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Abstract
This short paper describes the distributed recognition of targets. The sensor data fusion of features arising from multiple 
sensors is considered for the purpose of target recognition/classification. This is performed in a scenario wherein the 
underlying distributions are not Gaussian (i.e., the distributions do not obey Normality). Furthermore, there is ‘correlation’ 
between the separate sensor features. The separate (sensor) features are not statistically independent. The data fusion 
procedure pursued here does not find itself in the object identification sensor data fusion paradigm. It is an intermediate step 
between the two levels of data fusion for target recognition. In a departure from the (class) conditional assumptions typically 
made, another factorization of the joint conditional distribution is evaluated. This factorization requires the conditioning 
on previous feature vectors. A novel adaptive procedure is suggested to address that alternate factorization. A non-standard 
nonparametric classification procedure is detailed in providing the classification results. The classification/recognition results 
are for multiple classes. Results are compared against the centralized method and the statistically independent method. 
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1. Introduction 
The field of Automatic Target Recognition (ATR) in real world 
applications is an exercise in navigating rough terrain. Even in 
the instance of utilizing one sensor, the underlying distributions 
of the features (a feature vector) exhibit a strong departure from 
known parametric forms. I.e., the distributions are not Gaussian 
(they do not obey Normality) nor do they possess any other known 
parametric forms. Indeed, the underlying distributions (of the 
sensor feature vector) can exhibit multi-modality. This, by itself, 
can cause havoc on single sensor classification systems.

In the instance that multiple sensors are employed to classify 
(or recognize, the terms are synonymous) a target, yet another 
problem occurs. The features from the separate sensors can exhibit 
‘correlation’. In the context of this application the ‘correlation’ 
is the (class) conditional dependence of the features across 
the multiple sensors. This is apparently an issue of some angst. 
Certainly, it can be said that correlation among separate sensors 
is not a good thing in general. Procedures deployed to remove the 
‘correlation’ include editing or principal components analysis to 
arrive at a refurbished set of features.
 
Further complicating the problem at hand is the development of 
a distributed procedure to provide a fused target declaration from 
underlying distributions that are ill-behaved.

  
The field of sensor data fusion most likely had its nascence from 
the seminal efforts of [1-4]. The initial application was in the field 
of multi-sensor detection fusion. Sensor data fusion then grew into 
the areas of (multiple) target tracking and target recognition.

The field of ATR (and classification using statistical pattern 
recognition techniques) is similar to target detection in that it 
can be cast as a problem in hypothesis testing. Indeed, viewed in 
this way, ATR is nothing more than a generalization of detection. 
Instead of a binary target/no target decision, the classification 
procedure provides an answer for an M-ary hypothesis testing 
problem, where M is the number of classes of interest. Hence, 
many of the earlier efforts can be brought to bear for this problem.

This fact was recognized in perhaps the 1st paper representing this 
field of investigation. In [5], a structural procedure is presented 
to integrate the classification responses from multiple sensors and 
provide a final (consolidated) classification response.

In [6], a diagram is provided (Figure 12) that lists the data fusion 
techniques of ATR/classification. The 1st level is termed “data level 
fusion” which combines the ‘data’ from multiple sensors into a 
product from which a multisensor feature vector can be constructed 
for classification. The research in this area is apparently absent.
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The 2nd level is termed “feature level fusion” wherein the separate 
sensor feature vectors are obtained and placed into a stacked 
vector for subsequent classification. Research focus in this area 
also seems to absent.

The 3rd level is termed “decision (or ID) fusion”. This involves 
the combination of the separate sensor decisions into a single final 
decision.

The 3rd level has been of interest since that point with active 
research commencing in [5] and continuing to recent activity [7-
9]. The area has been so active that there is not available space 
to properly cite the efforts in this area. Interestingly, in [7,9], the 
development tackled the problem of ‘correlation’ albeit at the 
(classification) decision level. In [7], there is a notable inclusion of 
a Probability space which is a 3-tuple space of (S,B,P), where B is 
the Borel σ- field for the sample space considered.

What is curious is that the three levels presented in [6] do not 
consider the fusion of intermediate information. That information 
would be the separate sensor likelihoods obtained from each 
sensor feature vector. The usage of likelihoods (or their posterior 
counterparts) is rather fundamental to both detection and statistical 
pattern recognition procedures.

Procedures developed along these ‘intermediate’ lines appear to be 
scant as well. In [10-12], these procedures are pursued wherein the 
posterior is constructed from the separate sensor likelihoods for all 
the classes. For the lack of a better term, procedures along these 
lines shall be termed “likelihood fusion”.

What is an underlying theme in almost all the efforts is the 
assumption that the feature vectors are (class) conditionally 

independent (or that the classification decisions also exhibit 
conditional independence). For the efforts at the 3rd level, the 
separate sensor decisions are deemed to be class conditionally 
independent, allowing factorization of either likelihood ratio 
tests or separate sensor performance probabilities. In the so-
called ‘intermediate’ efforts, the assumption allows an immediate 
factorization of the joint conditional likelihood.
  
In this note, the investigation of the ‘intermediate level’ of sensor 
data fusion for classification is pursued. The procedure must 
deal with general nonparametric statistical distributions. It must 
also accommodate a relaxation of the assumption of conditional 
independence.

In Section II, a short segue is presented regarding the subject of 
‘correlation’. In Section III, the design is discussed. In Section IV, 
results are presented for four cases of interest. Section V contains 
some concluding remarks.

2. A Note on ‘Correlation’ 
Clearly there is a concern of ‘correlation’ among either the separate 
sensor feature vectors (at the “intermediate level”) or the sensor 
classifications (“ID fusion” level).

Two simple examples are pursued that expose questions that 
continue to plague ATR procedures.

The first example involves two sensors that have scalar features. 
The plot of the feature scatter is depicted in Figure 1. As can be seen 
visually, the features are highly correlated. Since the features are 
drawn from Normal populations the features are also conditionally 
dependent. What can also be seen is that while the populations are 
somewhat close to each other, they do seem to display separation.
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Fig. 1. Feature Scatter Diagram for Example 1. 

 
Fig. 2. Classifier Performance Class #1for Example #1. 
 
The classification performance is shown in Figure 2 for 

class #1 (class #2 was the same) where both features are 
used. The performance is practically perfect confirming the 
separability (the traces are explained later in Section IV).  

But these features are highly correlated and 
conditionally dependent. A situation like this is to be 
avoided if at all possible. 

Another example is shown in Figure 3. The populations 
are also drawn from Normal distributions and are 
conditionally independent. Conditionally independent 
(‘uncorrelated”) features are typically desirable. The scatter 
diagram shows the two populations and it shows a high 
amount of overlap between the two classes. The 
classification performance is shown in Figure 4 (for class 
#1, class #2 was similar). Since this is a two-class problem, 
the classifier struggles with a performance that closely 
approximates a coin flip experiment. 

 
Fig. 3.  Feature Scatter Diagram for Example 2. 
 

 
Fig. 4. Classifier Performance Class #1 for Example #2. 
 
Based on these two examples, some empirical 

observations can be made. 
It seems that feature vectors that are (class) 

conditionally dependent (‘correlated’) is not a sufficient 
condition that classifier performance will be poor. 

As well, it seems that the situation of conditionally 
independent (‘uncorrelated’) features is not a necessary 
condition for good classifier performance. 

What seems to be important is the separability of the 
class conditional distributions. Indeed, had a similarity 
metric such as [13] been employed, the results would 
indicate that Example #1 should have superior performance 
over that of Example #2. The problem is that metrics such 
as [13] provide extremely misleading results when the 
underlying conditional distributions are nonparametric. 

Finally, in [14] the following phrase is encountered 
(“Dirty Secrets in Data Fusion”): “there is no substitute for 
a good sensor”. For Example #1, a graph of the classifier 
performance of the ‘best’ sensor is shown in Figure 5 
(sensor #2 was poorer for both classes). The performance 
is substantially poorer than the fused performance shown 

Figure 1: Feature Scatter Diagram for Example 1
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The classification performance is shown in Figure 2 for class 
#1 (class #2 was the same) where both features are used. The 
performance is practically perfect confirming the separability (the 
traces are explained later in Section IV).

