
J Sen Net Data Comm, 2025 Volume 5 | Issue 1 | 1

Distributed Target Recognition with Correlated Features
Research Article

P. William Kelsey*
*Corresponding Author
P. William Kelsey, Valdosta, GA, United States of America.

Submitted: 2024, Dec 06; Accepted: 2025, Jan 03; Published: 2025, Jan 07

Citation: Kelsey, P. W. (2025). Distributed Target Recognition with Correlated Features. J Sen Net Data Comm, 5(1), 01-14.

Abstract
This short paper describes the distributed recognition of targets. The sensor data fusion of features arising from multiple
sensors is considered for the purpose of target recognition/classification. This is performed in a scenario wherein the
underlying distributions are not Gaussian (i.e., the distributions do not obey Normality). Furthermore, there is ‘correlation’
between the separate sensor features. The separate (sensor) features are not statistically independent. The data fusion
procedure pursued here does not find itself in the object identification sensor data fusion paradigm. It is an intermediate step
between the two levels of data fusion for target recognition. In a departure from the (class) conditional assumptions typically
made, another factorization of the joint conditional distribution is evaluated. This factorization requires the conditioning
on previous feature vectors. A novel adaptive procedure is suggested to address that alternate factorization. A non-standard
nonparametric classification procedure is detailed in providing the classification results. The classification/recognition results
are for multiple classes. Results are compared against the centralized method and the statistically independent method.

Keywords: Classification, Sensor Data Fusion, Target Recognition

1. Introduction
The field of Automatic Target Recognition (ATR) in real world
applications is an exercise in navigating rough terrain. Even in
the instance of utilizing one sensor, the underlying distributions
of the features (a feature vector) exhibit a strong departure from
known parametric forms. I.e., the distributions are not Gaussian
(they do not obey Normality) nor do they possess any other known
parametric forms. Indeed, the underlying distributions (of the
sensor feature vector) can exhibit multi-modality. This, by itself,
can cause havoc on single sensor classification systems.

In the instance that multiple sensors are employed to classify
(or recognize, the terms are synonymous) a target, yet another
problem occurs. The features from the separate sensors can exhibit
‘correlation’. In the context of this application the ‘correlation’
is the (class) conditional dependence of the features across
the multiple sensors. This is apparently an issue of some angst.
Certainly, it can be said that correlation among separate sensors
is not a good thing in general. Procedures deployed to remove the
‘correlation’ include editing or principal components analysis to
arrive at a refurbished set of features.

Further complicating the problem at hand is the development of
a distributed procedure to provide a fused target declaration from
underlying distributions that are ill-behaved.

The field of sensor data fusion most likely had its nascence from
the seminal efforts of [1-4]. The initial application was in the field
of multi-sensor detection fusion. Sensor data fusion then grew into
the areas of (multiple) target tracking and target recognition.

The field of ATR (and classification using statistical pattern
recognition techniques) is similar to target detection in that it
can be cast as a problem in hypothesis testing. Indeed, viewed in
this way, ATR is nothing more than a generalization of detection.
Instead of a binary target/no target decision, the classification
procedure provides an answer for an M-ary hypothesis testing
problem, where M is the number of classes of interest. Hence,
many of the earlier efforts can be brought to bear for this problem.

This fact was recognized in perhaps the 1st paper representing this
field of investigation. In [5], a structural procedure is presented
to integrate the classification responses from multiple sensors and
provide a final (consolidated) classification response.

In [6], a diagram is provided (Figure 12) that lists the data fusion
techniques of ATR/classification. The 1st level is termed “data level
fusion” which combines the ‘data’ from multiple sensors into a
product from which a multisensor feature vector can be constructed
for classification. The research in this area is apparently absent.

Journal of Sensor Networks and Data Communications
ISSN: 2994-6433

Valdosta, GA, United States of America

J Sen Net Data Comm, 2025 Volume 5 | Issue 1 | 2

The 2nd level is termed “feature level fusion” wherein the separate
sensor feature vectors are obtained and placed into a stacked
vector for subsequent classification. Research focus in this area
also seems to absent.

The 3rd level is termed “decision (or ID) fusion”. This involves
the combination of the separate sensor decisions into a single final
decision.

The 3rd level has been of interest since that point with active
research commencing in [5] and continuing to recent activity [7-
9]. The area has been so active that there is not available space
to properly cite the efforts in this area. Interestingly, in [7,9], the
development tackled the problem of ‘correlation’ albeit at the
(classification) decision level. In [7], there is a notable inclusion of
a Probability space which is a 3-tuple space of (S,B,P), where B is
the Borel σ- field for the sample space considered.

What is curious is that the three levels presented in [6] do not
consider the fusion of intermediate information. That information
would be the separate sensor likelihoods obtained from each
sensor feature vector. The usage of likelihoods (or their posterior
counterparts) is rather fundamental to both detection and statistical
pattern recognition procedures.

Procedures developed along these ‘intermediate’ lines appear to be
scant as well. In [10-12], these procedures are pursued wherein the
posterior is constructed from the separate sensor likelihoods for all
the classes. For the lack of a better term, procedures along these
lines shall be termed “likelihood fusion”.

What is an underlying theme in almost all the efforts is the
assumption that the feature vectors are (class) conditionally

independent (or that the classification decisions also exhibit
conditional independence). For the efforts at the 3rd level, the
separate sensor decisions are deemed to be class conditionally
independent, allowing factorization of either likelihood ratio
tests or separate sensor performance probabilities. In the so-
called ‘intermediate’ efforts, the assumption allows an immediate
factorization of the joint conditional likelihood.

In this note, the investigation of the ‘intermediate level’ of sensor
data fusion for classification is pursued. The procedure must
deal with general nonparametric statistical distributions. It must
also accommodate a relaxation of the assumption of conditional
independence.

In Section II, a short segue is presented regarding the subject of
‘correlation’. In Section III, the design is discussed. In Section IV,
results are presented for four cases of interest. Section V contains
some concluding remarks.

2. A Note on ‘Correlation’
Clearly there is a concern of ‘correlation’ among either the separate
sensor feature vectors (at the “intermediate level”) or the sensor
classifications (“ID fusion” level).

Two simple examples are pursued that expose questions that
continue to plague ATR procedures.

The first example involves two sensors that have scalar features.
The plot of the feature scatter is depicted in Figure 1. As can be seen
visually, the features are highly correlated. Since the features are
drawn from Normal populations the features are also conditionally
dependent. What can also be seen is that while the populations are
somewhat close to each other, they do seem to display separation.

 3

Fig. 1. Feature Scatter Diagram for Example 1.

Fig. 2. Classifier Performance Class #1for Example #1.

The classification performance is shown in Figure 2 for

class #1 (class #2 was the same) where both features are
used. The performance is practically perfect confirming the
separability (the traces are explained later in Section IV).

But these features are highly correlated and
conditionally dependent. A situation like this is to be
avoided if at all possible.

Another example is shown in Figure 3. The populations
are also drawn from Normal distributions and are
conditionally independent. Conditionally independent
(‘uncorrelated”) features are typically desirable. The scatter
diagram shows the two populations and it shows a high
amount of overlap between the two classes. The
classification performance is shown in Figure 4 (for class
#1, class #2 was similar). Since this is a two-class problem,
the classifier struggles with a performance that closely
approximates a coin flip experiment.

Fig. 3. Feature Scatter Diagram for Example 2.

Fig. 4. Classifier Performance Class #1 for Example #2.

Based on these two examples, some empirical

observations can be made.
It seems that feature vectors that are (class)

conditionally dependent (‘correlated’) is not a sufficient
condition that classifier performance will be poor.

As well, it seems that the situation of conditionally
independent (‘uncorrelated’) features is not a necessary
condition for good classifier performance.

What seems to be important is the separability of the
class conditional distributions. Indeed, had a similarity
metric such as [13] been employed, the results would
indicate that Example #1 should have superior performance
over that of Example #2. The problem is that metrics such
as [13] provide extremely misleading results when the
underlying conditional distributions are nonparametric.

Finally, in [14] the following phrase is encountered
(“Dirty Secrets in Data Fusion”): “there is no substitute for
a good sensor”. For Example #1, a graph of the classifier
performance of the ‘best’ sensor is shown in Figure 5
(sensor #2 was poorer for both classes). The performance
is substantially poorer than the fused performance shown

Figure 1: Feature Scatter Diagram for Example 1

J Sen Net Data Comm, 2025 Volume 5 | Issue 1 | 3

 3

Fig. 1. Feature Scatter Diagram for Example 1.

Fig. 2. Classifier Performance Class #1for Example #1.

The classification performance is shown in Figure 2 for

class #1 (class #2 was the same) where both features are
used. The performance is practically perfect confirming the
separability (the traces are explained later in Section IV).

But these features are highly correlated and
conditionally dependent. A situation like this is to be
avoided if at all possible.

Another example is shown in Figure 3. The populations
are also drawn from Normal distributions and are
conditionally independent. Conditionally independent
(‘uncorrelated”) features are typically desirable. The scatter
diagram shows the two populations and it shows a high
amount of overlap between the two classes. The
classification performance is shown in Figure 4 (for class
#1, class #2 was similar). Since this is a two-class problem,
the classifier struggles with a performance that closely
approximates a coin flip experiment.

Fig. 3. Feature Scatter Diagram for Example 2.

Fig. 4. Classifier Performance Class #1 for Example #2.

Based on these two examples, some empirical

observations can be made.
It seems that feature vectors that are (class)

conditionally dependent (‘correlated’) is not a sufficient
condition that classifier performance will be poor.

As well, it seems that the situation of conditionally
independent (‘uncorrelated’) features is not a necessary
condition for good classifier performance.

What seems to be important is the separability of the
class conditional distributions. Indeed, had a similarity
metric such as [13] been employed, the results would
indicate that Example #1 should have superior performance
over that of Example #2. The problem is that metrics such
as [13] provide extremely misleading results when the
underlying conditional distributions are nonparametric.

Finally, in [14] the following phrase is encountered
(“Dirty Secrets in Data Fusion”): “there is no substitute for
a good sensor”. For Example #1, a graph of the classifier
performance of the ‘best’ sensor is shown in Figure 5
(sensor #2 was poorer for both classes). The performance
is substantially poorer than the fused performance shown

Figure 2: Classifier Performance Class #1for Example #1

Figure 3: Feature Scatter Diagram for Example 2

 3

Fig. 1. Feature Scatter Diagram for Example 1.

Fig. 2. Classifier Performance Class #1for Example #1.

The classification performance is shown in Figure 2 for

class #1 (class #2 was the same) where both features are
used. The performance is practically perfect confirming the
separability (the traces are explained later in Section IV).

But these features are highly correlated and
conditionally dependent. A situation like this is to be
avoided if at all possible.

Another example is shown in Figure 3. The populations
are also drawn from Normal distributions and are
conditionally independent. Conditionally independent
(‘uncorrelated”) features are typically desirable. The scatter
diagram shows the two populations and it shows a high
amount of overlap between the two classes. The
classification performance is shown in Figure 4 (for class
#1, class #2 was similar). Since this is a two-class problem,
the classifier struggles with a performance that closely
approximates a coin flip experiment.

Fig. 3. Feature Scatter Diagram for Example 2.

Fig. 4. Classifier Performance Class #1 for Example #2.

Based on these two examples, some empirical

observations can be made.
It seems that feature vectors that are (class)

conditionally dependent (‘correlated’) is not a sufficient
condition that classifier performance will be poor.

As well, it seems that the situation of conditionally
independent (‘uncorrelated’) features is not a necessary
condition for good classifier performance.

What seems to be important is the separability of the
class conditional distributions. Indeed, had a similarity
metric such as [13] been employed, the results would
indicate that Example #1 should have superior performance
over that of Example #2. The problem is that metrics such
as [13] provide extremely misleading results when the
underlying conditional distributions are nonparametric.

Finally, in [14] the following phrase is encountered
(“Dirty Secrets in Data Fusion”): “there is no substitute for
a good sensor”. For Example #1, a graph of the classifier
performance of the ‘best’ sensor is shown in Figure 5
(sensor #2 was poorer for both classes). The performance
is substantially poorer than the fused performance shown

 3

Fig. 1. Feature Scatter Diagram for Example 1.

Fig. 2. Classifier Performance Class #1for Example #1.

The classification performance is shown in Figure 2 for

class #1 (class #2 was the same) where both features are
used. The performance is practically perfect confirming the
separability (the traces are explained later in Section IV).

But these features are highly correlated and
conditionally dependent. A situation like this is to be
avoided if at all possible.

Another example is shown in Figure 3. The populations
are also drawn from Normal distributions and are
conditionally independent. Conditionally independent
(‘uncorrelated”) features are typically desirable. The scatter
diagram shows the two populations and it shows a high
amount of overlap between the two classes. The
classification performance is shown in Figure 4 (for class
#1, class #2 was similar). Since this is a two-class problem,
the classifier struggles with a performance that closely
approximates a coin flip experiment.

Fig. 3. Feature Scatter Diagram for Example 2.

Fig. 4. Classifier Performance Class #1 for Example #2.

Based on these two examples, some empirical

observations can be made.
It seems that feature vectors that are (class)

conditionally dependent (‘correlated’) is not a sufficient
condition that classifier performance will be poor.

As well, it seems that the situation of conditionally
independent (‘uncorrelated’) features is not a necessary
condition for good classifier performance.

What seems to be important is the separability of the
class conditional distributions. Indeed, had a similarity
metric such as [13] been employed, the results would
indicate that Example #1 should have superior performance
over that of Example #2. The problem is that metrics such
as [13] provide extremely misleading results when the
underlying conditional distributions are nonparametric.

Finally, in [14] the following phrase is encountered
(“Dirty Secrets in Data Fusion”): “there is no substitute for
a good sensor”. For Example #1, a graph of the classifier
performance of the ‘best’ sensor is shown in Figure 5
(sensor #2 was poorer for both classes). The performance
is substantially poorer than the fused performance shown

Figure 4: Classifier Performance Class #1 for Example #2

J Sen Net Data Comm, 2025 Volume 5 | Issue 1 | 4

The classification performance is shown in Figure 2 for class
#1 (class #2 was the same) where both features are used. The
performance is practically perfect confirming the separability (the
traces are explained later in Section IV).

But these features are highly correlated and conditionally
dependent. A situation like this is to be avoided if at all possible.

Another example is shown in Figure 3. The populations are also
drawn from Normal distributions and are conditionally independent.
Conditionally independent (‘uncorrelated”) features are typically
desirable. The scatter diagram shows the two populations and it
shows a high amount of overlap between the two classes. The
classification performance is shown in Figure 4 (for class #1, class
#2 was similar). Since this is a two-class problem, the classifier
struggles with a performance that closely approximates a coin flip
experiment.

Based on these two examples, some empirical observations can
be made.

It seems that feature vectors that are (class) conditionally
dependent (‘correlated’) is not a sufficient condition that classifier
performance will be poor.

As well, it seems that the situation of conditionally independent
(‘uncorrelated’) features is not a necessary condition for good
classifier performance.

What seems to be important is the separability of the class
conditional distributions. Indeed, had a similarity metric such
as [13] been employed, the results would indicate that Example
#1 should have superior performance over that of Example
#2. The problem is that metrics such as [13] provide extremely
misleading results when the underlying conditional distributions
are nonparametric.

Finally, in [14] the following phrase is encountered (“Dirty Secrets
in Data Fusion”): “there is no substitute for a good sensor”. For
Example #1, a graph of the classifier performance of the ‘best’
sensor is shown in Figure 5 (sensor #2 was poorer for both
classes). The performance is substantially poorer than the fused
performance shown in Figure 2.

And so, the two sensors provide very poor single sensor
performance when evaluated by themselves. However, when both
sensors are combined, the joint performance is virtually without
error. Feature vector separability changed going from a single
sensor to both sensors combined. (This is discussed again in Case
#4 in Section IV.) And this is in light that the ‘correlation’ (the
class conditional dependence) is very high. The statement in [14]
does not seem to apply in this instance.

