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Abstract
Cytokines play a crucial role in regulating cell proliferation rates in cancer, influencing tumor growth and progression. This 
work employs dynamic modeling to explore how cytokine signals modulate proliferation rates over time in the context of 
cancer. By integrating scientific analysis with mathematical modeling, we elucidate the complex interactions between cytokine 
signaling pathways and tumor cell dynamics, offering insights into potential therapeutic strategies and prognostic indicators. 
This analysis of cell proliferation dynamics highlights clear differences between healthy and leukemic cell compartments 1 and 
2. Healthy cells show an initial phase of rapid exponential growth due to regulated division, which is crucial for maintaining 
tissue function. In leukemic cells exhibit delayed proliferation patterns. Understanding these distinctions is vital for designing 
precise therapies that can effectively target leukemia while minimizing harm to healthy tissues. This understanding drives the 
development of personalized treatment approaches aimed at enhancing outcomes in cancer care. Ongoing interdisciplinary 
collaboration is crucial to translating these insights into practical clinical applications that can improve patient outcomes and 
advance the field of cancer treatment.

Journal of Mathematical Techniques and Computational Mathematics 
ISSN: 2834-7706

Keywords: Cytokines, Cancer, Proliferation Rates, Mathematical Modeling, Dynamic Systems, Tumor Microenvironment, Therapeutic 
Strategies

1. Introduction
Cancer, a complex and heterogeneous group of diseases, is defined 
by uncontrolled cell proliferation resulting from genetic mutations 
and disrupted signaling pathways within cells. These alterations 
allow cancer cells to evade normal growth constraints and promote 
tumor development. However, the progression of cancer is not 
solely governed by intrinsic genetic changes; rather, the tumor 
microenvironment plays a critical role in supporting and sustaining 
malignant growth figure (1). Central to the tumor microenvironment 
are cytokines, which serve as essential mediators of inflammation 
and immune responses [1-4]. These small proteins are secreted by 
various cell types, including immune cells, fibroblasts, and tumor 
cells themselves, and they exert profound influences on cancer 
progression. Cytokines can modulate diverse cellular processes 
within the tumor milieu, including proliferation, survival, 
angiogenesis, and metastasis. The temporal dynamics of cytokine-
dependent proliferation rates are pivotal for comprehending 

how cancer evolves and responds to therapeutic interventions. 
Cytokines act through specific receptors on cancer cells, triggering 
intracellular signaling cascades that alter gene expression patterns 
and cellular behaviors. For instance, cytokine signaling pathways 
can promote the proliferation of cancer cells by activating growth-
promoting signals and suppressing mechanisms that regulate cell 
cycle progression or induce cell death (apoptosis) [5-7]. Moreover, 
cytokines contribute to the establishment of an immunosuppressive 
and pro-inflammatory microenvironment that fosters tumor growth 
and metastasis. They facilitate interactions between cancer cells and 
immune cells, promoting immune evasion and resistance to anti-
tumor immune responses. Additionally, cytokines can influence 
the formation of new blood vessels (angiogenesis) within tumors, 
which is crucial for supplying nutrients and oxygen to support 
tumor growth and dissemination. Understanding these dynamic 
interactions between cytokines and cancer cells is essential for 
developing targeted therapies. By deciphering the temporal 
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patterns of cytokine activity and their impact on tumor progression 
mechanisms, researchers can identify novel therapeutic targets 
and strategies aimed at disrupting cytokine signaling pathways [8-
11]. This approach holds promise for enhancing the efficacy of 
existing treatments and developing personalized therapies tailored 
to the unique cytokine profiles of individual tumors. Elucidating 
the temporal dynamics of cytokine-dependent proliferation rates 

in cancer is crucial for advancing our understanding of tumor 
biology and improving clinical outcomes. By integrating insights 
into cytokine-mediated signaling with sophisticated mathematical 
models and experimental data, researchers can pave the way for 
more effective therapeutic interventions that target the complex 
interplay between cytokines and cancer cells [12- 15]. 

therapies. By deciphering the temporal patterns of cytokine activity and their impact on tumor 
progression mechanisms, researchers can identify novel therapeutic targets and strategies 
aimed at disrupting cytokine signaling pathways [6,14,27,51]. This approach holds promise 
for enhancing the efficacy of existing treatments and developing personalized therapies 
tailored to the unique cytokine profiles of individual tumors. Elucidating the temporal 
dynamics of cytokine-dependent proliferation rates in cancer is crucial for advancing our 
understanding of tumor biology and improving clinical outcomes. By integrating insights into 
cytokine-mediated signaling with sophisticated mathematical models and experimental data, 
researchers can pave the way for more effective therapeutic interventions that target the 
complex interplay between cytokines and cancer cells [13,28,35,50].  

 
Figure (1): Development of the different blood cells from haematopoietic stem cell to mature 

cells 

Cytokines play a critical role in cancer by exerting their effects on cancer cells through 
specific receptors, initiating intricate signaling cascades that profoundly influence various 
cellular processes essential for tumor development and progression. These signaling 
pathways, crucial for normal cellular homeostasis, are often dysregulated in cancer, 
contributing to abnormal cytokine production and altered cellular responses [1,13,21,39]. Key 
cytokines implicated in cancer progression include tumor necrosis factor-alpha (TNF-α), 
interleukins (IL-6, IL-8), and transforming growth factor-beta (TGF-β), among others. Each 
of these cytokines operates through distinct receptor-mediated mechanisms, triggering 
signaling events that impact critical aspects of cancer biology. TNF-α is a potent pro-
inflammatory cytokine produced primarily by activated macrophages and other immune cells. 
In cancer, TNF-α can promote tumor growth by enhancing cancer cell survival, inducing 
angiogenesis (formation of new blood vessels to support tumor growth), and facilitating 
metastasis [5,20,37,46]. Additionally, TNF-α contributes to the recruitment and activation of 
inflammatory cells within the tumor microenvironment, fostering a pro-tumorigenic milieu. 
IL-6 is a multifunctional cytokine involved in immune responses, inflammation, and 
hematopoiesis. In cancer, IL-6 can act as both a pro-inflammatory and anti-inflammatory 
mediator, depending on the context. It promotes cancer cell proliferation, survival, and 
migration, and it contributes to the suppression of anti-tumor immune responses. Elevated IL-
6 levels are associated with poor prognosis in various cancers due to its role in driving tumor 

Figure 1: Development of the different Blood Cells from Haematopoietic Stem Cell to Mature Cells

Cytokines play a critical role in cancer by exerting their effects 
on cancer cells through specific receptors, initiating intricate 
signaling cascades that profoundly influence various cellular 
processes essential for tumor development and progression. These 
signaling pathways, crucial for normal cellular homeostasis, 
are often dysregulated in cancer, contributing to abnormal 
cytokine production and altered cellular responses [12,16-18]. 
Key cytokines implicated in cancer progression include tumor 
necrosis factor-alpha (TNF-α), interleukins (IL-6, IL-8), and 
transforming growth factor-beta (TGF-β), among others. Each 
of these cytokines operates through distinct receptor-mediated 
mechanisms, triggering signaling events that impact critical 
aspects of cancer biology. TNF-α is a potent pro-inflammatory 
cytokine produced primarily by activated macrophages and 
other immune cells. In cancer, TNF-α can promote tumor 
growth by enhancing cancer cell survival, inducing angiogenesis 
(formation of new blood vessels to support tumor growth), and 
facilitating metastasis [19-22]. Additionally, TNF-α contributes 
to the recruitment and activation of inflammatory cells within 
the tumor microenvironment, fostering a pro-tumorigenic 
milieu. IL-6 is a multifunctional cytokine involved in immune 
responses, inflammation, and hematopoiesis. In cancer, IL-6 can 
act as both a pro-inflammatory and anti-inflammatory mediator, 
depending on the context. It promotes cancer cell proliferation, 
survival, and migration, and it contributes to the suppression of 
anti-tumor immune responses. Elevated IL-6 levels are associated 

with poor prognosis in various cancers due to its role in driving 
tumor progression and therapy resistance. IL-8 is a chemokine 
that plays a crucial role in inflammation and immune response. In 
cancer, IL-8 promotes tumor growth by stimulating angiogenesis 
and enhancing cancer cell proliferation and survival. It also 
contributes to the recruitment of immune cells and supports the 
establishment of a protumorigenic microenvironment. High levels 
of IL-8 are associated with aggressive tumor behavior and poor 
clinical outcomes in several types of cancer. TGF-β is a pleiotropic 
cytokine that regulates various cellular processes, including 
proliferation, differentiation, apoptosis, and immune responses 
[23-27]. In cancer, TGF-β has dual roles depending on the tumor 
stage and context. It can act as a tumor suppressor by inhibiting 
cell proliferation and promoting apoptosis in early-stage tumors. 
However, in advanced cancers, TGF-β often promotes tumor 
progression by enhancing epithelial-to-mesenchymal transition 
(EMT), facilitating invasion and metastasis, and suppressing anti-
tumor immune responses [28-31]. The roles of these cytokines in 
promoting or inhibiting tumor growth are intricately linked to the 
specific characteristics of the tumor microenvironment, including 
cellular interactions, immune cell infiltrates, and the presence of 
stromal cells. Dysregulation of cytokine signaling pathways can 
lead to sustained pro-tumorigenic signals within the tumor milieu, 
promoting tumor survival, progression, and therapy resistance. 
Understanding the complex interactions between cytokines and 
cancer cells is crucial for developing targeted therapies aimed at 
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disrupting aberrant cytokine signaling and restoring normal cellular 
homeostasis [32-35]. Therapeutic strategies targeting cytokine 
receptors or downstream signaling molecules hold promise for 
improving treatment outcomes and overcoming therapeutic 
resistance in cancer patients. Moreover, ongoing research into the 
molecular mechanisms of cytokine action in cancer continues to 
uncover novel therapeutic targets and biomarkers for predicting 
patient responses to cytokine-targeted therapies.

