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Abstract
The concept of information was introduced in the middle of the last century by Shannon and since then an entire branch of 
research has been developing into what is called Mathematical Theory of Communication which deals with studying the amount 
of information exchanged in a communication channel. In this article we want to use the concept of information to analyze the 
Dynamic Frames developed by Barsalou in Cognitive Science.
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1. Introduction
Information is a concept whose meaning we have not recovered from ancient philosophy or Christian theology, but it is a purely modern 
concept; hence the difficulty in its definition and the multiple meanings that have been assigned to the concept. Shannon  for example, 
highlights this difficulty in the following way: “... It is hardly to be expected that a single concept of information would satisfactorily 
account for the numerous possible applications of this general fields.” [1].

Information is usually associated with something independent of the user, which has semantic content (has a meaning) and which is 
transmitted through multiple means (texts, websites, maps...). 

It is usually conceived in terms of “data + meaning” and Floridi gave a general definition by stating that σ – the basic unit of information 
(infon) – is an instance of semantic information if it consists of data that is correctly formatted and has meaning [15]. Information is 
therefore composed of data, but is not determined only by them; so what is their role? To better understand these aspects, let's consider 
the following simple example: let's examine a page of a book written in an unknown language and notice that we are in possession of 
some data without meaning; if we delete half the page, we will have half the amount of data but still no meaning; even if we leave just 
one symbol on the page, we still have data – a small amount – and always no meaning. In these three cases we are in possession of data 
that is not significant and therefore we have no information. If we now delete the last symbol and leave the page completely blank, we 
are in the presence of data (the empty page), but with a meaning (the page has no semantic content); the latter case provides us with some 
information even if it seems like we don't have any data available. Information is therefore not linked only to the presence of data, but is 
rather conceived as a lack of uniformity, as Bateson reminds us when he asserts “In fact, what we mean by information ... is a difference 
which makes a difference” [3].

1.1 Semantic Information
When it comes to the concept of information, we are usually dealing with the Statistical Theory of Information proposed by Shannon, 
but it – as its name states – has to do with the statistical properties of the information transmitted in a communication channel. Shannon's 
theory does not deal with the most significant aspect of the term information, namely its semantic content [2]. The first to address the 
problem from this point of view were Carnap and Bar-Hillel and since then the theory they developed has been called semantic theory 
of information1. In both theories information is defined in terms of a certain concept of probability:

where σ2 represents the probability of the infon and from it, it is possible to obtain the concept of entropy associated with information:
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developed has been called semantic theory of information1. In both theories information is defined in 
terms of a certain concept of probability: 

inf(𝜎𝜎) = − log(𝑝𝑝(𝜎𝜎)) 

where 𝑝𝑝(𝜎𝜎) represents the probability of the infon 𝜎𝜎2 and from it, it is possible to obtain the concept of 
entropy associated with information: 

H = −∑𝑝𝑝(σ)𝑖𝑖̇𝑛𝑛𝑛𝑛(σ)
σ

 

where the summation is done on each individual infon. Although the two theories use the same 
mathematical structure, the concept of probability on which they are based is different: in statistical 
theory – where we are interested in repeatable situations in the long term – a frequentist interpretation 
of probability is presupposed, while in semantic theory – in which we are interested in the different 
alternatives that are made available to us by language – we use a logical interpretation of probability3 
(Hintikka 1970). To assign probability to the different alternatives made available in a certain 
linguistic context it is necessary to identify some principle that facilitates us in this task; from a 
heuristic point of view, it can be stated that the more precise a proposition is, i.e. it eliminates any 
other possibilities, and the greater the information it conveys. This consideration is formalized in the 
Inverse Relationship Principle, which states that “the ammount of information associated with a 
proposition is inversely related to the probability of that proposition”. Based on this principle it is 
possible to define the content of information as: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(σ) = 1 − 𝑝𝑝(σ) 

which can be easily traced back to the amount of information (inf) introduced previously, with the 
equation: 

𝑖𝑖𝑖𝑖𝑖𝑖(σ) = log 1
1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(σ) 

Carnap and Bar-Hillel's semantic theory is based on the principle just described and is developed for 
monadic first-order logic. In this regard, consider a class of languages, each of which is made up of a 
finite series of monadic predicates (naming properties), which apply to an equally finite number of 
individual constants (naming individual) and which can be composed with the usual logical 
connectors. From a formal point of view, a language is defined as a set 𝐿𝐿𝑚𝑚𝑛𝑛 = (*𝑐𝑐1 … 𝑐𝑐𝑛𝑛+, *𝑃𝑃1 …𝑃𝑃𝑚𝑚+) 
made up of n individual constants 𝑐𝑐𝑖𝑖 and m predicates 𝑃𝑃𝑗𝑗. The propositions 𝑃𝑃𝑗𝑗𝑐𝑐𝑖𝑖 is an atomic sentence 
and indicates that the constant 𝑐𝑐𝑖𝑖 has the property 𝑃𝑃𝑗𝑗. It is possible to construct an arbitrary number of 
other propositions, based on the atomic ones and using logical connectors. Of particular importance 
are those combinations that involve the conjunction of predicates (negated or non-negated) applied to 
all individual constants in such a way that each constant appears only once in the proposition: such 

                                                 
1 The Carnap and Bar-Hillel Theory is defined by Floridi as Weak Semantic Theory of Information in contrast to 
the Strong Semantic Theory of Information proposed by Floridi himself. 
2 𝜎𝜎 represents an instance of information such as a symbol, a proposition or an event. 
3 Carnap reported the difference in two disjoint concepts of probability: propability1 for the statistical 
interpretation and probability2 for the logical interpretation (degree of confirmation: a quantitative concept 
representing the degree to which the assumption of the hypothesis h is supported by the evidence e.) 