Upon reflection, the statement in [14] has much more applicability
to the problem of sensor data fusion for the purposes of state
estimation and target tracking. In this instance, poor sensors (with
poor measurement error covariance matrices) cannot provide an
accurate state estimate since the state estimate error covariance
matrix fails to converge to an accurate level with poor quality
measurements.

4

in Figure 2.
And so, the two sensors provide very poor single sensor

performance when evaluated by themselves. However,
when both sensors are combined, the joint performance is
virtually without error. Feature vector separability changed
going from a single sensor to both sensors combined. (This
is discussed again in Case #4 in Section IV.) And this is in
light that the ‘correlation’ (the class conditional
dependence) is very high. The statement in [14] does not
seem to apply in this instance.

Upon reflection, the statement in [14] has much more
applicability to the problem of sensor data fusion for the
purposes of state estimation and target tracking. In this
instance, poor sensors (with poor measurement error
covariance matrices) can not provide an accurate state
estimate since the state estimate error covariance matrix
fails to converge to an accurate level with poor quality
measurements.

Fig. 5. Sensor #1 Performance, Class #1 for Example 1.

But in this application of ATR, it seems that there is

more involved in the determination of classifier
performance. It may not be that ‘correlation’ among the
feature vectors leads to unacceptable performance. In
practical ATR applications, class conditional dependence
is more the norm rather than the exception. The classifier
design must be sufficiently equipped to deal with these
situations.

Furthermore, as will be discussed in Section IV, designs
that are based on class conditional independence can work
under certain circumstances, but there can be unintended
consequences that can lead to poor performance. This
applies not only to ‘likelihood’ fusion but also classifier/ID
(identification) fusion as well.

III. DESIGN
In this section, three procedures are developed that

operate on the likelihoods. A method is described that
allows conditioning on prior feature vectors for the third

procedure. As well, a modified variant of a nonparametric
classifier is discussed.

The setting for the design is as follows. There are N
sensors, and each sensor provides one (and only one)
feature vector xn. with a dimension dim(xn)= dn. The feature
vectors xn are assumed to arise from a commonly tracked
target. There are M classes of interest, m, for 𝑚𝑚 ∈ {1, 𝑀𝑀}.

Three procedures are of interest: a) the feature level
fusion approach, b) the ‘intermediate’ conditional
independence likelihood fusion approach and c) the
‘distributed’ likelihood fusion approach. The decision law
for all three procedures is the same. A max likelihood law
is selected. The prior probabilities of the classes were not
assumed to be known.

For the feature level fusion procedure, the decision law
is

𝛿𝛿(𝑥𝑥𝑁𝑁) = 𝛿𝛿(𝑥𝑥) = 𝜔𝜔𝑚𝑚∗ ⇔
𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚∗) ≥ 𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚) ∀𝑚𝑚 ≠ 𝑚𝑚 ∗

and, (1)
𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚∗) ≥ 𝑡𝑡𝑈𝑈

𝛿𝛿(𝑥𝑥) = 𝜔𝜔𝑀𝑀+1 𝑜𝑜. 𝑤𝑤.

Here, xN is the feature vector stack of all the N feature
vectors provided by the N sensors and re-notated to x to
simplify notation:

 𝑥𝑥𝑁𝑁 = 𝑥𝑥 = [
𝑥𝑥1
𝑥𝑥2
⋮

𝑥𝑥𝑁𝑁

] (2)

The decision law in (1) states that m* is the selected
class when its conditional likelihood is higher than any
other class and it surpasses a barrier threshold tU. If that
fails then the classifier decides class M+1 which is the no-
declare class.

Furthermore, it should be made clear that the likelihoods
in (1) (and throughout the remaining designs) are, at best,
estimates of the true likelihood. This is because there is no
assumption that the underlying class conditional
distribution functions follow any known parametric
(statistical) form.

The decision procedure of (1) is termed the
‘Centralized’ (C) procedure since it has, at its disposal, all
of the feature vectors for implementing the decision law of
(1).

For the ‘intermediate’ likelihood fusion procedure, the
ususal assumption of class conditional independence is
invoked [10-12]. As such, the joint conditional distribution
factors for N feature vectors:

𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚) = ∏ 𝑝𝑝(𝑥𝑥𝑛𝑛|𝜔𝜔𝑚𝑚)
𝑁𝑁

𝑛𝑛=1

And so, the decision law of (1) becomes
𝛿𝛿(𝑥𝑥) = 𝜔𝜔𝑚𝑚∗ ⇔

Figure 5: Sensor #1 Performance, Class #1 for Example 1

But in this application of ATR, it seems that there is more involved
in the determination of classifier performance. It may not be that
‘correlation’ among the feature vectors leads to unacceptable
performance. In practical ATR applications, class conditional
dependence is more the norm rather than the exception. The
classifier design must be sufficiently equipped to deal with these
situations.

Furthermore, as will be discussed in Section IV, designs that are
based on class conditional independence can work under certain
circumstances, but there can be unintended consequences that can
lead to poor performance. This applies not only to ‘likelihood’
fusion but also classifier/ID (identification) fusion as well.

J Sen Net Data Comm, 2025 Volume 5 | Issue 1 | 5

3. Design
In this section, three procedures are developed that operate on the
likelihoods. A method is described that allows conditioning on
prior feature vectors for the third procedure. As well, a modified
variant of a nonparametric classifier is discussed.

The setting for the design is as follows. There are N sensors, and
each sensor provides one (and only one) feature vector xn. with a
dimension dim(xn) = dn. The feature vectors xn are assumed to arise
from a commonly tracked target. There are M classes of interest,
𝜔m, for 𝑚 ∈ {1, 𝑀}.

Three procedures are of interest: a) the feature level fusion approach,
b) the ‘intermediate’ conditional independence likelihood fusion
approach and c) the ‘distributed’ likelihood fusion approach. The
decision law for all three procedures is the same. A max likelihood
law is selected. The prior probabilities of the classes were not
assumed to be known.

For the feature level fusion procedure, the decision law is

Here, xN is the feature vector stack of all the N feature vectors
provided by the N sensors and re-notated to x to simplify notation:

The decision law in (1) states that 𝜔m* is the selected class when
its conditional likelihood is higher than any other class and it
surpasses a barrier threshold tU. If that fails then the classifier
decides class 𝜔M + 1 which is the nodeclare class.

Furthermore, it should be made clear that the likelihoods in (1)
(and throughout the remaining designs) are, at best, estimates of
the true likelihood. This is because there is no assumption that
the underlying class conditional distribution functions follow any
known parametric (statistical) form.

The decision procedure of (1) is termed the ‘Centralized’ (C)
procedure since it has, at its disposal, all of the feature vectors for
implementing the decision law of (1).

For the ‘intermediate’ likelihood fusion procedure, the ususal
assumption of class conditional independence is invoked [10-12].
As such, the joint conditional distribution factors for N feature
vectors:

And so, the decision law of (1) becomes

As can be seen by (3), the stacked feature vector has been replaced
by the likelihoods of the separate (sensor) feature vectors. Only
the likelihoods are involved in the calculation of (3). These
likelihoods are produced locally at each sensor and then sent to
the location where (3) is calculated. Note that the factorization is
only implemented between sensor feature vectors, not within the
feature vector of a single sensor.

The procedure of (3) is termed the (class) Conditional Independence
(CI) procedure.

Yet another procedure is needed. The CI procedure assumes
(class) conditional independence. A distributed procedure is
needed wherein this assumption can be relaxed. In order to do this,
another factorization of 𝑝(𝑥|𝜔𝑚) is needed in order to obtain a
distributed procedure that allows for the relaxed assumption. Such
a factorization is immediate – the Bayes chain rule.

An example of the chain rule for three feature vectors is:
𝑝(𝑥3, 𝑥2, 𝑥1|𝜔𝑚) = 𝑝(𝑥3|𝑥2, 𝑥1, 𝜔𝑚)𝑝(𝑥2|𝑥1, 𝜔𝑚)𝑝(𝑥1|𝜔𝑚)

An iterative formula for 𝑝(𝑥|𝜔𝑚) can be developed. Let 𝑞1(𝜔𝑚)
= 𝑝(𝑥1|𝜔𝑚) , and 𝑟1(𝜔𝑚) = 1 then 𝑝(𝑥1|𝜔𝑚) = 𝑞1(𝜔𝑚)𝑟1(𝜔𝑚).
Since 𝑝(𝑥2, 𝑥1|𝜔𝑚) = 𝑝(𝑥2|𝑥1, 𝜔𝑚)𝑝(𝑥1|𝜔𝑚) then, this can also
be written as 𝑝(𝑥2, 𝑥1|𝜔𝑚) = 𝑞2(𝜔𝑚)𝑟2(𝜔𝑚) with
𝑞2(𝜔𝑚) = 𝑝(𝑥2|𝑥1, 𝜔𝑚) and 𝑟2(𝜔𝑚) = 𝑞1(𝜔𝑚)𝑟1(𝜔𝑚)

Inducing accordingly, an expression for 𝑝(𝑥|𝜔𝑚) is 𝑝(𝑥|𝜔𝑚) =
𝑞𝑁(𝜔𝑚)𝑟𝑁(𝜔𝑚)

The decision law for this procedure immediately becomes

 (4)

4

in Figure 2.
And so, the two sensors provide very poor single sensor

performance when evaluated by themselves. However,
when both sensors are combined, the joint performance is
virtually without error. Feature vector separability changed
going from a single sensor to both sensors combined. (This
is discussed again in Case #4 in Section IV.) And this is in
light that the ‘correlation’ (the class conditional
dependence) is very high. The statement in [14] does not
seem to apply in this instance.

Upon reflection, the statement in [14] has much more
applicability to the problem of sensor data fusion for the
purposes of state estimation and target tracking. In this
instance, poor sensors (with poor measurement error
covariance matrices) can not provide an accurate state
estimate since the state estimate error covariance matrix
fails to converge to an accurate level with poor quality
measurements.

Fig. 5. Sensor #1 Performance, Class #1 for Example 1.

But in this application of ATR, it seems that there is

more involved in the determination of classifier
performance. It may not be that ‘correlation’ among the
feature vectors leads to unacceptable performance. In
practical ATR applications, class conditional dependence
is more the norm rather than the exception. The classifier
design must be sufficiently equipped to deal with these
situations.

Furthermore, as will be discussed in Section IV, designs
that are based on class conditional independence can work
under certain circumstances, but there can be unintended
consequences that can lead to poor performance. This
applies not only to ‘likelihood’ fusion but also classifier/ID
(identification) fusion as well.

III. DESIGN
In this section, three procedures are developed that

operate on the likelihoods. A method is described that
allows conditioning on prior feature vectors for the third

procedure. As well, a modified variant of a nonparametric
classifier is discussed.

The setting for the design is as follows. There are N
sensors, and each sensor provides one (and only one)
feature vector xn. with a dimension dim(xn)= dn. The feature
vectors xn are assumed to arise from a commonly tracked
target. There are M classes of interest, m, for 𝑚𝑚 ∈ {1, 𝑀𝑀}.

Three procedures are of interest: a) the feature level
fusion approach, b) the ‘intermediate’ conditional
independence likelihood fusion approach and c) the
‘distributed’ likelihood fusion approach. The decision law
for all three procedures is the same. A max likelihood law
is selected. The prior probabilities of the classes were not
assumed to be known.

For the feature level fusion procedure, the decision law
is

𝛿𝛿(𝑥𝑥𝑁𝑁) = 𝛿𝛿(𝑥𝑥) = 𝜔𝜔𝑚𝑚∗ ⇔
𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚∗) ≥ 𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚) ∀𝑚𝑚 ≠ 𝑚𝑚 ∗

and, (1)
𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚∗) ≥ 𝑡𝑡𝑈𝑈

𝛿𝛿(𝑥𝑥) = 𝜔𝜔𝑀𝑀+1 𝑜𝑜. 𝑤𝑤.

Here, xN is the feature vector stack of all the N feature
vectors provided by the N sensors and re-notated to x to
simplify notation:

 𝑥𝑥𝑁𝑁 = 𝑥𝑥 = [
𝑥𝑥1
𝑥𝑥2
⋮

𝑥𝑥𝑁𝑁

] (2)

The decision law in (1) states that m* is the selected
class when its conditional likelihood is higher than any
other class and it surpasses a barrier threshold tU. If that
fails then the classifier decides class M+1 which is the no-
declare class.

Furthermore, it should be made clear that the likelihoods
in (1) (and throughout the remaining designs) are, at best,
estimates of the true likelihood. This is because there is no
assumption that the underlying class conditional
distribution functions follow any known parametric
(statistical) form.

The decision procedure of (1) is termed the
‘Centralized’ (C) procedure since it has, at its disposal, all
of the feature vectors for implementing the decision law of
(1).

For the ‘intermediate’ likelihood fusion procedure, the
ususal assumption of class conditional independence is
invoked [10-12]. As such, the joint conditional distribution
factors for N feature vectors:

𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚) = ∏ 𝑝𝑝(𝑥𝑥𝑛𝑛|𝜔𝜔𝑚𝑚)
𝑁𝑁

𝑛𝑛=1

And so, the decision law of (1) becomes
𝛿𝛿(𝑥𝑥) = 𝜔𝜔𝑚𝑚∗ ⇔

4

in Figure 2.
And so, the two sensors provide very poor single sensor

performance when evaluated by themselves. However,
when both sensors are combined, the joint performance is
virtually without error. Feature vector separability changed
going from a single sensor to both sensors combined. (This
is discussed again in Case #4 in Section IV.) And this is in
light that the ‘correlation’ (the class conditional
dependence) is very high. The statement in [14] does not
seem to apply in this instance.

Upon reflection, the statement in [14] has much more
applicability to the problem of sensor data fusion for the
purposes of state estimation and target tracking. In this
instance, poor sensors (with poor measurement error
covariance matrices) can not provide an accurate state
estimate since the state estimate error covariance matrix
fails to converge to an accurate level with poor quality
measurements.

Fig. 5. Sensor #1 Performance, Class #1 for Example 1.

But in this application of ATR, it seems that there is

more involved in the determination of classifier
performance. It may not be that ‘correlation’ among the
feature vectors leads to unacceptable performance. In
practical ATR applications, class conditional dependence
is more the norm rather than the exception. The classifier
design must be sufficiently equipped to deal with these
situations.

Furthermore, as will be discussed in Section IV, designs
that are based on class conditional independence can work
under certain circumstances, but there can be unintended
consequences that can lead to poor performance. This
applies not only to ‘likelihood’ fusion but also classifier/ID
(identification) fusion as well.

III. DESIGN
In this section, three procedures are developed that

operate on the likelihoods. A method is described that
allows conditioning on prior feature vectors for the third

procedure. As well, a modified variant of a nonparametric
classifier is discussed.

The setting for the design is as follows. There are N
sensors, and each sensor provides one (and only one)
feature vector xn. with a dimension dim(xn)= dn. The feature
vectors xn are assumed to arise from a commonly tracked
target. There are M classes of interest, m, for 𝑚𝑚 ∈ {1, 𝑀𝑀}.

Three procedures are of interest: a) the feature level
fusion approach, b) the ‘intermediate’ conditional
independence likelihood fusion approach and c) the
‘distributed’ likelihood fusion approach. The decision law
for all three procedures is the same. A max likelihood law
is selected. The prior probabilities of the classes were not
assumed to be known.

For the feature level fusion procedure, the decision law
is

𝛿𝛿(𝑥𝑥𝑁𝑁) = 𝛿𝛿(𝑥𝑥) = 𝜔𝜔𝑚𝑚∗ ⇔
𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚∗) ≥ 𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚) ∀𝑚𝑚 ≠ 𝑚𝑚 ∗

and, (1)
𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚∗) ≥ 𝑡𝑡𝑈𝑈

𝛿𝛿(𝑥𝑥) = 𝜔𝜔𝑀𝑀+1 𝑜𝑜. 𝑤𝑤.

