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Abstract
Use of natural unit is utmost important for research in high energy physics, particularly in the fields of ‘Elementary 
Particle Physics’, ‘Astro-particle Physics’ and `Physical Cosmology', because all the parameters turn out to be 
dimensionless. However, it is suggestive to work in a system of units, in which all the kinematical parameters may be 
expressed in terms of different powers of the Planck's mass or equivalently the energy. Here we explicitly exhibit the use 
of the natural units, some associated problems and also the proposed system of units in connection with their application 
in ‘General Theory of Relativity’.
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1. Introduction
Out of the four fundamental SI units, three are kinematical, such as the metre (m), second (t) and kilogram (kg). In the natural unit, 
apart from the speed of light in vacuum (c = 1), the reduced Planck's constant (ℏ = 1) and the Newtonian gravitational constant 
(8πG=1) are fixed and set to unity. In the process, the length, the time and the mass are fixed once and for ever and all the parameters 
are dimensionless. This creates some problems in the perturbative analysis of a quantum system. On the contrary, if G or equivalently 
mass/energy is not fixed to unity, then all the parameters may be expressed in terms of different powers of a single unit, viz., the 
mass or equivalently the energy. This not only simplifies the determination of the degrees of the units of additional parameters if 
introduced in the equations, but also helps to compare the magnitude of different parameters of the theory with observational data, 
without any problem. Here, we explicitly compute to exhibit the use of natural unit (which makes all the parameters dimensionless) 
and also the system of units in which all the parameters can be expressed in terms of different powers of the mass/energy, i.e., the 
system in which Newton’s gravitational constant G is not fixed to unity.

Before we proceed, let us first recapitulate the constants associated with Planck’s scale. The three fundamental constants are the 
Planck's mass MP , the Planck's length lP and the Planck's time tP. At the Planck's scale, `General Theory of Relativity’ (GTR) and 
consequently, the `Standard Model of Cosmology’ (FLRW model) collapse and there is the need for a `Quantum Theory of Gravity', 
which is not at hand presently, despite tremendous effort over several decades. This implies that we have no present knowledge of 
physics at the Planck's scale and beyond. ‘Astro-particle Physics' and ‘Physical Cosmology' entail the implication of these three 
fundamental constants of nature, which are: Planck's mass (MP ≈ 10 -19 GeV) is the minimum possible mass and consequently the 
minimum size           of a black hole (it may also be interpreted as, no fundamental particle can have mass greater than the Planck's 
mass); no physical experiment can ever probe beyond Planck's length (lP≈ 10-33 cm). (it is the smallest possible measure of space) 
and finally, it is debarred to ask what happened before Planck's time (tP ≈ 10-43 s), while the smallest time-interval measured so far is  
10 -21 s , respectively.

The manuscript is organized as follows. In the following section, we make dimensional analysis of the physical parameters 
involved in GTR and also for some modified theories of gravity. Next, in section 3 we shall compute numerical values of the three 
fundamental Planck's scale constants, in view of the known numerical values of the reduced Planck’s constant           the 
Newtonian gravitational  constant (G) and the velocity of light in vacuum c. Additionally, we compute the Planck's temperature (TP) 
using the numerical value of the Boltzmann constant (kB). In section 4, we discuss the use of natural unit in GTR along with some 
associated problems. Section 5 is devoted to work in a system of units in which all the parameters may be expressed in terms of the 
Planck's mass. A brief conclusion appears in section 6.

2. Dimensions of the Parameters Involved in GTR
The Einstein's equation for the `General Theory of Relativity' (GTR) in the presence of a cosmological constant Λ is given by
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where, Gμν, Rμν, R, gμν, Tμν are the Einstein tensor, the Ricci tensor, the Ricci scalar, the metric tensor and the stress-energy tensor 
respectively, G is the Newton's gravitational constant while c is the velocity of light. In 4-dimensional space-time, μ,ν run from 0-3. 
It may be mentioned that the constant              had been so chosen that under non-relativistic limit, Newton's law of gravitation, 
Poisson equation (∇2 ϕ = 4πGρ, ρ being the mass-density) to be specific, rejuvenates. For dimensional analysis let us start from the 
space-time metric,

Since the dimension of the left-hand side is L2, so clearly, gμν is dimensionless. As a result. contraction of a tensor by the metric tensor 
does not change its dimension. Now the connection co-efficient, viz., the Levi-Civita connection given by,

is essentially formed out of the coordinate derivative of the metric tensor and hence has dimension of L-1. Further the Riemann tensor 
is again made up of the coordinate derivative of the connection tensor and is given by,

where, T is the trace of the energy-momentum tensor Tμν. Therefore, the dimension of the      and so is the 
dimension of the energy-momentum tensor too.

Now, in order to modify GTR (if required), one has to start from the following Einstein-Hilbert action,

If we now want to form a modified theory of gravity by adding additional curvature invariant terms such as R2, R-1 etc, the action 
would then take the form [1],
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the dimension of the left-hand side of Einstein equation (1), viz. [Gμν] =L-2}. Let us now look for the right-hand side. The dimension 
of the Newtonian gravitational constant is [G] = L3

 M
-1 T-2. The energy-momentum tensor is essentially the energy per unit volume 
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rejuvenates. For dimensional analysis let us start from the space-time metric, 

 𝑑𝑑𝑑𝑑�  �  𝑔𝑔��𝑑𝑑𝑑𝑑�𝑑𝑑𝑑𝑑� �2� 
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contraction of a tensor by the metric tensor does not change its dimension. Now the connection 
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�  �  Γ ��� Γ ���  (4) 
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tensor, which under further contraction gives the Ricci scalar and both have the dimension of 

𝐿𝐿��. For dimensional matching, the dimension of �Λ�  �  𝐿𝐿��. Thus we obtain the dimension 

of the left-hand side of Einstein equation (1), viz. �𝐺𝐺���  � 𝐿𝐿���. Let us now look for the right-

hand side. The dimension of the Newtonian gravitational constant is �𝐺𝐺�  �  𝐿𝐿�𝑀𝑀��𝑇𝑇��. The 

energy-momentum tensor is essentially the energy per unit volume which is the force per unit 
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16𝜋𝜋𝜋𝜋  �𝑅𝑅 �  2Λ����𝑔𝑔 𝑑𝑑�𝑥𝑥 �  𝑆𝑆� 

(6) 

where, 𝑆𝑆�  � �  ℒ� ��𝑔𝑔 𝑑𝑑� 𝑥𝑥 stands for the matter action, while ℒ� is the matter Lagrangian 

density. After integrating the special part, the action in its simplest form is given by 𝐴𝐴 �
�𝐿𝐿 𝑑𝑑𝐿𝐿, where the point Lagrangian, 𝐿𝐿 �  𝑇𝑇 �  𝑉𝑉 has the dimension of energy. So, the action 

has the dimension of �𝐴𝐴� �  𝑀𝑀 𝐿𝐿� 𝑇𝑇��. Here, one can check that the dimension of ����  𝑅𝑅�  �
 𝑀𝑀𝐿𝐿��𝑇𝑇��, while the integral is over the four-volume, whose dimension is �𝑑𝑑� 𝑥𝑥�  �  𝐿𝐿� 𝑇𝑇. 

Hence the dimension of the action becomes �𝐴𝐴�  �  𝑀𝑀𝐿𝐿� 𝑇𝑇��. 

If we now want to form a modified theory of gravity by adding additional curvature invariant 

terms such as 𝑅𝑅�,𝑅𝑅�� etc, the action would then take the form [1], 

 𝐴𝐴 � � � 𝑐𝑐�
16𝜋𝜋𝜋𝜋  �𝑅𝑅 �  2Λ� � 𝛽𝛽 𝑅𝑅�  � 𝛾𝛾 𝑅𝑅��  �  ℒ��  ��𝑔𝑔 𝑑𝑑�𝑥𝑥 

(7) 

 

Now in order to find the dimensions of the constant parameters 𝛽𝛽, and 𝛾𝛾 , we note that 𝛽𝛽 𝑅𝑅� 

and 𝛾𝛾 𝑅𝑅�� must have the dimension of ���� 𝑅𝑅�  �  𝐿𝐿��𝑀𝑀𝑇𝑇��. Thus, dimension of �𝛽𝛽�  �
 𝐿𝐿� 𝑀𝑀 𝑇𝑇��, and that of �𝛾𝛾�  �  𝐿𝐿��𝑀𝑀𝑇𝑇��. Finally for a scalar field, the matter Lagrangian 

density is, 

 ℒ�  �  � 1
2 𝑔𝑔��𝜙𝜙 ,� 𝜙𝜙 ,�  �  𝑉𝑉�𝜙𝜙� (8) 