2. Formulation of the Problem
The following mathematical model developed by [28] describes 
the dynamics of hematopoietic and leukemic cells in acute myeloid 
leukaemia based on three primary parameters, self-renewal rate                  
                proliferation rate                 and death rate                [13,14,36]. 
The mathematical model (Eq. 1-6) is based on understanding of the 
haematopoiesis process such that stages of cell differentiation are 
assumed to be compartments (ordered sequence of differentiation). 
The time-dependent ordinary differential equations were developed 
to describe the cell densities (or populations) of hematopoietic and 
leukemic cells  Hematopoietic cell line:  

progression and therapy resistance. IL-8 is a chemokine that plays a crucial role in 
inflammation and immune response. In cancer, IL-8 promotes tumor growth by stimulating 
angiogenesis and enhancing cancer cell proliferation and survival. It also contributes to the 
recruitment of immune cells and supports the establishment of a protumorigenic 
microenvironment. High levels of IL-8 are associated with aggressive tumor behavior and 
poor clinical outcomes in several types of cancer. TGF-β is a pleiotropic cytokine that 
regulates various cellular processes, including proliferation, differentiation, apoptosis, and 
immune responses [3,8,24,31,42]. In cancer, TGF-β has dual roles depending on the tumor 
stage and context. It can act as a tumor suppressor by inhibiting cell proliferation and 
promoting apoptosis in early-stage tumors. However, in advanced cancers, TGF-β often 
promotes tumor progression by enhancing epithelial-to-mesenchymal transition (EMT), 
facilitating invasion and metastasis, and suppressing anti-tumor immune responses 
[7,25,35,47]. The roles of these cytokines in promoting or inhibiting tumor growth are 
intricately linked to the specific characteristics of the tumor microenvironment, including 
cellular interactions, immune cell infiltrates, and the presence of stromal cells. Dysregulation 
of cytokine signaling pathways can lead to sustained pro-tumorigenic signals within the 
tumor milieu, promoting tumor survival, progression, and therapy resistance. Understanding 
the complex interactions between cytokines and cancer cells is crucial for developing targeted 
therapies aimed at disrupting aberrant cytokine signaling and restoring normal cellular 
homeostasis [2,15,26,30]. Therapeutic strategies targeting cytokine receptors or downstream 
signaling molecules hold promise for improving treatment outcomes and overcoming 
therapeutic resistance in cancer patients. Moreover, ongoing research into the molecular 
mechanisms of cytokine action in cancer continues to uncover novel therapeutic targets and 
biomarkers for predicting patient responses to cytokine-targeted therapies. 

Formulation of the Problem: The following mathematical model developed by [28] 
describes the dynamics of hematopoietic and leukemic cells in acute myeloid leukaemia 
based on three primary parameters, self-renewal rate (𝑎𝑎𝑖𝑖𝑐𝑐, 𝑎𝑎𝑖𝑖𝑙𝑙), proliferation rate (𝑝𝑝𝑖𝑖𝑐𝑐, 𝑝𝑝𝑖𝑖𝑙𝑙), and 
death rate (𝑑𝑑𝑖𝑖𝑐𝑐, 𝑑𝑑𝑖𝑖𝑙𝑙) [16,33]. The mathematical model (Eq. 1-6) is based on understanding of 
the haematopoiesis process such that stages of cell differentiation are assumed to be 
compartments (ordered sequence of differentiation). The time-dependent ordinary differential 
equations were developed to describe the cell densities (or populations) of hematopoietic and 
leukemic cells   
Hematopoietic cell line:   

𝑑𝑑𝑐𝑐1
𝑑𝑑𝑑𝑑 = (2𝑎𝑎1,𝑚𝑚𝑚𝑚𝑚𝑚

𝑐𝑐 𝑠𝑠(𝑑𝑑) − 1)𝑝𝑝1𝑐𝑐𝑐𝑐1(𝑑𝑑) − 𝑑𝑑1𝑐𝑐𝑐𝑐1(𝑑𝑑)#(1)  
𝑑𝑑𝑐𝑐𝑖𝑖
𝑑𝑑𝑑𝑑 = 2 (1 − 𝑎𝑎𝑖𝑖−1,𝑚𝑚𝑚𝑚𝑚𝑚

𝑐𝑐 𝑠𝑠(𝑑𝑑)) 𝑝𝑝𝑖𝑖−1𝑐𝑐 𝑐𝑐𝑖𝑖−1(𝑑𝑑) + (2𝑎𝑎𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚
𝑐𝑐 𝑠𝑠(𝑑𝑑) − 1)𝑝𝑝𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖(𝑑𝑑) − 𝑑𝑑𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖(𝑑𝑑)#(2)  

𝑑𝑑𝑐𝑐𝑛𝑛
𝑑𝑑𝑑𝑑 = 2 (1 − 𝑎𝑎𝑛𝑛−1,𝑚𝑚𝑚𝑚𝑚𝑚

𝑐𝑐 𝑠𝑠(𝑑𝑑)) 𝑝𝑝𝑛𝑛−1𝑐𝑐 𝑐𝑐𝑛𝑛−1(𝑑𝑑) − 𝑑𝑑𝑛𝑛𝑐𝑐𝑐𝑐𝑛𝑛(𝑑𝑑)#(3)  

Leukemic cell line: 
𝑑𝑑𝑙𝑙1
𝑑𝑑𝑑𝑑 = (2𝑎𝑎1,𝑚𝑚𝑚𝑚𝑚𝑚

𝑙𝑙 𝑠𝑠(𝑑𝑑) − 1)𝑝𝑝1𝑙𝑙 𝑙𝑙1(𝑑𝑑) − 𝑑𝑑1𝑙𝑙 𝑙𝑙1(𝑑𝑑)#(4)  
𝑑𝑑𝑙𝑙𝑖𝑖
𝑑𝑑𝑑𝑑 = 2 (1 − 𝑎𝑎𝑖𝑖−1,𝑚𝑚𝑚𝑚𝑚𝑚

𝑙𝑙 𝑠𝑠(𝑑𝑑)) 𝑝𝑝𝑖𝑖−1𝑙𝑙 𝑙𝑙𝑖𝑖−1(𝑑𝑑) + (2𝑎𝑎𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚
𝑙𝑙 𝑠𝑠(𝑑𝑑) − 1)𝑝𝑝𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖(𝑑𝑑) − 𝑑𝑑𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖(𝑑𝑑)#(5)  

𝑑𝑑𝑙𝑙𝑚𝑚
𝑑𝑑𝑑𝑑 = 2 (1 − 𝑎𝑎𝑚𝑚−1,𝑚𝑚𝑚𝑚𝑚𝑚

𝑙𝑙 𝑠𝑠(𝑑𝑑)) 𝑝𝑝𝑚𝑚−1
𝑙𝑙 𝑙𝑙𝑚𝑚−1(𝑑𝑑) − 𝑑𝑑𝑚𝑚𝑙𝑙 𝑙𝑙𝑚𝑚(𝑑𝑑)#(6)  

The number of compartments is denoted by 𝑛𝑛. In the hematopoietic cell line, the first 
compartment denotes the hematopoietic stem cell population, while the 𝑛𝑛𝑡𝑡ℎ compartment 
denotes the post mitotic mature population [29,43]. 

progression and therapy resistance. IL-8 is a chemokine that plays a crucial role in 
inflammation and immune response. In cancer, IL-8 promotes tumor growth by stimulating 
angiogenesis and enhancing cancer cell proliferation and survival. It also contributes to the 
recruitment of immune cells and supports the establishment of a protumorigenic 
microenvironment. High levels of IL-8 are associated with aggressive tumor behavior and 
poor clinical outcomes in several types of cancer. TGF-β is a pleiotropic cytokine that 
regulates various cellular processes, including proliferation, differentiation, apoptosis, and 
immune responses [3,8,24,31,42]. In cancer, TGF-β has dual roles depending on the tumor 
stage and context. It can act as a tumor suppressor by inhibiting cell proliferation and 
promoting apoptosis in early-stage tumors. However, in advanced cancers, TGF-β often 
promotes tumor progression by enhancing epithelial-to-mesenchymal transition (EMT), 
facilitating invasion and metastasis, and suppressing anti-tumor immune responses 
[7,25,35,47]. The roles of these cytokines in promoting or inhibiting tumor growth are 
intricately linked to the specific characteristics of the tumor microenvironment, including 
cellular interactions, immune cell infiltrates, and the presence of stromal cells. Dysregulation 
of cytokine signaling pathways can lead to sustained pro-tumorigenic signals within the 
tumor milieu, promoting tumor survival, progression, and therapy resistance. Understanding 
the complex interactions between cytokines and cancer cells is crucial for developing targeted 
therapies aimed at disrupting aberrant cytokine signaling and restoring normal cellular 
homeostasis [2,15,26,30]. Therapeutic strategies targeting cytokine receptors or downstream 
signaling molecules hold promise for improving treatment outcomes and overcoming 
therapeutic resistance in cancer patients. Moreover, ongoing research into the molecular 
mechanisms of cytokine action in cancer continues to uncover novel therapeutic targets and 
biomarkers for predicting patient responses to cytokine-targeted therapies. 