 1The Carnap and Bar-Hillel Theory is defined by Floridi as Weak Semantic Theory of Information in contrast to the Strong Semantic Theory of 
Information proposed by Floridi himself.
 2σ represents an instance of information such as a symbol, a proposition or an event.
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where the summation is done on each individual infon. Although the two theories use the same mathematical structure, the concept of 
probability on which they are based is different: in statistical theory – where we are interested in repeatable situations in the long term – a 
frequentist interpretation of probability is presupposed, while in semantic theory – in which we are interested in the different alternatives 
that are made available to us by language – we use a logical interpretation of probability.3 [4]. To assign probability to the different 
alternatives made available in a certain linguistic context it is necessary to identify some principle that facilitates us in this task; from 
a heuristic point of view, it can be stated that the more precise a proposition is, i.e. it eliminates any other possibilities, and the greater 
the information it conveys. This consideration is formalized in the Inverse Relationship Principle, which states that “the amount of 
information associated with a proposition is inversely related to the probability of that proposition”. Based on this principle it is possible 
to define the content of information as:

[5]. To assign probability to the different alternatives made available in a certain linguistic context it is 

necessary to identify some principle that facilitates us in this task; from a heuristic point of view, it can 

be stated that the more precise a proposition is, i.e. it eliminates any other possibilities, and the greater 

the information it conveys. This consideration is formalized in the Inverse Relationship Principle, 

which states that “the amount of information associated with a proposition is inversely related to the 

probability of that proposition”. Based on this principle it is possible to define the content of 

information as: 

 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(σ) = 1 − 𝑝𝑝(σ) 
 

which can be easily traced back to the amount of information (inf) introduced previously, with the 

equation: 

𝑖𝑖𝑖𝑖𝑖𝑖(σ) = log 1
1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(σ) 

 

Carnap and Bar-Hillel's semantic theory is based on the principle just described and is developed for 

monadic first-order logic. In this regard, consider a class of languages, each of which is made up of a 

finite series of monadic predicates (naming properties), which apply to an equally finite number of 

individual constants (naming individual) and which can be composed with the usual logical 

connectors. From a formal point of view, a language is defined as a set 𝐿𝐿𝑚𝑚𝑛𝑛 = (*𝑐𝑐1 … 𝑐𝑐𝑛𝑛+, *𝑃𝑃1 …𝑃𝑃𝑚𝑚+) 
made up of n individual constants 𝑐𝑐𝑖𝑖 and m predicates 𝑃𝑃𝑗𝑗. The propositions 𝑃𝑃𝑗𝑗𝑐𝑐𝑖𝑖 is an atomic sentence 

and indicates that the constant 𝑐𝑐𝑖𝑖 has the property 𝑃𝑃𝑗𝑗. It is possible to construct an arbitrary number of 

other propositions, based on the atomic ones and using logical connectors. Of particular importance 

are those combinations that involve the conjunction of predicates (negated or non-negated) applied to 

all individual constants in such a way that each constant appears only once in the proposition: such 

propositions are called state-descriptions (they are usually represented with the letter 𝑤𝑤). The set of 

state descriptions constitutes the logical space and each state description represents a possible state of 

the world. On the logical space it is possible to define one or more probability measures  𝑚𝑚(−) 2 

which are associated with the corresponding confirmation function: 

 

c(σ, 𝑒𝑒) = 𝑚𝑚(σ ∧ 𝑒𝑒)
𝑚𝑚(𝑒𝑒)  
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which can be easily traced back to the amount of information (inf) introduced previously, with the equation:

Carnap and Bar-Hillel's semantic theory is based on the principle just described and is developed for monadic first-order logic. In this 
regard, consider a class of languages, each of which is made up of a finite series of monadic predicates (naming properties), which apply 
to an equally finite number of individual constants (naming individual) and which can be composed with the usual logical connectors. 
From a formal point of view, a language is defined as a set Lm

n = ({c1…cn }, {P1…Pm }) made up of n individual constants ci and m 
predicates Pj. The propositions Pj ci is an atomic sentence and indicates that the constant ci has the property Pj. It is possible to construct 
an arbitrary number of other propositions, based on the atomic ones and using logical connectors. Of particular importance are those 
combinations that involve the conjunction of predicates (negated or non-negated) applied to all individual constants in such a way that 
each constant appears only once in the proposition: such propositions are called state-descriptions (they are usually represented with the 
letter w). The set of state descriptions constitutes the logical space and each state description represents a possible state of the world. On 
the logical space it is possible to define one or more probability measures m(-)4 which are associated with the corresponding confirmation 
function:

where e represents the empirical evidence with respect to σ5 

To give a concrete example, let's examine a language made up of 3 individual constants and a single predicate, the formalization of 
which is  L1

3 = ({a,b,c},{F}): the logical space generated by this language is made up of 8 state descriptions and it is proposed in the 
following table:

where 𝑒𝑒 represents the empirical evidence with respect to  σ3.  

 

To give a concrete example, let's examine a language made up of 3 individual constants and a single 

predicate, the formalization of which is  𝐿𝐿1
3 = (*𝑎𝑎, b, c+, *𝐹𝐹+): the logical space generated by this 

language is made up of 8 state descriptions and it is proposed in the following table: 

       

State Propositions m cont inf State Propositions m cont inf 

𝑤𝑤1 𝐹𝐹𝐹𝐹 ∧ 𝐹𝐹𝐹𝐹 ∧ 𝐹𝐹𝐹𝐹 0.125 0.875 3.0 𝑤𝑤5 ¬𝐹𝐹𝐹𝐹 ∧ ¬𝐹𝐹𝐹𝐹 ∧ 𝐹𝐹𝐹𝐹 0.125 0.875 3.0 

𝑤𝑤2 ¬𝐹𝐹𝐹𝐹 ∧ 𝐹𝐹𝐹𝐹 ∧ 𝐹𝐹𝐹𝐹 0.125 0.875 3.0 𝑤𝑤6 ¬𝐹𝐹𝐹𝐹 ∧ 𝐹𝐹𝐹𝐹 ∧ ¬𝐹𝐹𝐹𝐹 0.125 0.875 3.0 

𝑤𝑤3 Fa ∧ ¬Fb ∧ Fc 0.125 0.875 3.0 𝑤𝑤7 𝐹𝐹𝐹𝐹 ∧ ¬𝐹𝐹𝐹𝐹 ∧ ¬𝐹𝐹𝐹𝐹 0.125 0.875 3.0 

𝑤𝑤4 Fa ∧ Fb ∧ ¬Fc 0.125 0.875 3.0 𝑤𝑤8 ¬𝐹𝐹𝐹𝐹 ∧ ¬𝐹𝐹𝐹𝐹 ∧ ¬𝐹𝐹𝐹𝐹 0.125 0.875 3.0 

 

Table 1: Example of a Language 𝐿𝐿1
3  

 

We can underline that each state is equiprobable –  𝑚𝑚(𝑤𝑤𝑖𝑖)  =  0.125 – and need 3 bits of information 

in order to be defined – 𝑖𝑖𝑖𝑖𝑖𝑖(𝑤𝑤𝑖𝑖)  =  3 𝑏𝑏𝑏𝑏𝑏𝑏. 

