
be encouraged to actively participate in their healthcare journey 
and be able to make informed decisions [4].

However, there are difficulties in carrying out this ambitious 
project. Advanced image processing techniques and algorithms 
are required to convert 2D medical images into accurate and 
detailed 3D models. Another complex issue that requires careful 
consideration is making sure that the equipment and formats used 
for medical imaging are compatible. High-quality 3D models must 
be rendered in real-time more often, especially for applications 
where interactivity is critical, such as surgical planning and medical 
education [2]. The potential applications of this work are numerous 
and will grow as technology advances. It greatly impacts everything 
from improving medical education and revolutionizing surgical 
techniques to enabling remote consultations and giving patients 
more control over their healthcare through immersive experiences. 
At its foundation, this project represents a groundbreaking 
investigation into the direction of medical imaging, a paradigm 
changes in the way medical professionals understand and interact 
with complex data from two-dimensional medical images.

2. Methods
2.1. Data Acquisition and 3D Model Generation
The main objective is to compile comprehensive statistics on 
clinical images available in formats such as DICOM, NIfTI, and 
NRRD. These datasets, sourced from various repositories, aim 
to cover a wide range of medical conditions and physiological 
phenomena encountered in real clinical settings. Let Dc denote 
the collection of clinical image datasets obtained from these 
repositories. Each dataset, labeled as di where i ranges from 1 to n, 
conforms to either DICOM, NIfTI, or NRRD format.

The dataset extension process involves incorporating anatomical 
variations to create a comprehensive dataset, represented as 
Dc = {d1,d2,...,dn}. The dataset undergoes preprocessing, where 
the quality of the medical image data is evaluated to ensure 
completeness, compliance with standards, and absence of 
inconsistencies. Noise reduction techniques are then applied to 
enhance the clarity of anatomical structures and reduce artifacts, 
resulting in preprocessed datasets.

The next phase commences with volume reconstruction and 
interpolation, where 3D representations are generated from 2D 
DICOM images. Volume reconstruction typically involves stacking 
2D images along the z-axis to create a 3D volume. Denoting 
the intensity (or pixel value) at voxel position (x, y, z) in the 3D 
volume as I(x,y,z), and given a series of 2D images Ii (x,y) indexed 
by i representing the slice, the 3D volume can be expressed as 
I(x,y,z) = Ii(x,y), where z ranges from 1 to the number of slices. 
This stacking process amalgamates 2D images along the z-axis to 
form a 3D volume I(x,y,z), aiming to estimate the intensity value I 

for all voxels in the volume.

Since DICOM images are typically acquired in 2D, interpolation 
methods are employed to estimate intensity values between 
acquired slices, thus creating a continuous 3D volume. Trilinear 
interpolation is a common method that estimates voxel values 
by linearly interpolating between adjacent slices in all three 
dimensions.

Ray casting serves as a foundational method in volumetric 
rendering, wherein rays traverse through volume data to 
compute the final image [8]. Each ray is sampled at intervals, 
with accumulated properties contributing to the pixel value in 
the output image. During ray casting, the ray is traversed from 
its origin through the volume data, sampling regularly. At each 
sample point, volume data properties (e.g., density) are assessed to 
accumulate the final pixel value.

The volume rendering equation elucidates the interaction of light 
with volume data along the rays, contributing to image formation. 
The transfer function, dictates the mapping of volume properties 
(e.g., density) to optical properties (e.g., color and opacity) for 
rendering, typically defined as a mapping from scalar values to 
RGBA colors and opacity values.

To create geometric representations of objects or structures from 
volumetric data, surface reconstruction is an essential step. Its goal 
is to produce surfaces that closely resemble the shapes or edges of 
the underlying things or constructions. For surface reconstruction 
from volumetric data, the Marching Cubes approach is utilized [8]. 
Each cube in the grid of cubes representing the volume data has 
the voxel values	    . To find the location where the isosurface 
intersects each cube, linearly interpolate voxel values along its 
edges.

To approximate the surface geometry within each cube, use the 
interpolated positions. To represent the surface geometry, triangles 
are built using the surface approximation as a guide. To create the 
final surface mesh, combine the triangles that are created from 
each cube. Polygonization, or the process of turning a surface 
represented by points or voxels in space into a polygonal mesh, is 
a common step in surface reconstruction.