Formulation of the Problem: The following mathematical model developed by [28] 
describes the dynamics of hematopoietic and leukemic cells in acute myeloid leukaemia 
based on three primary parameters, self-renewal rate (𝑎𝑎𝑖𝑖𝑐𝑐, 𝑎𝑎𝑖𝑖𝑙𝑙), proliferation rate (𝑝𝑝𝑖𝑖𝑐𝑐, 𝑝𝑝𝑖𝑖𝑙𝑙), and 
death rate (𝑑𝑑𝑖𝑖𝑐𝑐, 𝑑𝑑𝑖𝑖𝑙𝑙) [16,33]. The mathematical model (Eq. 1-6) is based on understanding of 
the haematopoiesis process such that stages of cell differentiation are assumed to be 
compartments (ordered sequence of differentiation). The time-dependent ordinary differential 
equations were developed to describe the cell densities (or populations) of hematopoietic and 
leukemic cells   
Hematopoietic cell line:   

𝑑𝑑𝑐𝑐1
𝑑𝑑𝑑𝑑 = (2𝑎𝑎1,𝑚𝑚𝑚𝑚𝑚𝑚

𝑐𝑐 𝑠𝑠(𝑑𝑑) − 1)𝑝𝑝1𝑐𝑐𝑐𝑐1(𝑑𝑑) − 𝑑𝑑1𝑐𝑐𝑐𝑐1(𝑑𝑑)#(1)  
𝑑𝑑𝑐𝑐𝑖𝑖
𝑑𝑑𝑑𝑑 = 2 (1 − 𝑎𝑎𝑖𝑖−1,𝑚𝑚𝑚𝑚𝑚𝑚

𝑐𝑐 𝑠𝑠(𝑑𝑑)) 𝑝𝑝𝑖𝑖−1𝑐𝑐 𝑐𝑐𝑖𝑖−1(𝑑𝑑) + (2𝑎𝑎𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚
𝑐𝑐 𝑠𝑠(𝑑𝑑) − 1)𝑝𝑝𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖(𝑑𝑑) − 𝑑𝑑𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖(𝑑𝑑)#(2)  

𝑑𝑑𝑐𝑐𝑛𝑛
𝑑𝑑𝑑𝑑 = 2 (1 − 𝑎𝑎𝑛𝑛−1,𝑚𝑚𝑚𝑚𝑚𝑚

𝑐𝑐 𝑠𝑠(𝑑𝑑)) 𝑝𝑝𝑛𝑛−1𝑐𝑐 𝑐𝑐𝑛𝑛−1(𝑑𝑑) − 𝑑𝑑𝑛𝑛𝑐𝑐𝑐𝑐𝑛𝑛(𝑑𝑑)#(3)  

Leukemic cell line: 
𝑑𝑑𝑙𝑙1
𝑑𝑑𝑑𝑑 = (2𝑎𝑎1,𝑚𝑚𝑚𝑚𝑚𝑚

𝑙𝑙 𝑠𝑠(𝑑𝑑) − 1)𝑝𝑝1𝑙𝑙 𝑙𝑙1(𝑑𝑑) − 𝑑𝑑1𝑙𝑙 𝑙𝑙1(𝑑𝑑)#(4)  
𝑑𝑑𝑙𝑙𝑖𝑖
𝑑𝑑𝑑𝑑 = 2 (1 − 𝑎𝑎𝑖𝑖−1,𝑚𝑚𝑚𝑚𝑚𝑚

𝑙𝑙 𝑠𝑠(𝑑𝑑)) 𝑝𝑝𝑖𝑖−1𝑙𝑙 𝑙𝑙𝑖𝑖−1(𝑑𝑑) + (2𝑎𝑎𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚
𝑙𝑙 𝑠𝑠(𝑑𝑑) − 1)𝑝𝑝𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖(𝑑𝑑) − 𝑑𝑑𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖(𝑑𝑑)#(5)  

𝑑𝑑𝑙𝑙𝑚𝑚
𝑑𝑑𝑑𝑑 = 2 (1 − 𝑎𝑎𝑚𝑚−1,𝑚𝑚𝑚𝑚𝑚𝑚

𝑙𝑙 𝑠𝑠(𝑑𝑑)) 𝑝𝑝𝑚𝑚−1
𝑙𝑙 𝑙𝑙𝑚𝑚−1(𝑑𝑑) − 𝑑𝑑𝑚𝑚𝑙𝑙 𝑙𝑙𝑚𝑚(𝑑𝑑)#(6)  

The number of compartments is denoted by 𝑛𝑛. In the hematopoietic cell line, the first 
compartment denotes the hematopoietic stem cell population, while the 𝑛𝑛𝑡𝑡ℎ compartment 
denotes the post mitotic mature population [29,43]. 

Leukemic cell line:

progression and therapy resistance. IL-8 is a chemokine that plays a crucial role in 
inflammation and immune response. In cancer, IL-8 promotes tumor growth by stimulating 
angiogenesis and enhancing cancer cell proliferation and survival. It also contributes to the 
recruitment of immune cells and supports the establishment of a protumorigenic 
microenvironment. High levels of IL-8 are associated with aggressive tumor behavior and 
poor clinical outcomes in several types of cancer. TGF-β is a pleiotropic cytokine that 
regulates various cellular processes, including proliferation, differentiation, apoptosis, and 
immune responses [3,8,24,31,42]. In cancer, TGF-β has dual roles depending on the tumor 
stage and context. It can act as a tumor suppressor by inhibiting cell proliferation and 
promoting apoptosis in early-stage tumors. However, in advanced cancers, TGF-β often 
promotes tumor progression by enhancing epithelial-to-mesenchymal transition (EMT), 
facilitating invasion and metastasis, and suppressing anti-tumor immune responses 
[7,25,35,47]. The roles of these cytokines in promoting or inhibiting tumor growth are 
intricately linked to the specific characteristics of the tumor microenvironment, including 
cellular interactions, immune cell infiltrates, and the presence of stromal cells. Dysregulation 
of cytokine signaling pathways can lead to sustained pro-tumorigenic signals within the 
tumor milieu, promoting tumor survival, progression, and therapy resistance. Understanding 
the complex interactions between cytokines and cancer cells is crucial for developing targeted 
therapies aimed at disrupting aberrant cytokine signaling and restoring normal cellular 
homeostasis [2,15,26,30]. Therapeutic strategies targeting cytokine receptors or downstream 
signaling molecules hold promise for improving treatment outcomes and overcoming 
therapeutic resistance in cancer patients. Moreover, ongoing research into the molecular 
mechanisms of cytokine action in cancer continues to uncover novel therapeutic targets and 
biomarkers for predicting patient responses to cytokine-targeted therapies. 

Formulation of the Problem: The following mathematical model developed by [28] 
describes the dynamics of hematopoietic and leukemic cells in acute myeloid leukaemia 
based on three primary parameters, self-renewal rate (𝑎𝑎𝑖𝑖𝑐𝑐, 𝑎𝑎𝑖𝑖𝑙𝑙), proliferation rate (𝑝𝑝𝑖𝑖𝑐𝑐, 𝑝𝑝𝑖𝑖𝑙𝑙), and 
death rate (𝑑𝑑𝑖𝑖𝑐𝑐, 𝑑𝑑𝑖𝑖𝑙𝑙) [16,33]. The mathematical model (Eq. 1-6) is based on understanding of 
the haematopoiesis process such that stages of cell differentiation are assumed to be 
compartments (ordered sequence of differentiation). The time-dependent ordinary differential 
equations were developed to describe the cell densities (or populations) of hematopoietic and 
leukemic cells   
Hematopoietic cell line:   

𝑑𝑑𝑐𝑐1
𝑑𝑑𝑑𝑑 = (2𝑎𝑎1,𝑚𝑚𝑚𝑚𝑚𝑚

𝑐𝑐 𝑠𝑠(𝑑𝑑) − 1)𝑝𝑝1𝑐𝑐𝑐𝑐1(𝑑𝑑) − 𝑑𝑑1𝑐𝑐𝑐𝑐1(𝑑𝑑)#(1)  
𝑑𝑑𝑐𝑐𝑖𝑖
𝑑𝑑𝑑𝑑 = 2 (1 − 𝑎𝑎𝑖𝑖−1,𝑚𝑚𝑚𝑚𝑚𝑚