 

2. Dynamic Frame 

The concept of dynamic frame was introduced into cognitive psychology by and represents a cognitive 

structure in which conceptual and empirical information are represented in a precise and determined 

manner [6,7]. Dynamic frames have been used profitably in the Philosophy of Science to analyze 

scientific concepts and conceptual change but also in the history of science [8-11]. 

 

In short, a frame is an attribute-value matrix that has the task of representing how some characteristics 

(the values) are the instance of other properties (the attributes). The typical example used to illustrate 

what a dynamic frame consists of is the one associated with the concept of 'bird', the graphic 

representation of which is shown in Fig.1. The leftmost element is the concept bird which is called 

“superordinate concept”; in the central box there are the attributes {beak, foot} and the values 

associated with them. The last column of the diagram corresponds to “subordinate concepts” – or 
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following simple example: let's examine a page of a book written in an unknown language and notice 
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don't have any data available. Information is therefore not linked only to the presence of data, but is 

rather conceived as a lack of uniformity, as reminds us when he asserts “In fact, what we mean by 

information ... is a difference which makes a difference” [3]. 

 

1.1 Semantic Information 

When it comes to the concept of information, we are usually dealing with the Statistical Theory of 

Information proposed by Shannon, but it – as its name states – has to do with the statistical properties 

of the information transmitted in a communication channel. Shannon's theory does not deal with the 
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where 𝑝𝑝(𝜎𝜎) represents the probability of the infon 𝜎𝜎1 and from it, it is possible to obtain the concept of 

entropy associated with information: 
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where the summation is done on each individual infon. Although the two theories use the same 

mathematical structure, the concept of probability on which they are based is different: in statistical 

theory – where we are interested in repeatable situations in the long term – a frequentist interpretation 

of probability is presupposed, while in semantic theory – in which we are interested in the different 

alternatives that are made available to us by language – we use a logical interpretation of probability 
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3Carnap reported the difference in two disjoint concepts of probability: propability1 for the statistical interpretation and probability2 for the logical 
interpretation (degree of confirmation: a quantitative concept representing the degree to which the assumption of the hypothesis h is supported by the 
evidence e.)
4The choice of the probability measure is determined for example by the symmetric structures that are identified in the logical space (consider for 
example Carnap's m* function).
5From now on we will replace the generic infon σ with a proposition/hypothesis h linked to the linguistic context being considered.
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2. Dynamic Frame
The concept of dynamic frame was introduced into cognitive psychology by Barsalou and represents a cognitive structure in which 
conceptual and empirical information are represented in a precise and determined manner [5,6]. Dynamic frames have been used 
profitably in the Philosophy of Science to analyze scientific concepts [7] and conceptual change [8, 14] but also in the history of science 
[9,10].

In short, a frame is an attribute-value matrix that has the task of representing how some characteristics (the values) are the instance 
of other properties (the attributes). The typical example used to illustrate what a dynamic frame consists of is the one associated with 
the concept of 'bird', the graphic representation of which is shown in Fig.1. The leftmost element is the concept bird which is called 
“superordinate concept”; in the central box there are the attributes {beak, foot} and the values associated with them6. The last column 
of the diagram corresponds to “subordinate concepts” – or derived concepts which are a specialization of the main concept and activate 
only certain values7. The red arrow instead represents a constraint that exists between the 'beak' attribute and the 'foot' attribute. The 
constraints are links that intervene between attributes or between values and the most significant ones are the constraints that exist 
between values 8.

derived concepts which are a specialization of the main concept and activate only certain values4. The 

red arrow instead represents a constraint that exists between the 'beak' attribute and the 'foot' attribute. 

The constraints are links that intervene between attributes or between values and the most significant 

ones are the constraints that exist between values. 

 

In the following, we will only consider constraints between values. To better understand the nature of 

constraints, let us examine the contribution offered by, who proposed a probabilistic extension of 

frames in which the values assumed by the attributes and their constraints are associated with a 

probability distribution [12]. If we take the classic example of the concept of bird, we know that the 

structure of the foot (clawed, webbed) determines the different modes of locomotion (flying, 

swimming and walking); so for example a 'flying bird' typically has 'clawed feet'. These correlations 

(the constraints in Barsalou's terms) are described by conditional probabilities which are reported in 

the following summary table [13]. 

 

 

 

 

 

 

 

 

 

                                                 
 

 
 

Figure 1: Dynamic frame „bird' concept 
Figure 1: Dynamic Frame of 'Bird' Concept

In the following, we will only consider constraints between values. To better understand the nature of constraints, let us examine the 
contribution offered by Strößner, who proposed a probabilistic extension of frames in which the values assumed by the attributes and 
their constraints are associated with a probability distribution [11]. If we take the classic example of the concept of bird, we know that the 
structure of the foot (clawed, webbed) determines the different modes of locomotion (flying, swimming and walking); so for example a 
'flying bird' typically has 'clawed feet'. These correlations (the constraints in Barsalou's terms) are described by conditional probabilities 
which are reported in the following summary table [12].

 

 

 

 

 

 

 

 

  P(fly) P(swim) P(walk) 

  0.75 0.15 0.10 

  Joint probability distribution 

P(clawed) 0.80 0.72 0.00 0.08 

P(webbed) 0.20 0.03 0.15 0.02 

  Conditional probability 

P(… | clawed)  0.90 0.00 0.10 

P(… | webbed)  0.15 0.75 0.10 

 

Table 2: Probability Distribution of Bird Concept  

 

The second row shows the marginal probabilities of the values assumed by the 'Locomotion' attribute, 

while the second column shows the marginal probabilities associated with the values of the 'Foot' 

attribute. In the central part of the table, you have the joint probabilities of the various attributes; so for 

example we have that 𝑃𝑃(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑓𝑓𝑓𝑓𝑓𝑓) = 0.72. Finally, at the bottom of the table, you 

have the conditional probabilities based on the 'Foot' attribute; for example, 

𝑃𝑃(𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑓𝑓𝑓𝑓𝑓𝑓|𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) = 0.90. Note that 𝑃𝑃(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠|𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) = 0 represents a 'deterministic' 

constraint since a 'bird' is never observed that has swimming locomotion and 'clawed' legs. 