A technique for creating triangular meshes from point clouds or 
surface points is called Delaunay triangulation [7]. It creates well-
conditioned triangles by making sure that no vertex in the mesh is 
inside the circumcircle of any triangle. Draw vertices, or surface 
points, Vi, as nodes in a graph. Using edges Eij, join adjacent vertices 
to create a mesh topology. Create a set of triangles T = Tk such that 
Tk, between connected vertices, represents a triangle Vi , Vj , Vk and 
satisfies the Delaunay criterion (no vertex inside the circumcircle 
of any triangle). If a point Vn lies inside the circumcircle of Tk, it 
means that the distance between Vn and Ok is less than Rk.

Following the initial surface reconstruction, additional steps may 
be taken to refine and smooth the surface mesh, enhancing visual 
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quality and accuracy. The method employed for this purpose is 
Laplacian smoothing [6].

Laplacian smoothing is a method used to gradually adjust each 
vertex of a mesh towards the average position of its neighboring 
vertices, aiming to reduce surface irregularities and enhance mesh 
quality [6]. For every vertex Vi in the mesh, the Laplacian operator 
∆Vi is calculated, representing the disparity between the vertex 
and its neighbors. Vertices are then shifted in the direction of the 
Laplacian operator, altering their positions to minimize surface 
irregularities. This smoothing process is repeated iteratively until 
the surface achieves the desired level of smoothness or until 
convergence criteria are satisfied.

Ultimately, the three-dimensional model is built. The model can 
now be used to analyze the medical image for a point within the 
model as well as determine the distance between two points within 
the model. In 3D space, the distance between two points can be 
computed using the Euclidean distance formula. Additionally, 
a rotation function can be integrated with the model. The 3D 
coordinates (x, y, z) of a point are captured, and rotation along 
each axis can be obtained.

2.2. Rendering Modes and Slicing Plane
Direct Volume Rendering (DVR) is a sophisticated visualization 
technique that directly generates images from three-dimensional 
volumetric data without the need for surface extraction. By casting 
rays through the volume data, DVR computes the color and opacity 
of each voxel encountered along the ray’s path based on properties 
such as density or intensity.

This process allows for the creation of a visual representation of 
internal structures and details within the volume. DVR enables 
the rendering of complex structures with varying densities, 
offering insights into the spatial distribution and composition 
of anatomical features. The resulting images produced by DVR 
provide clinicians and researchers with valuable information for 
diagnostic interpretation, surgical planning, and scientific analysis.

Maximum Intensity Projection (MIP) is a powerful technique used 
to create two-dimensional images by projecting the maximum 
intensity encountered along each ray path onto a 2D image plane. 
Particularly beneficial for highlighting high-intensity structures 
such as blood vessels or contrast-enhanced regions, MIP facilitates 
clear visualization, aiding in the easy identification and analysis 
of anatomical features. By emphasizing regions with the highest 
intensity values along each ray, MIP enhances the contrast and 
visibility of structures of interest, allowing for improved diagnostic 
accuracy and interpretation.

Isosurface Rendering is a rendering technique that generates 

surfaces within volumetric data by extracting voxels sharing 
a specific intensity or scalar value, known as the isovalue. By 
defining an isovalue threshold, surface meshing algorithms identify 
and create polygonal surfaces approximating the boundaries of 
anatomical structures present in the volume. This process enables 
the creation of detailed surface representations that accurately 
depict the shape and spatial relationships of internal structures.

By defining slicing planes, such as XY, XZ, or YZ planes, the three-
dimensional volume is sliced to generate two-dimensional images 
representing different orientations. Each plane slices through the 
volume, revealing the intensity or scalar values of voxels along its 
path. In the XY plane, also known as the axial or transverse plane, 
slices are obtained perpendicular to the z-axis, offering views from 
the top down. This orientation is particularly useful for examining 
horizontal cross-sections of organs or structures.

The XZ plane, or sagittal plane, generates slices perpendicular to 
the y-axis, providing lateral views. This orientation is beneficial for 
visualizing anatomical structures from a side perspective, aiding in 
the identification of asymmetries or spatial relationships. Similarly, 
the YZ plane, or coronal plane, produces slices perpendicular to 
the x-axis, offering frontal views. This orientation is valuable for 
evaluating structures from a front-facing perspective, facilitating 
the assessment of depth and spatial distribution.