𝑐𝑐 𝑠𝑠(𝑑𝑑)) 𝑝𝑝𝑖𝑖−1𝑐𝑐 𝑐𝑐𝑖𝑖−1(𝑑𝑑) + (2𝑎𝑎𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚
𝑐𝑐 𝑠𝑠(𝑑𝑑) − 1)𝑝𝑝𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖(𝑑𝑑) − 𝑑𝑑𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖(𝑑𝑑)#(2)  

𝑑𝑑𝑐𝑐𝑛𝑛
𝑑𝑑𝑑𝑑 = 2 (1 − 𝑎𝑎𝑛𝑛−1,𝑚𝑚𝑚𝑚𝑚𝑚

𝑐𝑐 𝑠𝑠(𝑑𝑑)) 𝑝𝑝𝑛𝑛−1𝑐𝑐 𝑐𝑐𝑛𝑛−1(𝑑𝑑) − 𝑑𝑑𝑛𝑛𝑐𝑐𝑐𝑐𝑛𝑛(𝑑𝑑)#(3)  

Leukemic cell line: 
𝑑𝑑𝑙𝑙1
𝑑𝑑𝑑𝑑 = (2𝑎𝑎1,𝑚𝑚𝑚𝑚𝑚𝑚

𝑙𝑙 𝑠𝑠(𝑑𝑑) − 1)𝑝𝑝1𝑙𝑙 𝑙𝑙1(𝑑𝑑) − 𝑑𝑑1𝑙𝑙 𝑙𝑙1(𝑑𝑑)#(4)  
𝑑𝑑𝑙𝑙𝑖𝑖
𝑑𝑑𝑑𝑑 = 2 (1 − 𝑎𝑎𝑖𝑖−1,𝑚𝑚𝑚𝑚𝑚𝑚

𝑙𝑙 𝑠𝑠(𝑑𝑑)) 𝑝𝑝𝑖𝑖−1𝑙𝑙 𝑙𝑙𝑖𝑖−1(𝑑𝑑) + (2𝑎𝑎𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚
𝑙𝑙 𝑠𝑠(𝑑𝑑) − 1)𝑝𝑝𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖(𝑑𝑑) − 𝑑𝑑𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖(𝑑𝑑)#(5)  

𝑑𝑑𝑙𝑙𝑚𝑚
𝑑𝑑𝑑𝑑 = 2 (1 − 𝑎𝑎𝑚𝑚−1,𝑚𝑚𝑚𝑚𝑚𝑚

𝑙𝑙 𝑠𝑠(𝑑𝑑)) 𝑝𝑝𝑚𝑚−1
𝑙𝑙 𝑙𝑙𝑚𝑚−1(𝑑𝑑) − 𝑑𝑑𝑚𝑚𝑙𝑙 𝑙𝑙𝑚𝑚(𝑑𝑑)#(6)  

The number of compartments is denoted by 𝑛𝑛. In the hematopoietic cell line, the first 
compartment denotes the hematopoietic stem cell population, while the 𝑛𝑛𝑡𝑡ℎ compartment 
denotes the post mitotic mature population [29,43]. 

progression and therapy resistance. IL-8 is a chemokine that plays a crucial role in 
inflammation and immune response. In cancer, IL-8 promotes tumor growth by stimulating 
angiogenesis and enhancing cancer cell proliferation and survival. It also contributes to the 
recruitment of immune cells and supports the establishment of a protumorigenic 
microenvironment. High levels of IL-8 are associated with aggressive tumor behavior and 
poor clinical outcomes in several types of cancer. TGF-β is a pleiotropic cytokine that 
regulates various cellular processes, including proliferation, differentiation, apoptosis, and 
immune responses [3,8,24,31,42]. In cancer, TGF-β has dual roles depending on the tumor 
stage and context. It can act as a tumor suppressor by inhibiting cell proliferation and 
promoting apoptosis in early-stage tumors. However, in advanced cancers, TGF-β often 
promotes tumor progression by enhancing epithelial-to-mesenchymal transition (EMT), 
facilitating invasion and metastasis, and suppressing anti-tumor immune responses 
[7,25,35,47]. The roles of these cytokines in promoting or inhibiting tumor growth are 
intricately linked to the specific characteristics of the tumor microenvironment, including 
cellular interactions, immune cell infiltrates, and the presence of stromal cells. Dysregulation 
of cytokine signaling pathways can lead to sustained pro-tumorigenic signals within the 
tumor milieu, promoting tumor survival, progression, and therapy resistance. Understanding 
the complex interactions between cytokines and cancer cells is crucial for developing targeted 
therapies aimed at disrupting aberrant cytokine signaling and restoring normal cellular 
homeostasis [2,15,26,30]. Therapeutic strategies targeting cytokine receptors or downstream 
signaling molecules hold promise for improving treatment outcomes and overcoming 
therapeutic resistance in cancer patients. Moreover, ongoing research into the molecular 
mechanisms of cytokine action in cancer continues to uncover novel therapeutic targets and 
biomarkers for predicting patient responses to cytokine-targeted therapies. 

Formulation of the Problem: The following mathematical model developed by [28] 
describes the dynamics of hematopoietic and leukemic cells in acute myeloid leukaemia 
based on three primary parameters, self-renewal rate (𝑎𝑎𝑖𝑖𝑐𝑐, 𝑎𝑎𝑖𝑖𝑙𝑙), proliferation rate (𝑝𝑝𝑖𝑖𝑐𝑐, 𝑝𝑝𝑖𝑖𝑙𝑙), and 
death rate (𝑑𝑑𝑖𝑖𝑐𝑐, 𝑑𝑑𝑖𝑖𝑙𝑙) [16,33]. The mathematical model (Eq. 1-6) is based on understanding of 
the haematopoiesis process such that stages of cell differentiation are assumed to be 
compartments (ordered sequence of differentiation). The time-dependent ordinary differential 
equations were developed to describe the cell densities (or populations) of hematopoietic and 
leukemic cells   
Hematopoietic cell line:   

𝑑𝑑𝑐𝑐1
𝑑𝑑𝑑𝑑 = (2𝑎𝑎1,𝑚𝑚𝑚𝑚𝑚𝑚

𝑐𝑐 𝑠𝑠(𝑑𝑑) − 1)𝑝𝑝1𝑐𝑐𝑐𝑐1(𝑑𝑑) − 𝑑𝑑1𝑐𝑐𝑐𝑐1(𝑑𝑑)#(1)  
𝑑𝑑𝑐𝑐𝑖𝑖
𝑑𝑑𝑑𝑑 = 2 (1 − 𝑎𝑎𝑖𝑖−1,𝑚𝑚𝑚𝑚𝑚𝑚

𝑐𝑐 𝑠𝑠(𝑑𝑑)) 𝑝𝑝𝑖𝑖−1𝑐𝑐 𝑐𝑐𝑖𝑖−1(𝑑𝑑) + (2𝑎𝑎𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚
𝑐𝑐 𝑠𝑠(𝑑𝑑) − 1)𝑝𝑝𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖(𝑑𝑑) − 𝑑𝑑𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖(𝑑𝑑)#(2)  

𝑑𝑑𝑐𝑐𝑛𝑛
𝑑𝑑𝑑𝑑 = 2 (1 − 𝑎𝑎𝑛𝑛−1,𝑚𝑚𝑚𝑚𝑚𝑚

𝑐𝑐 𝑠𝑠(𝑑𝑑)) 𝑝𝑝𝑛𝑛−1𝑐𝑐 𝑐𝑐𝑛𝑛−1(𝑑𝑑) − 𝑑𝑑𝑛𝑛𝑐𝑐𝑐𝑐𝑛𝑛(𝑑𝑑)#(3)  

Leukemic cell line: 
𝑑𝑑𝑙𝑙1
𝑑𝑑𝑑𝑑 = (2𝑎𝑎1,𝑚𝑚𝑚𝑚𝑚𝑚

𝑙𝑙 𝑠𝑠(𝑑𝑑) − 1)𝑝𝑝1𝑙𝑙 𝑙𝑙1(𝑑𝑑) − 𝑑𝑑1𝑙𝑙 𝑙𝑙1(𝑑𝑑)#(4)  
𝑑𝑑𝑙𝑙𝑖𝑖
𝑑𝑑𝑑𝑑 = 2 (1 − 𝑎𝑎𝑖𝑖−1,𝑚𝑚𝑚𝑚𝑚𝑚

𝑙𝑙 𝑠𝑠(𝑑𝑑)) 𝑝𝑝𝑖𝑖−1𝑙𝑙 𝑙𝑙𝑖𝑖−1(𝑑𝑑) + (2𝑎𝑎𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚
𝑙𝑙 𝑠𝑠(𝑑𝑑) − 1)𝑝𝑝𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖(𝑑𝑑) − 𝑑𝑑𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖(𝑑𝑑)#(5)  

𝑑𝑑𝑙𝑙𝑚𝑚
𝑑𝑑𝑑𝑑 = 2 (1 − 𝑎𝑎𝑚𝑚−1,𝑚𝑚𝑚𝑚𝑚𝑚

𝑙𝑙 𝑠𝑠(𝑑𝑑)) 𝑝𝑝𝑚𝑚−1
𝑙𝑙 𝑙𝑙𝑚𝑚−1(𝑑𝑑) − 𝑑𝑑𝑚𝑚𝑙𝑙 𝑙𝑙𝑚𝑚(𝑑𝑑)#(6)  