 

We can report the data of Table 2 in the following probabilistic dynamic frame: 

Table 2: Probability Distribution of Bird Concept

We can underline that each state is equiprobable –  m (wi )  = 0.125 – and need 3 bits of information in order to be defined – inf (wi )  = 
3 bit.
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6E.g. the beak attribute has the values {round, pointed}.
7E.g. subordinate concepts are “water bird” and “land bird”.
8E.g. in the case of the subordinate concept 'water bird' there is the constraint that the webbed feet (foot = WEBBED) always correspond to the rounded 
beaks (beak = ROUND).
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The second row shows the marginal probabilities of the values assumed by the 'Locomotion' attribute, while the second column shows 
the marginal probabilities associated with the values of the 'Foot' attribute. In the central part of the table, you have the joint probabilities 
of the various attributes; so for example we have that P(foot = clawed, loc = fly) = 0.72. Finally, at the bottom of the table, you have 
the conditional probabilities based on the 'Foot' attribute; for example, P(loc = fly│foot = clawed)=0.90. Note that P(swim│clawed)=0 
represents a 'deterministic' constraint since a 'bird' is never observed that has swimming locomotion and 'clawed' legs.

We can report the data of Table 2 in the following probabilistic dynamic frame:

Where a column on the right has been added to show the probability of each value and the constraint 

between the webbed and swimming values has been specified through a conditional probability. Note 

however that in this case the constraint is defined between the „Foot‟ attribute and the „Main 

locomotion‟ attribute as the conditional probability is specified for each value, as highlighted in Table 

2. 

 

But what is the effect of a constraint in these probabilistic frames? When the concept specializes, that 

is, when an attribute assumes a certain value belonging to a constraint, the probability of the 

constrained value is equal to the conditional probability; in our example we have 

 

foo  =   ebbed   ( ebbed) = 1  (  i  ing) =  (  i  ing| ebbed) = 0.75 

 

The constraint also modifies the probabilities of the other values according to a weighted formula. If 

we indicate with * 𝑖𝑖+ and * 𝑗𝑗+ the values assumed by the two attributes W and V and suppose that 

there is a constraint between  1and  1 represented by the conditional probability 𝑃𝑃( 1| 1) the 

probabilities of the values  𝑖𝑖 – with  𝑖𝑖   1 – are changed according to the following formula:  

  (  ) =  ( 𝑖𝑖)
1 − 𝑃𝑃( 1| 1)
1 − 𝑃𝑃( 1)

 

 

If we now consider the composite concept „foot-webbed-bird‟ that is obtained when the foot attribute 

takes the value webbed and the locomotion values are modified according to the previous formula, we 

have a new probabilistic dynamic frame: 

 
 

Figure 2: Probabilistic dynamic frame of „bird' concept 
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Figure 2: Probabilistic Dynamic Frame of 'Bird' Concept

Where a column on the right has been added to show the probability of each value and the constraint between the webbed and swimming 
values has been specified through a conditional probability. Note however that in this case the constraint is defined between the ‘Foot’ 
attribute and the ‘Main locomotion’ attribute as the conditional probability is specified for each value, as highlighted in Table 2.

But what is the effect of a constraint in these probabilistic frames? When the concept specializes, that is, when an attribute assumes a 
certain value belonging to a constraint, the probability of the constrained value is equal to the conditional probability; in our example 
we have

The constraint also modifies the probabilities of the other values according to a weighted formula. If we indicate with {Wi} and {Vj} the 
values assumed by the two attributes W and V and suppose that there is a constraint between V1 and W1 represented by the conditional 
probability P (W1│V1 ) the probabilities of the values Wi – with Wi ≠ W1 – are changed according to the following formula:

If we now consider the composite concept ‘foot-webbed-bird’ that is obtained when the foot attribute takes the value webbed and the 
locomotion values are modified according to the previous formula, we have a new probabilistic dynamic frame:
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where it is observed that the attribute foot has assumed the value 'webbed' (probability = 1) and the 

probability distribution linked to the attribute 'Main Locomotion' has changed according to the 

formula. 

The changes of the probability distribution of an attribute‟s values by a constraint, highlights that in 

the probabilistic approach the constraints are a global characteristic; this aspect is highlighted further if 

we observe that the link between two values   1and  1 is bidirectional as can be seen using Bayes' 

theorem: 

 

 ( 1| 1) =
 ( 1| 1)   ( 1)

𝑃𝑃( 1)
 

 

In our example we can calculate 𝑃𝑃(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) that have the value: 

 

 ( ebbed|  i  ing) = 𝑃𝑃
(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠|𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤)  𝑃𝑃(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤)

𝑃𝑃(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = 0.75  0.200.15 = 1.0 

 

which shows how the constraint on the foot structure imposes another constraint that determines how 

swimming birds have a webbed foot structure. We also have a derived constraint on „clawed-footed 

bird‟, because this subtype of bird does not use swimming as main locomotion; in formula we have: 

𝑃𝑃(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = 0 and so 𝑃𝑃(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠|𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) = 0. 

 

3. Semantic Information of a Dynamic Frame 

Dynamic frames are a structure that can be represented with a first-order formulas and therefore the 

question of associating a quantity of information to the frame arises spontaneously based on the 
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Figure 3: Probabilistic dynamic frame of ‘foot-webbed bird' concept

where it is observed that the attribute foot has assumed the value 'webbed' (probability = 1) and the probability distribution linked to the 
attribute 'Main Locomotion' has changed according to the formula.