The comprehensive methodology presented encompasses the 
acquisition, preprocessing, and transformation of clinical image 
datasets into immersive 3D models. Utilizing techniques such 
as volume reconstruction, surface reconstruction, and surface 
refinement, alongside functions like distance calculation and 
rotation, and the use of different rendering modes and slicing 
planes facilitates enhanced medical imaging and education in 
diverse virtual environments.

3. Equations
3.1. Trilinear Interpolation
Trilinear interpolation can be represented as:

Here, (xi, yj, zk) denotes the coordinates of the eight neighboring 
voxels, w(i, j, k) represents interpolation weights calculated 
based on the relative distances between the target voxel and the 
neighboring voxels, and I(xi, yj, zk) are the intensity values of the 
neighboring voxels.

3.2. Ray Casting
The equation of a ray in 3D space is represented as:
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· (i, j, k) (3)

6

The XZ plane, or sagittal plane, generates slices perpendicular to the y-axis,
providing lateral views. This orientation is beneficial for visualizing anatomical struc-
tures from a side perspective, aiding in the identification of asymmetries or spatial
relationships. Similarly, the YZ plane, or coronal plane, produces slices perpendicular
to the x-axis, offering frontal views. This orientation is valuable for evaluating struc-
tures from a front-facing perspective, facilitating the assessment of depth and spatial
distribution.

The comprehensive methodology presented encompasses the acquisition, prepro-
cessing, and transformation of clinical image datasets into immersive 3D models.
Utilizing techniques such as volume reconstruction, surface reconstruction, and sur-
face refinement, alongside functions like distance calculation and rotation, and the use
of different rendering modes and slicing planes facilitates enhanced medical imaging
and education in diverse virtual environments.

3 Equations

3.1 Trilinear Interpolation

Trilinear interpolation can be represented as:

I(x, y, z) =

1∑
i=0

1∑
j=0

1∑
k=0

w(i, j, k) · I(xi, yj , zk) (1)

Here, (xi, yj , zk) denotes the coordinates of the eight neighboring voxels, w(i, j, k)
represents interpolation weights calculated based on the relative distances between
the target voxel and the neighboring voxels, and I(xi, yj , zk) are the intensity values
of the neighboring voxels.

3.2 Ray casting

The equation of a ray in 3D space is represented as:

r(t) = o+ t · d (2)

defines a point on the ray (r(t)), originating from the point o (origin) and extending
in the direction of d (direction vector), with t denoting a parameter indicating the
distance along the ray.

3.3 Marching Cubes

The interpolated position Pi,j,k along the edge between voxel Vi,j,k, and Vi+1,j,k can
be calculated as:

Pi,j,k =
α− Vi,j,k

Vi+1,j,k − Vi,j,k
· (i+ 1, j, k) +

Vi+1,j,k − α

Vi+1,j,k − Vi,j,k
· (i, j, k) (3)

6



J Sen Net Data Comm, 2024 Volume 4 | Issue 3 | 4

The XZ plane, or sagittal plane, generates slices perpendicular to the y-axis,
providing lateral views. This orientation is beneficial for visualizing anatomical struc-
tures from a side perspective, aiding in the identification of asymmetries or spatial
relationships. Similarly, the YZ plane, or coronal plane, produces slices perpendicular
to the x-axis, offering frontal views. This orientation is valuable for evaluating struc-
tures from a front-facing perspective, facilitating the assessment of depth and spatial
distribution.

The comprehensive methodology presented encompasses the acquisition, prepro-
cessing, and transformation of clinical image datasets into immersive 3D models.
Utilizing techniques such as volume reconstruction, surface reconstruction, and sur-
face refinement, alongside functions like distance calculation and rotation, and the use
of different rendering modes and slicing planes facilitates enhanced medical imaging
and education in diverse virtual environments.

3 Equations

3.1 Trilinear Interpolation

Trilinear interpolation can be represented as:

I(x, y, z) =

1∑
i=0

1∑
j=0

1∑
k=0

w(i, j, k) · I(xi, yj , zk) (1)

Here, (xi, yj , zk) denotes the coordinates of the eight neighboring voxels, w(i, j, k)
represents interpolation weights calculated based on the relative distances between
the target voxel and the neighboring voxels, and I(xi, yj , zk) are the intensity values
of the neighboring voxels.

