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Abstract
In this work we performed optical studies of Ga2O3/GaAs, BGaAs/GaAs and Ga2O3/BGaAs/GaAs epilayers obtained by chemical 
vapor deposition (MOCVD) at different growth temperatures (580°C and 670°C). This enables the development of heterostructures 
based on BGaAs/GaAs thin films covered by Ga2O3. We focused our research on the influence of power excitation and temperature 
on the photoluminescence (PL) properties. Ithasshowedthe presence of emission energy around 1.2 eV and a red shift after the 
deposition of Ga2O3 on BGaAs/GaAs at low temperature (10K). The power study highlights the dominance of the Ga2O3 layer 
during the emission via the donor-acceptor transitions. The evolution of the emission energy temperature for the BGaAs/GaAs 
thin film allowed us to explain the origin of the excitonic recombination. The luminescence within the new Ga2O3/BGaAs/GaAs 
heterostructure is controlled by the localization of carriers in energy fluctuation potentials created by inhomogeneous distributions 
of VGa families. We have shown that this proposed heterostructure based on III-V semiconductors could broaden the emission 
spectrum and henceincreasestheconversion efficiency as the absorption increases.
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1. Introduction
Right now, III-V semiconductor materials based on GaAs, 
InAs (BAs) and their ternary alloys BxGa1-xAs (InxGa1-xAs) 
are favored for their potential use in photonic, electronic and 
optoelectronic devices such as blue light emitting diodes and 
green high electron mobility transistors (HEMT) and metal oxide 
semiconductor capacitors (MOSCAP) diode lasers thin-film 
solar cells Electrooptic waveguide modulators metal-insulator-
semiconductor photodetectors [1-10].

In fast electronics and optoelectronics, as silicon has been well 
developed and commercialized in the photovoltaic field due to its 
high absorbance, abundance and low cost, it remains insufficient 
in the optoelectronic field and more precisely for the design of 
transmitters due to the low mobility of the carriers and its indirect 
gap which reinforces the non-radiative transitions. On the other 
hand, III-V semiconductors are favored by their direct gap, their 
high mobility and their high electrical conductivity [11]. The 
main efforts have been undertaken to develop new photovoltaic 
conversion routes based on III-V semiconductors such as GaAs, 

In ... etc. [12].

Moreover, they are materials of choice for the development of 
lasers or detectors operating in the telecommunication domain 
at wavelengths of 1.3μm [13]. In this context, our mastered 
heterostructure is based on the III-V semiconductors Ga2O3/
BGaAs/GaAs. The latter generates a new structure applicable 
in optoelectronics emitting in the 1.3-1.55 micrometer range 
[12]. The choice of GaAs as substrate due to its high carrier 
confinement in the active region, its infrared emission and its 
low cost [14]. The introduction of Boron in GaAs has allowed to 
decrease the emission energy compared to GaAs and reach the 
wavelength 1.33 micrometer [15]. Indeed, it acts on the state of 
strain but it is limited by the incorporation of boron we cannot 
reach concentrations < 8% this is accompanied by the presence of 
energy levels in the band gap generally related to boron aggregates 
(clusters) [16,17]. The advantage of adding Ga2O3 is that it 
broadens the emission range since it emits in the UV range and 
is a transparent conductive material [18]. From an energy point 
of view, these materials have a different energy diagram. In fact, 
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these three semiconductors are distinguished by their band gaps 
which are 1.42 eV for GaAs, 1.34 eV for BGaAs and 4.6_ 4.9 eV 
for Ga2O3 [19,20]. In this heterostructure we find energy levels 
below the BC of BGaAs. Gallium oxide also has deeper energy 
levels in its optical gap at energies of 2.4, 2.75, 3 and 3.15 eV [21]. 
These different gap energies make a richness for us in terms of 
optoelectronic applications.