But these features are highly correlated and conditionally 
dependent. A situation like this is to be avoided if at all possible.
 
Another example is shown in Figure 3. The populations are also 
drawn from Normal distributions and are conditionally independent. 
Conditionally independent (‘uncorrelated”) features are typically 
desirable. The scatter diagram shows the two populations and it 
shows a high amount of overlap between the two classes. The 
classification performance is shown in Figure 4 (for class #1, class 
#2 was similar). Since this is a two-class problem, the classifier 
struggles with a performance that closely approximates a coin flip 
experiment. 

Based on these two examples, some empirical observations can 
be made. 

It seems that feature vectors that are (class) conditionally 
dependent (‘correlated’) is not a sufficient condition that classifier 
performance will be poor.

As well, it seems that the situation of conditionally independent 
(‘uncorrelated’) features is not a necessary condition for good 
classifier performance.

What seems to be important is the separability of the class 
conditional distributions. Indeed, had a similarity metric such 
as [13] been employed, the results would indicate that Example 
#1 should have superior performance over that of Example 
#2. The problem is that metrics such as [13] provide extremely 
misleading results when the underlying conditional distributions 
are nonparametric.

Finally, in [14] the following phrase is encountered (“Dirty Secrets 
in Data Fusion”): “there is no substitute for a good sensor”. For 
Example #1, a graph of the classifier performance of the ‘best’ 
sensor is shown in Figure 5 (sensor #2 was poorer for both 
classes). The performance is substantially poorer than the fused 
performance shown in Figure 2. 

And so, the two sensors provide very poor single sensor 
performance when evaluated by themselves. However, when both 
sensors are combined, the joint performance is virtually without 
error. Feature vector separability changed going from a single 
sensor to both sensors combined. (This is discussed again in Case 
#4 in Section IV.) And this is in light that the ‘correlation’ (the 
class conditional dependence) is very high. The statement in [14] 
does not seem to apply in this instance.
 
Upon reflection, the statement in [14] has much more applicability 
to the problem of sensor data fusion for the purposes of state 
estimation and target tracking. In this instance, poor sensors (with 
poor measurement error covariance matrices) cannot provide an 
accurate state estimate since the state estimate error covariance 
matrix fails to converge to an accurate level with poor quality 
measurements.
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But in this application of ATR, it seems that there is 

more involved in the determination of classifier 
performance. It may not be that ‘correlation’ among the 
feature vectors leads to unacceptable performance. In 
practical ATR applications, class conditional dependence 
is more the norm rather than the exception. The classifier 
design must be sufficiently equipped to deal with these 
situations.  

Furthermore, as will be discussed in Section IV, designs 
that are based on class conditional independence can work 
under certain circumstances, but there can be unintended 
consequences that can lead to poor performance. This 
applies not only to ‘likelihood’ fusion but also classifier/ID 
(identification) fusion as well. 

III. DESIGN 
In this section, three procedures are developed that 

operate on the likelihoods. A method is described that 
allows conditioning on prior feature vectors for the third 

procedure. As well, a modified variant of a nonparametric 
classifier is discussed. 

The setting for the design is as follows. There are N 
sensors, and each sensor provides one (and only one) 
feature vector xn. with a dimension dim(xn)= dn. The feature 
vectors xn are assumed to arise from a commonly tracked 
target. There are M classes of interest, m, for 𝑚𝑚 ∈ {1, 𝑀𝑀}. 

Three procedures are of interest: a) the feature level 
fusion approach, b) the ‘intermediate’ conditional 
independence likelihood fusion approach and c) the 
‘distributed’ likelihood fusion approach. The decision law 
for all three procedures is the same. A max likelihood law 
is selected. The prior probabilities of the classes were not 
assumed to be known. 

For the feature level fusion procedure, the decision law 
is 

𝛿𝛿(𝑥𝑥𝑁𝑁) = 𝛿𝛿(𝑥𝑥) = 𝜔𝜔𝑚𝑚∗   ⇔ 
𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚∗) ≥  𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚)  ∀𝑚𝑚 ≠ 𝑚𝑚 ∗ 

and,      (1) 
𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚∗) ≥ 𝑡𝑡𝑈𝑈 

 
𝛿𝛿(𝑥𝑥) = 𝜔𝜔𝑀𝑀+1   𝑜𝑜. 𝑤𝑤. 

Here, xN is the feature vector stack of all the N feature 
vectors provided by the N sensors and re-notated to x to 
simplify notation: 

                     𝑥𝑥𝑁𝑁 = 𝑥𝑥 = [
𝑥𝑥1
𝑥𝑥2
⋮

𝑥𝑥𝑁𝑁

]                                    (2) 

The decision law in (1) states that m* is the selected 
class when its conditional likelihood is higher than any 
other class and it surpasses a barrier threshold tU. If that 
fails then the classifier decides class M+1 which is the no-
declare class. 

Furthermore, it should be made clear that the likelihoods 
in (1) (and throughout the remaining designs) are, at best, 
estimates of the true likelihood. This is because there is no 
assumption that the underlying class conditional 
distribution functions follow any known parametric 
(statistical) form. 

The decision procedure of (1) is termed the 
‘Centralized’ (C) procedure since it has, at its disposal, all 
of the feature vectors for implementing the decision law of 
(1). 

For the ‘intermediate’ likelihood fusion procedure, the 
ususal assumption of class conditional independence is 
invoked [10-12]. As such, the joint conditional distribution 
factors for N feature vectors:  

𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚) = ∏ 𝑝𝑝(𝑥𝑥𝑛𝑛|𝜔𝜔𝑚𝑚)
𝑁𝑁

𝑛𝑛=1
 

And so, the decision law of (1) becomes 
𝛿𝛿(𝑥𝑥) = 𝜔𝜔𝑚𝑚∗   ⇔ 

Figure 5:  Sensor #1 Performance, Class #1 for Example 1

But in this application of ATR, it seems that there is more involved 
in the determination of classifier performance. It may not be that 
‘correlation’ among the feature vectors leads to unacceptable 
performance. In practical ATR applications, class conditional 
dependence is more the norm rather than the exception. The 
classifier design must be sufficiently equipped to deal with these 
situations.

Furthermore, as will be discussed in Section IV, designs that are 
based on class conditional independence can work under certain 
circumstances, but there can be unintended consequences that can 
lead to poor performance. This applies not only to ‘likelihood’ 
fusion but also classifier/ID (identification) fusion as well. 
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3. Design 
In this section, three procedures are developed that operate on the 
likelihoods. A method is described that allows conditioning on 
prior feature vectors for the third procedure. As well, a modified 
variant of a nonparametric classifier is discussed.

The setting for the design is as follows. There are N sensors, and 
each sensor provides one (and only one) feature vector xn. with a 
dimension dim(xn) = dn. The feature vectors xn are assumed to arise 
from a commonly tracked target. There are M classes of interest, 
𝜔m, for 𝑚 ∈ {1, 𝑀}. 

Three procedures are of interest: a) the feature level fusion approach, 
b) the ‘intermediate’ conditional independence likelihood fusion 
approach and c) the ‘distributed’ likelihood fusion approach. The 
decision law for all three procedures is the same. A max likelihood 
law is selected. The prior probabilities of the classes were not 
assumed to be known.

For the feature level fusion procedure, the decision law is

Here, xN is the feature vector stack of all the N feature vectors 
provided by the N sensors and re-notated to x to simplify notation:

The decision law in (1) states that 𝜔m* is the selected class when 
its conditional likelihood is higher than any  other class and it 
surpasses a barrier threshold tU. If that fails then the classifier 
decides class 𝜔M + 1 which is the nodeclare class.
 