Here, xN is the feature vector stack of all the N feature
vectors provided by the N sensors and re-notated to x to
simplify notation:

 𝑥𝑥𝑁𝑁 = 𝑥𝑥 = [
𝑥𝑥1
𝑥𝑥2
⋮

𝑥𝑥𝑁𝑁

] (2)

The decision law in (1) states that m* is the selected
class when its conditional likelihood is higher than any
other class and it surpasses a barrier threshold tU. If that
fails then the classifier decides class M+1 which is the no-
declare class.

Furthermore, it should be made clear that the likelihoods
in (1) (and throughout the remaining designs) are, at best,
estimates of the true likelihood. This is because there is no
assumption that the underlying class conditional
distribution functions follow any known parametric
(statistical) form.

The decision procedure of (1) is termed the
‘Centralized’ (C) procedure since it has, at its disposal, all
of the feature vectors for implementing the decision law of
(1).

For the ‘intermediate’ likelihood fusion procedure, the
ususal assumption of class conditional independence is
invoked [10-12]. As such, the joint conditional distribution
factors for N feature vectors:

𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚) = ∏ 𝑝𝑝(𝑥𝑥𝑛𝑛|𝜔𝜔𝑚𝑚)
𝑁𝑁

𝑛𝑛=1

And so, the decision law of (1) becomes
𝛿𝛿(𝑥𝑥) = 𝜔𝜔𝑚𝑚∗ ⇔

4

in Figure 2.
And so, the two sensors provide very poor single sensor

performance when evaluated by themselves. However,
when both sensors are combined, the joint performance is
virtually without error. Feature vector separability changed
going from a single sensor to both sensors combined. (This
is discussed again in Case #4 in Section IV.) And this is in
light that the ‘correlation’ (the class conditional
dependence) is very high. The statement in [14] does not
seem to apply in this instance.

Upon reflection, the statement in [14] has much more
applicability to the problem of sensor data fusion for the
purposes of state estimation and target tracking. In this
instance, poor sensors (with poor measurement error
covariance matrices) can not provide an accurate state
estimate since the state estimate error covariance matrix
fails to converge to an accurate level with poor quality
measurements.

Fig. 5. Sensor #1 Performance, Class #1 for Example 1.

But in this application of ATR, it seems that there is

more involved in the determination of classifier
performance. It may not be that ‘correlation’ among the
feature vectors leads to unacceptable performance. In
practical ATR applications, class conditional dependence
is more the norm rather than the exception. The classifier
design must be sufficiently equipped to deal with these
situations.

Furthermore, as will be discussed in Section IV, designs
that are based on class conditional independence can work
under certain circumstances, but there can be unintended
consequences that can lead to poor performance. This
applies not only to ‘likelihood’ fusion but also classifier/ID
(identification) fusion as well.

III. DESIGN
In this section, three procedures are developed that

operate on the likelihoods. A method is described that
allows conditioning on prior feature vectors for the third

procedure. As well, a modified variant of a nonparametric
classifier is discussed.

The setting for the design is as follows. There are N
sensors, and each sensor provides one (and only one)
feature vector xn. with a dimension dim(xn)= dn. The feature
vectors xn are assumed to arise from a commonly tracked
target. There are M classes of interest, m, for 𝑚𝑚 ∈ {1, 𝑀𝑀}.

Three procedures are of interest: a) the feature level
fusion approach, b) the ‘intermediate’ conditional
independence likelihood fusion approach and c) the
‘distributed’ likelihood fusion approach. The decision law
for all three procedures is the same. A max likelihood law
is selected. The prior probabilities of the classes were not
assumed to be known.

For the feature level fusion procedure, the decision law
is

𝛿𝛿(𝑥𝑥𝑁𝑁) = 𝛿𝛿(𝑥𝑥) = 𝜔𝜔𝑚𝑚∗ ⇔
𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚∗) ≥ 𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚) ∀𝑚𝑚 ≠ 𝑚𝑚 ∗

and, (1)
𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚∗) ≥ 𝑡𝑡𝑈𝑈

𝛿𝛿(𝑥𝑥) = 𝜔𝜔𝑀𝑀+1 𝑜𝑜. 𝑤𝑤.

Here, xN is the feature vector stack of all the N feature
vectors provided by the N sensors and re-notated to x to
simplify notation:

 𝑥𝑥𝑁𝑁 = 𝑥𝑥 = [
𝑥𝑥1
𝑥𝑥2
⋮

𝑥𝑥𝑁𝑁

] (2)

The decision law in (1) states that m* is the selected
class when its conditional likelihood is higher than any
other class and it surpasses a barrier threshold tU. If that
fails then the classifier decides class M+1 which is the no-
declare class.

Furthermore, it should be made clear that the likelihoods
in (1) (and throughout the remaining designs) are, at best,
estimates of the true likelihood. This is because there is no
assumption that the underlying class conditional
distribution functions follow any known parametric
(statistical) form.

The decision procedure of (1) is termed the
‘Centralized’ (C) procedure since it has, at its disposal, all
of the feature vectors for implementing the decision law of
(1).

For the ‘intermediate’ likelihood fusion procedure, the
ususal assumption of class conditional independence is
invoked [10-12]. As such, the joint conditional distribution
factors for N feature vectors:

𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚) = ∏ 𝑝𝑝(𝑥𝑥𝑛𝑛|𝜔𝜔𝑚𝑚)
𝑁𝑁

𝑛𝑛=1

And so, the decision law of (1) becomes
𝛿𝛿(𝑥𝑥) = 𝜔𝜔𝑚𝑚∗ ⇔

4

in Figure 2.
And so, the two sensors provide very poor single sensor

performance when evaluated by themselves. However,
when both sensors are combined, the joint performance is
virtually without error. Feature vector separability changed
going from a single sensor to both sensors combined. (This
is discussed again in Case #4 in Section IV.) And this is in
light that the ‘correlation’ (the class conditional
dependence) is very high. The statement in [14] does not
seem to apply in this instance.

Upon reflection, the statement in [14] has much more
applicability to the problem of sensor data fusion for the
purposes of state estimation and target tracking. In this
instance, poor sensors (with poor measurement error
covariance matrices) can not provide an accurate state
estimate since the state estimate error covariance matrix
fails to converge to an accurate level with poor quality
measurements.

Fig. 5. Sensor #1 Performance, Class #1 for Example 1.

But in this application of ATR, it seems that there is

more involved in the determination of classifier
performance. It may not be that ‘correlation’ among the
feature vectors leads to unacceptable performance. In
practical ATR applications, class conditional dependence
is more the norm rather than the exception. The classifier
design must be sufficiently equipped to deal with these
situations.

Furthermore, as will be discussed in Section IV, designs
that are based on class conditional independence can work
under certain circumstances, but there can be unintended
consequences that can lead to poor performance. This
applies not only to ‘likelihood’ fusion but also classifier/ID
(identification) fusion as well.

III. DESIGN
In this section, three procedures are developed that

operate on the likelihoods. A method is described that
allows conditioning on prior feature vectors for the third

procedure. As well, a modified variant of a nonparametric
classifier is discussed.

The setting for the design is as follows. There are N
sensors, and each sensor provides one (and only one)
feature vector xn. with a dimension dim(xn)= dn. The feature
vectors xn are assumed to arise from a commonly tracked
target. There are M classes of interest, m, for 𝑚𝑚 ∈ {1, 𝑀𝑀}.

Three procedures are of interest: a) the feature level
fusion approach, b) the ‘intermediate’ conditional
independence likelihood fusion approach and c) the
‘distributed’ likelihood fusion approach. The decision law
for all three procedures is the same. A max likelihood law
is selected. The prior probabilities of the classes were not
assumed to be known.

For the feature level fusion procedure, the decision law
is

𝛿𝛿(𝑥𝑥𝑁𝑁) = 𝛿𝛿(𝑥𝑥) = 𝜔𝜔𝑚𝑚∗ ⇔
𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚∗) ≥ 𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚) ∀𝑚𝑚 ≠ 𝑚𝑚 ∗

and, (1)
𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚∗) ≥ 𝑡𝑡𝑈𝑈

𝛿𝛿(𝑥𝑥) = 𝜔𝜔𝑀𝑀+1 𝑜𝑜. 𝑤𝑤.

Here, xN is the feature vector stack of all the N feature
vectors provided by the N sensors and re-notated to x to
simplify notation:

 𝑥𝑥𝑁𝑁 = 𝑥𝑥 = [
𝑥𝑥1
𝑥𝑥2
⋮

𝑥𝑥𝑁𝑁

] (2)

The decision law in (1) states that m* is the selected
class when its conditional likelihood is higher than any
other class and it surpasses a barrier threshold tU. If that
fails then the classifier decides class M+1 which is the no-
declare class.

Furthermore, it should be made clear that the likelihoods
in (1) (and throughout the remaining designs) are, at best,
estimates of the true likelihood. This is because there is no
assumption that the underlying class conditional
distribution functions follow any known parametric
(statistical) form.

The decision procedure of (1) is termed the
‘Centralized’ (C) procedure since it has, at its disposal, all
of the feature vectors for implementing the decision law of
(1).

For the ‘intermediate’ likelihood fusion procedure, the
ususal assumption of class conditional independence is
invoked [10-12]. As such, the joint conditional distribution
factors for N feature vectors:

𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚) = ∏ 𝑝𝑝(𝑥𝑥𝑛𝑛|𝜔𝜔𝑚𝑚)
𝑁𝑁

𝑛𝑛=1

And so, the decision law of (1) becomes
𝛿𝛿(𝑥𝑥) = 𝜔𝜔𝑚𝑚∗ ⇔

 5

∏ 𝑝𝑝(𝑥𝑥𝑛𝑛|𝜔𝜔𝑚𝑚∗)
𝑁𝑁

𝑛𝑛=1
≥ ∏ 𝑝𝑝(𝑥𝑥𝑛𝑛|𝜔𝜔𝑚𝑚)

𝑁𝑁

𝑛𝑛=1
∀𝑚𝑚 ≠ 𝑚𝑚 ∗

and, (3)

∏ 𝑝𝑝(𝑥𝑥𝑛𝑛|𝜔𝜔𝑚𝑚∗)
𝑁𝑁

𝑛𝑛=1
≥ 𝑡𝑡𝑈𝑈

𝛿𝛿(𝑥𝑥) = 𝜔𝜔𝑀𝑀+1 𝑜𝑜. 𝑤𝑤.

As can be seen by (3), the stacked feature vector has

been replaced by the likelihoods of the separate (sensor)
feature vectors. Only the likelihoods are involved in the
calculation of (3). These likelihoods are produced locally
at each sensor and then sent to the location where (3) is
calculated. Note that the factorization is only implemented
between sensor feature vectors, not within the feature
vector of a single sensor.

The procedure of (3) is termed the (class) Conditional
Independence (CI) procedure.

Yet another procedure is needed. The CI procedure
assumes (class) conditional independence. A distributed
procedure is needed wherein this assumption can be
relaxed. In order to do this, another factorization of
𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚) is needed in order to obtain a distributed
procedure that allows for the relaxed assumption. Such a
factorization is immediate – the Bayes chain rule.

An example of the chain rule for three feature vectors is:
𝑝𝑝(𝑥𝑥3, 𝑥𝑥2, 𝑥𝑥1|𝜔𝜔𝑚𝑚)
= 𝑝𝑝(𝑥𝑥3|𝑥𝑥2, 𝑥𝑥1, 𝜔𝜔𝑚𝑚)𝑝𝑝(𝑥𝑥2|𝑥𝑥1, 𝜔𝜔𝑚𝑚)𝑝𝑝(𝑥𝑥1|𝜔𝜔𝑚𝑚)

An iterative formula for 𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚) can be developed. Let
 𝑞𝑞1(𝜔𝜔𝑚𝑚) = 𝑝𝑝(𝑥𝑥1|𝜔𝜔𝑚𝑚) , and 𝑟𝑟1(𝜔𝜔𝑚𝑚) = 1
then 𝑝𝑝(𝑥𝑥1|𝜔𝜔𝑚𝑚) = 𝑞𝑞1(𝜔𝜔𝑚𝑚)𝑟𝑟1(𝜔𝜔𝑚𝑚). Since

𝑝𝑝(𝑥𝑥2, 𝑥𝑥1|𝜔𝜔𝑚𝑚) = 𝑝𝑝(𝑥𝑥2|𝑥𝑥1, 𝜔𝜔𝑚𝑚)𝑝𝑝(𝑥𝑥1|𝜔𝜔𝑚𝑚)
then, this can also be written as

𝑝𝑝(𝑥𝑥2, 𝑥𝑥1|𝜔𝜔𝑚𝑚) = 𝑞𝑞2(𝜔𝜔𝑚𝑚)𝑟𝑟2(𝜔𝜔𝑚𝑚)
with
 𝑞𝑞2(𝜔𝜔𝑚𝑚) = 𝑝𝑝(𝑥𝑥2|𝑥𝑥1, 𝜔𝜔𝑚𝑚)
and
 𝑟𝑟2(𝜔𝜔𝑚𝑚) = 𝑞𝑞1(𝜔𝜔𝑚𝑚)𝑟𝑟1(𝜔𝜔𝑚𝑚)

Inducing accordingly, an expression for 𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚) is

𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚) = 𝑞𝑞𝑁𝑁(𝜔𝜔𝑚𝑚)𝑟𝑟𝑁𝑁(𝜔𝜔𝑚𝑚)
The decision law for this procedure immediately

becomes
𝛿𝛿(𝑥𝑥) = 𝜔𝜔𝑚𝑚∗ ⇔

𝑞𝑞𝑁𝑁(𝜔𝜔𝑚𝑚∗)𝑟𝑟𝑁𝑁(𝜔𝜔𝑚𝑚∗) ≥ 𝑞𝑞𝑁𝑁(𝜔𝜔𝑚𝑚)𝑟𝑟𝑁𝑁(𝜔𝜔𝑚𝑚) ∀𝑚𝑚 ≠ 𝑚𝑚 ∗
and, (4)

𝑞𝑞𝑁𝑁(𝜔𝜔𝑚𝑚∗)𝑟𝑟𝑁𝑁(𝜔𝜔𝑚𝑚∗) ≥ 𝑡𝑡𝑈𝑈

𝛿𝛿(𝑥𝑥) = 𝜔𝜔𝑀𝑀+1 𝑜𝑜. 𝑤𝑤
The procedure of (4) is termed the Distributed (D)

procedure.

It is a minor note, but it is possible to perform subjoint
calculations for the iteration procedure of (4). Consider the
calculation for four feature vectors:

𝑝𝑝(𝑥𝑥4, 𝑥𝑥3, 𝑥𝑥2, 𝑥𝑥1|𝜔𝜔𝑚𝑚) = 𝑝𝑝(𝑥𝑥4|𝑥𝑥3, 𝑥𝑥2, 𝑥𝑥1, 𝜔𝜔𝑚𝑚) ∙
𝑝𝑝(𝑥𝑥3|𝑥𝑥2, 𝑥𝑥1, 𝜔𝜔𝑚𝑚)𝑝𝑝(𝑥𝑥2|𝑥𝑥1, 𝜔𝜔𝑚𝑚)𝑝𝑝(𝑥𝑥1|𝜔𝜔𝑚𝑚)

= 𝑝𝑝(𝑥𝑥4|𝑥𝑥3, 𝑥𝑥2, 𝑥𝑥1, 𝜔𝜔𝑚𝑚)[𝑝𝑝(𝑥𝑥3, 𝑥𝑥2|𝑥𝑥1, 𝜔𝜔𝑚𝑚)]𝑝𝑝(𝑥𝑥1|𝜔𝜔𝑚𝑚)
The term in brackets is a subjoint combination of two

feature vectors. The chain rule offers this level of flexibility
of calculation for the determination of the final conditional
likelihood. In this effort, the procedure of (4) was followed.

At this point, a discussion of the likelihoods that appear
in (4) needs some development. It is apparent that feature
vectors appear on the right-hand side of the condition along
with the class of interest. This is atypical and is
subsequently discussed.