The number of compartments is denoted by 𝑛𝑛. In the hematopoietic cell line, the first 
compartment denotes the hematopoietic stem cell population, while the 𝑛𝑛𝑡𝑡ℎ compartment 
denotes the post mitotic mature population [29,43]. 

progression and therapy resistance. IL-8 is a chemokine that plays a crucial role in 
inflammation and immune response. In cancer, IL-8 promotes tumor growth by stimulating 
angiogenesis and enhancing cancer cell proliferation and survival. It also contributes to the 
recruitment of immune cells and supports the establishment of a protumorigenic 
microenvironment. High levels of IL-8 are associated with aggressive tumor behavior and 
poor clinical outcomes in several types of cancer. TGF-β is a pleiotropic cytokine that 
regulates various cellular processes, including proliferation, differentiation, apoptosis, and 
immune responses [3,8,24,31,42]. In cancer, TGF-β has dual roles depending on the tumor 
stage and context. It can act as a tumor suppressor by inhibiting cell proliferation and 
promoting apoptosis in early-stage tumors. However, in advanced cancers, TGF-β often 
promotes tumor progression by enhancing epithelial-to-mesenchymal transition (EMT), 
facilitating invasion and metastasis, and suppressing anti-tumor immune responses 
[7,25,35,47]. The roles of these cytokines in promoting or inhibiting tumor growth are 
intricately linked to the specific characteristics of the tumor microenvironment, including 
cellular interactions, immune cell infiltrates, and the presence of stromal cells. Dysregulation 
of cytokine signaling pathways can lead to sustained pro-tumorigenic signals within the 
tumor milieu, promoting tumor survival, progression, and therapy resistance. Understanding 
the complex interactions between cytokines and cancer cells is crucial for developing targeted 
therapies aimed at disrupting aberrant cytokine signaling and restoring normal cellular 
homeostasis [2,15,26,30]. Therapeutic strategies targeting cytokine receptors or downstream 
signaling molecules hold promise for improving treatment outcomes and overcoming 
therapeutic resistance in cancer patients. Moreover, ongoing research into the molecular 
mechanisms of cytokine action in cancer continues to uncover novel therapeutic targets and 
biomarkers for predicting patient responses to cytokine-targeted therapies. 

Formulation of the Problem: The following mathematical model developed by [28] 
describes the dynamics of hematopoietic and leukemic cells in acute myeloid leukaemia 
based on three primary parameters, self-renewal rate (𝑎𝑎𝑖𝑖𝑐𝑐, 𝑎𝑎𝑖𝑖𝑙𝑙), proliferation rate (𝑝𝑝𝑖𝑖𝑐𝑐, 𝑝𝑝𝑖𝑖𝑙𝑙), and 
death rate (𝑑𝑑𝑖𝑖𝑐𝑐, 𝑑𝑑𝑖𝑖𝑙𝑙) [16,33]. The mathematical model (Eq. 1-6) is based on understanding of 
the haematopoiesis process such that stages of cell differentiation are assumed to be 
compartments (ordered sequence of differentiation). The time-dependent ordinary differential 
equations were developed to describe the cell densities (or populations) of hematopoietic and 
leukemic cells   
Hematopoietic cell line:   

𝑑𝑑𝑐𝑐1
𝑑𝑑𝑑𝑑 = (2𝑎𝑎1,𝑚𝑚𝑚𝑚𝑚𝑚

𝑐𝑐 𝑠𝑠(𝑑𝑑) − 1)𝑝𝑝1𝑐𝑐𝑐𝑐1(𝑑𝑑) − 𝑑𝑑1𝑐𝑐𝑐𝑐1(𝑑𝑑)#(1)  
𝑑𝑑𝑐𝑐𝑖𝑖
𝑑𝑑𝑑𝑑 = 2 (1 − 𝑎𝑎𝑖𝑖−1,𝑚𝑚𝑚𝑚𝑚𝑚

𝑐𝑐 𝑠𝑠(𝑑𝑑)) 𝑝𝑝𝑖𝑖−1𝑐𝑐 𝑐𝑐𝑖𝑖−1(𝑑𝑑) + (2𝑎𝑎𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚
𝑐𝑐 𝑠𝑠(𝑑𝑑) − 1)𝑝𝑝𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖(𝑑𝑑) − 𝑑𝑑𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖(𝑑𝑑)#(2)  

𝑑𝑑𝑐𝑐𝑛𝑛
𝑑𝑑𝑑𝑑 = 2 (1 − 𝑎𝑎𝑛𝑛−1,𝑚𝑚𝑚𝑚𝑚𝑚

𝑐𝑐 𝑠𝑠(𝑑𝑑)) 𝑝𝑝𝑛𝑛−1𝑐𝑐 𝑐𝑐𝑛𝑛−1(𝑑𝑑) − 𝑑𝑑𝑛𝑛𝑐𝑐𝑐𝑐𝑛𝑛(𝑑𝑑)#(3)  

Leukemic cell line: 
𝑑𝑑𝑙𝑙1
𝑑𝑑𝑑𝑑 = (2𝑎𝑎1,𝑚𝑚𝑚𝑚𝑚𝑚

𝑙𝑙 𝑠𝑠(𝑑𝑑) − 1)𝑝𝑝1𝑙𝑙 𝑙𝑙1(𝑑𝑑) − 𝑑𝑑1𝑙𝑙 𝑙𝑙1(𝑑𝑑)#(4)  
𝑑𝑑𝑙𝑙𝑖𝑖
𝑑𝑑𝑑𝑑 = 2 (1 − 𝑎𝑎𝑖𝑖−1,𝑚𝑚𝑚𝑚𝑚𝑚

𝑙𝑙 𝑠𝑠(𝑑𝑑)) 𝑝𝑝𝑖𝑖−1𝑙𝑙 𝑙𝑙𝑖𝑖−1(𝑑𝑑) + (2𝑎𝑎𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚
𝑙𝑙 𝑠𝑠(𝑑𝑑) − 1)𝑝𝑝𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖(𝑑𝑑) − 𝑑𝑑𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖(𝑑𝑑)#(5)  

𝑑𝑑𝑙𝑙𝑚𝑚
𝑑𝑑𝑑𝑑 = 2 (1 − 𝑎𝑎𝑚𝑚−1,𝑚𝑚𝑚𝑚𝑚𝑚

𝑙𝑙 𝑠𝑠(𝑑𝑑)) 𝑝𝑝𝑚𝑚−1
𝑙𝑙 𝑙𝑙𝑚𝑚−1(𝑑𝑑) − 𝑑𝑑𝑚𝑚𝑙𝑙 𝑙𝑙𝑚𝑚(𝑑𝑑)#(6)  

The number of compartments is denoted by 𝑛𝑛. In the hematopoietic cell line, the first 
compartment denotes the hematopoietic stem cell population, while the 𝑛𝑛𝑡𝑡ℎ compartment 
denotes the post mitotic mature population [29,43]. 

The number of compartments is denoted by n. In the hematopoietic 
cell line, the first compartment denotes the hematopoietic stem 
cell population, while the nth compartment denotes the post mitotic 
mature population [37-38].

The number of cell compartments in between 1 and n is denoted by 
i, where i ∈ [2,n-1]. Similarly, the first compartment in the leukemic 
cell line denotes the leukemic stem cell population, and the post 
mitotic mature blasts are denoted by mth compartment. The cell 
densities of the hematopoietic cell population in the compartment 
j at time t are denoted by cj (t)(j=1,2,....n), while lj (t)(j = 1,2,.... n) 
denotes the cell densities for the leukemic cell population [39-41].

The negative feedback signal of cytokines regulates the formation 
of blood cells. Cytokines are crucial external signalling molecules 

in stem cells that regulate the dynamics of cell differentiation 
and proliferation, but their precise nature is still unknown. 
When released, cytokines such as erythropoietin (EPO) in 
erythropoiesis and granulocyte colony stimulating factor (G-CSF) 
for granulopoiesis in hematopoietic stem cells and NF-B and 
phosphatidyl-inositide-3 kinase (PI3K) in leukemic stem cells 
regulate the growth of cells in the body [41,43].

The increase in the concentration of cytokines indicates that there 
is a need for more blood cells of a certain type, which stimulates 
the formation of mature cells. It is also assumed that their densities 
depend majorly on postmitotic cell densities, and leukemic and 
hematopoietic cells respond to the same cytokines and complete 
for them. In the following model, cytokine is denoted by s(t) and 
given by:

The number of cell compartments in between 1 and 𝑛𝑛 is denoted by 𝑖𝑖, where 𝑖𝑖 ∈ [2, 𝑛𝑛 − 1]. 
Similarly, the first compartment in the leukemic cell line denotes the leukemic stem cell 
population, and the post mitotic mature blasts are denoted by 𝑚𝑚𝑡𝑡ℎ compartment. The cell 
densities of the hematopoietic cell population in the compartment 𝑗𝑗 at time 𝑡𝑡 are denoted by 
𝑐𝑐𝑗𝑗(𝑡𝑡)(𝑗𝑗 = 1, 2, . . . . 𝑛𝑛), while 𝑙𝑙𝑗𝑗(𝑡𝑡)(𝑗𝑗 = 1, 2, . . . . 𝑛𝑛) denotes the cell densities for the leukemic 
cell population [40,45,54]. 
 