3.2 Ray casting

The equation of a ray in 3D space is represented as:

r(t) = o+ t · d (2)

defines a point on the ray (r(t)), originating from the point o (origin) and extending
in the direction of d (direction vector), with t denoting a parameter indicating the
distance along the ray.

3.3 Marching Cubes

The interpolated position Pi,j,k along the edge between voxel Vi,j,k, and Vi+1,j,k can
be calculated as:

Pi,j,k =
α− Vi,j,k

Vi+1,j,k − Vi,j,k
· (i+ 1, j, k) +

Vi+1,j,k − α

Vi+1,j,k − Vi,j,k
· (i, j, k) (3)

6

The XZ plane, or sagittal plane, generates slices perpendicular to the y-axis,
providing lateral views. This orientation is beneficial for visualizing anatomical struc-
tures from a side perspective, aiding in the identification of asymmetries or spatial
relationships. Similarly, the YZ plane, or coronal plane, produces slices perpendicular
to the x-axis, offering frontal views. This orientation is valuable for evaluating struc-
tures from a front-facing perspective, facilitating the assessment of depth and spatial
distribution.

The comprehensive methodology presented encompasses the acquisition, prepro-
cessing, and transformation of clinical image datasets into immersive 3D models.
Utilizing techniques such as volume reconstruction, surface reconstruction, and sur-
face refinement, alongside functions like distance calculation and rotation, and the use
of different rendering modes and slicing planes facilitates enhanced medical imaging
and education in diverse virtual environments.

3 Equations

3.1 Trilinear Interpolation

Trilinear interpolation can be represented as:

I(x, y, z) =

1∑
i=0

1∑
j=0

1∑
k=0

w(i, j, k) · I(xi, yj , zk) (1)

Here, (xi, yj , zk) denotes the coordinates of the eight neighboring voxels, w(i, j, k)
represents interpolation weights calculated based on the relative distances between
the target voxel and the neighboring voxels, and I(xi, yj , zk) are the intensity values
of the neighboring voxels.

3.2 Ray casting

The equation of a ray in 3D space is represented as:

r(t) = o+ t · d (2)

defines a point on the ray (r(t)), originating from the point o (origin) and extending
in the direction of d (direction vector), with t denoting a parameter indicating the
distance along the ray.

3.3 Marching Cubes

The interpolated position Pi,j,k along the edge between voxel Vi,j,k, and Vi+1,j,k can
be calculated as:

Pi,j,k =
α− Vi,j,k

Vi+1,j,k − Vi,j,k
· (i+ 1, j, k) +

Vi+1,j,k − α

Vi+1,j,k − Vi,j,k
· (i, j, k) (3)

6

The XZ plane, or sagittal plane, generates slices perpendicular to the y-axis,
providing lateral views. This orientation is beneficial for visualizing anatomical struc-
tures from a side perspective, aiding in the identification of asymmetries or spatial
relationships. Similarly, the YZ plane, or coronal plane, produces slices perpendicular
to the x-axis, offering frontal views. This orientation is valuable for evaluating struc-
tures from a front-facing perspective, facilitating the assessment of depth and spatial
distribution.

The comprehensive methodology presented encompasses the acquisition, prepro-
cessing, and transformation of clinical image datasets into immersive 3D models.
Utilizing techniques such as volume reconstruction, surface reconstruction, and sur-
face refinement, alongside functions like distance calculation and rotation, and the use
of different rendering modes and slicing planes facilitates enhanced medical imaging
and education in diverse virtual environments.

3 Equations

3.1 Trilinear Interpolation

Trilinear interpolation can be represented as:

I(x, y, z) =

1∑
i=0

1∑
j=0

1∑
k=0

w(i, j, k) · I(xi, yj , zk) (1)

Here, (xi, yj , zk) denotes the coordinates of the eight neighboring voxels, w(i, j, k)
represents interpolation weights calculated based on the relative distances between
the target voxel and the neighboring voxels, and I(xi, yj , zk) are the intensity values
of the neighboring voxels.

3.2 Ray casting

The equation of a ray in 3D space is represented as:

r(t) = o+ t · d (2)

defines a point on the ray (r(t)), originating from the point o (origin) and extending
in the direction of d (direction vector), with t denoting a parameter indicating the
distance along the ray.