 

following ��,�,�,�� or equivalently �2 sign convention. Since 𝑔𝑔�� is dimensionless, so ℒ� 

also has the dimension of ���� 𝑅𝑅�  �  �ℒ��  �  𝐿𝐿��𝑀𝑀𝑇𝑇��. To find the dimension of the scalar 

field �𝜙𝜙�, we express ℒ� in Minkowskian metric ����� which eases the situation, 
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where, 𝑖𝑖 runs from 1 � 3, implying spatial components. Now, �𝑐𝑐� 𝑑𝑑𝐿𝐿��  �  ��𝑑𝑑𝑥𝑥����  �  𝐿𝐿�, 

hence the dimension of 𝜙𝜙 is �𝜙𝜙�  �  𝐿𝐿�� 𝑀𝑀�
� 𝑇𝑇��. In fact, using the definition of the square of 

the scalar field, which is the energy per unit length, one can also cross-check to find �𝜙𝜙� �
 ��������

������� � �𝑀𝑀𝐿𝐿�𝑇𝑇��𝐿𝐿��  �  𝐿𝐿��𝑀𝑀�
� 𝑇𝑇��. It is now quite trivial to find that the dimension of 

the constant parameter 𝑉𝑉� of a quadratic potential 𝑉𝑉 �  𝑉𝑉�𝜙𝜙�, 𝑖𝑖𝑖𝑖 �𝑉𝑉�� �  𝐿𝐿��𝑀𝑀𝑇𝑇�� �
 𝑀𝑀�� 𝐿𝐿�� 𝑇𝑇�  �  𝐿𝐿��. Likewise, the dimension of 𝜆𝜆 appearing in the quartic potential 
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� 𝑇𝑇��. In fact, using the definition of the square of 

the scalar field, which is the energy per unit length, one can also cross-check to find �𝜙𝜙� �
 ��������

������� � �𝑀𝑀𝐿𝐿�𝑇𝑇��𝐿𝐿��  �  𝐿𝐿��𝑀𝑀�
� 𝑇𝑇��. It is now quite trivial to find that the dimension of 

the constant parameter 𝑉𝑉� of a quadratic potential 𝑉𝑉 �  𝑉𝑉�𝜙𝜙�, 𝑖𝑖𝑖𝑖 �𝑉𝑉�� �  𝐿𝐿��𝑀𝑀𝑇𝑇�� �
 𝑀𝑀�� 𝐿𝐿�� 𝑇𝑇�  �  𝐿𝐿��. Likewise, the dimension of 𝜆𝜆 appearing in the quartic potential 
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where, 𝑆𝑆�  � �  ℒ� ��𝑔𝑔 𝑑𝑑� 𝑥𝑥 stands for the matter action, while ℒ� is the matter Lagrangian 

density. After integrating the special part, the action in its simplest form is given by 𝐴𝐴 �
�𝐿𝐿 𝑑𝑑𝐿𝐿, where the point Lagrangian, 𝐿𝐿 �  𝑇𝑇 �  𝑉𝑉 has the dimension of energy. So, the action 

has the dimension of �𝐴𝐴� �  𝑀𝑀 𝐿𝐿� 𝑇𝑇��. Here, one can check that the dimension of ����  𝑅𝑅�  �
 𝑀𝑀𝐿𝐿��𝑇𝑇��, while the integral is over the four-volume, whose dimension is �𝑑𝑑� 𝑥𝑥�  �  𝐿𝐿� 𝑇𝑇. 

Hence the dimension of the action becomes �𝐴𝐴�  �  𝑀𝑀𝐿𝐿� 𝑇𝑇��. 

If we now want to form a modified theory of gravity by adding additional curvature invariant 

terms such as 𝑅𝑅�,𝑅𝑅�� etc, the action would then take the form [1], 
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Now in order to find the dimensions of the constant parameters 𝛽𝛽, and 𝛾𝛾 , we note that 𝛽𝛽 𝑅𝑅� 

and 𝛾𝛾 𝑅𝑅�� must have the dimension of ���� 𝑅𝑅�  �  𝐿𝐿��𝑀𝑀𝑇𝑇��. Thus, dimension of �𝛽𝛽�  �
 𝐿𝐿� 𝑀𝑀 𝑇𝑇��, and that of �𝛾𝛾�  �  𝐿𝐿��𝑀𝑀𝑇𝑇��. Finally for a scalar field, the matter Lagrangian 

density is, 
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also has the dimension of ���� 𝑅𝑅�  �  �ℒ��  �  𝐿𝐿��𝑀𝑀𝑇𝑇��. To find the dimension of the scalar 

field �𝜙𝜙�, we express ℒ� in Minkowskian metric ����� which eases the situation, 
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where, 𝑖𝑖 runs from 1 � 3, implying spatial components. Now, �𝑐𝑐� 𝑑𝑑𝐿𝐿��  �  ��𝑑𝑑𝑥𝑥����  �  𝐿𝐿�, 

hence the dimension of 𝜙𝜙 is �𝜙𝜙�  �  𝐿𝐿�� 𝑀𝑀�
� 𝑇𝑇��. In fact, using the definition of the square of 

the scalar field, which is the energy per unit length, one can also cross-check to find �𝜙𝜙� �
 ��������

������� � �𝑀𝑀𝐿𝐿�𝑇𝑇��𝐿𝐿��  �  𝐿𝐿��𝑀𝑀�
� 𝑇𝑇��. It is now quite trivial to find that the dimension of 

the constant parameter 𝑉𝑉� of a quadratic potential 𝑉𝑉 �  𝑉𝑉�𝜙𝜙�, 𝑖𝑖𝑖𝑖 �𝑉𝑉�� �  𝐿𝐿��𝑀𝑀𝑇𝑇�� �
 𝑀𝑀�� 𝐿𝐿�� 𝑇𝑇�  �  𝐿𝐿��. Likewise, the dimension of 𝜆𝜆 appearing in the quartic potential 

𝜆𝜆 𝜙𝜙� 𝑖𝑖𝑖𝑖 �𝜆𝜆�  �  𝐿𝐿�� 𝑀𝑀�� 𝑇𝑇�, the dimension of 𝒱𝒱� appearing in the exponential 

potential 𝒱𝒱� 𝑒𝑒��� 𝑖𝑖𝑖𝑖 �𝒱𝒱��  �  𝐿𝐿�� 𝑀𝑀 𝑇𝑇��, and that of ���  �  �𝜙𝜙���, since exponent has to be 

dimensionless. Finally for a potential in the form 𝑉𝑉�𝜙𝜙�  �  𝑉𝑉� 𝜙𝜙�, the dimension of �𝑉𝑉�� �
 𝑀𝑀����  𝐿𝐿������� 𝑇𝑇���, where 𝑛𝑛 is any arbitrary real value. In this manner, one can find the 

dimensions of the constant parameters associated with different types of potentials. It may be 

mentioned that for a Brans-Dicke type scalar field, 
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the Brans-Dicke parameter 𝜔𝜔�𝜙𝜙� has to be dimensionless, regardless it be a constant or not. 

Table-1 below presents a glimpse of the dimensions discussed in this section. 
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3. Planck’s scale: 
A system of unit defined in terms of the four fundamental constants of nature such as, the 

velocity of light in vacuum (𝑐𝑐), the reduced Planck's constant ( ℏ), the gravitational constant 

(𝐺𝐺) and the Boltzmann constant (𝑘𝑘�) is called the Planck's unit [2]. This system of unit 

comprises of the three out of the four constants such as the Planck's mass (𝑀𝑀�), Planck's length 

(𝑙𝑙�), Planck's time (𝑡𝑡�) and Planck's temperature (𝑇𝑇�). The usual base units are chosen to be 

the mass, length and time omitting temperature since it is redundant. The implication of these 

four derived constants came to light only after realizing the very need for a `Quantum Theory 

of Gravity '. Starting from the numerical values of ℏ � 1.054571817 � 10��� 𝑗𝑗. 𝑖𝑖,𝐺𝐺 �
 6.674 � 10��� 𝑚𝑚�.𝐾𝐾𝑔𝑔��. 𝑖𝑖��, 𝑐𝑐 �  2.99792458 � 10� 𝑚𝑚. 𝑖𝑖��, the four aforesaid constants 

are computed as follows. 
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 𝑀𝑀����  𝐿𝐿������� 𝑇𝑇���, where 𝑛𝑛 is any arbitrary real value. In this manner, one can find the 
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velocity of light in vacuum (𝑐𝑐), the reduced Planck's constant ( ℏ), the gravitational constant 

(𝐺𝐺) and the Boltzmann constant (𝑘𝑘�) is called the Planck's unit [2]. This system of unit 

comprises of the three out of the four constants such as the Planck's mass (𝑀𝑀�), Planck's length 
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of Gravity '. Starting from the numerical values of ℏ � 1.054571817 � 10��� 𝑗𝑗. 𝑖𝑖,𝐺𝐺 �
 6.674 � 10��� 𝑚𝑚�.𝐾𝐾𝑔𝑔��. 𝑖𝑖��, 𝑐𝑐 �  2.99792458 � 10� 𝑚𝑚. 𝑖𝑖��, the four aforesaid constants 

are computed as follows. 