The negative feedback signal of cytokines regulates the formation of blood cells. Cytokines 
are crucial external signalling molecules in stem cells that regulate the dynamics of cell 
differentiation and proliferation, but their precise nature is still unknown. When released, 
cytokines such as erythropoietin (EPO) in erythropoiesis and granulocyte colony stimulating 
factor (G-CSF) for granulopoiesis in hematopoietic stem cells and NF-B and phosphatidyl-
inositide-3 kinase (PI3K) in leukemic stem cells regulate the growth of cells in the body 
[4,49]. 
The increase in the concentration of cytokines indicates that there is a need for more blood 
cells of a certain type, which stimulates the formation of mature cells. It is also assumed that 
their densities depend majorly on postmitotic cell densities, and leukemic and hematopoietic 
cells respond to the same cytokines and complete for them. In the following model, cytokine 
is denoted by s(t) and given by: 

𝑠𝑠(𝑡𝑡) = 1
1 + 𝑘𝑘𝑐𝑐𝑐𝑐𝑛𝑛(𝑡𝑡) + 𝑘𝑘𝑙𝑙𝑙𝑙𝑛𝑛(𝑡𝑡) ∈ (0, 1]#(7)  

where 𝑘𝑘𝑐𝑐 and 𝑘𝑘𝑙𝑙 are positive constants.   
 
Fractional ordered differential equation, in the recent times, has gained attention due to its 
ability to provide a better precision between the actual and simulated data as compared to the 
classical models. The fractional order derivative is advantageous due to its memory effect 
property, which indicates that the future state of the system depends on the current state as 
well as the past state [17,31]. Fractional Derivative Equations (FDE) is not a new concept; it 
was introduced back in 1695 by Gottfried Leibniz in a letter written to Guillaume de 
L’Hôpital. Over the years, mathematicians, namely Riemann-Liouville, Caputo, Jumarie, 
Hadamard, and Weyl, have introduced their own definitions of fractional order derivatives 
with some advantages and disadvantages, but the best known is the Riemann-Liouville 
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derivates, but failed to solve the differentiation of a constant value when replaced by 
Riemann–Liouville differential operator of order 𝛼𝛼. 

𝐷𝐷𝛼𝛼𝑐𝑐 =  𝑐𝑐
Γ(1 − 𝛼𝛼) 𝑡𝑡−𝛼𝛼 ≠ 0, c = constant #(9)  

While the Caputo definition for FDE is as follows.  

𝐷𝐷0+
𝛼𝛼 𝑓𝑓(𝑡𝑡) =  1

Γ(1 − 𝛼𝛼) ∫ 𝑓𝑓𝑛𝑛(𝑠𝑠)
(𝑡𝑡 − 𝑠𝑠)𝛼𝛼−𝑛𝑛+1 𝑑𝑑𝑠𝑠,

𝑡𝑡

0
    𝑛𝑛 = [𝛼𝛼] + 1, #(10)  

Following the Caputo type fractional derivative of order 𝛼𝛼, the modified model for stem cell 
growth of hematopoietic and leukemic cell lines is: 
Caputo-fractional based hematopoietic cell line: 

𝑑𝑑𝛼𝛼𝑐𝑐1
𝑑𝑑𝑡𝑡𝛼𝛼 = (2(𝑎𝑎1,𝑚𝑚𝑚𝑚𝑚𝑚

𝑐𝑐 )𝛼𝛼𝑠𝑠(𝑡𝑡) − 1)(𝑝𝑝1
𝑐𝑐)𝛼𝛼𝑐𝑐1(𝑡𝑡) − (𝑑𝑑1

𝑐𝑐)𝛼𝛼𝑐𝑐1(𝑡𝑡)#(11)  

where α ∈ R,[n - 1, n) and 0 < α < 1 for n ∈ Q, Γ is the gamma 
function, and [α] is the greatest integer value of α. Riemann–

Liouville satisfies the linear property of fractional derivates, but 
failed to solve the differentiation of a constant value when replaced 
by Riemann–Liouville differential operator of order α.

While the Caputo definition for FDE is as follows.

Following the Caputo type fractional derivative of order α, the modified model for stem cell growth of hematopoietic and leukemic cell 
lines is:
Caputo-fractional based hematopoietic cell line:

𝑑𝑑𝛼𝛼𝑐𝑐𝑖𝑖
𝑑𝑑𝑡𝑡𝛼𝛼 = 2 (1 − (𝑎𝑎𝑖𝑖−1,𝑚𝑚𝑚𝑚𝑚𝑚

𝑐𝑐 )𝛼𝛼𝑠𝑠(𝑡𝑡)) (𝑝𝑝𝑖𝑖−1
𝑐𝑐 )𝛼𝛼𝑐𝑐𝑖𝑖−1(𝑡𝑡) + (2(𝑎𝑎𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚

𝑐𝑐 )𝛼𝛼𝑠𝑠(𝑡𝑡) − 1)(𝑝𝑝𝑖𝑖
𝑐𝑐)𝛼𝛼𝑐𝑐𝑖𝑖(𝑡𝑡)

−(𝑑𝑑𝑖𝑖
𝑐𝑐)𝛼𝛼𝑐𝑐𝑖𝑖(𝑡𝑡) #(12)

 

𝑑𝑑𝛼𝛼𝑐𝑐𝑛𝑛
𝑑𝑑𝑡𝑡𝛼𝛼 = 2 (1 − (𝑎𝑎𝑛𝑛−1,𝑚𝑚𝑚𝑚𝑚𝑚

𝑐𝑐 )𝛼𝛼𝑠𝑠(𝑡𝑡)) (𝑝𝑝𝑛𝑛−1
𝑐𝑐 )𝛼𝛼𝑐𝑐𝑛𝑛−1(𝑡𝑡) − (𝑑𝑑𝑛𝑛

𝑐𝑐 )𝛼𝛼𝑐𝑐𝑛𝑛(𝑡𝑡)#(13)  

Caputo-fractional based leukemic cell line: 
𝑑𝑑𝛼𝛼𝑙𝑙1
𝑑𝑑𝑡𝑡𝛼𝛼 = (2(𝑎𝑎1,𝑚𝑚𝑚𝑚𝑚𝑚

𝑙𝑙 )𝛼𝛼𝑠𝑠(𝑡𝑡) − 1)(𝑝𝑝1
𝑙𝑙 )𝛼𝛼𝑙𝑙1(𝑡𝑡) − (𝑑𝑑1

𝑙𝑙 )𝛼𝛼𝑙𝑙1(𝑡𝑡)#(14)  

𝑑𝑑𝛼𝛼𝑙𝑙𝑖𝑖
𝑑𝑑𝑡𝑡𝛼𝛼 = 2 (1 − (𝑎𝑎𝑖𝑖−1,𝑚𝑚𝑚𝑚𝑚𝑚

𝑙𝑙 )𝛼𝛼𝑠𝑠(𝑡𝑡)) (𝑝𝑝𝑖𝑖−1
𝑙𝑙 )𝛼𝛼𝑙𝑙𝑖𝑖−1(𝑡𝑡) + (2(𝑎𝑎𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚

𝑙𝑙 )𝛼𝛼𝑠𝑠(𝑡𝑡) − 1)(𝑝𝑝𝑖𝑖
𝑙𝑙)𝛼𝛼𝑙𝑙𝑖𝑖(𝑡𝑡)

−(𝑑𝑑𝑖𝑖
𝑙𝑙)𝛼𝛼𝑙𝑙𝑖𝑖(𝑡𝑡)#(15)

 

𝑑𝑑𝛼𝛼𝑙𝑙𝑚𝑚
𝑑𝑑𝑡𝑡𝛼𝛼 = 2 (1 − (𝑎𝑎𝑚𝑚−1,𝑚𝑚𝑚𝑚𝑚𝑚

𝑐𝑐 )𝛼𝛼𝑠𝑠(𝑡𝑡)) (𝑝𝑝𝑚𝑚−1
𝑙𝑙 )𝛼𝛼𝑙𝑙𝑚𝑚−1(𝑡𝑡) − (𝑑𝑑𝑚𝑚

𝑙𝑙 )𝛼𝛼𝑙𝑙𝑚𝑚(𝑡𝑡)#(16)  

The above model is based on the simple dimensional analysis that both, left-hand and right-
hand sides have the same dimension of (time)−𝛼𝛼. To maintain the dimensionality, we 
introduced the order 𝛼𝛼 on the constants, viz., self-renewal rate, proliferation rate, and death 
rate, on the right-hand side, and changed the order of differentiation to 𝛼𝛼 on the left-hand 
side.  
Hematopoietic stem cells generate multiple lineages of post-mitotic mature cells through 
successive production of intermediate progenitors [10,41,50,54]. They undergo multiple 
cellular divisions, giving rise to myeloid and lymphoid progenitors. While lymphoid cells 
produce natural killer cells and lymphocytes (give rise to T & B lymphocytes), myeloid cells 
undergo further division to produce a variety of cells including erythrocytes, thrombocytes, 
and other myeloblast cells.  
 