Furthermore, it should be made clear that the likelihoods in (1) 
(and throughout the remaining designs) are, at best, estimates of 
the true likelihood. This is because there is no assumption that 
the underlying class conditional distribution functions follow any 
known parametric (statistical) form.

The decision procedure of (1) is termed the ‘Centralized’ (C) 
procedure since it has, at its disposal, all of the feature vectors for 
implementing the decision law of (1).

For the ‘intermediate’ likelihood fusion procedure, the ususal 
assumption of class conditional independence is invoked [10-12]. 
As such, the joint conditional distribution factors for N feature 
vectors: 

And so, the decision law of (1) becomes 

As can be seen by (3), the stacked feature vector has been replaced 
by the likelihoods of the separate (sensor) feature vectors. Only 
the likelihoods are involved in the calculation of (3). These 
likelihoods are produced locally at each sensor and then sent to 
the location where (3) is calculated. Note that the factorization is 
only implemented between sensor feature vectors, not within the 
feature vector of a single sensor.

The procedure of (3) is termed the (class) Conditional Independence 
(CI) procedure.
 
Yet another procedure is needed. The CI procedure assumes 
(class) conditional independence. A distributed procedure is 
needed wherein this assumption can be relaxed. In order to do this, 
another factorization of 𝑝(𝑥|𝜔𝑚) is needed in order to obtain a 
distributed procedure that allows for the relaxed assumption. Such 
a factorization is immediate – the Bayes chain rule.  

An example of the chain rule for three feature vectors is: 
𝑝(𝑥3, 𝑥2, 𝑥1|𝜔𝑚) = 𝑝(𝑥3|𝑥2, 𝑥1, 𝜔𝑚)𝑝(𝑥2|𝑥1, 𝜔𝑚)𝑝(𝑥1|𝜔𝑚)  

An iterative formula for 𝑝(𝑥|𝜔𝑚) can be developed. Let 𝑞1(𝜔𝑚) 
= 𝑝(𝑥1|𝜔𝑚) , and 𝑟1(𝜔𝑚) = 1 then 𝑝(𝑥1|𝜔𝑚) = 𝑞1(𝜔𝑚)𝑟1(𝜔𝑚). 
Since  𝑝(𝑥2, 𝑥1|𝜔𝑚) = 𝑝(𝑥2|𝑥1, 𝜔𝑚)𝑝(𝑥1|𝜔𝑚) then, this can also 
be written as 𝑝(𝑥2, 𝑥1|𝜔𝑚) = 𝑞2(𝜔𝑚)𝑟2(𝜔𝑚) with
𝑞2(𝜔𝑚) = 𝑝(𝑥2|𝑥1, 𝜔𝑚) and 𝑟2(𝜔𝑚) = 𝑞1(𝜔𝑚)𝑟1(𝜔𝑚)
 
Inducing accordingly, an expression for 𝑝(𝑥|𝜔𝑚) is 𝑝(𝑥|𝜔𝑚) = 
𝑞𝑁(𝜔𝑚)𝑟𝑁(𝜔𝑚) 

The decision law for this procedure immediately becomes 

                                                                                                         

                                                                                                   (4) 
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∏ 𝑝𝑝(𝑥𝑥𝑛𝑛|𝜔𝜔𝑚𝑚∗)
𝑁𝑁

𝑛𝑛=1
≥ ∏ 𝑝𝑝(𝑥𝑥𝑛𝑛|𝜔𝜔𝑚𝑚) 

𝑁𝑁

𝑛𝑛=1
∀𝑚𝑚 ≠ 𝑚𝑚 ∗ 

and,                                 (3) 

∏ 𝑝𝑝(𝑥𝑥𝑛𝑛|𝜔𝜔𝑚𝑚∗)
𝑁𝑁

𝑛𝑛=1
≥ 𝑡𝑡𝑈𝑈 

 
𝛿𝛿(𝑥𝑥) = 𝜔𝜔𝑀𝑀+1   𝑜𝑜. 𝑤𝑤. 

 
As can be seen by (3), the stacked feature vector has 

been replaced by the likelihoods of the separate (sensor) 
feature vectors. Only the likelihoods are involved in the 
calculation of (3). These likelihoods are produced locally 
at each sensor and then sent to the location where (3) is 
calculated. Note that the factorization is only implemented 
between sensor feature vectors, not within the feature 
vector of a single sensor. 

The procedure of (3) is termed the (class) Conditional 
Independence (CI) procedure. 

Yet another procedure is needed. The CI procedure 
assumes (class) conditional independence. A distributed 
procedure is needed wherein this assumption can be 
relaxed. In order to do this, another factorization of 
𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚) is needed in order to obtain a distributed 
procedure that allows for the relaxed assumption. Such a 
factorization is immediate – the Bayes chain rule.  

An example of the chain rule for three feature vectors is: 
𝑝𝑝(𝑥𝑥3, 𝑥𝑥2, 𝑥𝑥1|𝜔𝜔𝑚𝑚)
= 𝑝𝑝(𝑥𝑥3|𝑥𝑥2, 𝑥𝑥1, 𝜔𝜔𝑚𝑚)𝑝𝑝(𝑥𝑥2|𝑥𝑥1, 𝜔𝜔𝑚𝑚)𝑝𝑝(𝑥𝑥1|𝜔𝜔𝑚𝑚)  

An iterative formula for 𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚) can be developed. Let 
        𝑞𝑞1(𝜔𝜔𝑚𝑚) = 𝑝𝑝(𝑥𝑥1|𝜔𝜔𝑚𝑚) , and 𝑟𝑟1(𝜔𝜔𝑚𝑚) = 1 
then 𝑝𝑝(𝑥𝑥1|𝜔𝜔𝑚𝑚) =  𝑞𝑞1(𝜔𝜔𝑚𝑚)𝑟𝑟1(𝜔𝜔𝑚𝑚). Since 

𝑝𝑝(𝑥𝑥2, 𝑥𝑥1|𝜔𝜔𝑚𝑚) = 𝑝𝑝(𝑥𝑥2|𝑥𝑥1, 𝜔𝜔𝑚𝑚)𝑝𝑝(𝑥𝑥1|𝜔𝜔𝑚𝑚) 
then, this can also be written as 

𝑝𝑝(𝑥𝑥2, 𝑥𝑥1|𝜔𝜔𝑚𝑚) = 𝑞𝑞2(𝜔𝜔𝑚𝑚)𝑟𝑟2(𝜔𝜔𝑚𝑚) 
with 
   𝑞𝑞2(𝜔𝜔𝑚𝑚) = 𝑝𝑝(𝑥𝑥2|𝑥𝑥1, 𝜔𝜔𝑚𝑚)  
and 
    𝑟𝑟2(𝜔𝜔𝑚𝑚) =  𝑞𝑞1(𝜔𝜔𝑚𝑚)𝑟𝑟1(𝜔𝜔𝑚𝑚) 
 
Inducing accordingly, an expression for 𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚) is 

𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚) = 𝑞𝑞𝑁𝑁(𝜔𝜔𝑚𝑚)𝑟𝑟𝑁𝑁(𝜔𝜔𝑚𝑚) 
The decision law for this procedure immediately 

becomes 
𝛿𝛿(𝑥𝑥) = 𝜔𝜔𝑚𝑚∗   ⇔ 

𝑞𝑞𝑁𝑁(𝜔𝜔𝑚𝑚∗)𝑟𝑟𝑁𝑁(𝜔𝜔𝑚𝑚∗) ≥  𝑞𝑞𝑁𝑁(𝜔𝜔𝑚𝑚)𝑟𝑟𝑁𝑁(𝜔𝜔𝑚𝑚) ∀𝑚𝑚 ≠ 𝑚𝑚 ∗ 
and,                                                                             (4) 

𝑞𝑞𝑁𝑁(𝜔𝜔𝑚𝑚∗)𝑟𝑟𝑁𝑁(𝜔𝜔𝑚𝑚∗) ≥  𝑡𝑡𝑈𝑈 
 

𝛿𝛿(𝑥𝑥) = 𝜔𝜔𝑀𝑀+1   𝑜𝑜. 𝑤𝑤 
The procedure of (4) is termed the Distributed (D) 

procedure. 