𝑀𝑀� � �ℏ�
�  � ���.��� ����� �.��� ������ �.����

�.�������� ��.����.���  �  2.176 � 10�� 𝐾𝐾𝑔𝑔 �  2.176 � 10�� 𝑔𝑔𝑚𝑚. 

the Brans-Dicke parameter ω(ϕ) has to be dimensionless, regardless it be a constant or not. Table-1 below presents a glimpse of the 
dimensions discussed in this section.

 Table 1: List of Dimensions of Some Standard Parameters Used in GTR

following (-, +, +, +) or equivalently +2 sign convention. Since gμν  is dimensionless, so Lm also has the dimension of              = 
[Lm] = L-1 MT -2. To find the dimension of the scalar field (ϕ), we express Lm in Minkowskian metric (ημν) which eases the situation,
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where, 𝑆𝑆�  � �  ℒ� ��𝑔𝑔 𝑑𝑑� 𝑥𝑥 stands for the matter action, while ℒ� is the matter Lagrangian 

density. After integrating the special part, the action in its simplest form is given by 𝐴𝐴 �
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where, 𝑖𝑖 runs from 1 � 3, implying spatial components. Now, �𝑐𝑐� 𝑑𝑑𝐿𝐿��  �  ��𝑑𝑑𝑥𝑥����  �  𝐿𝐿�, 
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In fact, using the definition of the square of the scalar field, which is the energy per unit length, one can also cross-check to find [ϕ]=                   
                                                               It is now quite trivial to find that the dimension of the constant parameter V0 of a quadratic 
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[ϕ -1], since exponent has to be dimensionless. Finally for a potential in the form V(ϕ) = V4  ϕ
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T n-2, where n is any arbitrary real number. In this manner, one can find the dimensions of the constant param eters associated with 
different   types of potentials. It may be mentioned that for a Brans-Dicke type scalar field,
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where, 𝑆𝑆�  � �  ℒ� ��𝑔𝑔 𝑑𝑑� 𝑥𝑥 stands for the matter action, while ℒ� is the matter Lagrangian 

density. After integrating the special part, the action in its simplest form is given by 𝐴𝐴 �
�𝐿𝐿 𝑑𝑑𝐿𝐿, where the point Lagrangian, 𝐿𝐿 �  𝑇𝑇 �  𝑉𝑉 has the dimension of energy. So, the action 
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 𝑀𝑀𝐿𝐿��𝑇𝑇��, while the integral is over the four-volume, whose dimension is �𝑑𝑑� 𝑥𝑥�  �  𝐿𝐿� 𝑇𝑇. 

Hence the dimension of the action becomes �𝐴𝐴�  �  𝑀𝑀𝐿𝐿� 𝑇𝑇��. 

If we now want to form a modified theory of gravity by adding additional curvature invariant 

terms such as 𝑅𝑅�,𝑅𝑅�� etc, the action would then take the form [1], 
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where, 𝑖𝑖 runs from 1 � 3, implying spatial components. Now, �𝑐𝑐� 𝑑𝑑𝐿𝐿��  �  ��𝑑𝑑𝑥𝑥����  �  𝐿𝐿�, 
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 𝑀𝑀�� 𝐿𝐿�� 𝑇𝑇�  �  𝐿𝐿��. Likewise, the dimension of 𝜆𝜆 appearing in the quartic potential 
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dimensions of the constant parameters associated with different types of potentials. It may be 

mentioned that for a Brans-Dicke type scalar field, 
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the Brans-Dicke parameter 𝜔𝜔�𝜙𝜙� has to be dimensionless, regardless it be a constant or not. 

Table-1 below presents a glimpse of the dimensions discussed in this section. 
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�𝐿𝐿� �ℒ�� �𝐴𝐴� �𝑅𝑅�, �𝑅𝑅���, ��� �𝑇𝑇��� �𝜙𝜙� �𝑉𝑉�𝜙𝜙�� 
𝑀𝑀𝐿𝐿�𝑇𝑇��  𝑀𝑀𝐿𝐿��𝑇𝑇�� 𝑀𝑀𝐿𝐿�𝑇𝑇�� 𝐿𝐿�� 𝑀𝑀𝐿𝐿��𝑇𝑇�� 𝑀𝑀�

�𝐿𝐿��𝑇𝑇�� 𝑀𝑀𝐿𝐿��𝑇𝑇�� 

 Table 1: List of Dimensions of Some Standard Parameters Used in GTR. 

 

3. Planck’s scale: 
A system of unit defined in terms of the four fundamental constants of nature such as, the 

velocity of light in vacuum (𝑐𝑐), the reduced Planck's constant ( ℏ), the gravitational constant 

(𝐺𝐺) and the Boltzmann constant (𝑘𝑘�) is called the Planck's unit [2]. This system of unit 

comprises of the three out of the four constants such as the Planck's mass (𝑀𝑀�), Planck's length 

(𝑙𝑙�), Planck's time (𝑡𝑡�) and Planck's temperature (𝑇𝑇�). The usual base units are chosen to be 

the mass, length and time omitting temperature since it is redundant. The implication of these 

four derived constants came to light only after realizing the very need for a `Quantum Theory 

of Gravity '. Starting from the numerical values of ℏ � 1.054571817 � 10��� 𝑗𝑗. 𝑖𝑖,𝐺𝐺 �
 6.674 � 10��� 𝑚𝑚�.𝐾𝐾𝑔𝑔��. 𝑖𝑖��, 𝑐𝑐 �  2.99792458 � 10� 𝑚𝑚. 𝑖𝑖��, the four aforesaid constants 

are computed as follows. 

𝑀𝑀� � �ℏ�
�  � ���.��� ����� �.��� ������ �.����

�.�������� ��.����.���  �  2.176 � 10�� 𝐾𝐾𝑔𝑔 �  2.176 � 10�� 𝑔𝑔𝑚𝑚. 

3. Planck’s Scale
A system of units defined in terms of the four fundamental constants of nature such as, the velocity of light in vacuum (c), the 
reduced Planck's constant ( ℏ), the gravitational constant (G) and the Boltzmann constant (kB) is called the Planck's unit [2]. This 
system of units comprises of the three out of the four constants such as the Planck's mass (MP), Planck's length (lP), Planck's time 
(tP) and Planck's temperature (TP). The usual base units are chosen to be the mass, length and time omitting temperature since it is 
redundant. The implication of these four derived constants came to light only after realizing the very need for a `Quantum Theory of 
Gravity '. Starting from the numerical values of ℏ =1.054571817× 10-34 j.s,G = 6.674×10-11 m3. Kg-1. s-2, c = 2.99792458× 108  m.s-1, 
the four aforesaid constants are computed as follows.
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where, the Planck's temperature is computed in view of the mass-energy relationship of Einstein (E = mc2 ) and the equipartition of 
energy                   for each degree of freedom, kB = 1.38× 10 -23 J.K-1 being the Boltzmann constant). Note that lP and tP are extremely 
small while TP is extremely large. On the contrary, MP ≈ 22 μ gm although is very large in comparison to the masses of fundamental 
particles, lie very much within the mass range of living orgasms such as female ovum [Just for the sake of comparison, we remember 
that the masses of the electron, proton, the earth and the sun are, me = 9.109 × 10 -31 Kg, mp = 1.673×10-27  Kg, M⊕ = 5.972× 1024  Kg, 
M⊙ = 1.988 × 1030  Kg, respectively while the mass of a female ovum lies within the range 0.1 - 0.2 mg]. However, the Planck's mass 
actually limits the mass of fundamental particles as well as the minimum size of a black hole. Also note that equation (1) implies lP = 
ctP, as it should be, which immediately suggests to verify (starting from the velocity of light in vacuum) that light travels a distance 
of Planck's length lP in Planck's time tP.

In order to realize the implication of these constants, let us refer to astro-particle physics and physical cosmology, in which the 
Planck's scale is essentially an energy scale at which the quantum effect of gravity becomes significant and the current predictions 
of physics, such as the standard model, quantum field theory and GTR break down. Therefore, let us first proceed to convert mass 
to energy. In view of the mass-energy relationship of Einstein E = mc2 , one can convert equivalence of 1 Kg of mass in terms of the 
energy (Joule) as,
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where, the Planck's temperature is computed in view of the mass-energy relationship of 

Einstein (𝐸𝐸 �  𝑚𝑚𝑐𝑐�) and the equipartition of energy (𝐸𝐸 � �
�  𝑘𝑘�𝑇𝑇 for each degree of freedom, 

𝑘𝑘�  �  1.38 � 10��� 𝐽𝐽.𝐾𝐾�� being the Boltzmann constant). Note that 𝑙𝑙� and 𝑡𝑡� are extremely 

small while 𝑇𝑇� is extremely large. On the contrary, 𝑀𝑀� �  22 𝜇𝜇 𝐾𝐾𝑚𝑚 although is very large in 

comparison to the masses of fundamental particles, lie very much within the mass range of 

living orgasms such as female ovum [Just for the sake of comparison, we remember that the 

masses of the electron, proton, the earth and the sun are, 𝑚𝑚� � 9.109 � 10��� 𝐾𝐾𝐾𝐾,𝑚𝑚� �
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mass of a female ovum lies within the range 0.1 �  0.2 𝑚𝑚𝐾𝐾]. However, the Planck's mass 

actually limits the mass of fundamental particles as well as the minimum size of a black hole. 

