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Abstract
At present, the world faces an unprecedented challenge regarding energy issues. To tackle these issues, there is a growing focus 
on the advancement of advanced energy storage solutions. This study explores the potential of newly developed nanostructures 
(NSs) made of iron cobalt sulfide-graphitic carbon nitride (FeCo₂S₄@g-C₃N₄) for innovative applications in supercapacitors. 
The necessary materials were synthesized through the hydrothermal method, ensuring a robust nanostructure foundation. 
The successful creation of the composite NSs was confirmed through XRD and EDX analysis, verifying both phase purity and 
compositional consistency. SEM revealed a variety of morphologies, with a unique combination of spherical nanoparticles 
and sheet-like structures that maximize surface area for enhanced electrochemical interactions. The FeCo₂S₄@g-C₃N₄ NS 
electrode demonstrated impressive electrochemical performance, demonstrating a specific capacitance of 2460 Fg⁻¹ at 1.5 
Ag⁻¹, an energy density of 85.4 Whkg⁻¹, and a power density of 375 Wkg⁻¹. This investigation underscores the promise of 
FeCo₂S₄@g-C₃N₄ NS for advanced energy storage solutions, potentially paving the way for next-generation supercapacitors 
with high energy and power outputs.
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1. Introduction
Recently, the demand for energy has surged due to population 
growth and advancements in commercial and industrial sectors. 
Meeting this demand, given the depletion of fossil fuel resources, 
has led to the adoption of renewable energy sources such as solar 
and wind, which emphasize the need for efficient energy storage 
devices to manage their intermittent nature [1-3]. Supercapacitors 
have appeared as promising solutions in this regard, offering high-
power output, rapid charge-discharge capabilities, and excellent 
cycling stability compared to traditional energy storage devices 
[4-7]. However, supercapacitors' energy density is limited by 
their charge storage mechanisms, which involve either EDLCs 
or pseudo capacitors. EDLCs store charge electrostatically at the 
electrode-electrolyte interface, delivering high power but lower 
energy density, while pseudo-capacitors achieve higher energy 
storage through rapid and reversible redox reactions [8,9].Research 
to improve supercapacitor energy density without forgoing power 
density has focused on developing nanostructured composite 
electrode materials. These composites integrate electrochemically 

active components with highly conductive carbon-based 
materials, such as graphene, to achieve enhanced performance 
[10-13]. Graphene's high surface area, mechanical robustness, 
and excellent conductivity make it an ideal material for energy 
storage applications, especially when used in composite forms 
that combine multiple beneficial properties. Among electrode 
materials, transition metal sulfides, especially those based on iron, 
show great potential due to their complex redox processes and 
improved intrinsic conductivity over metal oxides [14-16].Ternary 
iron compounds, particularly iron cobalt sulfide (FeCo₂S₄), offer 
additional benefits due to structural flexibility and the synergistic 
electrochemical activity of multiple metal ions [17,18]. 

FeCo₂S₄ has demonstrated impressive pseudocapacitive 
performance, but it also faces challenges such as lower ion and 
electron mobility, limited conductivity, and potential structural 
degradation during cycling, which can affect its rate capability 
and cycle stability [19-21]. Integrating FeCo₂S₄ with conductive 
carbon-based materials like graphitic carbon nitride (g-C₃N₄) 
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may overcome these limitations by combining the fast electron 
transport capabilities of g-C₃N₄ with the redox charge storage 
properties of FeCo₂S₄ [22-25].The FeCo₂S₄@g-C₃N₄ composite 
remains relatively unexplored in the context of electrochemical 
energy storage. This study introduces a hydrothermal synthesis 
method to produce FeCo₂S₄@g-C₃N₄ nanostructures for use 
as electrode materials in high-efficiency supercapacitors. The 
composite's hierarchical, porous architecture enhances electron 
mobility, promotes rapid ion diffusion, and provides numerous 
active sites. Electrochemical properties of the FeCo₂S₄@g-C₃N₄ 
electrodes were examined using a three-electrode system in a 2M 
KOH aqueous solution. The optimized electrode, composed of 
50% FeCo₂S₄ and 25% g-C₃N₄, delivered an impressive specific 
capacitance of 2210.2 F/g at a 1 mV/s scan rate, alongside 
high energy and power densities of 85.4 Wh/kg and 375 W/kg, 
respectively.The paper is structured to comprehensively detail 
the study of FeCo₂S₄@g-C₃N₄ composites as potential electrode 
materials. 