1.1. Experimental Details
The heterostructure we studied consists of a GaAs substrate, a 
buffer layer on which a thin layer of BGaAs is deposited, a gallium 
arsenide barrier followed by a gallium oxide Ga2O3layer. The 
samples are grown by MOCVD in a horizontal T-shaped reactor 
at atmospheric pressure [22-24]. GaAs exhibits a 1° disorientation 
from the (001) plane in the [110] direction. Triethylgallium (TEG) 
and diborane (B2H6) are used as group III precursors for gallium 
(Ga) and boron (B), respectively. Arsine (AsH3) is used as group V 
precursor for arsenic (As). All the growths of these structures took 
place under hydrogen, which is the carrier gas used in EPVOM. 

Photoluminescence measures were performed between 10 and 
300K by holding the samples in an unrestricted cycle helium 
cryostat. The sample was excited by the green line (wavelength 
514.5 nm) of an argon-ion laser (Ar+) with a maximum power 
density of 80 W/cm². Photons emitted by the sample are scattered 
by a high-resolution spectrometer (Jobin-Yvon monochromator 
HDR1: focal length 0.6). Detection is via a silicon detector (spectral 
range between 800 and 1200 nm) with integrated amplifier. 

2. Results and Discussion
Figure 1 show that the low temperature PL spectrum of GaAs has a 
sharp emission peak at 1.516 eV [24,25]. When depositing Ga2O3/
GaAs, we observe that the emission energy at 1.43eV red shifted 
by 80meV compared to GaAs dominate the GaAs PL emission 
peak. This shift may be a consequence of the excess of carbon 
concentration since the deposition was done by MOCVD [26].

 
Figure 1: Room Temperature PL Spectrum for Ga2O3/GaAs. 

 

To confirm the nature of this heterostructure, PL measurements are performed at 10K and 

under different excitation power densities on Ga2O3/GaAs (see Figure 2). 

 

 

Figure 2: Shows the Low Temperature Photoluminescence PL Spectra of Ga2O3 Grown on 

GaAs 

Figure 1: Room Temperature PL Spectrum for Ga2O3/GaAs.

To confirm the nature of this heterostructure, PL measurements are performed at 10K and under different excitation power densities on 
Ga2O3/GaAs (see Figure 2).
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Indeed, as the excitation power increases, the intensity increas-
es as well as the full width at half maximum. Moreover, a small 
blue energy shift is observed in the 10 - 100 mW excitation power 
range. From this power study, we can see that this heterostructure 
is of type I [27]. In order to clarify the PL transition medium, the 

analysis of PL intensity as a function of the excitation density is 
performed. A power law fitting allowed determining the nature of 
this transition as shown in Figure 3. This law is given by the fol-
lowing expression:
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Where IPL is the PL intensity, P𝒆𝒆𝒙𝒙 is the excitation power, and n is the dimensionless exponent 

which can take the following forms [27]. 

 n   1: Recombination from the free state to the bound state or from the bound state to 

another bound state. 

 n = 1: Band to band recombination. 

 0< n< 1: Excitonic recombination. 

 

 

Figure 3: PL Intensity as a Functions of Exciter Power for Ga2O3/Gagas Heterostructure 

Where IPL is the PL intensity, P𝒆𝒙 is the excitation power, and n is the dimensionless exponent which can take the following forms [27].
• n ≤ 1: Recombination from the free state to the bound state or from the bound state to another bound state.
• n = 1: Band to band recombination.
• 0< n< 1: Excitonic recombination.
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In our structure n= 0, 7: the type of recombination is a transition 
from the donor state to the acceptor state (D-A), which has already 
been proven by the work of R. Fornari in which the excitation is 
done by cathodoluminescence with an energy varying between 5 
and 30 KeV [21].
Figure 4 shows the different spectra of the Ga2O3/GaAs sample by 

varying the temperature from 10 to 300 k. An increase in PL inten-
sity and width at half maximum is detected in the range of 10 to 60 
K. For T<60 K, a drop in PL intensity while increase in LWHM is 
marked this and justified by the PL intensity ratioI                 which 

shows that this reflects a strongly present non-radiative character 
due to defects and impurities.
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In order to confirm and validate the presence of the localization 
phenomenon, we studied the variation of the energy position of 
the photoluminescence peak as a function of the temperature of 

the Ga2O3/GaAs epilayers (see Figure 5). These spectra could be 
adjusted by the empirical law proposed by Varshni using Equation 
(1) [28,29].