It is a minor note, but it is possible to perform subjoint 
calculations for the iteration procedure of (4). Consider the 
calculation for four feature vectors:  

𝑝𝑝(𝑥𝑥4, 𝑥𝑥3, 𝑥𝑥2, 𝑥𝑥1|𝜔𝜔𝑚𝑚) = 𝑝𝑝(𝑥𝑥4|𝑥𝑥3, 𝑥𝑥2, 𝑥𝑥1, 𝜔𝜔𝑚𝑚) ∙ 
𝑝𝑝(𝑥𝑥3|𝑥𝑥2, 𝑥𝑥1, 𝜔𝜔𝑚𝑚)𝑝𝑝(𝑥𝑥2|𝑥𝑥1, 𝜔𝜔𝑚𝑚)𝑝𝑝(𝑥𝑥1|𝜔𝜔𝑚𝑚) 

= 𝑝𝑝(𝑥𝑥4|𝑥𝑥3, 𝑥𝑥2, 𝑥𝑥1, 𝜔𝜔𝑚𝑚)[𝑝𝑝(𝑥𝑥3, 𝑥𝑥2|𝑥𝑥1, 𝜔𝜔𝑚𝑚)]𝑝𝑝(𝑥𝑥1|𝜔𝜔𝑚𝑚) 
The term in brackets is a subjoint combination of two 

feature vectors. The chain rule offers this level of flexibility 
of calculation for the determination of the final conditional 
likelihood. In this effort, the procedure of (4) was followed. 

At this point, a discussion of the likelihoods that appear 
in (4) needs some development. It is apparent that feature 
vectors appear on the right-hand side of the condition along 
with the class of interest. This is atypical and is 
subsequently discussed. 

It is the standard business of either a parametric or 
nonparametric classifier to compute the following 

𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚)  
It is another thing entirely to compute 

𝑞𝑞𝑛𝑛(𝜔𝜔𝑚𝑚) =  𝑝𝑝(𝑥𝑥𝑛𝑛|𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛−2, ⋯ , 𝑥𝑥1𝜔𝜔𝑚𝑚) 
Here, the likelihood has to be computed to include the 

conditioning upon the prior feature vectors. So, the 
conditioning does not just depend on the class, but also the 
previous features vectors to complete the Bayes chain rule 
calculation. To address this need a novel implementation of 
the factorization was developed. 

To enforce the conditioning on the previous feature 
vectors, a confining set of lines are used (in a vector space, 
these lines become confining hyperplanes). This is 
diagramed for a simple case in Figure 6. 

Since the underlying distributions do not obey a 
standard statistical distribution, the usage of training 
vectors must be used as the probabilistic mass (also called 
the support). Figure 6 shows the scatter of support for both 
features. The training feature vectors are used to provide an 
estimate of (conditional) likelihoods to process a test 
vector. 

Here, two features are shown, x1 and x2. Given x1, the 
desire is to compute 𝑝𝑝(𝑥𝑥2|𝑥𝑥1, 𝜔𝜔𝑚𝑚). Confining lines 
(hyperplanes in a vector space) are constructed about x1 
(𝑥𝑥𝑛𝑛−1, ⋯ , 𝑥𝑥1 in general). The shaded area in Figure 6 
depicts the constrained area (volume, in higher dimensions) 
of probabilistic support for use in the calculation of 
𝑝𝑝(𝑥𝑥2|𝑥𝑥1, 𝜔𝜔𝑚𝑚). The volume outside of the shaded area can’t 
be used for the calculation of the conditional likelihood. 
This is necessary in order to enforce the conditioning on x1. 
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∏ 𝑝𝑝(𝑥𝑥𝑛𝑛|𝜔𝜔𝑚𝑚∗)
𝑁𝑁

𝑛𝑛=1
≥ ∏ 𝑝𝑝(𝑥𝑥𝑛𝑛|𝜔𝜔𝑚𝑚) 

𝑁𝑁

𝑛𝑛=1
∀𝑚𝑚 ≠ 𝑚𝑚 ∗ 

and,                                 (3) 

∏ 𝑝𝑝(𝑥𝑥𝑛𝑛|𝜔𝜔𝑚𝑚∗)
𝑁𝑁

𝑛𝑛=1
≥ 𝑡𝑡𝑈𝑈 

 
𝛿𝛿(𝑥𝑥) = 𝜔𝜔𝑀𝑀+1   𝑜𝑜. 𝑤𝑤. 

 
As can be seen by (3), the stacked feature vector has 

been replaced by the likelihoods of the separate (sensor) 
feature vectors. Only the likelihoods are involved in the 
calculation of (3). These likelihoods are produced locally 
at each sensor and then sent to the location where (3) is 
calculated. Note that the factorization is only implemented 
between sensor feature vectors, not within the feature 
vector of a single sensor. 

The procedure of (3) is termed the (class) Conditional 
Independence (CI) procedure. 

Yet another procedure is needed. The CI procedure 
assumes (class) conditional independence. A distributed 
procedure is needed wherein this assumption can be 
relaxed. In order to do this, another factorization of 
𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚) is needed in order to obtain a distributed 
procedure that allows for the relaxed assumption. Such a 
factorization is immediate – the Bayes chain rule.  

An example of the chain rule for three feature vectors is: 
𝑝𝑝(𝑥𝑥3, 𝑥𝑥2, 𝑥𝑥1|𝜔𝜔𝑚𝑚)
= 𝑝𝑝(𝑥𝑥3|𝑥𝑥2, 𝑥𝑥1, 𝜔𝜔𝑚𝑚)𝑝𝑝(𝑥𝑥2|𝑥𝑥1, 𝜔𝜔𝑚𝑚)𝑝𝑝(𝑥𝑥1|𝜔𝜔𝑚𝑚)  

An iterative formula for 𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚) can be developed. Let 
        𝑞𝑞1(𝜔𝜔𝑚𝑚) = 𝑝𝑝(𝑥𝑥1|𝜔𝜔𝑚𝑚) , and 𝑟𝑟1(𝜔𝜔𝑚𝑚) = 1 
then 𝑝𝑝(𝑥𝑥1|𝜔𝜔𝑚𝑚) =  𝑞𝑞1(𝜔𝜔𝑚𝑚)𝑟𝑟1(𝜔𝜔𝑚𝑚). Since 

𝑝𝑝(𝑥𝑥2, 𝑥𝑥1|𝜔𝜔𝑚𝑚) = 𝑝𝑝(𝑥𝑥2|𝑥𝑥1, 𝜔𝜔𝑚𝑚)𝑝𝑝(𝑥𝑥1|𝜔𝜔𝑚𝑚) 
then, this can also be written as 

𝑝𝑝(𝑥𝑥2, 𝑥𝑥1|𝜔𝜔𝑚𝑚) = 𝑞𝑞2(𝜔𝜔𝑚𝑚)𝑟𝑟2(𝜔𝜔𝑚𝑚) 
with 
   𝑞𝑞2(𝜔𝜔𝑚𝑚) = 𝑝𝑝(𝑥𝑥2|𝑥𝑥1, 𝜔𝜔𝑚𝑚)  
and 
    𝑟𝑟2(𝜔𝜔𝑚𝑚) =  𝑞𝑞1(𝜔𝜔𝑚𝑚)𝑟𝑟1(𝜔𝜔𝑚𝑚) 
 
Inducing accordingly, an expression for 𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚) is 

𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚) = 𝑞𝑞𝑁𝑁(𝜔𝜔𝑚𝑚)𝑟𝑟𝑁𝑁(𝜔𝜔𝑚𝑚) 
The decision law for this procedure immediately 

becomes 
𝛿𝛿(𝑥𝑥) = 𝜔𝜔𝑚𝑚∗   ⇔ 

𝑞𝑞𝑁𝑁(𝜔𝜔𝑚𝑚∗)𝑟𝑟𝑁𝑁(𝜔𝜔𝑚𝑚∗) ≥  𝑞𝑞𝑁𝑁(𝜔𝜔𝑚𝑚)𝑟𝑟𝑁𝑁(𝜔𝜔𝑚𝑚) ∀𝑚𝑚 ≠ 𝑚𝑚 ∗ 
and,                                                                             (4) 

𝑞𝑞𝑁𝑁(𝜔𝜔𝑚𝑚∗)𝑟𝑟𝑁𝑁(𝜔𝜔𝑚𝑚∗) ≥  𝑡𝑡𝑈𝑈 
 

𝛿𝛿(𝑥𝑥) = 𝜔𝜔𝑀𝑀+1   𝑜𝑜. 𝑤𝑤 
The procedure of (4) is termed the Distributed (D) 

procedure. 