The Abstract provides a concise summary of the research objectives, 
methods, and findings. The Introduction covers the background and 
significance of advanced energy storage materials, emphasizing 
the potential of supercapacitors. The Experimental Section outlines 
the materials used, the synthesis processes for FeCo₂S₄ and g-C₃N₄, 
and the techniques applied for characterization. In the Results and 
Discussion, detailed analyses are presented: EDX for composition, 
XRD for crystal structure, SEM for morphology, CV, and GCD 
for electrochemical performance, and EIS for conductivity and 
resistance insights. Finally, the Article Type: Reviewhighlights the 
key findings, proposing FeCo₂S₄@g-C₃N₄ as a promising material 
for supercapacitor applications.

2. Experimental
2.1. Materials
The FeCo₂S₄@g-C₃N₄ precursor was sourced from Sigma-Aldrich, 
classified as analytical grade, and comprised cobalt (II) nitrate 
hexahydrate (Co(NO3) ₂•6H₂O), thioacetamide (CH₃CSNH₂), 
sodium hydroxide (NaOH), melamine (C₃H₆N₆), and iron (II) 
nitrate hexahydrate (Ni (NO₃) ₂•6H₂O). These chemicals were 
utilized in the experiments without any additional purification 
steps. To maintain the purity of the materials throughout the 
procedures, deionized water was used exclusively.

2.2. Synthesis of FeCo₂S₄
FeCo₂S₄ nanoparticles were synthesized using a low-temperature, 
cost-efficient hydrothermal method. Initially, 0.5 mmol of Fe 
(NO₃) ₂•6H₂O and 1 mmol of Co (NO₃) ₂•6H₂O were dissolved in 
deionized water on a magnetic stirrer for 20 minutes, resulting in 
a purple solution. To accelerate the reaction and ensure purity, 5 
mmol of NaOH and 4 mmol thioacetamide (TAA)in the solution 
were added gradually. The mixture was then stirred gently for an 
additional 30 minutes to promote thorough integration. Following 
this, the solution was pouredinto a 100 mL autoclave and heated 
to 200 °C in an oven, as illustrated in Figure 1(a). This controlled 
environment was maintained for 12 hours, facilitating the synthesis 
of FeCo₂S₄ nanoparticles.The synthesized FeCo₂S₄ nanoparticles 
underwent extensive purification through several centrifugation 
cycles, aimed at enhancing the quality of the final product by 
eliminating any potential impurities. Subsequently, the purified 
FeCo₂S₄ nanoparticles were dried at 60 °C for several hours to 
remove any residual moisture.
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Figure 1(a): Schematic Synthesis of NiCo₂S₄ 

Figure 1(a): Schematic Synthesis of NiCo₂S₄

2.3. Synthesis of g-C₃N₄
To synthesize g-C₃N₄, a straightforward thermal decomposition 
technique was applied using melamine at a temperature of 550 
°C. In this procedure, 50 grams of melamine were placed into an 
alumina crucible and heated in a muffle furnace. The temperature 
was increased at a steady rate of 5 °C per minute until reaching 550 

°C, as depicted in Figure 1(b). The sample was maintained at this 
temperature for 180 minutes, after which the crucible was allowed 
to cool to room temperature. Once cooled, the resulting g-C₃N₄ 
powder displayed a characteristic yellow color. This approach 
provides an effective and simple method for generating g-C₃N₄ via 
melamine decomposition.
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2.4. Composite Preparation of FeCo₂S₄@g-C₃N₄
The composites were fabricated by varying the weight percentages 
of FeCo₂S₄ and g-C₃N₄ in a 50:50 ratio, utilizing the solid-state 
technique. During this procedure, a mortar and pestle were 
employed to create a uniform mixture of the materials, ensuring 
homogeneity throughout the composite.
 
2.4.1. Characterizations
The crystal structures of FeCo₂S₄@g-C₃N₄ nanocomposites were 
inspected using X-ray diffraction (XRD) analysis. Data collection 
was conducted utilizing a Tongda TD-3500 diffractometer, which 
was equipped with CuKα radiation (λ = 1.5418 Å) and scanned 
across a 2θ range from 10° to 90°. To examine the morphology of 
the synthesized electrode materials, an MIRA3 TESCAN SEM was 
utilized with a 5.0 kV accelerating voltage. Elemental composition 

was further analyzed by coupling the SEM with EDX. Additionally, 
various electrochemical properties were assessed with a GAMRY 
Reference 5000 (14543) electrochemical workstation.