The changes of the probability distribution of an attribute’s values by a constraint, highlights that in the probabilistic approach the 
constraints are a global characteristic; this aspect is highlighted further if we observe that the link between two values  V1 and W1 is 
bidirectional as can be seen using Bayes' theorem:

In our example we can calculate P (webbed│swimming) that have the value:

which shows how the constraint on the foot structure imposes another constraint that determines how swimming birds have a webbed 
foot structure. We also have a derived constraint on ‘clawed-footed bird’, because this subtype of bird does not use swimming as main 
locomotion; in formula we have:

3. Semantic Information of a Dynamic Frame
Dynamic frames are a structure that can be represented with a first-order formulas and therefore the question of associating a quantity 
of information to the frame arises spontaneously based on the semantic theory of Carnap and Bar-Hillel [13]. The starting point is to 
show how an attribute of a frame can be represented by a language composed of monadic predicates and individual constants. To do 
this, consider an attribute A = (a,{V1

a…Vm
a }) and note that it can be related to a language Lm

1 composed of a single individual constant 
a – the attribute itself – and by m predicates, corresponding to the possible values assumed by the attribute. If attribute a has the value 
V1 there is a proposition V1

aa. which describes its state. The state descriptions that can be obtained by combining the predicates and the 
single individual constant with the usual logical connectors are 2n.m = 2m. However, note that an attribute can take on one value at a time 
and this limits the number of state descriptions admissible to m; such states are called base-state description and are formally defined as:

semantic theory of Carnap and Bar-Hillel [14]. The starting point is to show how an attribute of a 

frame can be represented by a language composed of monadic predicates and individual constants. To 

do this, consider an attribute 𝐴𝐴 = (𝑎𝑎, * 1𝑎𝑎 … 𝑚𝑚𝑎𝑎+) and note that it can be related to a language 𝐿𝐿𝑚𝑚1  

composed of a single individual constant 𝑎𝑎 – the attribute itself – and by 𝑚𝑚 predicates, corresponding 

to the possible values assumed by the attribute. If attribute 𝑎𝑎 has the value  1 there is a proposition 

 1𝑎𝑎𝑎𝑎. which describes its state. The state descriptions that can be obtained by combining the predicates 

and the single individual constant with the usual logical connectors are 2𝑛𝑛 𝑚𝑚 = 2𝑚𝑚. However, note 

that an attribute can take on one value at a time and this limits the number of state descriptions 

admissible to 𝑚𝑚; such states are called base-state description and are formally defined as: 

 

𝑏𝑏𝑖𝑖𝑎𝑎 =  𝑖𝑖 (⋀¬ 𝑗𝑗
𝑗𝑗≠𝑖𝑖

) a = ¬ 1a ∧ …∧ ¬  −1a ∧   a ∧ ¬  +1a…∧ ¬ ma 

 

Therefore, for an attribute we have the relation: 

𝐴𝐴 = (𝑎𝑎, * 1𝑎𝑎 … 𝑚𝑚𝑎𝑎+) ⟹ 𝐿𝐿𝑚𝑚1 ⟹ *𝑏𝑏1𝑎𝑎 …𝑏𝑏𝑚𝑚𝑎𝑎 + 
 

Finally, if we consider the fact that a frame is a set of attributes, we will have: 

F = (𝐴𝐴1 …𝐴𝐴𝑛𝑛) = (𝑎𝑎1, * 1
𝑎𝑎1 … 𝑚𝑚𝑎𝑎1+)… (𝑎𝑎𝑛𝑛, * 1

𝑎𝑎𝑛𝑛 … 𝑟𝑟
𝑎𝑎𝑛𝑛+) ⟹ (𝐿𝐿𝑚𝑚𝑎𝑎1 …𝐿𝐿𝑟𝑟

𝑎𝑎𝑛𝑛)

⟹ (*𝑏𝑏1
𝑎𝑎1 … 𝑏𝑏𝑚𝑚𝑎𝑎1+… *𝑏𝑏1

𝑎𝑎𝑛𝑛 … 𝑏𝑏𝑟𝑟
𝑎𝑎𝑛𝑛+) 

 

The state descriptions of the dynamic frame will be the conjunction of the various base-state 

descriptions of the individual attributes. For example, if we have 𝑛𝑛 attributes, each of which takes on 

certain values, the generic state description is given by the following formula: 

 Vi1…Vkn = b 
a1 ∧ …∧ bk

an 

 

The set of all state descriptions generates the logical space associated with the dynamic frame. Once 

the logical space is known, it is necessary to define a probability measure on it. If the constraints 

between the values are not considered, the state descriptions are equally probable and therefore we 

have for a generic state  ( Vi1…Vkn) = 1/n. However, if we consider the constraints between the 

values we can use the confirmation function equation – introduced previously – to impose restrictions 
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Once the probability measure on the logical space has been determined we can calculate the amount of 

information of a state-description as inf(  ) = − log( (  )) and hence the amount of information in 

the entire frame: 

𝑖𝑖𝑖𝑖𝑖𝑖(𝐹𝐹) =∑𝑚𝑚(𝑤𝑤𝑖𝑖)
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 𝑖𝑖𝑖𝑖𝑖𝑖(𝑚𝑚(𝑤𝑤𝑖𝑖)) 

 

where index 𝑖𝑖 run on the state-descriptions of the logical space associated with the dynamic frame. 

To make the formulation developed so far clearer, let's consider our example of the dynamic frame of 

the concept 'bird', limiting ourselves to the attribute‟s 'beak' and 'foot' (see Fig.1).  
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certain attribute takes on a certain value ( 𝑗𝑗𝑏𝑏), the hypothesis that another attribute takes on a certain 

other value ( 𝑖𝑖a) is certain: in formulas we have5 

h =   a ,  e =  jb ⟹ c(h, e) =  
(h ∧  e)
 (e) =

 (  a ∧  jb)
 ( jb)

= 1.0 

 

Once the probability measure on the logical space has been determined we can calculate the amount of 

information of a state-description as inf(  ) = − log( (  )) and hence the amount of information in 

the entire frame: 

𝑖𝑖𝑖𝑖𝑖𝑖(𝐹𝐹) =∑𝑚𝑚(𝑤𝑤𝑖𝑖)
𝑖𝑖

 𝑖𝑖𝑖𝑖𝑖𝑖(𝑚𝑚(𝑤𝑤𝑖𝑖)) 

 

where index 𝑖𝑖 run on the state-descriptions of the logical space associated with the dynamic frame. 

To make the formulation developed so far clearer, let's consider our example of the dynamic frame of 

the concept 'bird', limiting ourselves to the attribute‟s 'beak' and 'foot' (see Fig.1).  