It is the standard business of either a parametric or
nonparametric classifier to compute the following

𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚)
It is another thing entirely to compute

𝑞𝑞𝑛𝑛(𝜔𝜔𝑚𝑚) = 𝑝𝑝(𝑥𝑥𝑛𝑛|𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛−2, ⋯ , 𝑥𝑥1𝜔𝜔𝑚𝑚)
Here, the likelihood has to be computed to include the

conditioning upon the prior feature vectors. So, the
conditioning does not just depend on the class, but also the
previous features vectors to complete the Bayes chain rule
calculation. To address this need a novel implementation of
the factorization was developed.

To enforce the conditioning on the previous feature
vectors, a confining set of lines are used (in a vector space,
these lines become confining hyperplanes). This is
diagramed for a simple case in Figure 6.

Since the underlying distributions do not obey a
standard statistical distribution, the usage of training
vectors must be used as the probabilistic mass (also called
the support). Figure 6 shows the scatter of support for both
features. The training feature vectors are used to provide an
estimate of (conditional) likelihoods to process a test
vector.

Here, two features are shown, x1 and x2. Given x1, the
desire is to compute 𝑝𝑝(𝑥𝑥2|𝑥𝑥1, 𝜔𝜔𝑚𝑚). Confining lines
(hyperplanes in a vector space) are constructed about x1
(𝑥𝑥𝑛𝑛−1, ⋯ , 𝑥𝑥1 in general). The shaded area in Figure 6
depicts the constrained area (volume, in higher dimensions)
of probabilistic support for use in the calculation of
𝑝𝑝(𝑥𝑥2|𝑥𝑥1, 𝜔𝜔𝑚𝑚). The volume outside of the shaded area can’t
be used for the calculation of the conditional likelihood.
This is necessary in order to enforce the conditioning on x1.

 5

∏ 𝑝𝑝(𝑥𝑥𝑛𝑛|𝜔𝜔𝑚𝑚∗)
𝑁𝑁

𝑛𝑛=1
≥ ∏ 𝑝𝑝(𝑥𝑥𝑛𝑛|𝜔𝜔𝑚𝑚)

𝑁𝑁

𝑛𝑛=1
∀𝑚𝑚 ≠ 𝑚𝑚 ∗

and, (3)

∏ 𝑝𝑝(𝑥𝑥𝑛𝑛|𝜔𝜔𝑚𝑚∗)
𝑁𝑁

𝑛𝑛=1
≥ 𝑡𝑡𝑈𝑈

𝛿𝛿(𝑥𝑥) = 𝜔𝜔𝑀𝑀+1 𝑜𝑜. 𝑤𝑤.

As can be seen by (3), the stacked feature vector has

been replaced by the likelihoods of the separate (sensor)
feature vectors. Only the likelihoods are involved in the
calculation of (3). These likelihoods are produced locally
at each sensor and then sent to the location where (3) is
calculated. Note that the factorization is only implemented
between sensor feature vectors, not within the feature
vector of a single sensor.

The procedure of (3) is termed the (class) Conditional
Independence (CI) procedure.

Yet another procedure is needed. The CI procedure
assumes (class) conditional independence. A distributed
procedure is needed wherein this assumption can be
relaxed. In order to do this, another factorization of
𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚) is needed in order to obtain a distributed
procedure that allows for the relaxed assumption. Such a
factorization is immediate – the Bayes chain rule.

An example of the chain rule for three feature vectors is:
𝑝𝑝(𝑥𝑥3, 𝑥𝑥2, 𝑥𝑥1|𝜔𝜔𝑚𝑚)
= 𝑝𝑝(𝑥𝑥3|𝑥𝑥2, 𝑥𝑥1, 𝜔𝜔𝑚𝑚)𝑝𝑝(𝑥𝑥2|𝑥𝑥1, 𝜔𝜔𝑚𝑚)𝑝𝑝(𝑥𝑥1|𝜔𝜔𝑚𝑚)

An iterative formula for 𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚) can be developed. Let
 𝑞𝑞1(𝜔𝜔𝑚𝑚) = 𝑝𝑝(𝑥𝑥1|𝜔𝜔𝑚𝑚) , and 𝑟𝑟1(𝜔𝜔𝑚𝑚) = 1
then 𝑝𝑝(𝑥𝑥1|𝜔𝜔𝑚𝑚) = 𝑞𝑞1(𝜔𝜔𝑚𝑚)𝑟𝑟1(𝜔𝜔𝑚𝑚). Since

𝑝𝑝(𝑥𝑥2, 𝑥𝑥1|𝜔𝜔𝑚𝑚) = 𝑝𝑝(𝑥𝑥2|𝑥𝑥1, 𝜔𝜔𝑚𝑚)𝑝𝑝(𝑥𝑥1|𝜔𝜔𝑚𝑚)
then, this can also be written as

𝑝𝑝(𝑥𝑥2, 𝑥𝑥1|𝜔𝜔𝑚𝑚) = 𝑞𝑞2(𝜔𝜔𝑚𝑚)𝑟𝑟2(𝜔𝜔𝑚𝑚)
with
 𝑞𝑞2(𝜔𝜔𝑚𝑚) = 𝑝𝑝(𝑥𝑥2|𝑥𝑥1, 𝜔𝜔𝑚𝑚)
and
 𝑟𝑟2(𝜔𝜔𝑚𝑚) = 𝑞𝑞1(𝜔𝜔𝑚𝑚)𝑟𝑟1(𝜔𝜔𝑚𝑚)

Inducing accordingly, an expression for 𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚) is

𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚) = 𝑞𝑞𝑁𝑁(𝜔𝜔𝑚𝑚)𝑟𝑟𝑁𝑁(𝜔𝜔𝑚𝑚)
The decision law for this procedure immediately

becomes
𝛿𝛿(𝑥𝑥) = 𝜔𝜔𝑚𝑚∗ ⇔

𝑞𝑞𝑁𝑁(𝜔𝜔𝑚𝑚∗)𝑟𝑟𝑁𝑁(𝜔𝜔𝑚𝑚∗) ≥ 𝑞𝑞𝑁𝑁(𝜔𝜔𝑚𝑚)𝑟𝑟𝑁𝑁(𝜔𝜔𝑚𝑚) ∀𝑚𝑚 ≠ 𝑚𝑚 ∗
and, (4)

𝑞𝑞𝑁𝑁(𝜔𝜔𝑚𝑚∗)𝑟𝑟𝑁𝑁(𝜔𝜔𝑚𝑚∗) ≥ 𝑡𝑡𝑈𝑈

𝛿𝛿(𝑥𝑥) = 𝜔𝜔𝑀𝑀+1 𝑜𝑜. 𝑤𝑤
The procedure of (4) is termed the Distributed (D)

procedure.

It is a minor note, but it is possible to perform subjoint
calculations for the iteration procedure of (4). Consider the
calculation for four feature vectors:

𝑝𝑝(𝑥𝑥4, 𝑥𝑥3, 𝑥𝑥2, 𝑥𝑥1|𝜔𝜔𝑚𝑚) = 𝑝𝑝(𝑥𝑥4|𝑥𝑥3, 𝑥𝑥2, 𝑥𝑥1, 𝜔𝜔𝑚𝑚) ∙
𝑝𝑝(𝑥𝑥3|𝑥𝑥2, 𝑥𝑥1, 𝜔𝜔𝑚𝑚)𝑝𝑝(𝑥𝑥2|𝑥𝑥1, 𝜔𝜔𝑚𝑚)𝑝𝑝(𝑥𝑥1|𝜔𝜔𝑚𝑚)

= 𝑝𝑝(𝑥𝑥4|𝑥𝑥3, 𝑥𝑥2, 𝑥𝑥1, 𝜔𝜔𝑚𝑚)[𝑝𝑝(𝑥𝑥3, 𝑥𝑥2|𝑥𝑥1, 𝜔𝜔𝑚𝑚)]𝑝𝑝(𝑥𝑥1|𝜔𝜔𝑚𝑚)
The term in brackets is a subjoint combination of two

feature vectors. The chain rule offers this level of flexibility
of calculation for the determination of the final conditional
likelihood. In this effort, the procedure of (4) was followed.

At this point, a discussion of the likelihoods that appear
in (4) needs some development. It is apparent that feature
vectors appear on the right-hand side of the condition along
with the class of interest. This is atypical and is
subsequently discussed.

It is the standard business of either a parametric or
nonparametric classifier to compute the following

𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚)
It is another thing entirely to compute

𝑞𝑞𝑛𝑛(𝜔𝜔𝑚𝑚) = 𝑝𝑝(𝑥𝑥𝑛𝑛|𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛−2, ⋯ , 𝑥𝑥1𝜔𝜔𝑚𝑚)
Here, the likelihood has to be computed to include the

conditioning upon the prior feature vectors. So, the
conditioning does not just depend on the class, but also the
previous features vectors to complete the Bayes chain rule
calculation. To address this need a novel implementation of
the factorization was developed.

To enforce the conditioning on the previous feature
vectors, a confining set of lines are used (in a vector space,
these lines become confining hyperplanes). This is
diagramed for a simple case in Figure 6.

Since the underlying distributions do not obey a
standard statistical distribution, the usage of training
vectors must be used as the probabilistic mass (also called
the support). Figure 6 shows the scatter of support for both
features. The training feature vectors are used to provide an
estimate of (conditional) likelihoods to process a test
vector.

Here, two features are shown, x1 and x2. Given x1, the
desire is to compute 𝑝𝑝(𝑥𝑥2|𝑥𝑥1, 𝜔𝜔𝑚𝑚). Confining lines
(hyperplanes in a vector space) are constructed about x1
(𝑥𝑥𝑛𝑛−1, ⋯ , 𝑥𝑥1 in general). The shaded area in Figure 6
depicts the constrained area (volume, in higher dimensions)
of probabilistic support for use in the calculation of
𝑝𝑝(𝑥𝑥2|𝑥𝑥1, 𝜔𝜔𝑚𝑚). The volume outside of the shaded area can’t
be used for the calculation of the conditional likelihood.
This is necessary in order to enforce the conditioning on x1.

J Sen Net Data Comm, 2025 Volume 5 | Issue 1 | 6

The procedure of (4) is termed the Distributed (D) procedure.

It is a minor note, but it is possible to perform subjoint calculations
for the iteration procedure of (4). Consider the calculation for four
feature vectors:

The term in brackets is a subjoint combination of two feature
vectors. The chain rule offers this level of flexibility of calculation
for the determination of the final conditional likelihood. In this
effort, the procedure of (4) was followed.

At this point, a discussion of the likelihoods that appear in (4)
needs some development. It is apparent that feature vectors appear
on the right-hand side of the condition along with the class of
interest. This is atypical and is subsequently discussed.

It is the standard business of either a parametric or nonparametric
classifier to compute the following 𝑝(𝑥|𝜔𝑚)

It is another thing entirely to compute 𝑞𝑛(𝜔𝑚) = 𝑝(𝑥𝑛|𝑥𝑛−1, 𝑥𝑛−2, ⋯
, 𝑥1𝜔𝑚)

Here, the likelihood has to be computed to include the conditioning
upon the prior feature vectors. So, the conditioning does not just
depend on the class, but also the previous features vectors to
complete the Bayes chain rule calculation. To address this need, a
novel implementation of the factorization was developed.

To enforce the conditioning on the previous feature vectors,
a confining set of lines are used (in a vector space, these lines
become confining hyperplanes). This is diagramed for a simple
case in Figure 6.

Since the underlying distributions do not obey a standard statistical
distribution, the usage of training vectors must be used as the
probabilistic mass (also called the support). Figure 6 shows the
scatter of support for both features. The training feature vectors are
used to provide an estimate of (conditional) likelihoods to process
a test vector.

Here, two features are shown, x1 and x2. Given x1, the desire is
to compute 𝑝(𝑥2|𝑥1, 𝜔𝑚). Confining lines (hyperplanes in a vector
space) are constructed about x1 (𝑥𝑛−1, ⋯ , 𝑥1 in general). The shaded
area in Figure 6 depicts the constrained area (volume, in higher
dimensions) of probabilistic support for use in the calculation of
𝑝(𝑥2|𝑥1, 𝜔𝑚). The volume outside of the shaded area can’t be used
for the calculation of the conditional likelihood. This is necessary
in order to enforce the conditioning on x1.

 5

∏ 𝑝𝑝(𝑥𝑥𝑛𝑛|𝜔𝜔𝑚𝑚∗)
𝑁𝑁

𝑛𝑛=1
≥ ∏ 𝑝𝑝(𝑥𝑥𝑛𝑛|𝜔𝜔𝑚𝑚)

𝑁𝑁

𝑛𝑛=1
∀𝑚𝑚 ≠ 𝑚𝑚 ∗

and, (3)

∏ 𝑝𝑝(𝑥𝑥𝑛𝑛|𝜔𝜔𝑚𝑚∗)
𝑁𝑁

𝑛𝑛=1
≥ 𝑡𝑡𝑈𝑈

𝛿𝛿(𝑥𝑥) = 𝜔𝜔𝑀𝑀+1 𝑜𝑜. 𝑤𝑤.

As can be seen by (3), the stacked feature vector has

been replaced by the likelihoods of the separate (sensor)
feature vectors. Only the likelihoods are involved in the
calculation of (3). These likelihoods are produced locally
at each sensor and then sent to the location where (3) is
calculated. Note that the factorization is only implemented
between sensor feature vectors, not within the feature
vector of a single sensor.

The procedure of (3) is termed the (class) Conditional
Independence (CI) procedure.

Yet another procedure is needed. The CI procedure
assumes (class) conditional independence. A distributed
procedure is needed wherein this assumption can be
relaxed. In order to do this, another factorization of
𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚) is needed in order to obtain a distributed
procedure that allows for the relaxed assumption. Such a
factorization is immediate – the Bayes chain rule.

An example of the chain rule for three feature vectors is:
𝑝𝑝(𝑥𝑥3, 𝑥𝑥2, 𝑥𝑥1|𝜔𝜔𝑚𝑚)
= 𝑝𝑝(𝑥𝑥3|𝑥𝑥2, 𝑥𝑥1, 𝜔𝜔𝑚𝑚)𝑝𝑝(𝑥𝑥2|𝑥𝑥1, 𝜔𝜔𝑚𝑚)𝑝𝑝(𝑥𝑥1|𝜔𝜔𝑚𝑚)

An iterative formula for 𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚) can be developed. Let
 𝑞𝑞1(𝜔𝜔𝑚𝑚) = 𝑝𝑝(𝑥𝑥1|𝜔𝜔𝑚𝑚) , and 𝑟𝑟1(𝜔𝜔𝑚𝑚) = 1
then 𝑝𝑝(𝑥𝑥1|𝜔𝜔𝑚𝑚) = 𝑞𝑞1(𝜔𝜔𝑚𝑚)𝑟𝑟1(𝜔𝜔𝑚𝑚). Since

𝑝𝑝(𝑥𝑥2, 𝑥𝑥1|𝜔𝜔𝑚𝑚) = 𝑝𝑝(𝑥𝑥2|𝑥𝑥1, 𝜔𝜔𝑚𝑚)𝑝𝑝(𝑥𝑥1|𝜔𝜔𝑚𝑚)
then, this can also be written as

𝑝𝑝(𝑥𝑥2, 𝑥𝑥1|𝜔𝜔𝑚𝑚) = 𝑞𝑞2(𝜔𝜔𝑚𝑚)𝑟𝑟2(𝜔𝜔𝑚𝑚)
with
 𝑞𝑞2(𝜔𝜔𝑚𝑚) = 𝑝𝑝(𝑥𝑥2|𝑥𝑥1, 𝜔𝜔𝑚𝑚)
and
 𝑟𝑟2(𝜔𝜔𝑚𝑚) = 𝑞𝑞1(𝜔𝜔𝑚𝑚)𝑟𝑟1(𝜔𝜔𝑚𝑚)

Inducing accordingly, an expression for 𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚) is

𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚) = 𝑞𝑞𝑁𝑁(𝜔𝜔𝑚𝑚)𝑟𝑟𝑁𝑁(𝜔𝜔𝑚𝑚)
The decision law for this procedure immediately

becomes
𝛿𝛿(𝑥𝑥) = 𝜔𝜔𝑚𝑚∗ ⇔

𝑞𝑞𝑁𝑁(𝜔𝜔𝑚𝑚∗)𝑟𝑟𝑁𝑁(𝜔𝜔𝑚𝑚∗) ≥ 𝑞𝑞𝑁𝑁(𝜔𝜔𝑚𝑚)𝑟𝑟𝑁𝑁(𝜔𝜔𝑚𝑚) ∀𝑚𝑚 ≠ 𝑚𝑚 ∗
and, (4)

𝑞𝑞𝑁𝑁(𝜔𝜔𝑚𝑚∗)𝑟𝑟𝑁𝑁(𝜔𝜔𝑚𝑚∗) ≥ 𝑡𝑡𝑈𝑈

𝛿𝛿(𝑥𝑥) = 𝜔𝜔𝑀𝑀+1 𝑜𝑜. 𝑤𝑤
The procedure of (4) is termed the Distributed (D)

procedure.