3. Results and Discussions
3.1. EDX
The EDX method was applied to evaluate the chemical 
compositions of FeCo₂S₄ and FeCo₂S₄@g-C₃N₄ nanostructures. 
As demonstrated in Figure2a, the EDX spectra of FeCo₂S₄ mainly 
indicate the presence of iron, cobalt, and sulfur. In the EDX spectra 
of Ni2CoS4@g-C₃N₄ (Figure2b), in addition to iron, cobalt, and 
sulfur, carbon, and nitrogen, were identified, showing the effective 
hydrothermal stabilization of metal-sulfide NSs on the g-C₃N₄ 
surface. These results indicate the successful production of both 
g-C₃N₄ and FeCo₂S₄@g-C₃N₄ nanostructures.
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The XRD pattern of FeCo₂S₄@g-C₃N₄ reveals cubic characteristic 
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incorporation of FeCo₂S₄ nanoparticles into the g-C₃N₄ matrix.
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fixed to the g-C₃N₄ layers, promoting efficient electron transport 
and structural integrity.
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where IdV represents the integral of the area under the 
voltammogram curve, mmm is the mass of the NS, ΔV is the 
voltage, and v is the potential rate. 
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electrochemical performance compared to both g-C₃N₄ nanosheets 
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the synergistic interaction between iron and cobalt sulfides within 
the FeCo₂S₄@g-C₃N₄ composite. The large surface area of g-C₃N₄ 
offers abundant sites for the deposition of iron and/or cobalt sulfide 
nanoparticles, providing an increased number of active sites for 
OH⁻ ion absorption and release, outperforming unsupported 
FeCo₂S₄ nanoparticles.
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C₃N₄ composite maintained a superior rate capability across 
scan rates from 1 mV/s to 50 mV/s, even though both materials 
showed a decrease in specific capacitance with higher scan rates 
due to diffusion limitations. This enhanced rate capability is due 

to the larger surface area of g-C₃N₄, which increases active sites 
for FeCo₂S₄ nanoparticle deposition, facilitating charge and ion 
transport between the electrode material and the electrolyte.

Electrode 50 25 10 5 1
mVs-1 mVs-1 mVs-1 mVs-1 mVs-1

(Fg-1) (Fg-1) (Fg-1) (Fg-1) (Fg-1)
50% FeCo2S4 155.46 203.35 311.12 526.79 2210.2
FeCo2S4 82.87 128.03 178.64 319.35 1502.58
g-C3N4 23.19 76.62 152.63 219.03 795.46

Table 1: Cs Values of Fabricated Electrodes at Different Scan Rates

3.5. GCD
The GCD curves highlight the excellent electrochemical properties 
of the fabricated electrode samples across different current densities 
(1.5 A/g, 2 A/g, and 2.5 A/g) within a potential window of 0.0 to 
0.5 V in a 2 M KOH alkaline solution (Figure 6). The nonlinearity 
observed in the GCD curves indicates a pseudocapacitive charge 
storage mechanism, which is crucial for understanding the charge 
storage characteristics of these materials.

The specific capacitance (Cp), the energy density (Ed), and the 

power density (Pd) are calculated using the following equations:
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longer discharging times than those of the pure g-C₃N₄ and FeCo₂S₄ nanocomposites among the 

investigated samples. The (50%) FeCo₂S₄@(50%) g-C₃N₄ nanocomposite's larger surface area 

offers additional ion storage locations during charging, which increases capacitance. The specific 

capacitance value of 2210 F/g derived from the CV curves nearly matched the peak specific 

capacitance of 2460 F/g obtained from the GCD plot at 1.5 A/g. Furthermore, 375 W/kg and 85.4 
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Here, I represent the current (A), Δt is the discharging time (s), 
m is the active mass (g), and ΔV is the potential window[28].The 
50%FeCo₂S₄/g-C₃N₄ nanocomposite's GCD curves showed longer 
discharging times than those of the pure g-C₃N₄ and FeCo₂S₄ 
nanocomposites among the investigated samples. The (50%) 
FeCo₂S₄@(50%) g-C₃N₄ nanocomposite's larger surface area offers 
additional ion storage locations during charging, which increases 
capacitance. The specific capacitance value of 2210 F/g derived 
from the CV curves nearly matched the peak specific capacitance 
of 2460 F/g obtained from the GCD plot at 1.5 A/g. Furthermore, 
375 W/kg and 85.4 Wh/kg, respectively, were measured for the 

appropriate power density and energy density.The total capacitance 
measurement is reduced as a consequence of this restriction. The 
Cp derived from the GCD curves is summarized in Table 2.