 

 

The frame is represented by: 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) = ((𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, *𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+), (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, * 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶+))

= ((𝑏𝑏, *𝑅𝑅, 𝑃𝑃+), (𝑓𝑓, * , 𝐶𝐶+)) 
 

and the logical space is reported in the following table: 

  

State Propositions Sub-concept m inf 

𝑤𝑤1 (𝑅𝑅 ∧ ¬𝑃𝑃)𝑏𝑏 ∧ ( ∧ ¬𝐶𝐶)𝑓𝑓 water-bird 0.5 1.0 

𝑤𝑤2 (R ∧ ¬ )b ∧ (¬ ∧ C)f - 0.0 0.0 

𝑤𝑤3 (¬R ∧  )b ∧ ( ∧ ¬C)f - 0.0 0.0 

𝑤𝑤4 (¬R ∧  )b ∧ (¬ ∧ C)f land-bird 0.5 1.0 

 

Table 3: Logical Space of Bird Concept 

 

                                                 
 

Once the probability measure on the logical space has been determined we can calculate the amount of information of a state-description 
as inf(wi )=-log (m(wi )) and hence the amount of information in the entire frame:

where index i run on the state-descriptions of the logical space associated with the dynamic frame.
To make the formulation developed so far clearer, let's consider our example of the dynamic frame of the concept 'bird', limiting 
ourselves to the attribute’s 'beak' and 'foot' (see Fig.1). 

The frame is represented by:

and the logical space is reported in the following table:

Table 3: Logical Space of Bird Concept

Note how the state descriptions  w1 and w2 correspond to the sub-concepts of the frame. To calculate the probability measure, constraints 
have been used; for example, if we impose the constraint foot = webbed → beak = round, where evidence e : foot = webbed confirms 
hypothesis h : beak = round we have the equation:

Note how the state descriptions  𝑤𝑤1 and 𝑤𝑤2 correspond to the sub-concepts of the frame. To calculate 

the probability measure, constraints have been used; for example, if we impose the constraint 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, where evidence 𝑒𝑒: 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 confirms hypothesis 𝑕𝑕: 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 we have the equation: 

𝑐𝑐(𝑕𝑕, 𝑒𝑒) = 𝑚𝑚(𝑅𝑅𝑅𝑅 ∧  𝑓𝑓)
𝑚𝑚( 𝑓𝑓) = 𝑚𝑚(𝑤𝑤1)

𝑚𝑚(𝑤𝑤1) + 𝑚𝑚(𝑤𝑤3) = 1 ⟹ 𝑚𝑚(𝑤𝑤3) = 0 

 

Note also that the amount of information in the individual state descriptions with non-zero probability 

is equal to 1 bit; which is expected since a single data is sufficient to determine the state. Finally, the 

amount of information of the entire frame is: 

 

𝑖𝑖𝑖𝑖𝑖𝑖(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) = ∑ 𝑚𝑚(𝑤𝑤𝑖𝑖)
𝑖𝑖

 𝑖𝑖𝑖𝑖𝑖𝑖(𝑚𝑚(𝑤𝑤𝑖𝑖)) = 0.5  1.0 + 0.5  1.0 = 1 

 

In order to have the concept of bird completely determined we need the same amount of information 

as its subordinate concepts; this strange behaviour is due to the fact that the state descriptions are 

equiprobable. 

 

So far, we have used deterministic constraints – where the conditional probability is 1/0 depending on 

the case – to determine the probabilities of the state descriptions in order to derive the amount of 

information; this strategy becomes difficult once the structure of the frames becomes complex. To 

overcome the difficulty, we can use the probabilistic dynamic frames introduced by Strößner and focus 

our attention on the bird concept of Fig. 2 and Fig. 3 which have a non-deterministic constraint. 

The frame is represented as: 

 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) = ((𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, * 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶+), (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, *𝐹𝐹𝐹𝐹𝐹𝐹, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,  𝑎𝑎𝑎𝑎𝑎𝑎+))

= ((𝑓𝑓, * , 𝐶𝐶+), (𝑚𝑚, *𝐹𝐹, 𝑆𝑆, 𝐾𝐾+), ) 

 

We can consider three types of probabilistic dynamic frames, modifying the conditional probability 

distribution each time. Let us start by considering the case – which we call 𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑1 – where the 

attributes of the concept are independent on each other, that is, let us suppose that the marginal 

probabilities expressed in Table 2 are associated to independent random variables. Then we can 

propose the example – that we call 𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑2 – where we use the joint probability distribution of Table 2 

and finally, we consider the distribution probability of „foot-webbed-bird‟ – 𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑3.  

 

 9The formula is also valid in the case in which for a given piece of evidence the probability of a certain hypothesis is zero.



J Electrical Electron Eng, 2024 Volume 3 | Issue 6 | 7

Note how the state descriptions  𝑤𝑤1 and 𝑤𝑤2 correspond to the sub-concepts of the frame. To calculate 

the probability measure, constraints have been used; for example, if we impose the constraint 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, where evidence 𝑒𝑒: 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 confirms hypothesis 𝑕𝑕: 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 we have the equation: 

𝑐𝑐(𝑕𝑕, 𝑒𝑒) = 𝑚𝑚(𝑅𝑅𝑅𝑅 ∧  𝑓𝑓)
𝑚𝑚( 𝑓𝑓) = 𝑚𝑚(𝑤𝑤1)

𝑚𝑚(𝑤𝑤1) + 𝑚𝑚(𝑤𝑤3) = 1 ⟹ 𝑚𝑚(𝑤𝑤3) = 0 

 

Note also that the amount of information in the individual state descriptions with non-zero probability 

is equal to 1 bit; which is expected since a single data is sufficient to determine the state. Finally, the 

amount of information of the entire frame is: 

 

𝑖𝑖𝑖𝑖𝑖𝑖(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) = ∑ 𝑚𝑚(𝑤𝑤𝑖𝑖)
𝑖𝑖

 𝑖𝑖𝑖𝑖𝑖𝑖(𝑚𝑚(𝑤𝑤𝑖𝑖)) = 0.5  1.0 + 0.5  1.0 = 1 

 

In order to have the concept of bird completely determined we need the same amount of information 

as its subordinate concepts; this strange behaviour is due to the fact that the state descriptions are 

equiprobable. 

 

So far, we have used deterministic constraints – where the conditional probability is 1/0 depending on 

the case – to determine the probabilities of the state descriptions in order to derive the amount of 

information; this strategy becomes difficult once the structure of the frames becomes complex. To 

overcome the difficulty, we can use the probabilistic dynamic frames introduced by Strößner and focus 

our attention on the bird concept of Fig. 2 and Fig. 3 which have a non-deterministic constraint. 