It is a minor note, but it is possible to perform subjoint 
calculations for the iteration procedure of (4). Consider the 
calculation for four feature vectors:  

𝑝𝑝(𝑥𝑥4, 𝑥𝑥3, 𝑥𝑥2, 𝑥𝑥1|𝜔𝜔𝑚𝑚) = 𝑝𝑝(𝑥𝑥4|𝑥𝑥3, 𝑥𝑥2, 𝑥𝑥1, 𝜔𝜔𝑚𝑚) ∙ 
𝑝𝑝(𝑥𝑥3|𝑥𝑥2, 𝑥𝑥1, 𝜔𝜔𝑚𝑚)𝑝𝑝(𝑥𝑥2|𝑥𝑥1, 𝜔𝜔𝑚𝑚)𝑝𝑝(𝑥𝑥1|𝜔𝜔𝑚𝑚) 

= 𝑝𝑝(𝑥𝑥4|𝑥𝑥3, 𝑥𝑥2, 𝑥𝑥1, 𝜔𝜔𝑚𝑚)[𝑝𝑝(𝑥𝑥3, 𝑥𝑥2|𝑥𝑥1, 𝜔𝜔𝑚𝑚)]𝑝𝑝(𝑥𝑥1|𝜔𝜔𝑚𝑚) 
The term in brackets is a subjoint combination of two 

feature vectors. The chain rule offers this level of flexibility 
of calculation for the determination of the final conditional 
likelihood. In this effort, the procedure of (4) was followed. 

At this point, a discussion of the likelihoods that appear 
in (4) needs some development. It is apparent that feature 
vectors appear on the right-hand side of the condition along 
with the class of interest. This is atypical and is 
subsequently discussed. 

It is the standard business of either a parametric or 
nonparametric classifier to compute the following 

𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚)  
It is another thing entirely to compute 

𝑞𝑞𝑛𝑛(𝜔𝜔𝑚𝑚) =  𝑝𝑝(𝑥𝑥𝑛𝑛|𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛−2, ⋯ , 𝑥𝑥1𝜔𝜔𝑚𝑚) 
Here, the likelihood has to be computed to include the 

conditioning upon the prior feature vectors. So, the 
conditioning does not just depend on the class, but also the 
previous features vectors to complete the Bayes chain rule 
calculation. To address this need a novel implementation of 
the factorization was developed. 

To enforce the conditioning on the previous feature 
vectors, a confining set of lines are used (in a vector space, 
these lines become confining hyperplanes). This is 
diagramed for a simple case in Figure 6. 

Since the underlying distributions do not obey a 
standard statistical distribution, the usage of training 
vectors must be used as the probabilistic mass (also called 
the support). Figure 6 shows the scatter of support for both 
features. The training feature vectors are used to provide an 
estimate of (conditional) likelihoods to process a test 
vector. 

Here, two features are shown, x1 and x2. Given x1, the 
desire is to compute 𝑝𝑝(𝑥𝑥2|𝑥𝑥1, 𝜔𝜔𝑚𝑚). Confining lines 
(hyperplanes in a vector space) are constructed about x1 
(𝑥𝑥𝑛𝑛−1, ⋯ , 𝑥𝑥1 in general). The shaded area in Figure 6 
depicts the constrained area (volume, in higher dimensions) 
of probabilistic support for use in the calculation of 
𝑝𝑝(𝑥𝑥2|𝑥𝑥1, 𝜔𝜔𝑚𝑚). The volume outside of the shaded area can’t 
be used for the calculation of the conditional likelihood. 
This is necessary in order to enforce the conditioning on x1. 
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The procedure of (4) is termed the Distributed (D) procedure. 

It is a minor note, but it is possible to perform subjoint calculations 
for the iteration procedure of (4). Consider the calculation for four 
feature vectors:

The term in brackets is a subjoint combination of two feature 
vectors. The chain rule offers this level of flexibility of calculation 
for the determination of the final conditional likelihood. In this 
effort, the procedure of (4) was followed.
 
At this point, a discussion of the likelihoods that appear in (4) 
needs some development. It is apparent that feature vectors appear 
on the right-hand side of the condition along with the class of 
interest. This is atypical and is subsequently discussed.

It is the standard business of either a parametric or nonparametric 
classifier to compute the following 𝑝(𝑥|𝜔𝑚 )  

It is another thing entirely to compute 𝑞𝑛(𝜔𝑚 ) = 𝑝(𝑥𝑛|𝑥𝑛−1,  𝑥𝑛−2,  ⋯ 
,  𝑥1𝜔𝑚 ) 

Here, the likelihood has to be computed to include the conditioning 
upon the prior feature vectors. So, the conditioning does not just 
depend on the class, but also the previous features vectors to 
complete the Bayes chain rule calculation. To address this need, a 
novel implementation of the factorization was developed.

To enforce the conditioning on the previous feature vectors, 
a confining set of lines are used (in a vector space, these lines 
become confining hyperplanes). This is diagramed for a simple 
case in Figure 6.

Since the underlying distributions do not obey a standard statistical 
distribution, the usage of training vectors must be used as the 
probabilistic mass (also called the support). Figure 6 shows the 
scatter of support for both features. The training feature vectors are 
used to provide an estimate of (conditional) likelihoods to process 
a test vector.

Here, two features are shown, x1 and x2. Given x1, the desire is 
to compute 𝑝(𝑥2|𝑥1,  𝜔𝑚 ). Confining lines (hyperplanes in a vector 
space) are constructed about x1 (𝑥𝑛−1,  ⋯ ,  𝑥1 in general). The shaded 
area in Figure 6 depicts the constrained area (volume, in higher 
dimensions) of probabilistic support for use in the calculation of 
𝑝(𝑥2|𝑥1, 𝜔𝑚). The volume outside of the shaded area can’t be used 
for the calculation of the conditional likelihood. This is necessary 
in order to enforce the conditioning on x1.
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∏ 𝑝𝑝(𝑥𝑥𝑛𝑛|𝜔𝜔𝑚𝑚∗)
𝑁𝑁

𝑛𝑛=1
≥ ∏ 𝑝𝑝(𝑥𝑥𝑛𝑛|𝜔𝜔𝑚𝑚) 

𝑁𝑁

𝑛𝑛=1
∀𝑚𝑚 ≠ 𝑚𝑚 ∗ 

and,                                 (3) 

∏ 𝑝𝑝(𝑥𝑥𝑛𝑛|𝜔𝜔𝑚𝑚∗)
𝑁𝑁

𝑛𝑛=1
≥ 𝑡𝑡𝑈𝑈 

 
𝛿𝛿(𝑥𝑥) = 𝜔𝜔𝑀𝑀+1   𝑜𝑜. 𝑤𝑤. 

 
As can be seen by (3), the stacked feature vector has 

been replaced by the likelihoods of the separate (sensor) 
feature vectors. Only the likelihoods are involved in the 
calculation of (3). These likelihoods are produced locally 
at each sensor and then sent to the location where (3) is 
calculated. Note that the factorization is only implemented 
between sensor feature vectors, not within the feature 
vector of a single sensor. 