It is a minor note, but it is possible to perform subjoint
calculations for the iteration procedure of (4). Consider the
calculation for four feature vectors:

𝑝𝑝(𝑥𝑥4, 𝑥𝑥3, 𝑥𝑥2, 𝑥𝑥1|𝜔𝜔𝑚𝑚) = 𝑝𝑝(𝑥𝑥4|𝑥𝑥3, 𝑥𝑥2, 𝑥𝑥1, 𝜔𝜔𝑚𝑚) ∙
𝑝𝑝(𝑥𝑥3|𝑥𝑥2, 𝑥𝑥1, 𝜔𝜔𝑚𝑚)𝑝𝑝(𝑥𝑥2|𝑥𝑥1, 𝜔𝜔𝑚𝑚)𝑝𝑝(𝑥𝑥1|𝜔𝜔𝑚𝑚)

= 𝑝𝑝(𝑥𝑥4|𝑥𝑥3, 𝑥𝑥2, 𝑥𝑥1, 𝜔𝜔𝑚𝑚)[𝑝𝑝(𝑥𝑥3, 𝑥𝑥2|𝑥𝑥1, 𝜔𝜔𝑚𝑚)]𝑝𝑝(𝑥𝑥1|𝜔𝜔𝑚𝑚)
The term in brackets is a subjoint combination of two

feature vectors. The chain rule offers this level of flexibility
of calculation for the determination of the final conditional
likelihood. In this effort, the procedure of (4) was followed.

At this point, a discussion of the likelihoods that appear
in (4) needs some development. It is apparent that feature
vectors appear on the right-hand side of the condition along
with the class of interest. This is atypical and is
subsequently discussed.

It is the standard business of either a parametric or
nonparametric classifier to compute the following

𝑝𝑝(𝑥𝑥|𝜔𝜔𝑚𝑚)
It is another thing entirely to compute

𝑞𝑞𝑛𝑛(𝜔𝜔𝑚𝑚) = 𝑝𝑝(𝑥𝑥𝑛𝑛|𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛−2, ⋯ , 𝑥𝑥1𝜔𝜔𝑚𝑚)
Here, the likelihood has to be computed to include the

conditioning upon the prior feature vectors. So, the
conditioning does not just depend on the class, but also the
previous features vectors to complete the Bayes chain rule
calculation. To address this need a novel implementation of
the factorization was developed.

To enforce the conditioning on the previous feature
vectors, a confining set of lines are used (in a vector space,
these lines become confining hyperplanes). This is
diagramed for a simple case in Figure 6.

Since the underlying distributions do not obey a
standard statistical distribution, the usage of training
vectors must be used as the probabilistic mass (also called
the support). Figure 6 shows the scatter of support for both
features. The training feature vectors are used to provide an
estimate of (conditional) likelihoods to process a test
vector.

Here, two features are shown, x1 and x2. Given x1, the
desire is to compute 𝑝𝑝(𝑥𝑥2|𝑥𝑥1, 𝜔𝜔𝑚𝑚). Confining lines
(hyperplanes in a vector space) are constructed about x1
(𝑥𝑥𝑛𝑛−1, ⋯ , 𝑥𝑥1 in general). The shaded area in Figure 6
depicts the constrained area (volume, in higher dimensions)
of probabilistic support for use in the calculation of
𝑝𝑝(𝑥𝑥2|𝑥𝑥1, 𝜔𝜔𝑚𝑚). The volume outside of the shaded area can’t
be used for the calculation of the conditional likelihood.
This is necessary in order to enforce the conditioning on x1.

6

Fig. 6. Conditioning on Prior Feature Vectors.

The confining volume is termed a hyper-wedge. The

wedge is assessed for support and the amount of support is
compared to a threshold. If that threshold is not met a
simple adaptation scheme is employed where the width of
the wedge is increased and the amount of support is
recalculated. If the support fails the wedge is widened again
up to a final limit. If it fails at the widest iteration then what
support is available is used as the final support for
assessment by the nonparametric classification method
which is described next.

The hyper-wedge is a simple device that is used to
approximate the conditional likelihood. It is only an
estimate of the true conditioning. There were no attempts
to employ other support-based adaptive manifolds in this
effort.

It should be important to note that if the hyper-wedge is
extended to such a point that it encompasses the entire span
of the feature space, it then becomes nothing other than the
CI procedure since the conditioning on the feature has been
relaxed. The D procedure was not allowed to expand to
such a wide level.

A means of classifying test vectors using a training set
of feature vectors is still needed. There is a fairly
substantial collection of such methods. Most methods can
be qualified as being global in nature (i.e., the whole
training set is used spanning the entire feature space) and
local in nature (a limited area about the test vector is used).
Given the nature of the nonparametric conditional
distributions anticipated (to include multimodality), it was
a design decision to select a locally oriented method.

A modified variant of the k-Nearest Neighbors method
[15] was selected for this effort. It is rather simple to

implement (although the search procedure can drive the
compute cycles), and provides a very highly articulated
decision surface in complicated feature overlap situations.
The modifications involved how nearest neighbors were
found and changing the voting logic to pseudo-likelihoods
(not unlike Parzen’s method). The determination of
neighbors is different than that discussed in [15]. Instead,
the number of neighbors is determined on a class-by-class
basis. This is because some classes may have more member
features than others, especially in light of the hyper-wedge
that is employed. The neighbors from each class are then
weighted by 1 𝑑𝑑⁄ , where d is the distance between the test
vector and the neighbor training vectors. These weighted
values are then normalized by the number of nearest
neighbors available from that class. This value becomes the
pseudo-likelihood for that class. This classification method
was used in all three of the procedures discussed above. (It
is a minor point, but the pseudo-likelihoods can easily be
normalized to correspond to the properties of correct
likelihoods – this was not performed here because it was
not necessary. The pseudo-likelihoods all have similar
scale among each of the three procedures separately – the
decision laws of all three procedures are adjusted
accordingly along with the thresholds employed.)

IV. RESULTS
In this section, three interrelated sets of results are

presented and discussed. A final example is also shown
which helps crystallize two important questions that are
relevant to ATR.

For the performance results to be discussed the Figures
of Merit (FoMs) need to be introduced. Three FoMs are
used and are traced in the performance curves as the
threshold sweep is conducted. An ambiguity array
(sometimes referred to as a confusion matrix) is presented
in Table I (at a fixed threshold) which is used to describe
the FoMs. The first FoM is the probability of declaration
(Pdec). Taking class #2 in Table I as an example, this
probability is determined by summing up the entries in the
class #2 row except for the last column entry (which is the
no-declare class). This value becomes the numerator. The
denominator is the full sum across the class #2 row. For
class #2, Pdec then becomes (0+97+1)/100 or 98%. The next
FoM is Pcc which is the correct class (declaration)
probability. This is calculated by taking the count at the
intersection of the class #2 row and the class #2 column and
dividing by the sum of the class #2 row except for the last
column. Doing so provides a value of Pcc of
(97)/(0+97+1)= 0.989. The third FoM is the probability of
confidence, Pconf, and this is defined as the same
intersection of the class #2 row with the class #2 column
divided by the column sum at column #2. In the ambiguity
array this value is: (97)/(2+97+3)= 0.989. This latter metric

Figure 6: Conditioning on Prior Feature Vectors

The confining volume is termed a hyper-wedge. The wedge is
assessed for support and the amount of support is compared to a
threshold. If that threshold is not met a simple adaptation scheme
is employed where the width of the wedge is increased and the
amount of support is recalculated. If the support fails the wedge is
widened again up to a final limit. If it fails at the widest iteration
then what support is available is used as the final support for
assessment by the nonparametric classification method which is
described next.

The hyper-wedge is a simple device that is used to approximate
the conditional likelihood. It is only an estimate of the true
conditioning. There were no attempts to employ other support-
based adaptive manifolds in this effort.

It should be important to note that if the hyper-wedge is extended
to such a point that it encompasses the entire span of the feature
space, it then becomes nothing other than the CI procedure since
the conditioning on the feature has been relaxed. The D procedure

J Sen Net Data Comm, 2025 Volume 5 | Issue 1 | 7

was not allowed to expand to such a wide level.

A means of classifying test vectors using a training set of feature
vectors is still needed. There is a fairly substantial collection of
such methods. Most methods can be qualified as being global
in nature (i.e., the whole training set is used spanning the entire
feature space) and local in nature (a limited area about the test
vector is used). Given the nature of the nonparametric conditional
distributions anticipated (to include multimodality), it was a design
decision to select a locally oriented method.

A modified variant of the k-Nearest Neighbors method was
selected for this effort [15]. It is rather simple to implement
(although the search procedure can drive the compute cycles), and
provides a very highly articulated decision surface in complicated
feature overlap situations. The modifications involved how nearest
neighbors were found and changing the voting logic to pseudo-
likelihoods (not unlike Parzen’s method). The determination of
neighbors is different than that discussed in [15]. Instead, the
number of neighbors is determined on a class-by-class basis. This
is because some classes may have more member features than
others, especially in light of the hyper-wedge that is employed.
The neighbors from each class are then weighted by , where d
is the distance between the test vector and the neighbor training
vectors. These weighted values are then normalized by the
number of nearest neighbors available from that class. This value
becomes the pseudo-likelihood for that class. This classification
method was used in all three of the procedures discussed above.
(It is a minor point, but the pseudo-likelihoods can easily be
normalized to correspond to the properties of correct likelihoods
– this was not performed here because it was not necessary. The

pseudo-likelihoods all have similar scale among each of the three
procedures separately – the decision laws of all three procedures
are adjusted accordingly along with the thresholds employed.)

4. Results
In this section, three interrelated sets of results are presented and
discussed. A final example is also shown which helps crystallize
two important questions that are relevant to ATR.

For the performance results to be discussed the Figures of Merit
(FoMs) need to be introduced. Three FoMs are used and are traced
in the performance curves as the threshold sweep is conducted.
An ambiguity array (sometimes referred to as a confusion matrix)
is presented in Table I (at a fixed threshold) which is used to
describe the FoMs. The first FoM is the probability of declaration
(Pdec). Taking class #2 in Table I as an example, this probability is
determined by summing up the entries in the class #2 row except
for the last column entry (which is the no-declare class). This value
becomes the numerator. The denominator is the full sum across
the class #2 row. For class #2, Pdec then becomes (0+97+1)/100 or
98%. The next FoM is Pcc which is the correct class (declaration)
probability. This is calculated by taking the count at the intersection
of the class #2 row and the class #2 column and dividing by the
sum of the class #2 row except for the last column. Doing so
provides a value of Pcc of (97)/(0+97+1) = 0.989. The third FoM is
the probability of confidence, Pconf, and this is defined as the same
intersection of the class #2 row with the class #2 column divided
by the column sum at column #2. In the ambiguity array this value
is: (97)/(2+97+3)= 0.989. This latter metric measures the degree of
confidence of a class declaration. When a certain class is declared,
it measures how often it arises from the correct class.

6

Fig. 6. Conditioning on Prior Feature Vectors.

The confining volume is termed a hyper-wedge. The

wedge is assessed for support and the amount of support is
compared to a threshold. If that threshold is not met a
simple adaptation scheme is employed where the width of
the wedge is increased and the amount of support is
recalculated. If the support fails the wedge is widened again
up to a final limit. If it fails at the widest iteration then what
support is available is used as the final support for
assessment by the nonparametric classification method
which is described next.

The hyper-wedge is a simple device that is used to
approximate the conditional likelihood. It is only an
estimate of the true conditioning. There were no attempts
to employ other support-based adaptive manifolds in this
effort.

It should be important to note that if the hyper-wedge is
extended to such a point that it encompasses the entire span
of the feature space, it then becomes nothing other than the
CI procedure since the conditioning on the feature has been
relaxed. The D procedure was not allowed to expand to
such a wide level.

A means of classifying test vectors using a training set
of feature vectors is still needed. There is a fairly
substantial collection of such methods. Most methods can
be qualified as being global in nature (i.e., the whole
training set is used spanning the entire feature space) and
local in nature (a limited area about the test vector is used).
Given the nature of the nonparametric conditional
distributions anticipated (to include multimodality), it was
a design decision to select a locally oriented method.

A modified variant of the k-Nearest Neighbors method
[15] was selected for this effort. It is rather simple to

implement (although the search procedure can drive the
compute cycles), and provides a very highly articulated
decision surface in complicated feature overlap situations.
The modifications involved how nearest neighbors were
found and changing the voting logic to pseudo-likelihoods
(not unlike Parzen’s method). The determination of
neighbors is different than that discussed in [15]. Instead,
the number of neighbors is determined on a class-by-class
basis. This is because some classes may have more member
features than others, especially in light of the hyper-wedge
that is employed. The neighbors from each class are then
weighted by 1 𝑑𝑑⁄ , where d is the distance between the test
vector and the neighbor training vectors. These weighted
values are then normalized by the number of nearest
neighbors available from that class. This value becomes the
pseudo-likelihood for that class. This classification method
was used in all three of the procedures discussed above. (It
is a minor point, but the pseudo-likelihoods can easily be
normalized to correspond to the properties of correct
likelihoods – this was not performed here because it was
not necessary. The pseudo-likelihoods all have similar
scale among each of the three procedures separately – the
decision laws of all three procedures are adjusted
accordingly along with the thresholds employed.)

IV. RESULTS
In this section, three interrelated sets of results are

presented and discussed. A final example is also shown
which helps crystallize two important questions that are
relevant to ATR.

For the performance results to be discussed the Figures
of Merit (FoMs) need to be introduced. Three FoMs are
used and are traced in the performance curves as the
threshold sweep is conducted. An ambiguity array
(sometimes referred to as a confusion matrix) is presented
in Table I (at a fixed threshold) which is used to describe
the FoMs. The first FoM is the probability of declaration
(Pdec). Taking class #2 in Table I as an example, this
probability is determined by summing up the entries in the
class #2 row except for the last column entry (which is the
no-declare class). This value becomes the numerator. The
denominator is the full sum across the class #2 row. For
class #2, Pdec then becomes (0+97+1)/100 or 98%. The next
FoM is Pcc which is the correct class (declaration)
probability. This is calculated by taking the count at the
intersection of the class #2 row and the class #2 column and
dividing by the sum of the class #2 row except for the last
column. Doing so provides a value of Pcc of
(97)/(0+97+1)= 0.989. The third FoM is the probability of
confidence, Pconf, and this is defined as the same
intersection of the class #2 row with the class #2 column
divided by the column sum at column #2. In the ambiguity
array this value is: (97)/(2+97+3)= 0.989. This latter metric

 7

measures the degree of confidence of a class declaration.
When a certain class is declared, it measures how often it
arises from the correct class.

TABLE I

Ambiguity Array for a three-class problem
True
Class

Declared
Class

 1 2 3 4
1 94 2 3 1
2 0 97 1 2
3 1 3 93 3

The results shown are from simulation exercises. Each

class for the training set (of feature vectors) was composed
of a Monte Carlo of size 10,000. The test set was similarly
constructed with a Monte Carlo size of 10,000 for each
class. Each test feature vector is compared against the
training set, likelihoods are gathered for the three
procedures, and three decisions (at a given threshold) are
made and then scored using the FoMs previously described.
This is then repeated as the threshold is moved to its next
value.