Also note that equation (1) implies 𝑙𝑙�  �  𝑐𝑐𝑡𝑡�, as it should be, which immediately suggests to 

verify (starting from the velocity of light in vacuum) that light travels a distance of Planck's 

length 𝑙𝑙� in Planck's time 𝑡𝑡�. 

In order to realize the implication of these constants, let us refer to astro-particle physics and 

physical cosmology, in which the Planck's scale is essentially an energy scale at which the 

quantum effect of gravity becomes significant and the current predictions of physics, such as 
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Also note that equation (1) implies 𝑙𝑙�  �  𝑐𝑐𝑡𝑡�, as it should be, which immediately suggests to 
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and hence, finally in view of (12) and (13) we find, 

 1 𝑀𝑀�  �  2.17 � 10�� 𝐾𝐾𝐾𝐾 �  1.22 � 10�� 𝐺𝐺𝑒𝑒𝑉𝑉 (14) 

 

Let us now recall that the electro-weak scale [the energy scale at which the strengths of 

electromagnetic interaction and weak interaction are of the same order and therefore 

indistinguishable] is around 246 𝐺𝐺𝑒𝑒𝑉𝑉, while such symmetry breaks down at around 

159.5 𝐺𝐺𝑒𝑒𝑉𝑉. Clearly, the energy equivalent to 1 𝑀𝑀� �  22 𝜇𝜇 𝐾𝐾� �  10�� 𝐺𝐺𝑒𝑒𝑉𝑉 is exorbitantly 

large in comparison. The energy scale on the contrary, at which the strength of the 

electromagnetic interaction, weak interaction and the strong interaction are of equal strength 

and hence are indistinguishable is given by a `Grand Unified Theory' and is simply called the 

`GUT' scale, which is around 10�� 𝐺𝐺𝑒𝑒𝑉𝑉. To realize the number, let us refer to the the `Large 

Hadron Collider' energy scale, which is only around 10� 𝐺𝐺𝑒𝑒𝑉𝑉. Thus, it is not possible to prove 

GUT from any earth-based accelerator even in the far future. Nonetheless, the stars, supernovae 

are the natural accelerator for this purpose [We better also compare luminosity of the sun and 

the supernova SN1a, which are 𝐿𝐿⊙ � 3.84 � 10�� 𝐽𝐽. 𝑠𝑠�� 𝑎𝑎𝑎𝑎𝑎𝑎 𝐿𝐿���� �
10�� 𝐽𝐽. 𝑠𝑠�� respectively]. 

 

Gravity is the weakest interaction amongst the four interactions. Nonetheless, at 1 𝑀𝑀� �
10�� 𝐺𝐺𝑒𝑒𝑉𝑉 (14), gravitational interaction becomes comparable to the other three and becomes 

indistinguishable. At this energy scale, the four interactions are supposed to be unified through 

a viable `Quantum Theory of Gravity', which has been conjectured to be the `Theory of 

Everything' (TOE). Unfortunately, there is no such theory at hand, despite tremendous effort 

over several decades. This energy scale corresponds to a length scale 𝑙𝑙� , which light can travel 

in time 𝑡𝑡� . Currently, the Planck's scale therefore suggests that present knowledge in physics 

cannot be extended beyond these values. It is important to remember that GTR suffers from 

unavoidable singularity, i.e., classical gravity theory collapses beyond a length scale 𝑙𝑙�, where 

a quantum theory of gravity is indispensable. The Planck's length scale is also known to be the 
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are the natural accelerator for this purpose [We better also compare luminosity of the sun and 

the supernova SN1a, which are 𝐿𝐿⊙ � 3.84 � 10�� 𝐽𝐽. 𝑠𝑠�� 𝑎𝑎𝑎𝑎𝑎𝑎 𝐿𝐿���� �
10�� 𝐽𝐽. 𝑠𝑠�� respectively]. 

 

Gravity is the weakest interaction amongst the four interactions. Nonetheless, at 1 𝑀𝑀� �
10�� 𝐺𝐺𝑒𝑒𝑉𝑉 (14), gravitational interaction becomes comparable to the other three and becomes 

indistinguishable. At this energy scale, the four interactions are supposed to be unified through 

a viable `Quantum Theory of Gravity', which has been conjectured to be the `Theory of 

Everything' (TOE). Unfortunately, there is no such theory at hand, despite tremendous effort 

over several decades. This energy scale corresponds to a length scale 𝑙𝑙� , which light can travel 

in time 𝑡𝑡� . Currently, the Planck's scale therefore suggests that present knowledge in physics 

cannot be extended beyond these values. It is important to remember that GTR suffers from 

unavoidable singularity, i.e., classical gravity theory collapses beyond a length scale 𝑙𝑙�, where 

a quantum theory of gravity is indispensable. The Planck's length scale is also known to be the 

Let us now recall that the electro-weak scale [the energy scale at which the strengths of electromagnetic interaction and weak 
interaction are of the same order and therefore indistinguishable] is around 246 GeV, while such symmetry breaks down at around 
159.5 GeV. Clearly, the energy equivalent to 1 MP ≈ 22 μ gm ≈ 10 19 GeV is exorbitantly large in comparison. The energy scale on the 
contrary, at which the strength of the electromagnetic interaction, weak interaction and the strong interaction are of equal strength 
and hence are indistinguishable is given by a `Grand Unified Theory' and is simply called the `GUT' scale, which is around 1016  
GeV. To realize the number, let us refer to the the `Large Hadron Collider' energy scale, which is only around 104 GeV. Thus, it is 
not possible to prove GUT from any earth-based accelerator even in the far future. Nonetheless, the stars, supernovae are the natural 
accelerators for this purpose [We better also compare luminosity of the sun and the supernova SN1a, which are L⊙ = 3.84 × 1024  
J . s-1   and LSN1a = 1041 J . s-1 respectively].

Gravity is the weakest interaction amongst the four interactions. Nonetheless, at 1 MP ≈ 1019 GeV (14), gravitational interaction 
becomes comparable to the other three and becomes indistinguishable. At this energy scale, the four interactions are supposed to 
be unified through a viable `Quantum Theory of Gravity', which has been conjectured to be the `Theory of Everything' (TOE). 
Unfortunately, there is no such theory at hand, despite tremendous effort over several decades. This energy scale corresponds 
to a length scale lP , which light can travel in time tP. Currently, the Planck's scale therefore suggests that present knowledge 
in physics cannot be extended beyond these values. It is important to remember that GTR suffers from unavoidable singularity 
problem, i.e., classical gravity theory collapses beyond a length scale lP, where a quantum theory of gravity is indispensable. The 
Planck's length scale is also known to be the length scale at which the Compton wavelength of a particle [Compton wavelength 
of a particle is given by              , which for an electron is around 2.4263× 10-13 m. The inverse of the reduced Compton 
wavelength  is a natural representation for the mass on the quantum scale and appears in the relativistic Klein-
Gordon equation for a free particle] is comparable to its Schwarzschild radius [Schwarzschild solution is the solution of a static 
spherically symmetric object (such as a star) of Einstein's field equation of GTR. The solution dictates that if a star collapses 
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length scale at which the Compton wavelength of a particle [Compton wavelength of a particle 

is given by 𝜆𝜆 � �
�� , which for an electron is around 2.4263 � 10��� 𝑚𝑚. The inverse of the 

reduced Compton wavelength ��̅�𝜆  � ℏ
��� is a natural representation for the mass on the 

quantum scale and appears in the relativistic Klein-Gordon equation for a free particle] is 

comparable to its Schwarzschild radius [Schwarzschild solution is the solution of a static 

spherically symmetric object (such as a star) of Einstein's field equation of GTR. The solution 

dictates that if a star collapses after using up all its fuel, then it would finally become a small 

object being embedded by a boundary, called the event horizon. The radius of the event horizon 

𝑟𝑟�  � ���
��  represents the characteristic radius of any quantity of mass. A black-hole formed out 

of 10 solar mass would have an event horizon radius of around 30 𝐾𝐾𝑚𝑚 only]. Thus, at present 

𝑙𝑙� is interpreted as the length scale beyond which one cannot probe. The cosmological Big-

Bang singularity likewise dictates that our present knowledge forbids to ask what happened 

beyond 𝑡𝑡� [Let us mention that in the absence of a viable `Quantum Theory of Gravity', 

`Quantum Cosmology' has been developed. It is essentially the quantization of cosmological 

equation, known as the Wheeler-DeWitt (WD) equation. It attempts to probe beyond Planck's 

time, to get an understanding of the situation. Unfortunately, in Wheeler-de-Witt equation time 

parameter disappears, which implies that the concept of time does not arise beyond 𝑡𝑡�]. 