The procedure of (3) is termed the (class) Conditional 
Independence (CI) procedure. 

Yet another procedure is needed. The CI procedure 
assumes (class) conditional independence. A distributed 
procedure is needed wherein this assumption can be 
relaxed. In order to do this, another factorization of 
𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚) is needed in order to obtain a distributed 
procedure that allows for the relaxed assumption. Such a 
factorization is immediate – the Bayes chain rule.  

An example of the chain rule for three feature vectors is: 
𝑝𝑝(𝑥𝑥3, 𝑥𝑥2, 𝑥𝑥1|𝜔𝜔𝑚𝑚)
= 𝑝𝑝(𝑥𝑥3|𝑥𝑥2, 𝑥𝑥1, 𝜔𝜔𝑚𝑚)𝑝𝑝(𝑥𝑥2|𝑥𝑥1, 𝜔𝜔𝑚𝑚)𝑝𝑝(𝑥𝑥1|𝜔𝜔𝑚𝑚)  

An iterative formula for 𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚) can be developed. Let 
        𝑞𝑞1(𝜔𝜔𝑚𝑚) = 𝑝𝑝(𝑥𝑥1|𝜔𝜔𝑚𝑚) , and 𝑟𝑟1(𝜔𝜔𝑚𝑚) = 1 
then 𝑝𝑝(𝑥𝑥1|𝜔𝜔𝑚𝑚) =  𝑞𝑞1(𝜔𝜔𝑚𝑚)𝑟𝑟1(𝜔𝜔𝑚𝑚). Since 

𝑝𝑝(𝑥𝑥2, 𝑥𝑥1|𝜔𝜔𝑚𝑚) = 𝑝𝑝(𝑥𝑥2|𝑥𝑥1, 𝜔𝜔𝑚𝑚)𝑝𝑝(𝑥𝑥1|𝜔𝜔𝑚𝑚) 
then, this can also be written as 

𝑝𝑝(𝑥𝑥2, 𝑥𝑥1|𝜔𝜔𝑚𝑚) = 𝑞𝑞2(𝜔𝜔𝑚𝑚)𝑟𝑟2(𝜔𝜔𝑚𝑚) 
with 
   𝑞𝑞2(𝜔𝜔𝑚𝑚) = 𝑝𝑝(𝑥𝑥2|𝑥𝑥1, 𝜔𝜔𝑚𝑚)  
and 
    𝑟𝑟2(𝜔𝜔𝑚𝑚) =  𝑞𝑞1(𝜔𝜔𝑚𝑚)𝑟𝑟1(𝜔𝜔𝑚𝑚) 
 
Inducing accordingly, an expression for 𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚) is 

𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚) = 𝑞𝑞𝑁𝑁(𝜔𝜔𝑚𝑚)𝑟𝑟𝑁𝑁(𝜔𝜔𝑚𝑚) 
The decision law for this procedure immediately 

becomes 
𝛿𝛿(𝑥𝑥) = 𝜔𝜔𝑚𝑚∗   ⇔ 

𝑞𝑞𝑁𝑁(𝜔𝜔𝑚𝑚∗)𝑟𝑟𝑁𝑁(𝜔𝜔𝑚𝑚∗) ≥  𝑞𝑞𝑁𝑁(𝜔𝜔𝑚𝑚)𝑟𝑟𝑁𝑁(𝜔𝜔𝑚𝑚) ∀𝑚𝑚 ≠ 𝑚𝑚 ∗ 
and,                                                                             (4) 

𝑞𝑞𝑁𝑁(𝜔𝜔𝑚𝑚∗)𝑟𝑟𝑁𝑁(𝜔𝜔𝑚𝑚∗) ≥  𝑡𝑡𝑈𝑈 
 

𝛿𝛿(𝑥𝑥) = 𝜔𝜔𝑀𝑀+1   𝑜𝑜. 𝑤𝑤 
The procedure of (4) is termed the Distributed (D) 

procedure. 

It is a minor note, but it is possible to perform subjoint 
calculations for the iteration procedure of (4). Consider the 
calculation for four feature vectors:  

𝑝𝑝(𝑥𝑥4, 𝑥𝑥3, 𝑥𝑥2, 𝑥𝑥1|𝜔𝜔𝑚𝑚) = 𝑝𝑝(𝑥𝑥4|𝑥𝑥3, 𝑥𝑥2, 𝑥𝑥1, 𝜔𝜔𝑚𝑚) ∙ 
𝑝𝑝(𝑥𝑥3|𝑥𝑥2, 𝑥𝑥1, 𝜔𝜔𝑚𝑚)𝑝𝑝(𝑥𝑥2|𝑥𝑥1, 𝜔𝜔𝑚𝑚)𝑝𝑝(𝑥𝑥1|𝜔𝜔𝑚𝑚) 

= 𝑝𝑝(𝑥𝑥4|𝑥𝑥3, 𝑥𝑥2, 𝑥𝑥1, 𝜔𝜔𝑚𝑚)[𝑝𝑝(𝑥𝑥3, 𝑥𝑥2|𝑥𝑥1, 𝜔𝜔𝑚𝑚)]𝑝𝑝(𝑥𝑥1|𝜔𝜔𝑚𝑚) 
The term in brackets is a subjoint combination of two 

feature vectors. The chain rule offers this level of flexibility 
of calculation for the determination of the final conditional 
likelihood. In this effort, the procedure of (4) was followed. 

At this point, a discussion of the likelihoods that appear 
in (4) needs some development. It is apparent that feature 
vectors appear on the right-hand side of the condition along 
with the class of interest. This is atypical and is 
subsequently discussed. 

It is the standard business of either a parametric or 
nonparametric classifier to compute the following 

𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚)  
It is another thing entirely to compute 

𝑞𝑞𝑛𝑛(𝜔𝜔𝑚𝑚) =  𝑝𝑝(𝑥𝑥𝑛𝑛|𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛−2, ⋯ , 𝑥𝑥1𝜔𝜔𝑚𝑚) 
Here, the likelihood has to be computed to include the 

conditioning upon the prior feature vectors. So, the 
conditioning does not just depend on the class, but also the 
previous features vectors to complete the Bayes chain rule 
calculation. To address this need a novel implementation of 
the factorization was developed. 

To enforce the conditioning on the previous feature 
vectors, a confining set of lines are used (in a vector space, 
these lines become confining hyperplanes). This is 
diagramed for a simple case in Figure 6. 

Since the underlying distributions do not obey a 
standard statistical distribution, the usage of training 
vectors must be used as the probabilistic mass (also called 
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The confining volume is termed a hyper-wedge. The wedge is 
assessed for support and the amount of support is compared to a 
threshold. If that threshold is not met a simple adaptation scheme 
is employed where the width of the wedge is increased and the 
amount of support is recalculated. If the support fails the wedge is 
widened again up to a final limit. If it fails at the widest iteration 
then what support is available is used as the final support for 
assessment by the nonparametric classification method which is 
described next.

The hyper-wedge is a simple device that is used to approximate 
the conditional likelihood. It is only an estimate of the true 
conditioning. There were no attempts to employ other support-
based adaptive manifolds in this effort.

It should be important to note that if the hyper-wedge is extended 
to such a point that it encompasses the entire span of the feature 
space, it then becomes nothing other than the CI procedure since 
the conditioning on the feature has been relaxed. The D procedure 
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was not allowed to expand to such a wide level.
  
A means of classifying test vectors using a training set of feature 
vectors is still needed. There is a fairly substantial collection of 
such methods. Most methods can be qualified as being global 
in nature (i.e., the whole training set is used spanning the entire 
feature space) and local in nature (a limited area about the test 
vector is used). Given the nature of the nonparametric conditional 
distributions anticipated (to include multimodality), it was a design 
decision to select a locally oriented method.