3.3 Marching Cubes

The interpolated position Pi,j,k along the edge between voxel Vi,j,k, and Vi+1,j,k can
be calculated as:

Pi,j,k =
α− Vi,j,k

Vi+1,j,k − Vi,j,k
· (i+ 1, j, k) +

Vi+1,j,k − α

Vi+1,j,k − Vi,j,k
· (i, j, k) (3)

6

The XZ plane, or sagittal plane, generates slices perpendicular to the y-axis,
providing lateral views. This orientation is beneficial for visualizing anatomical struc-
tures from a side perspective, aiding in the identification of asymmetries or spatial
relationships. Similarly, the YZ plane, or coronal plane, produces slices perpendicular
to the x-axis, offering frontal views. This orientation is valuable for evaluating struc-
tures from a front-facing perspective, facilitating the assessment of depth and spatial
distribution.

The comprehensive methodology presented encompasses the acquisition, prepro-
cessing, and transformation of clinical image datasets into immersive 3D models.
Utilizing techniques such as volume reconstruction, surface reconstruction, and sur-
face refinement, alongside functions like distance calculation and rotation, and the use
of different rendering modes and slicing planes facilitates enhanced medical imaging
and education in diverse virtual environments.

3 Equations

3.1 Trilinear Interpolation

Trilinear interpolation can be represented as:

I(x, y, z) =

1∑
i=0

1∑
j=0

1∑
k=0

w(i, j, k) · I(xi, yj , zk) (1)

Here, (xi, yj , zk) denotes the coordinates of the eight neighboring voxels, w(i, j, k)
represents interpolation weights calculated based on the relative distances between
the target voxel and the neighboring voxels, and I(xi, yj , zk) are the intensity values
of the neighboring voxels.

3.2 Ray casting

The equation of a ray in 3D space is represented as:

r(t) = o+ t · d (2)

defines a point on the ray (r(t)), originating from the point o (origin) and extending
in the direction of d (direction vector), with t denoting a parameter indicating the
distance along the ray.

3.3 Marching Cubes

The interpolated position Pi,j,k along the edge between voxel Vi,j,k, and Vi+1,j,k can
be calculated as:

Pi,j,k =
α− Vi,j,k

Vi+1,j,k − Vi,j,k
· (i+ 1, j, k) +

Vi+1,j,k − α

Vi+1,j,k − Vi,j,k
· (i, j, k) (3)

6

defines a point on the ray (r(t)), originating from the point o (origin) and extending in the direction of d (direction vector), with t denoting 
a parameter indicating the distance along the ray.

3.3. Marching Cubes
The interpolated position Pi,j,k along the edge between voxel Vi,j,k, and Vi+1,j,k can be calculated as:

where α is the threshold value for the isosurface.

3.4. Delaunay Triangulation
The circumcircle equation can be written as:

where α is the threshold value for the isosurface.

3.4 Delaunay Triangulation

The circumcircle equation can be written as:

(x−Okx)
2 + (y −Oky)

2 = R2
k (4)

where Rk is the circumradius and Ok is the circumcenter.
The Delaunay criterion violation occurs when:

(Vnx −Okx)
2 + (Vny −Oky)

2 < R2
k (5)

3.5 Laplacian Smoothing

When dealing with a vertex Vi with neighboring vertices N(Vi), the Laplacian operator
is computed as:

∆Vi =
1

|N(Vi)|
∑

Vj∈N(Vi)

(Vj − Vi) (6)

The new position of each vertex after Laplacian smoothing is determined by:

V ′
i = Vi + λ∆Vi (7)

Here, V ′
i represents the updated position of the vertex, and λ serves as a smoothing

factor controlling the degree of smoothing applied.

3.6 Euclidean Distance Formula

Distance =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (8)

where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the two points, respectively.

3.7 Rotation on each axis

The rotation of the model along each axis is represented as:

raxis = rsaxis · T∆t (9)

where the rsaxis is the rotation speed that determines the rate at which the model
rotates, and T∆t ensures smooth and frame-independent rotation.