Results and Discussion: Based on this cell differentiation, leukaemia can be myeloid and 
lymphoblastic. Therefore, we classify leukaemia into four categories, Acute Myeloid 
Leukaemia, Chronic Myeloid Leukaemia, Acute Lymphoblastic Leukaemia, and Chronic 
Lymphoblastic Leukaemia. Myeloid leukaemia is believed to be more organized than 
lymphoblastic leukaemia and are more common among adults. Acute myeloid leukaemia is 
widely studied as it is most common among adults with nearly 80% of all the cases. The 
mutation of the genes involved in haematopoiesis results in acute myeloid leukaemia, 
however, the exact cause of mutation is unknown [11,36]. It affects the bone marrow and the 
only treatment is chemotherapy followed by bone marrow transfusions. Another group of 
myeloid leukaemia is chronic myeloid leukaemia caused by unregulated signal transduction 
by tyrosine kinase, a type of cytokine signalling. Proliferation rate describes how quickly 
cells replicate and increase in number through mitotic division. Cells that proliferate rapidly 
will double their population more frequently compared to cells with a slower proliferation 
rate. Scientific analysis of cytokine-dependent proliferation rates in cancer reveals intricate 
mechanisms that drive tumor progression and therapeutic resistance. Studies have shown that 
cytokine-mediated pathways can enhance cancer cell proliferation by promoting cell cycle 
progression, inhibiting apoptosis, and stimulating angiogenesis [38,44]. Conversely, some 
cytokines may exert anti-tumor effects by activating immune responses or inducing tumor 
cell differentiation. Insights gained from dynamic modeling underscore the importance of 
targeting cytokine signaling pathways in cancer therapy. Strategies aimed at blocking 
cytokine receptors or inhibiting downstream signaling molecules have shown promise in 
preclinical and clinical studies, offering potential avenues for personalized treatment 
approaches based on cytokine profiles and tumor characteristics. The clinical implications of 
dynamic modeling in cancer research include the development of novel biomarkers for 

𝑑𝑑𝛼𝛼𝑐𝑐𝑖𝑖
𝑑𝑑𝑡𝑡𝛼𝛼 = 2 (1 − (𝑎𝑎𝑖𝑖−1,𝑚𝑚𝑚𝑚𝑚𝑚

𝑐𝑐 )𝛼𝛼𝑠𝑠(𝑡𝑡)) (𝑝𝑝𝑖𝑖−1
𝑐𝑐 )𝛼𝛼𝑐𝑐𝑖𝑖−1(𝑡𝑡) + (2(𝑎𝑎𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚

𝑐𝑐 )𝛼𝛼𝑠𝑠(𝑡𝑡) − 1)(𝑝𝑝𝑖𝑖
𝑐𝑐)𝛼𝛼𝑐𝑐𝑖𝑖(𝑡𝑡)

−(𝑑𝑑𝑖𝑖
𝑐𝑐)𝛼𝛼𝑐𝑐𝑖𝑖(𝑡𝑡) #(12)

 

𝑑𝑑𝛼𝛼𝑐𝑐𝑛𝑛
𝑑𝑑𝑡𝑡𝛼𝛼 = 2 (1 − (𝑎𝑎𝑛𝑛−1,𝑚𝑚𝑚𝑚𝑚𝑚

𝑐𝑐 )𝛼𝛼𝑠𝑠(𝑡𝑡)) (𝑝𝑝𝑛𝑛−1
𝑐𝑐 )𝛼𝛼𝑐𝑐𝑛𝑛−1(𝑡𝑡) − (𝑑𝑑𝑛𝑛

𝑐𝑐 )𝛼𝛼𝑐𝑐𝑛𝑛(𝑡𝑡)#(13)  

Caputo-fractional based leukemic cell line: 
𝑑𝑑𝛼𝛼𝑙𝑙1
𝑑𝑑𝑡𝑡𝛼𝛼 = (2(𝑎𝑎1,𝑚𝑚𝑚𝑚𝑚𝑚

𝑙𝑙 )𝛼𝛼𝑠𝑠(𝑡𝑡) − 1)(𝑝𝑝1
𝑙𝑙 )𝛼𝛼𝑙𝑙1(𝑡𝑡) − (𝑑𝑑1

𝑙𝑙 )𝛼𝛼𝑙𝑙1(𝑡𝑡)#(14)  

𝑑𝑑𝛼𝛼𝑙𝑙𝑖𝑖
𝑑𝑑𝑡𝑡𝛼𝛼 = 2 (1 − (𝑎𝑎𝑖𝑖−1,𝑚𝑚𝑚𝑚𝑚𝑚

𝑙𝑙 )𝛼𝛼𝑠𝑠(𝑡𝑡)) (𝑝𝑝𝑖𝑖−1
𝑙𝑙 )𝛼𝛼𝑙𝑙𝑖𝑖−1(𝑡𝑡) + (2(𝑎𝑎𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚

𝑙𝑙 )𝛼𝛼𝑠𝑠(𝑡𝑡) − 1)(𝑝𝑝𝑖𝑖
𝑙𝑙)𝛼𝛼𝑙𝑙𝑖𝑖(𝑡𝑡)

−(𝑑𝑑𝑖𝑖
𝑙𝑙)𝛼𝛼𝑙𝑙𝑖𝑖(𝑡𝑡)#(15)

 

𝑑𝑑𝛼𝛼𝑙𝑙𝑚𝑚
𝑑𝑑𝑡𝑡𝛼𝛼 = 2 (1 − (𝑎𝑎𝑚𝑚−1,𝑚𝑚𝑚𝑚𝑚𝑚

𝑐𝑐 )𝛼𝛼𝑠𝑠(𝑡𝑡)) (𝑝𝑝𝑚𝑚−1
𝑙𝑙 )𝛼𝛼𝑙𝑙𝑚𝑚−1(𝑡𝑡) − (𝑑𝑑𝑚𝑚

𝑙𝑙 )𝛼𝛼𝑙𝑙𝑚𝑚(𝑡𝑡)#(16)  

The above model is based on the simple dimensional analysis that both, left-hand and right-
hand sides have the same dimension of (time)−𝛼𝛼. To maintain the dimensionality, we 
introduced the order 𝛼𝛼 on the constants, viz., self-renewal rate, proliferation rate, and death 
rate, on the right-hand side, and changed the order of differentiation to 𝛼𝛼 on the left-hand 
side.  
Hematopoietic stem cells generate multiple lineages of post-mitotic mature cells through 
successive production of intermediate progenitors [10,41,50,54]. They undergo multiple 
cellular divisions, giving rise to myeloid and lymphoid progenitors. While lymphoid cells 
produce natural killer cells and lymphocytes (give rise to T & B lymphocytes), myeloid cells 
undergo further division to produce a variety of cells including erythrocytes, thrombocytes, 
and other myeloblast cells.  
 
Results and Discussion: Based on this cell differentiation, leukaemia can be myeloid and 
lymphoblastic. Therefore, we classify leukaemia into four categories, Acute Myeloid 
Leukaemia, Chronic Myeloid Leukaemia, Acute Lymphoblastic Leukaemia, and Chronic 
Lymphoblastic Leukaemia. Myeloid leukaemia is believed to be more organized than 
lymphoblastic leukaemia and are more common among adults. Acute myeloid leukaemia is 
widely studied as it is most common among adults with nearly 80% of all the cases. The 
mutation of the genes involved in haematopoiesis results in acute myeloid leukaemia, 
however, the exact cause of mutation is unknown [11,36]. It affects the bone marrow and the 
only treatment is chemotherapy followed by bone marrow transfusions. Another group of 
myeloid leukaemia is chronic myeloid leukaemia caused by unregulated signal transduction 
by tyrosine kinase, a type of cytokine signalling. Proliferation rate describes how quickly 
cells replicate and increase in number through mitotic division. Cells that proliferate rapidly 
will double their population more frequently compared to cells with a slower proliferation 
rate. Scientific analysis of cytokine-dependent proliferation rates in cancer reveals intricate 
mechanisms that drive tumor progression and therapeutic resistance. Studies have shown that 
cytokine-mediated pathways can enhance cancer cell proliferation by promoting cell cycle 
progression, inhibiting apoptosis, and stimulating angiogenesis [38,44]. Conversely, some 
cytokines may exert anti-tumor effects by activating immune responses or inducing tumor 
cell differentiation. Insights gained from dynamic modeling underscore the importance of 
targeting cytokine signaling pathways in cancer therapy. Strategies aimed at blocking 
cytokine receptors or inhibiting downstream signaling molecules have shown promise in 
preclinical and clinical studies, offering potential avenues for personalized treatment 
approaches based on cytokine profiles and tumor characteristics. The clinical implications of 
dynamic modeling in cancer research include the development of novel biomarkers for 

Caputo-fractional based leukemic cell line:

The above model is based on the simple dimensional analysis that 
both, left-hand and right-hand sides have the same dimension of 
(time)-α. To maintain the dimensionality, we introduced the order 
α on the constants, viz., self-renewal rate, proliferation rate, 
and death rate, on the right-hand side, and changed the order of 
differentiation to α on the left-hand side.