Further, it is not possible to probe the energy scale associated with the Planck's mass 𝑀𝑀� and 

hence no fundamental particle can have mass greater than the Planck's mass 𝑀𝑀�. At Planck's 

temperature, the wavelength of light emitted by thermal radiation reaches Planck's length. The 

Big-Bang temperature is 𝑇𝑇�, and the universe, with our current understanding could not acquire 

temperature greater than 𝑇𝑇�. 

 

4. Natural Unit ℏ �  𝒄𝒄 �  𝟖𝟖𝟖𝟖𝟖𝟖 �  𝟏𝟏:  

Often a geometrized system of units [3] is used as natural units in GTR and also in STR (Special 

Theory of Relativity), where one sets 𝑐𝑐 �  𝐺𝐺 �  1 or more generally 𝑐𝑐 �  8𝜋𝜋𝐺𝐺 � 1. 

Particularly, 𝑐𝑐 �  1 implies that light in vacuum travels unit distance in unit time and so 1 𝑠𝑠 is 

interpreted as one light-second. This sets time and distance on equal footing and so time takes 

the geometric unit of length. The so-called natural unit sets ℏ �  𝑐𝑐 �  8𝜋𝜋𝐺𝐺 �  1, in which all 

the physical parameters become dimensionless. There is apparently no problem to work with 

the dimensionless parameter, as long as we are in the classical regime, since the reduced 

Planck's constant ℏ has no role in the classical domain. Let us start with the action (7) in the 

length scale at which the Compton wavelength of a particle [Compton wavelength of a particle 

is given by 𝜆𝜆 � �
�� , which for an electron is around 2.4263 � 10��� 𝑚𝑚. The inverse of the 

reduced Compton wavelength ��̅�𝜆  � ℏ
��� is a natural representation for the mass on the 

quantum scale and appears in the relativistic Klein-Gordon equation for a free particle] is 

comparable to its Schwarzschild radius [Schwarzschild solution is the solution of a static 

spherically symmetric object (such as a star) of Einstein's field equation of GTR. The solution 

dictates that if a star collapses after using up all its fuel, then it would finally become a small 

object being embedded by a boundary, called the event horizon. The radius of the event horizon 

𝑟𝑟�  � ���
��  represents the characteristic radius of any quantity of mass. A black-hole formed out 

of 10 solar mass would have an event horizon radius of around 30 𝐾𝐾𝑚𝑚 only]. Thus, at present 

𝑙𝑙� is interpreted as the length scale beyond which one cannot probe. The cosmological Big-

Bang singularity likewise dictates that our present knowledge forbids to ask what happened 

beyond 𝑡𝑡� [Let us mention that in the absence of a viable `Quantum Theory of Gravity', 

`Quantum Cosmology' has been developed. It is essentially the quantization of cosmological 

equation, known as the Wheeler-DeWitt (WD) equation. It attempts to probe beyond Planck's 

time, to get an understanding of the situation. Unfortunately, in Wheeler-de-Witt equation time 

parameter disappears, which implies that the concept of time does not arise beyond 𝑡𝑡�]. 

Further, it is not possible to probe the energy scale associated with the Planck's mass 𝑀𝑀� and 

hence no fundamental particle can have mass greater than the Planck's mass 𝑀𝑀�. At Planck's 

temperature, the wavelength of light emitted by thermal radiation reaches Planck's length. The 

Big-Bang temperature is 𝑇𝑇�, and the universe, with our current understanding could not acquire 

temperature greater than 𝑇𝑇�. 

 

4. Natural Unit ℏ �  𝒄𝒄 �  𝟖𝟖𝟖𝟖𝟖𝟖 �  𝟏𝟏:  

Often a geometrized system of units [3] is used as natural units in GTR and also in STR (Special 

Theory of Relativity), where one sets 𝑐𝑐 �  𝐺𝐺 �  1 or more generally 𝑐𝑐 �  8𝜋𝜋𝐺𝐺 � 1. 

Particularly, 𝑐𝑐 �  1 implies that light in vacuum travels unit distance in unit time and so 1 𝑠𝑠 is 

interpreted as one light-second. This sets time and distance on equal footing and so time takes 

the geometric unit of length. The so-called natural unit sets ℏ �  𝑐𝑐 �  8𝜋𝜋𝐺𝐺 �  1, in which all 

the physical parameters become dimensionless. There is apparently no problem to work with 

the dimensionless parameter, as long as we are in the classical regime, since the reduced 

Planck's constant ℏ has no role in the classical domain. Let us start with the action (7) in the 



   Volume 1 | Issue 3 | 5Ann Comp Phy Material Sci, 2024

after using up all its fuel, then it would finally become a small object being embedded by a boundary, called the event horizon. 
The radius of the event horizon                represents the characteristic radius of any quantity of mass. A black-hole formed out 
of 10 solar mass would have an event horizon radius of around 30 Km only]. Thus, at present lP is interpreted as the length 
scale beyond which one cannot probe. The cosmological Big-Bang singularity likewise dictates that our present knowledge 
forbids to ask what happened beyond tP [Let us mention that in the absence of a viable `Quantum Theory of Gravity', `Quantum 
Cosmology' has been developed. It is essentially the quantization of cosmological equation, known as the Wheeler-DeWitt (WD) 
equation. It attempts to probe beyond Planck's time, to get an understanding of the situation. Unfortunately, in Wheeler-de-Witt 
equation time parameter disappears, which implies that the concept of time does not arise beyond tP]. Further, it is not possible 
to probe the energy scale associated with the Planck's mass MP and hence no fundamental particle can have mass greater than 
the Planck's mass MP. At Planck's temperature, the wavelength of light emitted by thermal radiation reaches Planck's length. 
The Big-Bang temperature is TP, and the universe, with our current understanding could not acquire temperature greater than TP.

4. Natural Unit ℏ = c = 8πG = 1
Often a geometrized system of units [3] is used as natural units in GTR and also in STR (Special Theory of Relativity), where one 
sets c = G = 1 or more generally c = 8πG =1. Particularly, c = 1 implies that light in vacuum travels unit distance in unit time and 
so 1 s is interpreted as one light-second. This sets time and distance on equal footing and so time takes the geometric unit of length. 
The so-called natural unit sets ℏ = c = 8πG = 1, in which all the physical parameters become dimensionless. There is apparently no 
problem to work with the dimensionless parameters, as long as we are in the classical regime, since the reduced Planck's constant 
ℏ has no role in the classical domain. Let us start with the action (7) in the presence of a scalar field, to investigate what happens in 
the natural unit ℏ = c = 8πG = MP

-1 =1,
presence of a scalar field, to investigate what happens in the natural unit ℏ �  𝑐𝑐 �  8𝜋𝜋𝜋𝜋 �
 𝑀𝑀���  � 1, 

 𝐴𝐴 � � �12 �𝑅𝑅 �  2Λ�  � �𝑅𝑅�  � �𝑅𝑅��  � 1
2 𝑔𝑔�� 𝜙𝜙 ,� 𝜙𝜙 ,�  �  𝑉𝑉�𝜙𝜙����𝑔𝑔 𝑑𝑑�𝑥𝑥 (15) 

 

We already know that the dimension of �𝑅𝑅� and �Λ� are �����  �  𝑀𝑀��  �  1 and so all the 

parameters of the action are dimensionless. Nonetheless, it is not much useful, since 

observation suggests dimensional parameters. Further, in the quantum domain, the perturbative 

analysis (semiclassical approximation) is carried out either in terms of the reduced Planck's 

constant (ℏ) or the reduced Planck's mass (𝑀𝑀�). Hence, to comply with experimental 

observations in astro-particle physics as well as with perturbative quantum analysis, it is always 

suggestive to withdraw the last condition and keep 𝑀𝑀� in the action [Note that, setting reduced 

Planck's constant ℏ �  1 has nothing to do with classical GTR. In fact, semi-classical 

approximation is usually performed following expansion in terms of ℏ. Hence for this purpose, 

one can choose 𝑀𝑀�  �  8𝜋𝜋𝜋𝜋 �  𝑐𝑐 � 1, without fixing ℏ to unity. Once classical transition is 

found to be allowed, in view of an oscillatory wave function, one can fix ℏ �  1 in the classical 

domain]. 