A scatter diagram for Case #1 is shown in Figure 7.
There are two classes and two sensors with feature vector
dimensions of: [5,7] for a total dimensionality of 12. The
underlying distributions are clearly nonparametric in
nature, to include multimodality. Four major modes are
shown. The scatter support also seems to show poor feature
separability since the two classes seem to be heavily
overlapped. However, this is a figure of two dimensions of
a 12-dimensional space. The training (and test) feature
vectors are presented in a normalized space. The
normalization used is the usual feature coordinate
standardization. Each feature coordinate for all the classes
is standardized by determining the mean and standard
deviation and normalized accordingly.

Fig. 7. Scatter Diagram of Case #1.

The performance traces for the three procedures are

depicted in Figures 8-10. Procedure C is the first figure and
shows reasonable performance with a Pcc of 0.965 for Class
#1 (Class #2 was similar). Procedure CI is also performing
well with a Pcc of 0.939. Procedure D performs well with a
Pcc of 0.962, a departure from procedure C of less than 1%.
For this situation, the hyper-wedge settings were: initial
half-width: 0.12, iteration half-width: 0.15, maximum half-
width: 0.72. The adaptive hyper-wedge of the procedure
seems to perform adequately in approximating the joint
method of procedure C. Procedure CI only lags behind
procedure C by about 2.5% which is quite reasonable,
despite the possible concern that the features may not be
conditionally independent.

Fig. 8. Procedure C Results, Case #1

Fig. 9. Procedure CI Results, Case #1

Table 1: Ambiguity Array for a Three-Class Problem.
The results shown are from simulation exercises. Each class for
the training set (of feature vectors) was composed of a Monte
Carlo of size 10,000. The test set was similarly constructed with a
Monte Carlo size of 10,000 for each class. Each test feature vector
is compared against the training set, likelihoods are gathered for
the three procedures, and three decisions (at a given threshold) are
made and then scored using the FoMs previously described. This is
then repeated as the threshold is moved to its next value.

A scatter diagram for Case #1 is shown in Figure 7. There are
two classes and two sensors with feature vector dimensions of:

[5,7] for a total dimensionality of 12. The underlying distributions
are clearly nonparametric in nature, to include multimodality.
Four major modes are shown. The scatter support also seems to
show poor feature separability since the two classes seem to be
heavily overlapped. However, this is a figure of two dimensions
of a 12-dimensional space. The training (and test) feature vectors
are presented in a normalized space. The normalization used is the
usual feature coordinate standardization. Each feature coordinate
for all the classes is standardized by determining the mean and
standard deviation and normalized accordingly.

J Sen Net Data Comm, 2025 Volume 5 | Issue 1 | 8

 7

measures the degree of confidence of a class declaration.
When a certain class is declared, it measures how often it
arises from the correct class.

TABLE I

Ambiguity Array for a three-class problem
True
Class

Declared
Class

 1 2 3 4
1 94 2 3 1
2 0 97 1 2
3 1 3 93 3

The results shown are from simulation exercises. Each

class for the training set (of feature vectors) was composed
of a Monte Carlo of size 10,000. The test set was similarly
constructed with a Monte Carlo size of 10,000 for each
class. Each test feature vector is compared against the
training set, likelihoods are gathered for the three
procedures, and three decisions (at a given threshold) are
made and then scored using the FoMs previously described.
This is then repeated as the threshold is moved to its next
value.

A scatter diagram for Case #1 is shown in Figure 7.
There are two classes and two sensors with feature vector
dimensions of: [5,7] for a total dimensionality of 12. The
underlying distributions are clearly nonparametric in
nature, to include multimodality. Four major modes are
shown. The scatter support also seems to show poor feature
separability since the two classes seem to be heavily
overlapped. However, this is a figure of two dimensions of
a 12-dimensional space. The training (and test) feature
vectors are presented in a normalized space. The
normalization used is the usual feature coordinate
standardization. Each feature coordinate for all the classes
is standardized by determining the mean and standard
deviation and normalized accordingly.

Fig. 7. Scatter Diagram of Case #1.

The performance traces for the three procedures are

depicted in Figures 8-10. Procedure C is the first figure and
shows reasonable performance with a Pcc of 0.965 for Class
#1 (Class #2 was similar). Procedure CI is also performing
well with a Pcc of 0.939. Procedure D performs well with a
Pcc of 0.962, a departure from procedure C of less than 1%.
For this situation, the hyper-wedge settings were: initial
half-width: 0.12, iteration half-width: 0.15, maximum half-
width: 0.72. The adaptive hyper-wedge of the procedure
seems to perform adequately in approximating the joint
method of procedure C. Procedure CI only lags behind
procedure C by about 2.5% which is quite reasonable,
despite the possible concern that the features may not be
conditionally independent.

Fig. 8. Procedure C Results, Case #1

Fig. 9. Procedure CI Results, Case #1

Figure 7: Scatter Diagram of Case #1

 Figure 8: Procedure C Results, Case #1

 Figure 9: Procedure CI Results, Case #1

The performance traces for the three procedures are depicted in
Figures 8-10. Procedure C is the first figure and shows reasonable
performance with a Pcc of 0.965 for Class #1 (Class #2 was
similar). Procedure CI is also performing well with a Pcc of 0.939.
Procedure D performs well with a Pcc of 0.962, a departure from
procedure C of less than 1%. For this situation, the hyper-wedge

settings were: initial half-width: 0.12, iteration half-width: 0.15,
maximum halfwidth: 0.72. The adaptive hyper-wedge of the
procedure seems to perform adequately in approximating the joint
method of procedure C. Procedure CI only lags behind procedure
C by about 2.5% which is quite reasonable, despite the possible
concern that the features may not be conditionally independent.

 7

measures the degree of confidence of a class declaration.
When a certain class is declared, it measures how often it
arises from the correct class.

TABLE I

Ambiguity Array for a three-class problem
True
Class

Declared
Class

 1 2 3 4
1 94 2 3 1
2 0 97 1 2
3 1 3 93 3

The results shown are from simulation exercises. Each

class for the training set (of feature vectors) was composed
of a Monte Carlo of size 10,000. The test set was similarly
constructed with a Monte Carlo size of 10,000 for each
class. Each test feature vector is compared against the
training set, likelihoods are gathered for the three
procedures, and three decisions (at a given threshold) are
made and then scored using the FoMs previously described.
This is then repeated as the threshold is moved to its next
value.

A scatter diagram for Case #1 is shown in Figure 7.
There are two classes and two sensors with feature vector
dimensions of: [5,7] for a total dimensionality of 12. The
underlying distributions are clearly nonparametric in
nature, to include multimodality. Four major modes are
shown. The scatter support also seems to show poor feature
separability since the two classes seem to be heavily
overlapped. However, this is a figure of two dimensions of
a 12-dimensional space. The training (and test) feature
vectors are presented in a normalized space. The
normalization used is the usual feature coordinate
standardization. Each feature coordinate for all the classes
is standardized by determining the mean and standard
deviation and normalized accordingly.

Fig. 7. Scatter Diagram of Case #1.

The performance traces for the three procedures are

depicted in Figures 8-10. Procedure C is the first figure and
shows reasonable performance with a Pcc of 0.965 for Class
#1 (Class #2 was similar). Procedure CI is also performing
well with a Pcc of 0.939. Procedure D performs well with a
Pcc of 0.962, a departure from procedure C of less than 1%.
For this situation, the hyper-wedge settings were: initial
half-width: 0.12, iteration half-width: 0.15, maximum half-
width: 0.72. The adaptive hyper-wedge of the procedure
seems to perform adequately in approximating the joint
method of procedure C. Procedure CI only lags behind
procedure C by about 2.5% which is quite reasonable,
despite the possible concern that the features may not be
conditionally independent.

Fig. 8. Procedure C Results, Case #1

Fig. 9. Procedure CI Results, Case #1

 7

measures the degree of confidence of a class declaration.
When a certain class is declared, it measures how often it
arises from the correct class.

TABLE I

Ambiguity Array for a three-class problem
True
Class

Declared
Class

 1 2 3 4
1 94 2 3 1
2 0 97 1 2
3 1 3 93 3

The results shown are from simulation exercises. Each

class for the training set (of feature vectors) was composed
of a Monte Carlo of size 10,000. The test set was similarly
constructed with a Monte Carlo size of 10,000 for each
class. Each test feature vector is compared against the
training set, likelihoods are gathered for the three
procedures, and three decisions (at a given threshold) are
made and then scored using the FoMs previously described.
This is then repeated as the threshold is moved to its next
value.

A scatter diagram for Case #1 is shown in Figure 7.
There are two classes and two sensors with feature vector
dimensions of: [5,7] for a total dimensionality of 12. The
underlying distributions are clearly nonparametric in
nature, to include multimodality. Four major modes are
shown. The scatter support also seems to show poor feature
separability since the two classes seem to be heavily
overlapped. However, this is a figure of two dimensions of
a 12-dimensional space. The training (and test) feature
vectors are presented in a normalized space. The
normalization used is the usual feature coordinate
standardization. Each feature coordinate for all the classes
is standardized by determining the mean and standard
deviation and normalized accordingly.

Fig. 7. Scatter Diagram of Case #1.

The performance traces for the three procedures are

depicted in Figures 8-10. Procedure C is the first figure and
shows reasonable performance with a Pcc of 0.965 for Class
#1 (Class #2 was similar). Procedure CI is also performing
well with a Pcc of 0.939. Procedure D performs well with a
Pcc of 0.962, a departure from procedure C of less than 1%.
For this situation, the hyper-wedge settings were: initial
half-width: 0.12, iteration half-width: 0.15, maximum half-
width: 0.72. The adaptive hyper-wedge of the procedure
seems to perform adequately in approximating the joint
method of procedure C. Procedure CI only lags behind
procedure C by about 2.5% which is quite reasonable,
despite the possible concern that the features may not be
conditionally independent.

Fig. 8. Procedure C Results, Case #1

Fig. 9. Procedure CI Results, Case #1

J Sen Net Data Comm, 2025 Volume 5 | Issue 1 | 9

8

Fig. 10. Procedure D Results, Case #1

The results for Case #2 are shown in Figures 11-13. The

same general statistical specification from Case #1 was
extended to this case. However, now there are four classes
and five sensors. The feature vector dimensions for each of
the sensors was: [4,5,6,5,6] for a total dimensionality of 26.
The results of the best performing class for the CI
procedure (which was class #2) were used in posting the
results for the C and D procedures (the worst performing
class was less than 1% from the class #2).

Fig. 11. Procedure C Results, Case #2

From Figure 11, procedure C shows a performance of

0.979 which is superior. In Figure 12, procedure CI comes
in at about 0.866 which is about 11% below that of
procedure C. The performance is not bad unless it failed to
meet a requirement higher than that. Procedure D (Figure
13) produced a result of 0.956, which was about 2.3%
lower than procedure C. As well, the performance is not
bad unless, it too, failed to meet a requirement. For
procedure D, the hyper-wedge settings were: initial half-
width: 0.12, iteration half-width: 0.15, maximum half-
width: 0.72. For this case, procedure D is providing a
reasonable approximation to the C procedure.

Fig. 12. Procedure CI (Best) Results, Case #2

Fig. 13. Procedure D Results, Case #2

The third Case is a comparative test to Case #2 in that

there are still are four classes and five sensors. However,
the feature vector dimensions for each of the sensors is
now: [1,2,1,2,1] for a total dimensionality of 7 (which, to
some extent, is the experiment of “missing features” as
presented in [16]). The result of the best performing class
from procedure CI is class #3 and it used for comparison
against procedures C and D. The results of the three
procedures are depicted in Figures 14-16.

The results from procedure C are shown in Figure 14.
Compared to Figure 11, the procedure is (apparently)
suffering from the lack of feature vector dimensionality.
The result of 0.836 is 14% lower than that of Case #2. This
performance may not meet an ATR requirement.

The result (Class 3) of procedure CI is shown in Figure
15. The results show a dramatic departure from that of
Figure 12. The performance is at 0.441 (the worst
performing class came in at 0.381). This is a severe drop
form the result of Figure 12.

Figure 10: Procedure D Results, Case #1

The results for Case #2 are shown in Figures 11-13. The same
general statistical specification from Case #1 was extended to this
case. However, now there are four classes and five sensors. The
feature vector dimensions for each of the sensors was: [4,5,6,5,6]

for a total dimensionality of 26. The results of the best performing
class for the CI procedure (which was class #2) were used in posting
the results for the C and D procedures (the worst performing class
was less than 1% from the class #2).

8

Fig. 10. Procedure D Results, Case #1

The results for Case #2 are shown in Figures 11-13. The

same general statistical specification from Case #1 was
extended to this case. However, now there are four classes
and five sensors. The feature vector dimensions for each of
the sensors was: [4,5,6,5,6] for a total dimensionality of 26.
The results of the best performing class for the CI
procedure (which was class #2) were used in posting the
results for the C and D procedures (the worst performing
class was less than 1% from the class #2).

Fig. 11. Procedure C Results, Case #2

From Figure 11, procedure C shows a performance of

0.979 which is superior. In Figure 12, procedure CI comes
in at about 0.866 which is about 11% below that of
procedure C. The performance is not bad unless it failed to
meet a requirement higher than that. Procedure D (Figure
13) produced a result of 0.956, which was about 2.3%
lower than procedure C. As well, the performance is not
bad unless, it too, failed to meet a requirement. For
procedure D, the hyper-wedge settings were: initial half-
width: 0.12, iteration half-width: 0.15, maximum half-
width: 0.72. For this case, procedure D is providing a
reasonable approximation to the C procedure.

Fig. 12. Procedure CI (Best) Results, Case #2

Fig. 13. Procedure D Results, Case #2

The third Case is a comparative test to Case #2 in that

there are still are four classes and five sensors. However,
the feature vector dimensions for each of the sensors is
now: [1,2,1,2,1] for a total dimensionality of 7 (which, to
some extent, is the experiment of “missing features” as
presented in [16]). The result of the best performing class
from procedure CI is class #3 and it used for comparison
against procedures C and D. The results of the three
procedures are depicted in Figures 14-16.

The results from procedure C are shown in Figure 14.
Compared to Figure 11, the procedure is (apparently)
suffering from the lack of feature vector dimensionality.
The result of 0.836 is 14% lower than that of Case #2. This
performance may not meet an ATR requirement.

The result (Class 3) of procedure CI is shown in Figure
15. The results show a dramatic departure from that of
Figure 12. The performance is at 0.441 (the worst
performing class came in at 0.381). This is a severe drop
form the result of Figure 12.

Figure 11: Procedure C Results, Case #2
From Figure 11, procedure C shows a performance of 0.979 which
is superior. In Figure 12, procedure CI comes in at about 0.866
which is about 11% below that of procedure C. The performance
is not bad unless it failed to meet a requirement higher than that.
Procedure D (Figure 13) produced a result of 0.956, which was
about 2.3% lower than procedure C. As well, the performance is

not bad unless, it too, failed to meet a requirement. For procedure
D, the hyper-wedge settings were: initial halfwidth: 0.12, iteration
half-width: 0.15, maximum halfwidth: 0.72. For this case,
procedure D is providing a reasonable approximation to the C
procedure.

8

Fig. 10. Procedure D Results, Case #1

The results for Case #2 are shown in Figures 11-13. The

same general statistical specification from Case #1 was
extended to this case. However, now there are four classes
and five sensors. The feature vector dimensions for each of
the sensors was: [4,5,6,5,6] for a total dimensionality of 26.
The results of the best performing class for the CI
procedure (which was class #2) were used in posting the
results for the C and D procedures (the worst performing
class was less than 1% from the class #2).

Fig. 11. Procedure C Results, Case #2

From Figure 11, procedure C shows a performance of

0.979 which is superior. In Figure 12, procedure CI comes
in at about 0.866 which is about 11% below that of
procedure C. The performance is not bad unless it failed to
meet a requirement higher than that. Procedure D (Figure
13) produced a result of 0.956, which was about 2.3%
lower than procedure C. As well, the performance is not
bad unless, it too, failed to meet a requirement. For
procedure D, the hyper-wedge settings were: initial half-
width: 0.12, iteration half-width: 0.15, maximum half-
width: 0.72. For this case, procedure D is providing a
reasonable approximation to the C procedure.