Hematopoietic stem cells generate multiple lineages of post-
mitotic mature cells through successive production of intermediate 
progenitors [15,41,45,46]. They undergo multiple cellular 
divisions, giving rise to myeloid and lymphoid progenitors. While 
lymphoid cells produce natural killer cells and lymphocytes (give 
rise to T & B lymphocytes), myeloid cells undergo further division 
to produce a variety of cells including erythrocytes, thrombocytes, 
and other myeloblast cells. 

3. Results and Discussion
Based on this cell differentiation, leukaemia can be myeloid 
and lymphoblastic. Therefore, we classify leukaemia into 
four categories, Acute Myeloid Leukaemia, Chronic Myeloid 
Leukaemia, Acute Lymphoblastic Leukaemia, and Chronic 
Lymphoblastic Leukaemia. Myeloid leukaemia is believed to 
be more organized than lymphoblastic leukaemia and are more 
common among adults. Acute myeloid leukaemia is widely 
studied as it is most common among adults with nearly 80% of all 
the cases. The mutation of the genes involved in haematopoiesis 
results in acute myeloid leukaemia, however, the exact cause of 
mutation is unknown [47,48]. It affects the bone marrow and 
the only treatment is chemotherapy followed by bone marrow 
transfusions. Another group of myeloid leukaemia is chronic 
myeloid leukaemia caused by unregulated signal transduction by 
tyrosine kinase, a type of cytokine signalling. Proliferation rate 
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describes how quickly cells replicate and increase in number 
through mitotic division. Cells that proliferate rapidly will double 
their population more frequently compared to cells with a slower 
proliferation rate. Scientific analysis of cytokine-dependent 
proliferation rates in cancer reveals intricate mechanisms that 
drive tumor progression and therapeutic resistance. Studies have 
shown that cytokine-mediated pathways can enhance cancer 
cell proliferation by promoting cell cycle progression, inhibiting 
apoptosis, and stimulating angiogenesis [49,50]. Conversely, some 
cytokines may exert anti-tumor effects by activating immune 
responses or inducing tumor cell differentiation. Insights gained 
from dynamic modeling underscore the importance of targeting 
cytokine signaling pathways in cancer therapy. Strategies aimed 
at blocking cytokine receptors or inhibiting downstream signaling 
molecules have shown promise in preclinical and clinical studies, 
offering potential avenues for personalized treatment approaches 

based on cytokine profiles and tumor characteristics. The clinical 
implications of dynamic modeling in cancer research include the 
development of novel biomarkers for predicting patient outcomes 
and guiding treatment decisions. By integrating multi-omics data 
with mathematical models, researchers can enhance the accuracy 
of predictive models and identify new therapeutic targets. Future 
research directions include refining mathematical models to 
incorporate spatial heterogeneity within tumors, exploring the 
dynamics of immune-cancer interactions, and evaluating the impact 
of cytokine-targeted therapies in patient cohorts. Signal intensity 
and proliferation rate over time in healthy cells is tightly regulated 
to maintain tissue homeostasis. Cells integrate signals from their 
environment to modulate proliferation rates appropriately, ensuring 
balanced growth and function within tissues. This dynamic process 
underscores the importance of understanding cellular responses to 
signals in both health and disease condition. 

predicting patient outcomes and guiding treatment decisions. By integrating multi-omics data 
with mathematical models, researchers can enhance the accuracy of predictive models and 
identify new therapeutic targets. Future research directions include refining mathematical 
models to incorporate spatial heterogeneity within tumors, exploring the dynamics of 
immune-cancer interactions, and evaluating the impact of cytokine-targeted therapies in 
patient cohorts. Signal intensity and proliferation rate over time in healthy cells is tightly 
regulated to maintain tissue homeostasis. Cells integrate signals from their environment to 
modulate proliferation rates appropriately, ensuring balanced growth and function within 
tissues. This dynamic process underscores the importance of understanding cellular responses 
to signals in both health and disease condition.  

 

Figure (2): Signal intensity dependency on proliferation rate with time for healthy cell 
compartment 1 
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Figure 2: Signal Intensity Dependency on Proliferation Rate with Time for Healthy Cell Compartment 1

Figure 3: Signal Intensity Dependency on Proliferation Rate with Time for Leukemic Cell Compartment 1
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The effect of signal intensity on proliferation rate can change over 
time. Initially, when cells receive a signal, they may respond by 
increasing their proliferation rate to meet physiological demands. 

For instance, during tissue repair or growth phases, cells may 
proliferate more rapidly in response to growth factors like insulin-
like growth factors (IGFs) or epidermal growth factor (EGF). 

Figure (3): Signal intensity dependency on proliferation rate with time for leukemic cell 
compartment 1 

The effect of signal intensity on proliferation rate can change over time. Initially, when cells 
receive a signal, they may respond by increasing their proliferation rate to meet physiological 
demands. For instance, during tissue repair or growth phases, cells may proliferate more 
rapidly in response to growth factors like insulin-like growth factors (IGFs) or epidermal 
growth factor (EGF). 

 

Figure (4): Signal intensity dependency on proliferation rate with time for healthy cell 
compartment 2 

 

Figure (3): Signal intensity dependency on proliferation rate with time for leukemic cell 
compartment 1 

The effect of signal intensity on proliferation rate can change over time. Initially, when cells 
receive a signal, they may respond by increasing their proliferation rate to meet physiological 
demands. For instance, during tissue repair or growth phases, cells may proliferate more 
rapidly in response to growth factors like insulin-like growth factors (IGFs) or epidermal 
growth factor (EGF). 

 

Figure (4): Signal intensity dependency on proliferation rate with time for healthy cell 
compartment 2 

 

Figure 4: Signal Intensity Dependency on Proliferation Rate with Time for Healthy Cell Compartment 2

Figure 5: Signal Intensity Dependency on Proliferation Rate with Time for Leukemic Cell Compartment 2

When considering the variation of proliferation for cell number 
with days in figure (2) we observed an initial population of cells 
expands over a period as a result of proliferation. The relationship 
between cell number and time typically follows an exponential 
growth curve, especially under favorable conditions where 
cells have ample resources and minimal constraints in healthy 
cell compartment 1 whereas in the leukemic cell compartment 
1 in figure (3) the process of cell growth got delayed. Cell 
proliferation dynamics depicted in figures (4) and (5), the healthy 
cell compartment 2 (Figure 3) demonstrates initial population 
expansion characterized by a noticeable increase in cell numbers 
over time. This proliferation is driven by cellular division, resulting 
in an exponential growth curve where each cycle contributes to a 
progressively larger cell population. Such growth dynamics are 
typical of healthy tissues, where cells proliferate at controlled rates 
to sustain tissue function and integrity under optimal conditions 
[51,52]. Conversely, the leukemic cell compartment 2(Figure 5) 

exhibits delayed cell growth compared to its healthy counterpart. 
This delay in cell proliferation reflects the dysregulated nature 
of leukemic cells, often stemming from genetic mutations or 
aberrant signaling pathways. The altered growth pattern observed 
in leukemic cells contrasts sharply with the exponential growth 
curve seen in healthy cells. Understanding these differences in 
proliferation dynamics is pivotal for devising targeted therapies 
that selectively address the unique vulnerabilities of leukemic 
cells while minimizing harm to healthy tissues. The proliferation 
behaviors between healthy and leukemic cell compartments1 
and 2 underscore the importance of discerning these dynamics 
for effective therapeutic interventions. Insights gained from such 
analyses not only deepen our understanding of disease mechanisms 
but also guide the development of personalized treatment strategies 
tailored to mitigate the specific challenges posed by leukemia 
[53,54].
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4. Conclusion
Understanding the differences in proliferation dynamics between 
healthy and leukemic cells is crucial for developing targeted 
therapies. Therapeutic strategies often aim to selectively target 
leukemic cells while sparing healthy tissues, leveraging these 
distinct proliferation characteristics. Dynamic modeling of 
cytokine-dependent proliferation rates provides valuable insights 
into the complex interplay between cytokine signaling networks 
and tumor cell dynamics in cancer. By combining scientific 
analysis with mathematical approaches, this work contributes to 
our understanding of cancer biology and informs the development 
of innovative therapies. In this analysis of cell proliferation 
dynamics results reveals distinct behaviors between healthy cell 
compartments and leukemic cell compartments. Healthy cells 
demonstrate initial exponential growth driven by controlled 
division, essential for tissue maintenance. In leukemic cells 
exhibit delayed proliferation. Understanding these differences is 
crucial for developing targeted therapies that effectively address 
leukemia's specific challenges while preserving healthy tissue 
integrity. This insight guides the development of personalized 
treatment strategies to improve oncological outcomes. Continued 
interdisciplinary efforts are essential to translating these insights 
into clinical applications that improve patient outcomes and 
advance cancer treatment strategies.
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