The frame is represented as: 

 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) = ((𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, * 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶+), (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, *𝐹𝐹𝐹𝐹𝐹𝐹, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,  𝑎𝑎𝑎𝑎𝑎𝑎+))

= ((𝑓𝑓, * , 𝐶𝐶+), (𝑚𝑚, *𝐹𝐹, 𝑆𝑆, 𝐾𝐾+), ) 

 

We can consider three types of probabilistic dynamic frames, modifying the conditional probability 

distribution each time. Let us start by considering the case – which we call 𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑1 – where the 

attributes of the concept are independent on each other, that is, let us suppose that the marginal 

probabilities expressed in Table 2 are associated to independent random variables. Then we can 

propose the example – that we call 𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑2 – where we use the joint probability distribution of Table 2 

and finally, we consider the distribution probability of „foot-webbed-bird‟ – 𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑3.  

 

Note how the state descriptions  𝑤𝑤1 and 𝑤𝑤2 correspond to the sub-concepts of the frame. To calculate 

the probability measure, constraints have been used; for example, if we impose the constraint 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, where evidence 𝑒𝑒: 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 confirms hypothesis 𝑕𝑕: 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 we have the equation: 

𝑐𝑐(𝑕𝑕, 𝑒𝑒) = 𝑚𝑚(𝑅𝑅𝑅𝑅 ∧  𝑓𝑓)
𝑚𝑚( 𝑓𝑓) = 𝑚𝑚(𝑤𝑤1)

𝑚𝑚(𝑤𝑤1) + 𝑚𝑚(𝑤𝑤3) = 1 ⟹ 𝑚𝑚(𝑤𝑤3) = 0 

 

Note also that the amount of information in the individual state descriptions with non-zero probability 

is equal to 1 bit; which is expected since a single data is sufficient to determine the state. Finally, the 

amount of information of the entire frame is: 

 

𝑖𝑖𝑖𝑖𝑖𝑖(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) = ∑ 𝑚𝑚(𝑤𝑤𝑖𝑖)
𝑖𝑖

 𝑖𝑖𝑖𝑖𝑖𝑖(𝑚𝑚(𝑤𝑤𝑖𝑖)) = 0.5  1.0 + 0.5  1.0 = 1 

 

In order to have the concept of bird completely determined we need the same amount of information 

as its subordinate concepts; this strange behaviour is due to the fact that the state descriptions are 

equiprobable. 

 

So far, we have used deterministic constraints – where the conditional probability is 1/0 depending on 

the case – to determine the probabilities of the state descriptions in order to derive the amount of 

information; this strategy becomes difficult once the structure of the frames becomes complex. To 

overcome the difficulty, we can use the probabilistic dynamic frames introduced by Strößner and focus 

our attention on the bird concept of Fig. 2 and Fig. 3 which have a non-deterministic constraint. 

The frame is represented as: 

 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) = ((𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, * 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶+), (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, *𝐹𝐹𝐹𝐹𝐹𝐹, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,  𝑎𝑎𝑎𝑎𝑎𝑎+))

= ((𝑓𝑓, * , 𝐶𝐶+), (𝑚𝑚, *𝐹𝐹, 𝑆𝑆, 𝐾𝐾+), ) 

 

We can consider three types of probabilistic dynamic frames, modifying the conditional probability 

distribution each time. Let us start by considering the case – which we call 𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑1 – where the 

attributes of the concept are independent on each other, that is, let us suppose that the marginal 

probabilities expressed in Table 2 are associated to independent random variables. Then we can 

propose the example – that we call 𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑2 – where we use the joint probability distribution of Table 2 

and finally, we consider the distribution probability of „foot-webbed-bird‟ – 𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑3.  

 

Note also that the amount of information in the individual state descriptions with non-zero probability is equal to 1 bit; which is expected 
since a single data is sufficient to determine the state. Finally, the amount of information of the entire frame is:

In order to have the concept of bird completely determined we need the same amount of information as its subordinate concepts; this 
strange behaviour is due to the fact that the state descriptions are equiprobable.

So far, we have used deterministic constraints – where the conditional probability is 1/0 depending on the case – to determine the 
probabilities of the state descriptions in order to derive the amount of information; this strategy becomes difficult once the structure of 
the frames becomes complex. To overcome the difficulty, we can use the probabilistic dynamic frames introduced by Strößner and focus 
our attention on the bird concept of Fig. 2 and Fig. 3 which have a non-deterministic constraint.
The frame is represented as:

We can consider three types of probabilistic dynamic frames, modifying the conditional probability distribution each time. Let us start 
by considering the case – which we call bird1 – where the attributes of the concept are independent on each other, that is, let us suppose 
that the marginal probabilities expressed in Table 2 are associated to independent random variables. Then we can propose the example 
– that we call bird2 – where we use the joint probability distribution of Table 2 and finally, we consider the distribution probability of 
‘foot-webbed-bird’ – bird3. 

The logical space that we construct is described in the following table:

The logical space that we construct is described in the following table: 

 

  

 

 

     

State Propositions 𝑝𝑝1 𝐼𝐼𝐼𝐼𝐼𝐼1  𝑝𝑝2 𝐼𝐼𝐼𝐼𝐼𝐼2 𝑝𝑝3 𝐼𝐼𝐼𝐼𝐼𝐼3 

𝑤𝑤1 ( ∧ ¬𝐶𝐶)𝑓𝑓 ∧ (F ∧ ¬𝑆𝑆 ∧ ¬𝐾𝐾)  0.15 2.73 0.03 5.05 0.22 2.18 

𝑤𝑤2 ( ∧ ¬𝐶𝐶)𝑓𝑓 ∧ (¬F ∧ 𝑆𝑆 ∧ ¬𝐾𝐾)  0.03 5.05 0.15 2.73 0.75 0.41 

𝑤𝑤3 ( ∧ ¬𝐶𝐶)𝑓𝑓 ∧ (¬F ∧ ¬𝑆𝑆 ∧ 𝐾𝐾)  0.02 5.64 0.02 5.64 0.03 5.05 

𝑤𝑤4 (¬ ∧ 𝐶𝐶)𝑓𝑓 ∧ (F ∧ ¬𝑆𝑆 ∧ ¬𝐾𝐾)  0.60 0.73 0.72 0.47 0 0 

𝑤𝑤5 (¬ ∧ 𝐶𝐶)𝑓𝑓 ∧ (¬F ∧ 𝑆𝑆 ∧ ¬𝐾𝐾)  0.12 3.05 0 0 0 0 

𝑤𝑤6 (¬ ∧ 𝐶𝐶)𝑓𝑓 ∧ (¬F ∧ ¬𝑆𝑆 ∧ 𝐾𝐾)  0.08 3.64 0.08 3.64 0 0 

 

Table 4: Logical Space of 𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑𝑖𝑖  
 

The columns 𝑝𝑝𝑖𝑖 e 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 are related to the corresponding concepts 𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑𝑖𝑖. If we consider the quantity 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 
of state descriptions – which correspond to the various sub concepts – we note that some of them 

require a significantly greater amount of information than others; this behaviour also allows us to 

define a ranking among the sub concepts to identify the most common ones from those that occur 

more rarely. So, for example we note how the state 𝑤𝑤4 of the second dynamic frame is by far the most 

common; in fact – as we expect – it corresponds to a bird that has clawed feet and that moves by 

flying. 