Fig. 12. Procedure CI (Best) Results, Case #2

Fig. 13. Procedure D Results, Case #2

The third Case is a comparative test to Case #2 in that

there are still are four classes and five sensors. However,
the feature vector dimensions for each of the sensors is
now: [1,2,1,2,1] for a total dimensionality of 7 (which, to
some extent, is the experiment of “missing features” as
presented in [16]). The result of the best performing class
from procedure CI is class #3 and it used for comparison
against procedures C and D. The results of the three
procedures are depicted in Figures 14-16.

The results from procedure C are shown in Figure 14.
Compared to Figure 11, the procedure is (apparently)
suffering from the lack of feature vector dimensionality.
The result of 0.836 is 14% lower than that of Case #2. This
performance may not meet an ATR requirement.

The result (Class 3) of procedure CI is shown in Figure
15. The results show a dramatic departure from that of
Figure 12. The performance is at 0.441 (the worst
performing class came in at 0.381). This is a severe drop
form the result of Figure 12.

Figure 12: Procedure CI (Best) Results, Case #2

J Sen Net Data Comm, 2025 Volume 5 | Issue 1 | 10

8

Fig. 10. Procedure D Results, Case #1

The results for Case #2 are shown in Figures 11-13. The

same general statistical specification from Case #1 was
extended to this case. However, now there are four classes
and five sensors. The feature vector dimensions for each of
the sensors was: [4,5,6,5,6] for a total dimensionality of 26.
The results of the best performing class for the CI
procedure (which was class #2) were used in posting the
results for the C and D procedures (the worst performing
class was less than 1% from the class #2).

Fig. 11. Procedure C Results, Case #2

From Figure 11, procedure C shows a performance of

0.979 which is superior. In Figure 12, procedure CI comes
in at about 0.866 which is about 11% below that of
procedure C. The performance is not bad unless it failed to
meet a requirement higher than that. Procedure D (Figure
13) produced a result of 0.956, which was about 2.3%
lower than procedure C. As well, the performance is not
bad unless, it too, failed to meet a requirement. For
procedure D, the hyper-wedge settings were: initial half-
width: 0.12, iteration half-width: 0.15, maximum half-
width: 0.72. For this case, procedure D is providing a
reasonable approximation to the C procedure.

Fig. 12. Procedure CI (Best) Results, Case #2

Fig. 13. Procedure D Results, Case #2

The third Case is a comparative test to Case #2 in that

there are still are four classes and five sensors. However,
the feature vector dimensions for each of the sensors is
now: [1,2,1,2,1] for a total dimensionality of 7 (which, to
some extent, is the experiment of “missing features” as
presented in [16]). The result of the best performing class
from procedure CI is class #3 and it used for comparison
against procedures C and D. The results of the three
procedures are depicted in Figures 14-16.

The results from procedure C are shown in Figure 14.
Compared to Figure 11, the procedure is (apparently)
suffering from the lack of feature vector dimensionality.
The result of 0.836 is 14% lower than that of Case #2. This
performance may not meet an ATR requirement.

The result (Class 3) of procedure CI is shown in Figure
15. The results show a dramatic departure from that of
Figure 12. The performance is at 0.441 (the worst
performing class came in at 0.381). This is a severe drop
form the result of Figure 12.

Figure 13: Procedure D Results, Case #2

The third Case is a comparative test to Case #2 in that there are
still are four classes and five sensors. However, the feature vector
dimensions for each of the sensors is now: [1,2,1,2,1] for a total
dimensionality of 7 (which, to some extent, is the experiment of
“missing features” as presented in [16]). The result of the best
performing class from procedure CI is class #3 and it used for
comparison against procedures C and D. The results of the three
procedures are depicted in Figures 14-16.

The results from procedure C are shown in Figure 14. Compared
to Figure 11, the procedure is (apparently) suffering from the lack
of feature vector dimensionality. The result of 0.836 is 14% lower
than that of Case #2. This performance may not meet an ATR
requirement.

The result (Class 3) of procedure CI is shown in Figure 15. The
results show a dramatic departure from that of Figure 12. The
performance is at 0.441 (the worst performing class came in at
0.381). This is a severe drop form the result of Figure 12.

 9

Fig. 14. Procedure C Results, Case #3

The result of procedure D is shown in Figure 16. The

result here also exhibits a downward trend in performance.
The performance was only 0.774 which is 6.20% below the
performance of the C procedure. The result from Case 2
was only 2.3% below procedure C in Case 2. Settings for
the hyper-wedge were: initial half-width: 0.08, iteration
half-width: 0.04, maximum half-width: 0.24. This was an
aggressive setting. It was so aggressive that Pdec departed
from unity as the hyper-wedge eliminated all the support.
This is shown in Figure 16 at the top. Pdec dropped down to
0.9996 at the sensible edge of the threshold sweep. It
should be clear that procedure D is having trouble
approximating procedure C perfectly, while also struggling
with feature vector separability (it can’t suffer from
conditional dependence as it is designed exactly for that
condition).

Fig. 15. Procedure CI Results, Case #3

Fig. 16. Procedure D Results, Case #3

The final case to discuss is Case #4 which is a separate

case from the prior three cases. The case is the so-called ‘4-
corners problem’ which is used as an empirical proof-by-
contradiction for a related matter. It’s relevance here is
acutely useful in light of the results of Case #3. The results
of this case are shown in Figures 17-21.

Figure 17 shows the feature scatter of two classes in two
dimensions (each sensor has scalar features). The scatter
exhibits stellar separability, so much so that the human eye
can classify these classes immediately. If a (test) feature
vector arrived at the coordinates of (1,-1), it would
immediately be classified as class #2. This was only
possible by the separability of the scatter of the features.

Fig. 17. Feature Scatter for Case #4

Figure 18 shows the performance of procedure C for this

problem. In agreement with what can be seen visually, the
performance is at unity – perfect.

Figure 14: Procedure C Results, Case #3

The result of procedure D is shown in Figure 16. The result here
also exhibits a downward trend in performance. The performance
was only 0.774 which is 6.20% below the performance of the C
procedure. The result from Case 2 was only 2.3% below procedure
C in Case 2. Settings for the hyper-wedge were: initial half-width:
0.08, iteration half-width: 0.04, maximum half-width: 0.24. This
was an aggressive setting. It was so aggressive that Pdec departed

from unity as the hyper-wedge eliminated all the support. This
is shown in Figure 16 at the top. Pdec dropped down to 0.9996
at the sensible edge of the threshold sweep. It should be clear
that procedure D is having trouble approximating procedure C
perfectly, while also struggling with feature vector separability (it
can’t suffer from conditional dependence as it is designed exactly
for that condition).

J Sen Net Data Comm, 2025 Volume 5 | Issue 1 | 11

 9

Fig. 14. Procedure C Results, Case #3

The result of procedure D is shown in Figure 16. The

result here also exhibits a downward trend in performance.
The performance was only 0.774 which is 6.20% below the
performance of the C procedure. The result from Case 2
was only 2.3% below procedure C in Case 2. Settings for
the hyper-wedge were: initial half-width: 0.08, iteration
half-width: 0.04, maximum half-width: 0.24. This was an
aggressive setting. It was so aggressive that Pdec departed
from unity as the hyper-wedge eliminated all the support.
This is shown in Figure 16 at the top. Pdec dropped down to
0.9996 at the sensible edge of the threshold sweep. It
should be clear that procedure D is having trouble
approximating procedure C perfectly, while also struggling
with feature vector separability (it can’t suffer from
conditional dependence as it is designed exactly for that
condition).

Fig. 15. Procedure CI Results, Case #3

Fig. 16. Procedure D Results, Case #3

The final case to discuss is Case #4 which is a separate

case from the prior three cases. The case is the so-called ‘4-
corners problem’ which is used as an empirical proof-by-
contradiction for a related matter. It’s relevance here is
acutely useful in light of the results of Case #3. The results
of this case are shown in Figures 17-21.

Figure 17 shows the feature scatter of two classes in two
dimensions (each sensor has scalar features). The scatter
exhibits stellar separability, so much so that the human eye
can classify these classes immediately. If a (test) feature
vector arrived at the coordinates of (1,-1), it would
immediately be classified as class #2. This was only
possible by the separability of the scatter of the features.

Fig. 17. Feature Scatter for Case #4

Figure 18 shows the performance of procedure C for this

problem. In agreement with what can be seen visually, the
performance is at unity – perfect.

Figure 15: Procedure CI Results, Case #3

Figure 16: Procedure D Results, Case #3

 9

Fig. 14. Procedure C Results, Case #3

The result of procedure D is shown in Figure 16. The

result here also exhibits a downward trend in performance.
The performance was only 0.774 which is 6.20% below the
performance of the C procedure. The result from Case 2
was only 2.3% below procedure C in Case 2. Settings for
the hyper-wedge were: initial half-width: 0.08, iteration
half-width: 0.04, maximum half-width: 0.24. This was an
aggressive setting. It was so aggressive that Pdec departed
from unity as the hyper-wedge eliminated all the support.
This is shown in Figure 16 at the top. Pdec dropped down to
0.9996 at the sensible edge of the threshold sweep. It
should be clear that procedure D is having trouble
approximating procedure C perfectly, while also struggling
with feature vector separability (it can’t suffer from
conditional dependence as it is designed exactly for that
condition).

Fig. 15. Procedure CI Results, Case #3

Fig. 16. Procedure D Results, Case #3

The final case to discuss is Case #4 which is a separate

case from the prior three cases. The case is the so-called ‘4-
corners problem’ which is used as an empirical proof-by-
contradiction for a related matter. It’s relevance here is
acutely useful in light of the results of Case #3. The results
of this case are shown in Figures 17-21.

Figure 17 shows the feature scatter of two classes in two
dimensions (each sensor has scalar features). The scatter
exhibits stellar separability, so much so that the human eye
can classify these classes immediately. If a (test) feature
vector arrived at the coordinates of (1,-1), it would
immediately be classified as class #2. This was only
possible by the separability of the scatter of the features.

Fig. 17. Feature Scatter for Case #4

Figure 18 shows the performance of procedure C for this

problem. In agreement with what can be seen visually, the
performance is at unity – perfect.

The final case to discuss is Case #4 which is a separate case from
the prior three cases. The case is the so-called ‘4corners problem’
which is used as an empirical proof-bycontradiction for a related
matter. It’s relevance here is acutely useful in light of the results of
Case #3. The results of this case are shown in Figures 17-21.

Figure 17 shows the feature scatter of two classes in two
dimensions (each sensor has scalar features). The scatter exhibits
stellar separability, so much so that the human eye can classify
these classes immediately. If a (test) feature vector arrived at the
coordinates of (1,-1), it would immediately be classified as class
#2. This was only possible by the separability of the scatter of the
features.

 9

Fig. 14. Procedure C Results, Case #3

The result of procedure D is shown in Figure 16. The

result here also exhibits a downward trend in performance.
The performance was only 0.774 which is 6.20% below the
performance of the C procedure. The result from Case 2
was only 2.3% below procedure C in Case 2. Settings for
the hyper-wedge were: initial half-width: 0.08, iteration
half-width: 0.04, maximum half-width: 0.24. This was an
aggressive setting. It was so aggressive that Pdec departed
from unity as the hyper-wedge eliminated all the support.
This is shown in Figure 16 at the top. Pdec dropped down to
0.9996 at the sensible edge of the threshold sweep. It
should be clear that procedure D is having trouble
approximating procedure C perfectly, while also struggling
with feature vector separability (it can’t suffer from
conditional dependence as it is designed exactly for that
condition).

Fig. 15. Procedure CI Results, Case #3

Fig. 16. Procedure D Results, Case #3

The final case to discuss is Case #4 which is a separate

case from the prior three cases. The case is the so-called ‘4-
corners problem’ which is used as an empirical proof-by-
contradiction for a related matter. It’s relevance here is
acutely useful in light of the results of Case #3. The results
of this case are shown in Figures 17-21.

Figure 17 shows the feature scatter of two classes in two
dimensions (each sensor has scalar features). The scatter
exhibits stellar separability, so much so that the human eye
can classify these classes immediately. If a (test) feature
vector arrived at the coordinates of (1,-1), it would
immediately be classified as class #2. This was only
possible by the separability of the scatter of the features.

Fig. 17. Feature Scatter for Case #4

Figure 18 shows the performance of procedure C for this

problem. In agreement with what can be seen visually, the
performance is at unity – perfect.

Figure 17: Feature Scatter for Case #4

J Sen Net Data Comm, 2025 Volume 5 | Issue 1 | 12

Figure 18 shows the performance of procedure C for this problem. In agreement with what can be seen visually, the performance is at
unity – perfect.

10

Fig. 18. Procedure C Results, Case #4

But then, procedure CI, in Figure 19 displays a result

that is no better then a coin-flip experiment (there are only
two classes here). The results are as bad as they can be. This
is a death knell case for this procedure. The reason for this
is quite simple. If the 2-dimensional figure was collapsed
along the y-axis onto the x-axis, the feature scatter would
be compressed onto the x-axis, and the two classes would
posit themselves on top of each other. Viewing up the y-
axis, it can be seen that the scatter above lies right on top
of the scatter below (but they are from different classes).
The same holds true compressing the x-axis onto the y-axis.
These operations completely destroy the innate separability
of the 2-dimensional problem. But this is exactly what the
CI procedure does when computing likelihoods from a
single sensor and then combining those likelihoods with the
remaining sensors. The CI procedure, by its design, cannot
‘visualize’ the full field of the scatter (really, the
probabilistic support) since its focus is based on a single
sensor alone, prior to amalgamating the results from the
remainder of the sensors (with their partial ‘view’ as well)
to compose a final classification result.

Fig. 19. Procedure CI Results, Case #4

Procedure D is shown in Figure 20. It replicates the C

procedure, as it should. The procedure is completely
agnostic to feature vector collisions (that are occurring in a
single dimension) since it is iterating through all the sensors
before making a decision. The D procedure, even in
challenging cases, seems to provide a very reasonable
approximation to the C procedure.

Fig. 20. Procedure D Results, Case #4

Finally, the performance of sensor #2 (sensor #1 was

equivalent) is shown. The result prides no surprise and is
virtually the same as the CI procedure, for exactly the same
reasons given above.

Fig. 21. Sensor #2 Results, Case #4

But this begs an important question. Given the problem

of Case #4, suppose each sensor was allowed to make a
classification decision and submit their results to a
classification fusion center. The performance of a fused
classification/ID procedure (no matter what operators are

Figure 18: Procedure C Results, Case #4

But then, procedure CI, in Figure 19 displays a result that is no
better than a coin-flip experiment (there are only two classes
here). The results are as bad as they can be. This is a death knell
case for this procedure. The reason for this is quite simple. If the
2-dimensional figure was collapsed along the y-axis onto the
x-axis, the feature scatter would be compressed onto the x-axis,
and the two classes would posit themselves on top of each other.
Viewing up the yaxis, it can be seen that the scatter above lies right
on top of the scatter below (but they are from different classes).
The same holds true compressing the x-axis onto the y-axis.

These operations completely destroy the innate separability of the
2-dimensional problem. But this is exactly what the CI procedure
does when computing likelihoods from a single sensor and then
combining those likelihoods with the remaining sensors. The CI
procedure, by its design, cannot ‘visualize’ the full field of the
scatter (really, the probabilistic support) since its focus is based
on a single sensor alone, prior to amalgamating the results from
the remainder of the sensors (with their partial ‘view’ as well) to
compose a final classification result.