  (T) =   (0) –                                     (1) 

 

Where    (0) is the energy of the gap at T=0 K, α is an empirical parameter related to the joint 

density of states and β an effective temperature. By fitting the experimental results with  

Equation (1), we have deduced the different values of α and β shown in Table. 

 

 
Figure 5: The Evolution of PL Energy as a Function of Temperature 

 

Sample Name α (ev/K) 10-4 β(K) Eg(0) (eV) 

Ga2O3/GaAs 6,159 125 1,46 

BGaAs/GaAs 5,969 168 1,343 

Table: Varshni parameter of Ga2O3/GaAs and BGaAs grown at 670 oC and 580 oC for Boron 

Composition Xb = 1.5%, Respectively 
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70 K the emission energy increases, but a decrease is observed between 70 and 100 K. This 

shape is a signature of the localization phenomenon, which can be related to localized states 
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Table: Varshni parameter of Ga2O3/GaAs and BGaAs grown at 670 oC and 580 oC for Boron Composition Xb = 1.5%, Respec-
tively

At low temperature, Varshni's law does not correspond to the ex-
periment given for the Ga2O3/GaAs epilayer. It exhibits an anom-
alous behavior, the so-called S-shape. From 10 to 70 K the emis-
sion energy increases, but a decrease is observed between 70 and 
100 K. This shape is a signature of the localization phenomenon, 
which can be related to localized states in the Ga2O3 layer. At high 
temperature, no distinction can be observed between the expected 
Varshnienergy band gap and the PL energy peak because the car-
riers are thermally delocalized and one joins the evolution guided 
by band-to-band recombination; this behavior can be attributed to 

the emission of GaAs.

After studying the Ga2O3/GaAs reference structure, we now pro-
ceed to the characterization of the Ga2O3/BGaAs/GaAs hetero-
structure to compare the effect of boron and gallium oxide on 
GaAs. To compare the optical properties of BGaAs/GaAs layer 
sand Ga2O3/BGaAs/GaAs heterostructures, we first demonstrate 
low-temperature photoluminescence spectra. For the BGaAs/GaAs 
layer (Figure 6a), PL emission from GaAs substrates is dominated 
by the carbon impurity transition (e-CAs) and its phonon-optical 
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replica (LO) [30]. In addition, an asymmetric PL band named (HE) 
centered at 1.334 eV with a half-value width of 89 meV has been 
reported. This emission band is associated with exciton recombi-
nation of BGaAs [13]. When the gallium oxide layer is deposited 
on BGaAs/GaAs, a broad peak centered around 1.20 eV with a 
full width at half maximum of 185 meV is observed (see Figure 
6b). Thus, we notice that after the deposition a broader emission 

peak is observed with an increase in the full width at half maxi-
mum. Figure 7 shows PL spectra at different powers of the BGaAs/
GaAs structure and of the Ga2O3/BGaAs/GaAs heterostructure 
performed at low temperature and with an excitation wavelength 
equal to 514.5 nm (Xb=1.5%). For both structures, we observe that 
when we increase the excitation power, the PL intensity increases 
with increasing full width at half maximum.

Varshnienergy band gap and the PL energy peak because the carriers are thermally 

delocalized and one joins the evolution guided by band-to-band recombination; this behavior 

can be attributed to the emission of GaAs. 
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Figure 6: PL Spectra at 10K: of the BGaAs/GaAs Layer (A) and of the Ga2O3/BGaAs/GaAs 

Heterostructure (B). 