 

We can finally calculate the amount of information for the three examples: 

 

𝑖𝑖𝑖𝑖𝑖𝑖(𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑1) = 1.738 < 𝑖𝑖𝑖𝑖𝑖𝑖(𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑2) = 1.303 < 𝑖𝑖𝑖𝑖𝑖𝑖(𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑3) = 0.938 

 

From which it is easy to deduce that the stronger the constraints of the dynamic frame are, the smaller 

the amount of information needed to define them.; in fact in the example 𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑1 there are no 

constraints between values/attributes, in 𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑2 there are constraints that connect the values of the 

Table 4: Logical Space of birdi

The columns pi  and Infi are related to the corresponding concepts birdi. If we consider the quantity Infi of state descriptions – which 
correspond to the various sub concepts – we note that some of them require a significantly greater amount of information than others; 
this behaviour also allows us to define a ranking among the sub concepts to identify the most common ones from those that occur more 
rarely. So, for example we note how the state w4 of the second dynamic frame is by far the most common; in fact – as we expect – it 
corresponds to a bird that has clawed feet and that moves by flying.

We can finally calculate the amount of information for the three examples:
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We can consider three types of probabilistic dynamic frames, modifying the conditional probability 
distribution each time. Let us start by considering the case – which we call 𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑1 – where the 
attributes of the concept are independent on each other, that is, let us suppose that the marginal 
probabilities expressed in Table 2 are associated to independent random variables. Then we can 
propose the example – that we call 𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑2 – where we use the joint probability distribution of Table 2 
and finally, we consider the distribution probability of „foot-webbed-bird‟ – 𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑3.  
The logical space that we construct is described in the following table: 
 

 Table 4: logical space of 𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑𝑖𝑖       

State Propositions 𝑝𝑝1 𝐼𝐼𝐼𝐼𝐼𝐼1  𝑝𝑝2 𝐼𝐼𝐼𝐼𝐼𝐼2 𝑝𝑝3 𝐼𝐼𝐼𝐼𝐼𝐼3 

𝑤𝑤1 ( ∧ ¬𝐶𝐶)𝑓𝑓 ∧ (F ∧ ¬𝑆𝑆 ∧ ¬𝐾𝐾)  0.15 2.73 0.03 5.05 0.22 2.18 

𝑤𝑤2 ( ∧ ¬𝐶𝐶)𝑓𝑓 ∧ (¬F ∧ 𝑆𝑆 ∧ ¬𝐾𝐾)  0.03 5.05 0.15 2.73 0.75 0.41 

𝑤𝑤3 ( ∧ ¬𝐶𝐶)𝑓𝑓 ∧ (¬F ∧ ¬𝑆𝑆 ∧ 𝐾𝐾)  0.02 5.64 0.02 5.64 0.03 5.05 

𝑤𝑤4 (¬ ∧ 𝐶𝐶)𝑓𝑓 ∧ (F ∧ ¬𝑆𝑆 ∧ ¬𝐾𝐾)  0.60 0.73 0.72 0.47 0 0 

𝑤𝑤5 (¬ ∧ 𝐶𝐶)𝑓𝑓 ∧ (¬F ∧ 𝑆𝑆 ∧ ¬𝐾𝐾)  0.12 3.05 0 0 0 0 

𝑤𝑤6 (¬ ∧ 𝐶𝐶)𝑓𝑓 ∧ (¬F ∧ ¬𝑆𝑆 ∧ 𝐾𝐾)  0.08 3.64 0.08 3.64 0 0 

 
The columns 𝑝𝑝𝑖𝑖 e 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 are related to the corresponding concepts 𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑𝑖𝑖. If we consider the quantity 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 
of state descriptions – which correspond to the various subconcepts – we note that some of them 
require a significantly greater amount of information than others; this behavior also allows us to define 
a ranking among the subconcepts to identify the most common ones from those that occur more rarely. 
So for example we note how the state 𝑤𝑤4 of the second dynamic frame is by far the most common; in 
fact – as we expect – it corresponds to a bird that has clawed feet and that moves by flying. 
We can finally calculate the amount of information for the three examples: 

𝑖𝑖𝑖𝑖𝑖𝑖(𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑1) = 1.738 < 𝑖𝑖𝑖𝑖𝑖𝑖(𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑2) = 1.303 < 𝑖𝑖𝑖𝑖𝑖𝑖(𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑3) = 0.938 

From which it is easy to deduce that the stronger the constraints of the dynamic frame are, the smaller 
the amount of information needed to define them.; in fact in the example 𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑1 there are no 
constraints between values/attributes, in 𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑2 there are constraints that connect the values of the 
attribute 'foot' to the values of the attribute 'locomotion' expressed by a conditional probability 
distribution and finally in in 𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑3 – which represents a composite concept – there is a deterministic 
constraint. 

4 Conclusion. 

In this article we presented a formalism that allows us to associate a quantity of semantic information 
with a dynamic frame and observed how the elimination of constraints between values determines a 
greater quantity of information necessary to define the frame. In order to obtain this result, we also use 

> >
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From which it is easy to deduce that the stronger the constraints of the dynamic frame are, the smaller the amount of information needed 
to define them; in fact in the example bird1 there are no constraints between values/attributes, in bird2 there are constraints that connect 
the values of the attribute 'foot' to the values of the attribute 'locomotion' expressed by a conditional probability distribution and finally 
in in bird3 – which represents a composite concept – there is a deterministic constraint.

4. Conclusion
In this article we presented a formalism that allows us to associate a quantity of semantic information with a dynamic frame and observed 
how the elimination of constraints between values determines a greater quantity of information necessary to define the frame. In order 
to obtain this result, we also use the probabilistic dynamic frame introduced by Strößner, that associate a probability distribution to each 
value of the frame and to their constraints.
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