10

Fig. 18. Procedure C Results, Case #4

But then, procedure CI, in Figure 19 displays a result

that is no better then a coin-flip experiment (there are only
two classes here). The results are as bad as they can be. This
is a death knell case for this procedure. The reason for this
is quite simple. If the 2-dimensional figure was collapsed
along the y-axis onto the x-axis, the feature scatter would
be compressed onto the x-axis, and the two classes would
posit themselves on top of each other. Viewing up the y-
axis, it can be seen that the scatter above lies right on top
of the scatter below (but they are from different classes).
The same holds true compressing the x-axis onto the y-axis.
These operations completely destroy the innate separability
of the 2-dimensional problem. But this is exactly what the
CI procedure does when computing likelihoods from a
single sensor and then combining those likelihoods with the
remaining sensors. The CI procedure, by its design, cannot
‘visualize’ the full field of the scatter (really, the
probabilistic support) since its focus is based on a single
sensor alone, prior to amalgamating the results from the
remainder of the sensors (with their partial ‘view’ as well)
to compose a final classification result.

Fig. 19. Procedure CI Results, Case #4

Procedure D is shown in Figure 20. It replicates the C

procedure, as it should. The procedure is completely
agnostic to feature vector collisions (that are occurring in a
single dimension) since it is iterating through all the sensors
before making a decision. The D procedure, even in
challenging cases, seems to provide a very reasonable
approximation to the C procedure.

Fig. 20. Procedure D Results, Case #4

Finally, the performance of sensor #2 (sensor #1 was

equivalent) is shown. The result prides no surprise and is
virtually the same as the CI procedure, for exactly the same
reasons given above.

Fig. 21. Sensor #2 Results, Case #4

But this begs an important question. Given the problem

of Case #4, suppose each sensor was allowed to make a
classification decision and submit their results to a
classification fusion center. The performance of a fused
classification/ID procedure (no matter what operators are Figure 19: Procedure CI Results, Case #4

Procedure D is shown in Figure 20. It replicates the C procedure,
as it should. The procedure is completely agnostic to feature
vector collisions (that are occurring in a single dimension) since it

is iterating through all the sensors before making a decision. The
D procedure, even in challenging cases, seems to provide a very
reasonable approximation to the C procedure.

J Sen Net Data Comm, 2025 Volume 5 | Issue 1 | 13

10

Fig. 18. Procedure C Results, Case #4

But then, procedure CI, in Figure 19 displays a result

that is no better then a coin-flip experiment (there are only
two classes here). The results are as bad as they can be. This
is a death knell case for this procedure. The reason for this
is quite simple. If the 2-dimensional figure was collapsed
along the y-axis onto the x-axis, the feature scatter would
be compressed onto the x-axis, and the two classes would
posit themselves on top of each other. Viewing up the y-
axis, it can be seen that the scatter above lies right on top
of the scatter below (but they are from different classes).
The same holds true compressing the x-axis onto the y-axis.
These operations completely destroy the innate separability
of the 2-dimensional problem. But this is exactly what the
CI procedure does when computing likelihoods from a
single sensor and then combining those likelihoods with the
remaining sensors. The CI procedure, by its design, cannot
‘visualize’ the full field of the scatter (really, the
probabilistic support) since its focus is based on a single
sensor alone, prior to amalgamating the results from the
remainder of the sensors (with their partial ‘view’ as well)
to compose a final classification result.

Fig. 19. Procedure CI Results, Case #4

Procedure D is shown in Figure 20. It replicates the C

procedure, as it should. The procedure is completely
agnostic to feature vector collisions (that are occurring in a
single dimension) since it is iterating through all the sensors
before making a decision. The D procedure, even in
challenging cases, seems to provide a very reasonable
approximation to the C procedure.

Fig. 20. Procedure D Results, Case #4

Finally, the performance of sensor #2 (sensor #1 was

equivalent) is shown. The result prides no surprise and is
virtually the same as the CI procedure, for exactly the same
reasons given above.

Fig. 21. Sensor #2 Results, Case #4

But this begs an important question. Given the problem

of Case #4, suppose each sensor was allowed to make a
classification decision and submit their results to a
classification fusion center. The performance of a fused
classification/ID procedure (no matter what operators are

Figure 20: Procedure D Results, Case #4

Finally, the performance of sensor #2 (sensor #1 was equivalent) is shown. The result prides no surprise and is virtually the same as the
CI procedure, for exactly the same reasons given above.

10

Fig. 18. Procedure C Results, Case #4

But then, procedure CI, in Figure 19 displays a result

that is no better then a coin-flip experiment (there are only
two classes here). The results are as bad as they can be. This
is a death knell case for this procedure. The reason for this
is quite simple. If the 2-dimensional figure was collapsed
along the y-axis onto the x-axis, the feature scatter would
be compressed onto the x-axis, and the two classes would
posit themselves on top of each other. Viewing up the y-
axis, it can be seen that the scatter above lies right on top
of the scatter below (but they are from different classes).
The same holds true compressing the x-axis onto the y-axis.
These operations completely destroy the innate separability
of the 2-dimensional problem. But this is exactly what the
CI procedure does when computing likelihoods from a
single sensor and then combining those likelihoods with the
remaining sensors. The CI procedure, by its design, cannot
‘visualize’ the full field of the scatter (really, the
probabilistic support) since its focus is based on a single
sensor alone, prior to amalgamating the results from the
remainder of the sensors (with their partial ‘view’ as well)
to compose a final classification result.

Fig. 19. Procedure CI Results, Case #4

Procedure D is shown in Figure 20. It replicates the C

procedure, as it should. The procedure is completely
agnostic to feature vector collisions (that are occurring in a
single dimension) since it is iterating through all the sensors
before making a decision. The D procedure, even in
challenging cases, seems to provide a very reasonable
approximation to the C procedure.

Fig. 20. Procedure D Results, Case #4

Finally, the performance of sensor #2 (sensor #1 was

equivalent) is shown. The result prides no surprise and is
virtually the same as the CI procedure, for exactly the same
reasons given above.

Fig. 21. Sensor #2 Results, Case #4

But this begs an important question. Given the problem

of Case #4, suppose each sensor was allowed to make a
classification decision and submit their results to a
classification fusion center. The performance of a fused
classification/ID procedure (no matter what operators are

Figure 21: Sensor #2 Results, Case #4

But this begs an important question. Given the problem of Case
#4, suppose each sensor was allowed to make a classification
decision and submit their results to a classification fusion center.
The performance of a fused classification/ID procedure (no matter
what operators are used: Boolean logic, etc., etc.) on the separate
sensor classifications would be equally poor. The same concern
holds true for Artificial Intelligence (AI) learning techniques which
are popularly researched topics at this time. Applying learning
techniques when the information available are the separate sensor
decisions and/or their likelihoods is tantamount to information
that has the quality of a coin-flip. When the ‘visualization’ of the
full amount of feature information has been collapsed along each
sensor (thus abrogating the feature separability), it becomes a fait
accompli. The damage was done before any possible rectification
can be pursued subsequently. This example serves as a warning
to the dangers of not having a complete portfolio of all the sensor
feature vectors before making a decision. Regardless of whether
an intermediate conditional independent likelihood fusion
procedure (procedure CI) is performed or a classification/ID fusion
procedure is used, the results are going to depart severely from that
performance which is possible. Caveat emptor.

Finally, a cursory examination of the scatter in Figure 17 does not
reveal any severe instance of ‘correlation’ or (class conditional
dependence). But a second look reveals some issues. Given
knowledge that the test vector arises from class #1, and given that
sensor #1 measures a value of -1, then it is not only improbable, but
indeed impossible to get a value from sensor #2 that is above -0.4,
despite a considerable amount of mass that lies above 0.5 (for class
#1). The notion of conditional dependence can be frustratingly
non-trivial, especially in a highly dimensioned feature space.

5. Summary
A distributed Automatic Target Recognition procedure has
been developed and exercised for the purpose of processing
feature vectors and providing a consolidated class decision. The
performance is quite good and closely approximates a centralized
procedure.

It should be clear that issues exist in Automatic Target Recognition
(classification), as well as the ensuing methods for sensor data
fusion for the purposes of classification/recognition (ID/classifier
fusion).

J Sen Net Data Comm, 2025 Volume 5 | Issue 1 | 14

Copyright: ©2025 P. William Kelsey. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

https://opastpublishers.com/

It is very unclear to what degree that (class) conditional
dependence has on classifier performance (even in the instance
that conditional independence has been assumed). (Conditional
independence is exact. That is when the factorization products
of the likelihoods of the separate sensors equals the likelihood
of the joint conditional.) Conditional dependence is not exact. It
simply means that a factorization of the joint distribution will not
yield likelihoods that equal the calculation of the likelihood from
the joint conditional distribution. What matters is the degree of
departure from conditional independence.

Furthermore, mathematical measures of conditional dependence
are in their infancy (principal components and correlation
coefficients). The measures do not extrapolate well to classifier
performance. What complicates the situation is that conditional
dependence occurs simultaneously with feature vector separability
problems.

The impact of poor feature vector separability also seems to be
without reasonable formal mathematical measures, especially
for underlying distribution functions which are nonparametric
in nature (to include multimodality). These measures need to
be developed, not only at full dimensional space of the feature
vectors, but also at the single sensor levels (wherein only a partial
picture of the separability is available).

Of these two problems, it seems apparent that feature vector
separability dominates as the most telling issue.

These problems make the field of target recognition/classification
more a practice in art than an exercise of engineering discipline that
is well anchored by mathematical formalism (with the aspiration
of mathematical rigor to follow).

These two areas require further research.

References
1. Tenney, R. R., & Sandell, N. R. (1981). Detection with

distributed sensors. IEEE Transactions on Aerospace and
Electronic systems, (4), 501-510.

2. Reibman, A. R., & Nolte, L. W. (1987). Optimal detection and
performance of distributed sensor systems. IEEE Transactions
on Aerospace and Electronic Systems, (1), 24-30.

3. Thomopoulos, S. C., Viswanathan, R., & Bougoulias,

D. C. (1987). Optimal decision fusion in multiple sensor
systems. IEEE Transactions on Aerospace and Electronic
Systems, (5), 644-653.

4. Reibman, A. R., & Nolte, L. W. (1987). Design and performance
comparison of distributed detection networks. IEEE
Transactions on Aerospace and Electronic Systems, (6), 789-
797.

5. Dasarathy, B. V. (1991). Decision fusion strategies in
multisensor environments. IEEE transactions on systems,
man, and cybernetics, 21(5), 1140-1154.

6. Hall, D. L., & Llinas, J. (1997). An introduction to multisensor
data fusion. Proceedings of the IEEE, 85(1), 6-23.

7. Schubert, C. M., Oxley, M. E., & Bauer, K. W. (2005, March).
The inclusion of correlation effects in the performance
of multiple sensor and classifier systems. In 2005 IEEE
Aerospace Conference (pp. 1-11). IEEE.

8. Stubberud, S. C., Kramer, K. A., & Geremia, J. A. (2007).
Feature object extraction: evidence accrual for the level
1 fusion classification problem. IEEE Transactions on
Instrumentation and Measurement, 56(6), 2705-2716.

9. Laine, T. I. (2005). Optimization of automatic target
recognition with a reject option using fusion and correlated
sensor data. Air Force Institute of Technology.

10. Demirbas, K. (1988). Maximum a posteriori approach to
object recognition with distributed sensors. IEEE transactions
on aerospace and electronic systems, 24(3), 309-313.

11. Rao, B. S., & Durrant-Whyte, H. (1993). A decentralized
Bayesian algorithm for identification of tracked targets. IEEE
Transactions on Systems, Man, and Cybernetics, 23(6), 1683-
1698.

12. Wei, M., Gan-Lin, S., & Hong-feng, W. (2003, July).
Distributed bayesian target identification algorithm. In Sixth
International Conference of Information Fusion, 2003.
Proceedings of the (Vol. 2, pp. 1379-1383). IEEE.

13. Bhattacharyya, A. (1943). On a measure of divergence
between two statistical populations defined by their probability
distribution. Bulletin of the Calcutta Mathematical Society, 35,
99-110.

14. Liggins II, M., Hall, D., & Llinas, J. (Eds.). (2017). Handbook
of multisensor data fusion: theory and practice. CRC press.

15. Duda, R. O., & Hart, P. E. (1973). Pattern classification and
scene analysis (Vol. 3, pp. 731-739). New York: Wiley.

16. Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Bayesian
decision theory. Pattern classification, 11(4), 99-102.

https://doi.org/10.1109/TAES.1981.309178
https://doi.org/10.1109/TAES.1981.309178
https://doi.org/10.1109/TAES.1981.309178
https://doi.org/10.1109/TAES.1987.313355
https://doi.org/10.1109/TAES.1987.313355
https://doi.org/10.1109/TAES.1987.313355
https://doi.org/10.1109/TAES.1987.310858
https://doi.org/10.1109/TAES.1987.310858
https://doi.org/10.1109/TAES.1987.310858
https://doi.org/10.1109/TAES.1987.310858
https://doi.org/10.1109/TAES.1987.310915
https://doi.org/10.1109/TAES.1987.310915
https://doi.org/10.1109/TAES.1987.310915
https://doi.org/10.1109/TAES.1987.310915
https://doi.org/10.1109/21.120065
https://doi.org/10.1109/21.120065
https://doi.org/10.1109/21.120065
https://doi.org/10.1109/5.554205
https://doi.org/10.1109/5.554205
https://doi.org/10.1109/AERO.2005.1559519
https://doi.org/10.1109/AERO.2005.1559519
https://doi.org/10.1109/AERO.2005.1559519
https://doi.org/10.1109/AERO.2005.1559519
https://doi.org/10.1109/TIM.2007.907944
https://doi.org/10.1109/TIM.2007.907944
https://doi.org/10.1109/TIM.2007.907944
https://doi.org/10.1109/TIM.2007.907944
https://search.proquest.com/openview/c06cc166f489578a98b07c15c1c5ea8a/1?pq-origsite=gscholar&cbl=18750&diss=y
https://search.proquest.com/openview/c06cc166f489578a98b07c15c1c5ea8a/1?pq-origsite=gscholar&cbl=18750&diss=y
https://search.proquest.com/openview/c06cc166f489578a98b07c15c1c5ea8a/1?pq-origsite=gscholar&cbl=18750&diss=y
https://doi.org/10.1109/7.192105
https://doi.org/10.1109/7.192105
https://doi.org/10.1109/7.192105
https://doi.org/10.1109/21.257763
https://doi.org/10.1109/21.257763
https://doi.org/10.1109/21.257763
https://doi.org/10.1109/21.257763
https://doi.org/10.1109/ICIF.2003.177398
https://doi.org/10.1109/ICIF.2003.177398
https://doi.org/10.1109/ICIF.2003.177398
https://doi.org/10.1109/ICIF.2003.177398
https://cir.nii.ac.jp/crid/1573105974836363008
https://cir.nii.ac.jp/crid/1573105974836363008
https://cir.nii.ac.jp/crid/1573105974836363008
https://cir.nii.ac.jp/crid/1573105974836363008
https://books.google.com/books?hl=en&lr=&id=7ZqiHyc-RhUC&oi=fnd&pg=PP1&dq=Liggins,+M.E.,+Hall,+D.L.,+Llinas,+J.,+eds.,+%E2%80%9CMultisensor+Data+Fusion%E2%80%9D+in+Handbook+of+Multisensor+Data+Fusion+Theory+and+Practice,+2nd+ed.,+New+York,+USA,+CRC+Press,+2009,+ch.+1,+sec.+1.8,+pp.+11-13.&ots=9NH_3RxcDN&sig=t9ybSUrut4KpWm2R15_q55ChGDI
https://books.google.com/books?hl=en&lr=&id=7ZqiHyc-RhUC&oi=fnd&pg=PP1&dq=Liggins,+M.E.,+Hall,+D.L.,+Llinas,+J.,+eds.,+%E2%80%9CMultisensor+Data+Fusion%E2%80%9D+in+Handbook+of+Multisensor+Data+Fusion+Theory+and+Practice,+2nd+ed.,+New+York,+USA,+CRC+Press,+2009,+ch.+1,+sec.+1.8,+pp.+11-13.&ots=9NH_3RxcDN&sig=t9ybSUrut4KpWm2R15_q55ChGDI