A modified variant of the k-Nearest Neighbors method was 
selected for this effort [15]. It is rather simple to implement 
(although the search procedure can drive the compute cycles), and 
provides a very highly articulated decision surface in complicated 
feature overlap situations. The modifications involved how nearest 
neighbors were found and changing the voting logic to pseudo-
likelihoods (not unlike Parzen’s method). The determination of 
neighbors is different than that discussed in [15]. Instead, the 
number of neighbors is determined on a class-by-class basis. This 
is because some classes may have more member features than 
others, especially in light of the hyper-wedge that is employed. 
The neighbors from each class are then weighted by      , where d 
is the distance between the test vector and the neighbor training 
vectors. These weighted values are then normalized by the 
number of nearest neighbors available from that class. This value 
becomes the pseudo-likelihood for that class. This classification 
method was used in all three of the procedures discussed above. 
(It is a minor point, but the pseudo-likelihoods can easily be 
normalized to correspond to the properties of correct likelihoods 
– this was not performed here because it was not necessary. The 

pseudo-likelihoods all have similar scale among each of the three 
procedures separately – the decision laws of all three procedures 
are adjusted accordingly along with the thresholds employed.) 

4. Results 
In this section, three interrelated sets of results are presented and 
discussed. A final example is also shown which helps crystallize 
two important questions that are relevant to ATR.
 
For the performance results to be discussed the Figures of Merit 
(FoMs) need to be introduced. Three FoMs are used and are traced 
in the performance curves as the threshold sweep is conducted. 
An ambiguity array (sometimes referred to as a confusion matrix) 
is presented in Table I (at a fixed threshold) which is used to 
describe the FoMs. The first FoM is the probability of declaration 
(Pdec). Taking class #2 in Table I as an example, this probability is 
determined by summing up the entries in the class #2 row except 
for the last column entry (which is the no-declare class). This value 
becomes the numerator. The denominator is the full sum across 
the class #2 row. For class #2, Pdec then becomes (0+97+1)/100 or 
98%. The next FoM is Pcc which is the correct class (declaration) 
probability. This is calculated by taking the count at the intersection 
of the class #2 row and the class #2 column and dividing by the 
sum of the class #2 row except for the last column. Doing so 
provides a value of Pcc of (97)/(0+97+1) = 0.989. The third FoM is 
the probability of confidence, Pconf, and this is defined as the same 
intersection of the class #2 row with the class #2 column divided 
by the column sum at column #2. In the ambiguity array this value 
is: (97)/(2+97+3)= 0.989. This latter metric measures the degree of 
confidence of a class declaration. When a certain class is declared, 
it measures how often it arises from the correct class.
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measures the degree of confidence of a class declaration. 
When a certain class is declared, it measures how often it 
arises from the correct class. 

TABLE I 

Ambiguity Array for a three-class problem 
True 
Class 

Declared 
Class 

 1 2 3 4 
1 94 2 3 1 
2 0 97 1 2 
3 1 3 93 3 

 
The results shown are from simulation exercises. Each 

class for the training set (of feature vectors) was composed 
of a Monte Carlo of size 10,000. The test set was similarly 
constructed with a Monte Carlo size of 10,000 for each 
class. Each test feature vector is compared against the 
training set, likelihoods are gathered for the three 
procedures, and three decisions (at a given threshold) are 
made and then scored using the FoMs previously described. 
This is then repeated as the threshold is moved to its next 
value. 

A scatter diagram for Case #1 is shown in Figure 7. 
There are two classes and two sensors with feature vector 
dimensions of: [5,7] for a total dimensionality of 12. The 
underlying distributions are clearly nonparametric in 
nature, to include multimodality.  Four major modes are 
shown. The scatter support also seems to show poor feature 
separability since the two classes seem to be heavily 
overlapped. However, this is a figure of two dimensions of 
a 12-dimensional space. The training (and test) feature 
vectors are presented in a normalized space. The 
normalization used is the usual feature coordinate 
standardization. Each feature coordinate for all the classes 
is standardized by determining the mean and standard 
deviation and normalized accordingly. 
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The performance traces for the three procedures are 

depicted in Figures 8-10. Procedure C is the first figure and 
shows reasonable performance with a Pcc of 0.965 for Class 
#1 (Class #2 was similar). Procedure CI is also performing 
well with a Pcc of 0.939. Procedure D performs well with a 
Pcc of 0.962, a departure from procedure C of less than 1%. 
For this situation, the hyper-wedge settings were: initial 
half-width: 0.12, iteration half-width: 0.15, maximum half-
width: 0.72. The adaptive hyper-wedge of the procedure 
seems to perform adequately in approximating the joint 
method of procedure C. Procedure CI only lags behind 
procedure C by about 2.5% which is quite reasonable, 
despite the possible concern that the features may not be 
conditionally independent. 
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The results shown are from simulation exercises. Each class for 
the training set (of feature vectors) was composed of a Monte 
Carlo of size 10,000. The test set was similarly constructed with a 
Monte Carlo size of 10,000 for each class. Each test feature vector 
is compared against the training set, likelihoods are gathered for 
the three procedures, and three decisions (at a given threshold) are 
made and then scored using the FoMs previously described. This is 
then repeated as the threshold is moved to its next value. 

A scatter diagram for Case #1 is shown in Figure 7. There are 
two classes and two sensors with feature vector dimensions of: 

[5,7] for a total dimensionality of 12. The underlying distributions 
are clearly nonparametric in nature, to include multimodality.  
Four major modes are shown. The scatter support also seems to 
show poor feature separability since the two classes seem to be 
heavily overlapped. However, this is a figure of two dimensions 
of a 12-dimensional space. The training (and test) feature vectors 
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standard deviation and normalized accordingly.
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Fig. 10.  Procedure D Results, Case #1 
 
The results for Case #2 are shown in Figures 11-13. The 

same general statistical specification from Case #1 was 
extended to this case. However, now there are four classes 
and five sensors. The feature vector dimensions for each of 
the sensors was: [4,5,6,5,6] for a total dimensionality of 26. 
The results of the best performing class for the CI 
procedure (which was class #2) were used in posting the 
results for the C and D procedures (the worst performing 
class was less than 1% from the class #2).  

 
Fig. 11.  Procedure C Results, Case #2 
 
From Figure 11, procedure C shows a performance of 

0.979 which is superior. In Figure 12, procedure CI comes 
in at about 0.866 which is about 11% below that of 
procedure C. The performance is not bad unless it failed to 
meet a requirement higher than that. Procedure D (Figure 
13) produced a result of 0.956, which was about 2.3% 
lower than procedure C. As well, the performance is not 
bad unless, it too, failed to meet a requirement. For 
procedure D, the hyper-wedge settings were: initial half-
width: 0.12, iteration half-width: 0.15, maximum half-
width: 0.72. For this case, procedure D is providing a 
reasonable approximation to the C procedure. 

 
 

 
Fig. 12.  Procedure CI (Best) Results, Case #2 

 
Fig. 13.  Procedure D Results, Case #2 
 
The third Case is a comparative test to Case #2 in that 

there are still are four classes and five sensors. However, 
the feature vector dimensions for each of the sensors is 
now: [1,2,1,2,1] for a total dimensionality of 7 (which, to 
some extent, is the experiment of “missing features” as 
presented in [16]). The result of the best performing class 
from procedure CI is class #3 and it used for comparison 
against procedures C and D. The results of the three 
procedures are depicted in Figures 14-16.  

The results from procedure C are shown in Figure 14. 
Compared to Figure 11, the procedure is (apparently) 
suffering from the lack of feature vector dimensionality. 
The result of 0.836 is 14% lower than that of Case #2. This 
performance may not meet an ATR requirement. 

The result (Class 3) of procedure CI is shown in Figure 
15. The results show a dramatic departure from that of 
Figure 12. The performance is at 0.441 (the worst 
performing class came in at 0.381). This is a severe drop 
form the result of Figure 12. 