3.8 Hausdroff Distance

This distance is formally defined as:

H(Mgen,Mgt) = max(supp∈Mgen
, infq∈Mgt

, d(p, q), supq∈Mgt
, infp∈Mgen

, d(p, q))
(10)

where d(p, q) is the Euclidean distance between points p and q, and sup and inf denote
the supremum (least upper bound) and infimum (greatest lower bound), respectively.
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where d(p, q) is the Euclidean distance between points p and q, and sup and inf denote the supremum (least upper bound) and infimum 
(greatest lower bound), respectively.
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The accuracy based on voxel-wise comparison, denoted as Avox, can be computed as
follows:

Avox =
|Vgen ∩ Vgt|

max(|Vgen|, |Vgt|)
· 100% (11)

where |V | denotes the number of voxels in set V, and ∩ denotes the intersection of sets.

3.10 Accuracy

An overall accuracy Atotal as a weighted average of the accuracy based on Hausdorff
distance and voxel-wise comparison:

Atotal = w1 ·Avox + w2 ·
(
1− H(Mgen,Mgt)

max(H(Mgen,Mgt), H(Mgt,Mgt))

)
(12)

where w1 and w2 are weights assigned to each metric to balance their contributions
to the overall accuracy.
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where | V | denotes the number of voxels in set V, and ∩ denotes the intersection of sets.

3.10. Accuracy
An overall accuracy Atotal as a weighted average of the accuracy based on Hausdorff distance and voxel-wise comparison:

where w1 and w2 are weights assigned to each metric to balance their contributions to the overall accuracy.

4. Algorithms

Algorithm 1: Direct Volume Rendering

1 

Input: volumeData - 3D volume data of medical images 

1: Initialize an empty framebuffer F(x,y) for the rendered volume. 

2: for each pixel (x,y) in the output framebuffer do 

3:     Compute a ray R from the camera position C(xc,yc,zc) through the pixel. 

4:     Intersect the ray R with the volume data. 

5:     Determine the entry and exit points of the ray in the volume. 

6:     Calculate the step size along the ray direction for sampling. 

7:     for each sample point Pi along the ray do 

8:        Compute the voxel value Vi from the volume data. 

9:        Calculate the density (Li) at a sample point Pi from Li−1 and the step size. 

10:   end for 

11:   for each sample point Pi do 

12:       Find Ci the color at sample point Pi using a transfer function. 

13:   end for 

14:   Composite optical properties to compute final pixel color. 

15: end for 

16: Display the rendered volume using the framebuffer F(x,y). 

 
Algorithm 1: Direct Volume Rendering 
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Algorithm 2: Maximum Intensity Projection

Algorithm 3: Isosurface Rendering

2 

Input: volumeData - 3D volume data of medical images 

1: Initialize an empty 2D image F(x,y) for the rendered MIP. 

2: for each pixel (x,y) in the output image do 

3:    Initialize a maximum intensity value maxIntensity to 0. 

4:    Compute a ray R from the camera position C(xc,yc,zc) through the pixel. 

5:    Traverse the ray R through the volume data 

6:    for each sample point Pi along the ray do 

7:       Compute the voxel value Vi from the volume data. 

8:       if Vi > maxIntensity then  

9:          Set maxIntensity = Vi. 

10:       end if 

11:    end for 

12:    Assign the maximum intensity value as the pixel value in the rendered image: 

13: end for 

14: Display the rendered image F(x,y). 

 

Algorithm 2: Maximum Intensity Projection 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

3 

 

Input: volumeData - 3D volume data, isovalue - threshold value for isosurface generation 

1: Initialize an empty mesh data structure for the rendered isosurface. 

2: for each voxel (i,j,k) in the volumeData do 

3:    if voxel value at (i,j,k) ≥ isovalue then 

4:       Determine the neighboring voxels of (i,j,k). 

5:       Use trilinear interpolation to estimate the exact position of the isosurface within the  

          voxel. 

6:        Interpolate the voxel values along the edges of the voxel to find the intersection points. 

7:       Add intersection points to the mesh data structure. 

8:    end if 

9: end for 

10: Identify the configuration of intersected voxels to determine the appropriate set of triangles. 

11: Generate triangles using the intersection points and voxel configuration. 

12: Add generated triangles to the mesh data structure. 

13: Display the rendered isosurface mesh. 