As for the sake of illustration let us mention that in the background of isotropic and 

homogeneous Robertson-Walker line-element 

 𝑑𝑑𝑑𝑑�  �  �𝑑𝑑𝑡𝑡� � ���𝑡𝑡� � 𝑑𝑑𝑑𝑑�
1 � �𝑑𝑑� � 𝑑𝑑��𝑑𝑑𝑑𝑑� � 𝑑𝑑���𝑑𝑑 𝑑𝑑𝜙𝜙� �� (16) 

where, ��𝑡𝑡� is the scale factor, inflation is studied in the natural unit, for a host of potentials 

(quadratic, quartic, inverse power laws, their combinations and even inverse exponential) in a 

non-minimally coupled scalar-tensor theory of gravity [4]. The action is given by, 

 𝐴𝐴 � � �𝑓𝑓�𝜙𝜙�𝑅𝑅 � 𝜔𝜔�𝜙𝜙�
𝜙𝜙 𝜙𝜙,�𝜙𝜙,� �  𝑉𝑉�𝜙𝜙� �  ℒ����𝑔𝑔 𝑑𝑑� 𝑥𝑥 

(17) 

where, 𝑓𝑓�𝜙𝜙� is the coupling parameter and \omega(\phi) is the variable Brans-Dicke parameter. 

Applying the following conformal transformation [5] 

 𝑔𝑔��� �  𝑓𝑓�𝜙𝜙�𝑔𝑔�� (18) 

 

the above action (17) may be translated to the following Einstein's frame, 

 𝐴𝐴 � � �𝑅𝑅�– 1
2 𝜎𝜎�,�𝜎𝜎� ,� �  𝑉𝑉��𝜎𝜎�𝜙𝜙�����𝑔𝑔�  𝑑𝑑� 𝑥𝑥 (19) 
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Planck's mass (MP). Hence, to comply with experimental observations in astro-particle physics as well as with perturbative quantum 
analysis, it is always suggestive to withdraw the last condition and keep MP in the action [Note that, setting reduced Planck's 
constant ℏ = 1 has nothing to do with classical GTR. In fact, semi-classical approximation is usually performed following expansion 
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to be allowed, in view of an oscillatory wave function, one can fix ℏ = 1 in the classical domain].
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where, a(t) is the scale factor, inflation is studied in the natural unit, for a host of potentials (quadratic, quartic, inverse power laws, 
their combinations and even inverse exponential) in a non-minimally coupled scalar-tensor theory of gravity [4]. The action is given 
by,

where, f(ϕ) is the coupling parameter and ω(ϕ) is the variable Brans-Dicke parameter. Applying the following conformal 
transformation [5]

length scale at which the Compton wavelength of a particle [Compton wavelength of a particle 

is given by 𝜆𝜆 � �
�� , which for an electron is around 2.4263 � 10��� 𝑚𝑚. The inverse of the 

reduced Compton wavelength ��̅�𝜆  � ℏ
��� is a natural representation for the mass on the 

quantum scale and appears in the relativistic Klein-Gordon equation for a free particle] is 

comparable to its Schwarzschild radius [Schwarzschild solution is the solution of a static 

spherically symmetric object (such as a star) of Einstein's field equation of GTR. The solution 

dictates that if a star collapses after using up all its fuel, then it would finally become a small 

object being embedded by a boundary, called the event horizon. The radius of the event horizon 

𝑟𝑟�  � ���
��  represents the characteristic radius of any quantity of mass. A black-hole formed out 

of 10 solar mass would have an event horizon radius of around 30 𝐾𝐾𝑚𝑚 only]. Thus, at present 

𝑙𝑙� is interpreted as the length scale beyond which one cannot probe. The cosmological Big-

Bang singularity likewise dictates that our present knowledge forbids to ask what happened 

beyond 𝑡𝑡� [Let us mention that in the absence of a viable `Quantum Theory of Gravity', 

`Quantum Cosmology' has been developed. It is essentially the quantization of cosmological 

equation, known as the Wheeler-DeWitt (WD) equation. It attempts to probe beyond Planck's 

time, to get an understanding of the situation. Unfortunately, in Wheeler-de-Witt equation time 

parameter disappears, which implies that the concept of time does not arise beyond 𝑡𝑡�]. 

Further, it is not possible to probe the energy scale associated with the Planck's mass 𝑀𝑀� and 

hence no fundamental particle can have mass greater than the Planck's mass 𝑀𝑀�. At Planck's 

temperature, the wavelength of light emitted by thermal radiation reaches Planck's length. The 

Big-Bang temperature is 𝑇𝑇�, and the universe, with our current understanding could not acquire 

temperature greater than 𝑇𝑇�. 
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Excellent agreement with the latest released Planck's data [6,7] was found [In the manuscript, by mistake we have used a dimension 
in the potential parameter, which should be ignored]. So as mentioned, seemingly there is no problem as such. However, some 
issues are involved with the natural unit. Firstly, Inflation is a quantum theory of perturbation in the background of classical space-
time, which occurred at around 10-36 sec. Now, if a quantum theory admits a viable semiclassical (WKB) approximation [If the 
semiclassical wavefunction manifests oscillatory behaviour around the classical inflationary solution, which means that the solution 
is strongly peaked around classical inflationary solutions, then only the quantum theory is supposed to be viable], then most of 
the information in connection with inflation may be extracted from the classical field equations only. Therefore, prior to the study 
of inflation it is required to quantize the theory (i.e., construct modified Wheeler-deWitt equation) and perform semi-classical 
approximation. In the perturbative analysis of a quantized theory (quantum cosmology, for example), the action (the Hamilton-
Jacobi functional S) in the wave function                     is expanded in terms of ℏ [8,9] or alternatively, in terms of the Planck's mass 
MP [10,11] and so either ℏ or MP must not be fixed to unity, a priori. For further clarification, let us consider the following action [12],

where, the subscript ̀ 𝐸𝐸𝐸 stands for Einstein's frame. The transformed scalar field 𝜎𝜎 and effective 

potential 𝑉𝑉� in the Einstein's frame are related to the parameters of the Jordan frame action (17) 

through the following expressions, 
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potential 𝑉𝑉�𝑑𝑑� take the following form, 
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The quantum counterpart, which is essentially the modified Wheeler-de-Witt equation, reads in the natural unit as [12]

Clearly, one cannot further proceed to find semi-classical (WKB) wave function, in the absence of ℏ and MP.
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where, 𝑧𝑧 �  𝑎𝑎�, 𝑥𝑥 �  𝑧𝑧�,𝜎𝜎 � 𝑧𝑧��� � 𝑎𝑎�� and 𝑛𝑛 is the operator ordering index. The effective 
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Clearly, one cannot further proceed to find semi-classical (WKB) wave function, in the absence 

of ℏ and 𝑀𝑀�. 

Next, all information regarding dimensional analysis is lost and the use of coupling parameters 

(used for dimensional matching), becomes redundant. Note that Inflation is considered to be a 

scenario rather than a model for the reason that, different modified and alternative (modified 

telleparallel gravity) theories of gravitation, different forms of the potential and even curvature 

induced inflation [13,14], find excellent agreement with the Planck's data [6,7], constraining 

the parameters of the theory. As mentioned, the parameters are not required any more in the 

natural unit and so the task becomes very difficult if not impossible and if some model finds 

agreement, it would be difficult to interpret why universe chose a particular model. 

Additionally, some physical parameters are measured in appropriate dimensions. For instance, 

the present value of the Hubble parameter 𝐻𝐻� (measured in the unit 𝐾𝐾𝐾𝐾. 𝑠𝑠��.𝑀𝑀𝑀𝑀𝑀𝑀�� or crossing 

out the units it may be also be expressed simply in terms of the unit of frequency 𝑠𝑠��), the age 

of the universe $t_0$ (measured in terms of 𝐺𝐺𝐺𝐺𝐺𝐺), so that 𝐻𝐻� 𝑡𝑡� �  1. It is therefore suggestive 

to consider the system of units as described in the following section. 
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Next, all information regarding dimensional analysis is lost and the use of coupling parameters (used for dimensional matching), 
becomes redundant. Note that Inflation is considered to be a scenario rather than a model for the reason that, different modified 
and alternative (modified telleparallel gravity) theories of gravitation, different forms of the potential and even curvature induced 
inflation [13,14], find excellent agreement with the Planck's data [6,7], constraining the parameters of the theory. As mentioned, the 
parameters are not required any more in the natural unit and so the task becomes very difficult if not impossible and if some model 
finds agreement, it would be difficult to interpret why universe chose a particular model. Additionally, some physical parameters are 
measured in appropriate dimensions. For instance, the present value of the Hubble parameter H0 (measured in the unit Km.s-1.Mpc-1 
or crossing out the units it may be also be expressed simply in terms of the unit of frequency s-1), the age of the universe t0 (measured 
in terms of Gyr), so that H0 t0 ≈ 1. It is therefore suggestive to consider the system of units as described in the following section.
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5. Dimensions of GTR Parameters in Terms of Planck's Mass
From now on we shall work with the reduced Planck's mass,       just to get rid of 8πG from the right-hand side of 
the Einstein’s equation (1). Now, if we choose the system of unit ℏ = c = 1, while MP takes the value of reduced Planck’s mass, then 
no such issues discussed above appears. Note that, the reduced Planck’s constant, being a universal constant, may always be fixed to 
ℏ = 1 , which allows to relate energy unit with the inverse of time unit. Also, one of the fundamental assertions of `Special Theory 
of Relativity is: the velocity of light in vacuum is isotropic (same in all direction), independent of of the observer and information 
cannot be carried faster than the speed of light. Hence, one can also fix c =1 , which further allows to relate the time unit with the 
length unit. As a result, all the units may be expressed in terms of different degrees of the energy unit (GeV) or equivalently in terms 
of different powers of the reduced Planck's mass. This is what we aim at below.