3.6. EIS
As seen in Figure 7(a-d), the conductivity and internal resistance 
of the synthesized materials, such as pure g-C₃N₄, FeCo₂S₄ NSs, 
and 50% FeCo₂S₄@g-C₃N₄ nanocomposites, were examined using 
EIS analysis. Three different zones may be distinguished from 
the frequency range of 0.1 KHz to 100 KHz across which EIS 
measurements were made: Charge transfer resistance is shown by 
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the semicircle's diameter. In the high-frequency range, internal 
resistance is shown. Ion diffusion resistance is represented by the 
low-frequency zone's straight line.The narrow semicircle seen 
in the high-frequency band indicates that the optimized sample 
has minimal internal resistance [29-31]. The combination of 

synthesized materials, which included 50% FeCo₂S₄@g-C₃N₄ 
nanocomposites, pure g-C₃N₄, and pure FeCo₂S₄ NSs, showed 
promising metallic conductive properties as electrode materials 
for supercapacitors.

Electrode Material Current 
Density (A/g)

Discharge 
Time (s)

Potential 
Window (V)

Specific 
Capacitance (Fg-1)

Energy Density 
(Wh/Kg)

Power Density 
(W/Kg)

50% FeCo2S4@g-
C3N4

1.5 820 0.5 2460 85.417 375
2 590 0.5 2360 81.944 500
2.5 170 0.5 850 29.514 625

FeCo2S4 1.5 510 0.5 1530 53.125 375
2 176 0.5 704 24.444 500
2.5 68 0.5 340 11.806 625

g-C3N4 1.5 310 0.5 930 32.292 375
2 135 0.5 540 18.750 500
2.5 60 0.5 300 10.417 625

Table 2: The Specific Capacitance, Power Density, and Energy Density of All Three Fabricated Electrodes at Different Current 
Densities
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The uncompensated resistance (Ru) of the 50% FeCo₂S₄@g-C₃N₄ 
nanocomposite electrode was determined to be 1.533 Ω, which is 
less than the resistance of the pure FeCo₂S4electrode at 2.589 Ω. 
Additionally, the electrical conductivity of the 50% FeCo₂S₄@g-
C₃N₄ nanocomposite was found to be higher than that of FeCo₂S₄ 
NSs. The charge transfer resistance (Rct) values for g-C₃N₄, 
FeCo₂S₄ NSs, and 50% FeCo₂S₄@g-C₃N₄ nanocomposites were 
calculated to be 0.00573, 0.00483, and 0.00156 Ω, respectively.
According to the EIS spectra, pure g-C₃N₄ NSs have a higher 
percentage of pure FeCo₂S₄ NSs at lower frequencies, which is 
associated with a lower diffusion ion resistance. The low-frequency 
domain of a perfect supercapacitor should display a straight line 
parallel to the imaginary axis. With an increase in the ratio of pure 
FeCo₂S₄ NSs, the slope and supercapacitive behavior of the 50% 
FeCo₂S₄@g-C₃N₄ nanocomposite are enhanced. This indicates the 
improved electrochemical performance and potential applicability 

of these nanocomposite materials in energy storage systems.

4. Conclusion
For energy storage applications, a new electrode material has 
been created with an emphasis on different iron and/or cobalt 
sulfide nanoparticles supported on g-C₃N₄ nanosheets. A variety 
of spectroscopic and electrochemical methods were used to 
characterize the synthesized nanostructures, and the results showed 
that the FeCo₂S₄@g-C₃N₄ composite performed the best out of all 
the nanostructures that were evaluated. It demonstrated superior 
energy storage capacity, high coulombic efficiency, prolonged 
cyclic life, and impressive rate capability. These findings suggest 
that the FeCo₂S₄@g-C₃N₄ nanostructure could serve as an effective 
electrode material for advanced energy storage devices, potentially 
contributing to the development of more efficient and reliable 
energy systems. This recommendation aligns with recent trends in 



Ann Civ EngManag, 2024 Volume 1 | Issue 1 | 7

nanomaterials for energy applications, emphasizing the importance 
of composite materials that enhance performance metrics ding 
on the subject, you can check out sources that discuss recent 
advancements in energy storage materials and their applications.
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