Figure 10: Procedure D Results, Case #1

The results for Case #2 are shown in Figures 11-13. The same 
general statistical specification from Case #1 was extended to this 
case. However, now there are four classes and five sensors. The 
feature vector dimensions for each of the sensors was: [4,5,6,5,6] 

for a total dimensionality of 26. The results of the best performing 
class for the CI procedure (which was class #2) were used in posting 
the results for the C and D procedures (the worst performing class 
was less than 1% from the class #2).
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The results from procedure C are shown in Figure 14. Compared 
to Figure 11, the procedure is (apparently) suffering from the lack 
of feature vector dimensionality. The result of 0.836 is 14% lower 
than that of Case #2. This performance may not meet an ATR 
requirement.

The result (Class 3) of procedure CI is shown in Figure 15. The 
results show a dramatic departure from that of Figure 12. The 
performance is at 0.441 (the worst performing class came in at 
0.381). This is a severe drop form the result of Figure 12.
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The result of procedure D is shown in Figure 16. The 
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The performance was only 0.774 which is 6.20% below the 
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was only 2.3% below procedure C in Case 2. Settings for 
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half-width: 0.04, maximum half-width: 0.24. This was an 
aggressive setting. It was so aggressive that Pdec departed 
from unity as the hyper-wedge eliminated all the support. 
This is shown in Figure 16 at the top. Pdec dropped down to 
0.9996 at the sensible edge of the threshold sweep. It 
should be clear that procedure D is having trouble 
approximating procedure C perfectly, while also struggling 
with feature vector separability (it can’t suffer from 
conditional dependence as it is designed exactly for that 
condition). 
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contradiction for a related matter. It’s relevance here is 
acutely useful in light of the results of Case #3. The results 
of this case are shown in Figures 17-21. 

Figure 17 shows the feature scatter of two classes in two 
dimensions (each sensor has scalar features). The scatter 
exhibits stellar separability, so much so that the human eye 
can classify these classes immediately. If a (test) feature 
vector arrived at the coordinates of (1,-1), it would 
immediately be classified as class #2. This was only 
possible by the separability of the scatter of the features. 
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that procedure D is having trouble approximating procedure C 
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Figure 18 shows the performance of procedure C for this problem. In agreement with what can be seen visually, the performance is at 
unity – perfect.
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But then, procedure CI, in Figure 19 displays a result 

that is no better then a coin-flip experiment (there are only 
two classes here). The results are as bad as they can be. This 
is a death knell case for this procedure. The reason for this 
is quite simple. If the 2-dimensional figure was collapsed 
along the y-axis onto the x-axis, the feature scatter would 
be compressed onto the x-axis, and the two classes would 
posit themselves on top of each other. Viewing up the y-
axis, it can be seen that the scatter above lies right on top 
of the scatter below (but they are from different classes). 
The same holds true compressing the x-axis onto the y-axis. 
These operations completely destroy the innate separability 
of the 2-dimensional problem. But this is exactly what the 
CI procedure does when computing likelihoods from a 
single sensor and then combining those likelihoods with the 
remaining sensors. The CI procedure, by its design, cannot 
‘visualize’ the full field of the scatter (really, the 
probabilistic support) since its focus is based on a single 
sensor alone, prior to amalgamating the results from the 
remainder of the sensors (with their partial ‘view’ as well) 
to compose a final classification result. 
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Procedure D is shown in Figure 20. It replicates the C 

procedure, as it should. The procedure is completely 
agnostic to feature vector collisions (that are occurring in a 
single dimension) since it is iterating through all the sensors 
before making a decision. The D procedure, even in 
challenging cases, seems to provide a very reasonable 
approximation to the C procedure. 
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Finally, the performance of sensor #2 (sensor #1 was 

equivalent) is shown. The result prides no surprise and is 
virtually the same as the CI procedure, for exactly the same 
reasons given above. 
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These operations completely destroy the innate separability of the 
2-dimensional problem. But this is exactly what the CI procedure 
does when computing likelihoods from a single sensor and then 
combining those likelihoods with the remaining sensors. The CI 
procedure, by its design, cannot ‘visualize’ the full field of the 
scatter (really, the probabilistic support) since its focus is based 
on a single sensor alone, prior to amalgamating the results from 
the remainder of the sensors (with their partial ‘view’ as well) to 
compose a final classification result. 
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Procedure D is shown in Figure 20. It replicates the C procedure, 
as it should. The procedure is completely agnostic to feature 
vector collisions (that are occurring in a single dimension) since it 

is iterating through all the sensors before making a decision. The 
D procedure, even in challenging cases, seems to provide a very 
reasonable approximation to the C procedure.
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Finally, the performance of sensor #2 (sensor #1 was equivalent) is shown. The result prides no surprise and is virtually the same as the 
CI procedure, for exactly the same reasons given above.
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But this begs an important question. Given the problem of Case 
#4, suppose each sensor was allowed to make a classification 
decision and submit their results to a classification fusion center. 
The performance of a fused classification/ID procedure (no matter 
what operators are used: Boolean logic, etc., etc.) on the separate 
sensor classifications would be equally poor. The same concern 
holds true for Artificial Intelligence (AI) learning techniques which 
are popularly researched topics at this time. Applying learning 
techniques when the information available are the separate sensor 
decisions and/or their likelihoods is tantamount to information 
that has the quality of a coin-flip. When the ‘visualization’ of the 
full amount of feature information has been collapsed along each 
sensor (thus abrogating the feature separability), it becomes a fait 
accompli. The damage was done before any possible rectification 
can be pursued subsequently. This example serves as a warning 
to the dangers of not having a complete portfolio of all the sensor 
feature vectors before making a decision. Regardless of whether 
an intermediate conditional independent likelihood fusion 
procedure (procedure CI) is performed or a classification/ID fusion 
procedure is used, the results are going to depart severely from that 
performance which is possible. Caveat emptor. 

Finally, a cursory examination of the scatter in Figure 17 does not 
reveal any severe instance of ‘correlation’ or (class conditional 
dependence). But a second look reveals some issues. Given 
knowledge that the test vector arises from class #1, and given that 
sensor #1 measures a value of -1, then it is not only improbable, but 
indeed impossible to get a value from sensor #2 that is above -0.4, 
despite a considerable amount of mass that lies above 0.5 (for class 
#1). The notion of conditional dependence can be frustratingly 
non-trivial, especially in a highly dimensioned feature space.
 
5. Summary 
A distributed Automatic Target Recognition procedure has 
been developed and exercised for the purpose of processing 
feature vectors and providing a consolidated class decision. The 
performance is quite good and closely approximates a centralized 
procedure.

It should be clear that issues exist in Automatic Target Recognition 
(classification), as well as the ensuing methods for sensor data 
fusion for the purposes of classification/recognition (ID/classifier 
fusion).
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It is very unclear to what degree that (class) conditional 
dependence has on classifier performance (even in the instance 
that conditional independence has been assumed). (Conditional 
independence is exact. That is when the factorization products 
of the likelihoods of the separate sensors equals the likelihood 
of the joint conditional.) Conditional dependence is not exact. It 
simply means that a factorization of the joint distribution will not 
yield likelihoods that equal the calculation of the likelihood from 
the joint conditional distribution. What matters is the degree of 
departure from conditional independence.
 
Furthermore, mathematical measures of conditional dependence 
are in their infancy (principal components and correlation 
coefficients). The measures do not extrapolate well to classifier 
performance. What complicates the situation is that conditional 
dependence occurs simultaneously with feature vector separability 
problems.
  
The impact of poor feature vector separability also seems to be 
without reasonable formal mathematical measures, especially 
for underlying distribution functions which are nonparametric 
in nature (to include multimodality). These measures need to 
be developed, not only at full dimensional space of the feature 
vectors, but also at the single sensor levels (wherein only a partial 
picture of the separability is available).
 
Of these two problems, it seems apparent that feature vector 
separability dominates as the most telling issue.

These problems make the field of target recognition/classification 
more a practice in art than an exercise of engineering discipline that 
is well anchored by mathematical formalism (with the aspiration 
of mathematical rigor to follow).
 
These two areas require further research. 
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