The equivalent distance travelled by light in vacuum in one second is 3× 108 m. Hence,

5. Dimensions of GTR parameters in terms of Planck's mass: 

From now on we shall work with the reduced Planck's mass, 𝑀𝑀�  � � �ℏ
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 10�� 𝐺𝐺𝐺𝐺𝐺𝐺, just to get rid of 8𝜋𝜋𝐺𝐺 from the right-hand side of the Einstein’s equation (1). Now, 

if we choose the system of unit ℏ �  𝑐𝑐 �  1, while 𝑀𝑀� takes the value of reduced Planck’s 

mass, then no such issues discussed above appears. Note that, the reduced Planck’s constant, 

being a universal constant, may always be fixed to ℏ �  1 , which allows to relate energy unit 

with the inverse of time unit. Also, one of the fundamental assertions of `Special Theory of 
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�  9.95 � 10���𝑀𝑀��� 

(29) 

 

 1 𝑡𝑡� �  5.37 � 10���𝑠𝑠 𝑠 1.86652 � 10� � 5.37 � 10���𝑀𝑀���

�  1.0023 � 10���𝑀𝑀��� 

(30) 

5. Dimensions of GTR parameters in terms of Planck's mass: 

From now on we shall work with the reduced Planck's mass, 𝑀𝑀�  � � �ℏ
���  �  2.4 �

 10�� 𝐺𝐺𝐺𝐺𝐺𝐺, just to get rid of 8𝜋𝜋𝐺𝐺 from the right-hand side of the Einstein’s equation (1). Now, 

if we choose the system of unit ℏ �  𝑐𝑐 �  1, while 𝑀𝑀� takes the value of reduced Planck’s 

mass, then no such issues discussed above appears. Note that, the reduced Planck’s constant, 

being a universal constant, may always be fixed to ℏ �  1 , which allows to relate energy unit 

with the inverse of time unit. Also, one of the fundamental assertions of `Special Theory of 

Relativity are: the velocity of light in vacuum is isotropic (same in all direction), is independent 

of the observer and information cannot be carried faster than the speed of light. Hence, one can 

also fix 𝑐𝑐 � 1 , which further allows to relate the time unit with the length unit. As a result, all 

the units may be expressed in terms of different degrees of the energy unit (𝐺𝐺𝐺𝐺𝐺𝐺) or 

equivalently in terms of different powers of the reduced Planck's mass. This is what we aim at 

below. 

The equivalent distance travelled by light in vacuum in one second is 3 � 10� 𝑚𝑚. Hence, 

 1 𝑠𝑠 𝑠  3 � 10�� 𝑐𝑐𝑚𝑚 (26) 
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(27) 
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As an application of the said system of units, let us consider the modified gravitational action in the following form,

 

As an application of the said system of units, let us consider the modified gravitational action 

in the following form, 

 𝐴𝐴 � � �𝑀𝑀��

2 �𝑅𝑅 �  2Λ�  � 𝛽𝛽 𝑅𝑅�  � � 𝑅𝑅��  � 1
2 𝑔𝑔��𝜙𝜙,� 𝜙𝜙,�  �  𝑉𝑉�𝜙𝜙����𝑔𝑔 𝑑𝑑�𝑥𝑥 

(31) 

 

Since we know that �𝑅𝑅�  �  𝑙𝑙���  �  �Λ�, so under the current system of units, �𝑅𝑅�  �  𝑀𝑀��  �
 �Λ� and the dimension of the first term in the above action is 𝑀𝑀��. Hence, the dimensions of 

�𝛽𝛽 𝑅𝑅��  �  �� 𝑅𝑅���  �  �𝜙𝜙 ,� 𝜙𝜙 ,��  �  �𝑉𝑉�𝜙𝜙��  �  𝑀𝑀��$ as well. One can easily find that 𝛽𝛽 has to 

be a dimension-less parameter, while the dimension of ���  �  𝑀𝑀��. Finally, 𝜙𝜙,� 𝜙𝜙,�  �
 � ������ �

��
����, so its dimension is either the dimension of �������

��  �  ������ �  𝑜𝑜𝑜𝑜 ��������  ��������  �

 ������ � . Hence, the dimension of �𝜙𝜙 ,� 𝜙𝜙 ,��  �  𝑀𝑀��𝜙𝜙�. Clearly, the dimension of �𝜙𝜙�  �  𝑀𝑀�. For 

a crosscheck, remember that the dimension of �𝜙𝜙�  �  𝑀𝑀�
� 𝐿𝐿�� 𝑇𝑇�� (see table-1), which in the 

current system of units reads as �𝜙𝜙� �  𝑀𝑀�
� �  𝑀𝑀���  �  𝑀𝑀�  �  𝑀𝑀�. Finally, in the case of a 

quadratic potential 𝑉𝑉�𝜙𝜙� �  𝑉𝑉� 𝜙𝜙�,𝑉𝑉� has the dimension of �𝑉𝑉��  �  𝑀𝑀�� (compare with table-

1), while for quartic potential 𝑉𝑉�𝜙𝜙�  � 𝜆𝜆 𝜙𝜙�, 𝜆𝜆 is dimensionless and finally for an exponential 

potential such as 𝑉𝑉�𝜙𝜙�  �  𝒱𝒱� 𝑒𝑒���, the dimension of �𝒱𝒱��  �  𝑀𝑀�� and ���  �  �𝜙𝜙���  �
 �𝑀𝑀����. In general, for a potential given in the form 𝑉𝑉�𝜙𝜙�  �  𝑉𝑉� 𝜙𝜙�, then the dimension of 

�𝑉𝑉�� �  𝑀𝑀����, where 𝑛𝑛 takes takes arbitrary real value. Likewise, for the action [22], we know 

that ���  �  𝑀𝑀��, hence 𝛽𝛽 is a dimensionless parameter, while ���  �  𝑀𝑀���. In table-2 we present 

a list of dimensions of the physical parameters in terms of different powers of 𝑀𝑀�.  

Lagrangian Lagrangian 

density 

Action Ricci scalar, 

Ricci tensor, 

Cosmological 

constant 

Energy-

Momentum 

Tensor 

Scalar 

field 

Potential 

�𝐿𝐿� �ℒ�� �𝐴𝐴� �𝑅𝑅�, �𝑅𝑅���, �Λ� �𝑇𝑇��� �𝜙𝜙� �𝑉𝑉�𝜙𝜙�� 
𝑀𝑀�  𝑀𝑀�� Dimension 

less 

𝑀𝑀�� 𝑀𝑀�� 𝑀𝑀�  𝑀𝑀�� 

Table 2: Dimensions of the standard parameters used in GTR, in terms of powers of 𝑀𝑀�. 

 

In table-3, we also present a list of the dimensions of some typical potential parameters. 
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In table-3, we also present a list of the dimensions of some typical potential parameters. 
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-2  = [Λ], so under the current system of units, [R] = MP
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be a dimension-less parameter, while the dimension of ���  �  𝑀𝑀��. Finally, 𝜙𝜙,� 𝜙𝜙,�  �
 � ������ �
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����, so its dimension is either the dimension of �������
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 ������ � . Hence, the dimension of �𝜙𝜙 ,� 𝜙𝜙 ,��  �  𝑀𝑀��𝜙𝜙�. Clearly, the dimension of �𝜙𝜙�  �  𝑀𝑀�. For 

a crosscheck, remember that the dimension of �𝜙𝜙�  �  𝑀𝑀�
� 𝐿𝐿�� 𝑇𝑇�� (see table-1), which in the 

current system of units reads as �𝜙𝜙� �  𝑀𝑀�
� �  𝑀𝑀���  �  𝑀𝑀�  �  𝑀𝑀�. Finally, in the case of a 

quadratic potential 𝑉𝑉�𝜙𝜙� �  𝑉𝑉� 𝜙𝜙�,𝑉𝑉� has the dimension of �𝑉𝑉��  �  𝑀𝑀�� (compare with table-

1), while for quartic potential 𝑉𝑉�𝜙𝜙�  � 𝜆𝜆 𝜙𝜙�, 𝜆𝜆 is dimensionless and finally for an exponential 

potential such as 𝑉𝑉�𝜙𝜙�  �  𝒱𝒱� 𝑒𝑒���, the dimension of �𝒱𝒱��  �  𝑀𝑀�� and ���  �  �𝜙𝜙���  �
 �𝑀𝑀����. In general, for a potential given in the form 𝑉𝑉�𝜙𝜙�  �  𝑉𝑉� 𝜙𝜙�, then the dimension of 

�𝑉𝑉�� �  𝑀𝑀����, where 𝑛𝑛 takes takes arbitrary real value. Likewise, for the action [22], we know 

that ���  �  𝑀𝑀��, hence 𝛽𝛽 is a dimensionless parameter, while ���  �  𝑀𝑀���. In table-2 we present 

a list of dimensions of the physical parameters in terms of different powers of 𝑀𝑀�.  
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In table-3, we also present a list of the dimensions of some typical potential parameters. 