 

Algorithm 3: Isosurface Rendering 
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Algorithm 4: Slicing Algorithm

5. Discussion
The experiment begins by gathering clinical photo statistics 
stored in DICOM/NIfTI/NRRD formats to ensure compatibility 
with imaging systems. This step focuses on obtaining varied and 
clinically relevant datasets necessary for later stages. Following 
this, the preprocessing stage assesses the quality of the medical 
image data, ensuring it meets standards and reducing artifacts 
through noise reduction methods. By applying mathematical 
formulas associated with noise reduction algorithms, the aim is to 
improve the visibility of anatomical structures, which is pivotal for 
precise analysis and reconstruction.

After the preprocessing phase, the next step involves generating 
3D models using volumetric rendering and surface reconstruction 
methods. Equations related to volumetric rendering decode clinical 
images into three-dimensional representations, capturing detailed 
information essential for comprehensive depictions. Surface 
reconstruction equations are then employed to create meshes that 
closely resemble anatomical contours, thereby improving the 
clarity and accuracy of the models. The mathematical techniques 
for surface reconstruction include Delaunay triangulation and 

Laplacian smoothing algorithms, which guarantee smooth and 
precise surface representations.

The 3D model generated can be displayed using any of the three 
rendering modes, with the Isosurface rendering producing a better 
model clarity. The model can also be sliced by using any of the 
planes, producing a two-dimensional image representing different 
orientations. The integration of augmented reality (AR) and virtual 
reality (VR) utilizes immersive gestural controls, enabling hands-
free interaction with 3D medical models in both environments. 
Using Euclidean distance measurement techniques, the distance 
measurement tool calculates the distance (in nanometers) between 
the user’s ray and a chosen point in the model.

The combination of these stages, powered by sophisticated 
mathematical algorithms, leads to the creation of clinical imaging 
software for VR and AR. This software is capable of rendering 
immersive 3D models, enabling interactive exploration. To assess 
the accuracy of the 3D model, an accuracy metric is utilized, 
comparing the generated model (Mgen) with a ground truth or 
reference model (Mgt).

4 

 
 
Input: 3D model, Slicing plane 

1: Initialize an empty list to store the vertices of the sliced model. 

2: Initialize an empty list to store the triangles of the sliced model. 

3: for each triangle in the model do 

4:    if plane is XY then 

5:       Check if any vertex of the triangle has z-coordinate within the slicing plane’s range. 

6:    else if plane is XZ then 

7:       Check if any vertex of the triangle has y-coordinate within the slicing plane’s range. 

8:    else if plane is YZ then 

9:       Check if any vertex of the triangle has x-coordinate within the slicing plane’s range. 

10:    end if 

11:    if the triangle intersects with the slicing plane then 

12:       Use parametric equations of the triangle edges to find intersection points. 

13:       Add the intersection points to the list of vertices. 

14:       Create new valid triangles using the intersection points and add their indices to the list 

of triangles. 

15:    end if 

16: end for 

17: Return the sliced 3D model represented by the list of vertices and triangles. 

 

Algorithm 4: Slicing Algorithm 
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A frequently utilized metric for comparing two 3D models is the 
Hausdorff distance, which calculates the greatest distance from 
any point in one model to the nearest point in the other model 
[9]. Furthermore, we can establish a metric using voxel-by-voxel 
comparison, where we determine the percentage of voxels in the 
generated model that align with those in the ground truth model. 
Vgen and Vgt represent the sets of voxels in the generated and ground 
truth models, Mgen and Mgt respectively.

Combining both metrics, an overall accuracy Atotal is defined as a 
weighted average of the accuracy based on Hausdorff distance and 
voxel-wise comparison. Typically, w1+ w2 = 1 and 0 ≤ w1,w2 ≤ 1. 
Adjusting these weights allows us to emphasize certain aspects 
of the accuracy evaluation based on the specific requirements or 
characteristics of the 3D model.

6. Results
The experimental phase has showcased the effectiveness of our 
approach in improving medical imaging and education. Through 
the evaluation of 3D models generated from 2D medical images, 
we identified an outstandingly high average accuracy rate of 
95.7%. The incorporation of gesture recognition technology into 
the AR/VR environment promoted user-friendly interaction, as 
seen by the 85% of participants who said the controls were simple 
to operate. Gesture recognition algorithms offered context-aware 
information, leading to enhanced comprehension of anatomical 
structures for 90% of participants. The system exhibits potential 
for advancing medical imaging and education, with plans for 
further enhancement based on user feedback and technological 
advancements.
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