 

From Figure 7a, we observe a broadening of the PL peak of BGaAs. This is due to the gradual 

filling of the energy levels introduced by boron in the GaAs gap. Moreover, Figure 7b shows 

that the broad luminescent band is shifted towards the low energy. Indeed, this important shift 

towards high wavelengths is related to the gradual filling of energy levels introduced by the 

Ga2O3 oxide deposited on the BGaAs layer. 
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From Figure 7a, we observe a broadening of the PL peak of BGaAs. 
This is due to the gradual filling of the energy levels introduced by 
boron in the GaAs gap. Moreover, Figure 7b shows that the broad 
luminescent band is shifted towards the low energy. Indeed, this 

important shift towards high wavelengths is related to the gradual 
filling of energy levels introduced by the Ga2O3 oxide deposited on 
the BGaAs layer.
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Figure 7: PL Spectra at Different Excitation Powers: of the BGaAs/GaAs Structure (A) and 
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In the same framework, the evolution of the PL intensity as a function of the exciter power is 

shown for the Ga2O3/BGaAs/GaAs heterostructure (see Figure 8). A power law fitting has 

allowed us to determine the coefficient n which proves that the transition is of donor-acceptor 

type since n<1 (n=0.5). This n is comparable with the one found by Roberto and his 

collaborators [20]. 
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In the same framework, the evolution of the PL intensity as a func-
tion of the exciter power is shown for the Ga2O3/BGaAs/GaAs het-
erostructure (see Figure 8). A power law fitting has allowed us to 

determine the coefficient n which proves that the transition is of 
donor-acceptor type since n<1 (n=0.5). This n is comparable with 
the one found by Roberto and his collaborators [20].
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For the Ga2O3/BGaAs/GaAs heterostructure, the peak is very broad and we could not follow 

the evolution of energy, intensity and full width at half maximum as a function of 

temperature. Whereas for the BGaAs/GaAs epilayer, Figure 10 shows the temperature 

dependence of the PL band energy which gives a good fit according to Varshni's laws 

(Equation (1)). We have a good correlation between the results of the experiment and the 

Varshni adjustment. Moreover, the difference ΔE (10 K) between the measured PL peak 

energies and the expected transition energies at 10 K (obtained by simulating the measured 

temperature dependence of the PL peak positions by the well-known Varshni relation) are 
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For the Ga2O3/BGaAs/GaAs heterostructure, the peak is very broad 
and we could not follow the evolution of energy, intensity and full 
width at half maximum as a function of temperature. Whereas for 
the BGaAs/GaAs epilayer, Figure 10 shows the temperature de-
pendence of the PL band energy which gives a good fit according 
to Varshni's laws (Equation (1)). We have a good correlation be-
tween the results of the experiment and the Varshni adjustment. 
Moreover, the difference ΔE (10 K) between the measured PL peak 
energies and the expected transition energies at 10 K (obtained by 
simulating the measured temperature dependence of the PL peak 

positions by the well-known Varshni relation) are suggested to be 
related to Stokes shifts, is about 5 meV, may be due to the recom-
bination of photogenerated carriers trapped by localized states in 
BGaAs [23,30]. Indeed, it exhibits anomalous behavior, the so-
called S-shape between 10 and 90 K. This shape is the result of 
carriers jumping between localized states created by boron clusters 
[31]. At high temperature, the PL band is similar to the variation of 
the energy band gap. This indicates that the carriers acquire more 
thermal energy to reach the conduction band. They relax giving 
rise to band-to-band recombination [25-31].
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Figure 10: The Evolution of PL Energy as a Function of Temperature

3. Conclusion
In summary, the study of optical properties by steady-state photo-
luminescence of the active layer shows that there is an emission 
and red shift of about 1.2 eV after low temperature deposition of 
Ga2O3 on BGaAs/GaAs. However, performance studies highlight 
the dominance of the Ga2O3 layer in the emission process of the 
donor-acceptor transition. Boron segregates in the direction of the 
Ga2O3 layer, resulting in a reduction in boron content and a reduc-
tion in tensile stress, resulting in a reduction in the layer. The study 
of PL as a function of temperature on BGaAs/GaAs structures 
leads us to conclude that the observed luminescence is the origin 
of exciton recombination, which is associated with discrete states 
formed by the aggregation of boron atoms under band gap condi-
tions. The luminescence in the new Ga2O3/BGaAs/GaAs structure 
is governed by the localization of charge carriers in the energy 
fluctuation potential created by the inhomogeneous distribution of 
the VGa family.
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