 

As an application of the said system of units, let us consider the modified gravitational action 

in the following form, 

 𝐴𝐴 � � �𝑀𝑀��

2 �𝑅𝑅 �  2Λ�  � 𝛽𝛽 𝑅𝑅�  � � 𝑅𝑅��  � 1
2 𝑔𝑔��𝜙𝜙,� 𝜙𝜙,�  �  𝑉𝑉�𝜙𝜙����𝑔𝑔 𝑑𝑑�𝑥𝑥 
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Since we know that �𝑅𝑅�  �  𝑙𝑙���  �  �Λ�, so under the current system of units, �𝑅𝑅�  �  𝑀𝑀��  �
 �Λ� and the dimension of the first term in the above action is 𝑀𝑀��. Hence, the dimensions of 

�𝛽𝛽 𝑅𝑅��  �  �� 𝑅𝑅���  �  �𝜙𝜙 ,� 𝜙𝜙 ,��  �  �𝑉𝑉�𝜙𝜙��  �  𝑀𝑀��$ as well. One can easily find that 𝛽𝛽 has to 

be a dimension-less parameter, while the dimension of ���  �  𝑀𝑀��. Finally, 𝜙𝜙,� 𝜙𝜙,�  �
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 ������ � . Hence, the dimension of �𝜙𝜙 ,� 𝜙𝜙 ,��  �  𝑀𝑀��𝜙𝜙�. Clearly, the dimension of �𝜙𝜙�  �  𝑀𝑀�. For 

a crosscheck, remember that the dimension of �𝜙𝜙�  �  𝑀𝑀�
� 𝐿𝐿�� 𝑇𝑇�� (see table-1), which in the 

current system of units reads as �𝜙𝜙� �  𝑀𝑀�
� �  𝑀𝑀���  �  𝑀𝑀�  �  𝑀𝑀�. Finally, in the case of a 

quadratic potential 𝑉𝑉�𝜙𝜙� �  𝑉𝑉� 𝜙𝜙�,𝑉𝑉� has the dimension of �𝑉𝑉��  �  𝑀𝑀�� (compare with table-

1), while for quartic potential 𝑉𝑉�𝜙𝜙�  � 𝜆𝜆 𝜙𝜙�, 𝜆𝜆 is dimensionless and finally for an exponential 
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 �𝑀𝑀����. In general, for a potential given in the form 𝑉𝑉�𝜙𝜙�  �  𝑉𝑉� 𝜙𝜙�, then the dimension of 

�𝑉𝑉�� �  𝑀𝑀����, where 𝑛𝑛 takes takes arbitrary real value. Likewise, for the action [22], we know 

that ���  �  𝑀𝑀��, hence 𝛽𝛽 is a dimensionless parameter, while ���  �  𝑀𝑀���. In table-2 we present 

a list of dimensions of the physical parameters in terms of different powers of 𝑀𝑀�.  
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a crosscheck, remember that the dimension of �𝜙𝜙�  �  𝑀𝑀�
� 𝐿𝐿�� 𝑇𝑇�� (see table-1), which in the 

current system of units reads as �𝜙𝜙� �  𝑀𝑀�
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�𝑉𝑉�� �  𝑀𝑀����, where 𝑛𝑛 takes takes arbitrary real value. Likewise, for the action [22], we know 

that ���  �  𝑀𝑀��, hence 𝛽𝛽 is a dimensionless parameter, while ���  �  𝑀𝑀���. In table-2 we present 

a list of dimensions of the physical parameters in terms of different powers of 𝑀𝑀�.  
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In table-3, we also present a list of the dimensions of some typical potential parameters. 
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in the following form, 
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quadratic potential 𝑉𝑉�𝜙𝜙� �  𝑉𝑉� 𝜙𝜙�,𝑉𝑉� has the dimension of �𝑉𝑉��  �  𝑀𝑀�� (compare with table-

1), while for quartic potential 𝑉𝑉�𝜙𝜙�  � 𝜆𝜆 𝜙𝜙�, 𝜆𝜆 is dimensionless and finally for an exponential 
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that ���  �  𝑀𝑀��, hence 𝛽𝛽 is a dimensionless parameter, while ���  �  𝑀𝑀���. In table-2 we present 
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As an application of the said system of units, let us consider the modified gravitational action 

in the following form, 

 𝐴𝐴 � � �𝑀𝑀��
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�𝑉𝑉�� �  𝑀𝑀����, where 𝑛𝑛 takes takes arbitrary real value. Likewise, for the action [22], we know 

that ���  �  𝑀𝑀��, hence 𝛽𝛽 is a dimensionless parameter, while ���  �  𝑀𝑀���. In table-2 we present 

a list of dimensions of the physical parameters in terms of different powers of 𝑀𝑀�.  
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In table-3, we also present a list of the dimensions of some typical potential parameters. 
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Table 3: Dimensions of Some Standard Potential Coupling Parameters

In table-3, we also present a list of the dimensions of some typical potential parameters.
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Table 3: Dimensions of some standard potential coupling parameters.  

 

We also compute numerical values of some fundamental cosmological parameters in the 
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𝐻𝐻�: Hubble 

parameter, 

present value 

for (ℎ � 0.7). 

100ℎ 𝐾𝐾𝐾𝐾. 𝑠𝑠��𝑀𝑀𝑀𝑀𝑀𝑀�� � 100ℎ
3 � 10� 𝑀𝑀𝑀𝑀𝑀𝑀

�� � ℎ
3000𝑀𝑀𝑀𝑀𝑀𝑀

�� � 

0.7
3000 � �3.086 � 10��� � �5.068 � 10��� �  1.492 � 10��� 𝐺𝐺𝑒𝑒𝑉𝑉

� 6.22 � 10��� 𝑀𝑀�  
𝐻𝐻�: Hubble 

parameter at 

Big Bang 

Inflation lasted for Δ 𝑑𝑑 � 10���𝑠𝑠 �10����� � 10����� � 𝑠𝑠, during which 

universe expanded 60 e – fold times, i.e., Δ𝑑𝑑 � 60. So 

𝐻𝐻� � 𝑑𝑑� � 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 �

60
10���𝑠𝑠 � 60 � 10�� � 2.732 � 10���

� 1.64 � 10�� 𝑀𝑀� 

𝜌𝜌� 𝐻𝐻� �  Λ3  � 8𝜋𝜋𝐺𝐺
3 𝜌𝜌�, 𝑖𝑖𝑒𝑒. ,𝜌𝜌� �  3𝐻𝐻�

8𝜋𝜋𝐺𝐺 � 3 �𝑀𝑀�� � 𝐻𝐻� 

Therefore, Present value of vacuum energy density is  

𝜌𝜌� � 3 � �2.4 � 10���� � �1.492 � 10����� 𝐺𝐺𝑒𝑒𝑉𝑉� � 3.8 � 10��� 𝐺𝐺𝑒𝑒𝑉𝑉� 

 𝜌𝜌��� 
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zero-point 

energies of 

〈𝑇𝑇��〉��� � 𝜌𝜌��� �  � 𝐾𝐾� 𝑑𝑑𝐾𝐾 � 10�� 𝐺𝐺𝑒𝑒𝑉𝑉����� 
� . 

A naive calculation: Frequency at Grand Unified (GUT) scale is  

𝜈𝜈��� � 2.4 � 10�� 𝐻𝐻𝐻𝐻.  

T 2

We also compute numerical values of some fundamental cosmological parameters in the energy unit. These are enlisted in the 
following table 4.
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Cubic Potential Quartic Potential Inverse Potential Exponential 
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Table 3: Dimensions of some standard potential coupling parameters.  

 

We also compute numerical values of some fundamental cosmological parameters in the 

energy unit. These are enlisted in the following table 3. 

Cosmological 

parameters  

Cosmological parameters in terms of powers of energy unit (𝑒𝑒𝑉𝑉 / 𝐺𝐺𝑒𝑒𝑉𝑉 ) 

𝐺𝐺: Newton’s 

Gravitational 

constant. 

𝐺𝐺 � 1
8𝜋𝜋𝑀𝑀��

� 1
8𝜋𝜋 � 2.4� � 10�� � 6.91 � 10��� 𝐺𝐺𝑒𝑒𝑉𝑉�� 

𝐻𝐻�: Hubble 

parameter, 

present value 

for (ℎ � 0.7). 
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� 6.22 � 10��� 𝑀𝑀�  
𝐻𝐻�: Hubble 

parameter at 

Big Bang 

Inflation lasted for Δ 𝑑𝑑 � 10���𝑠𝑠 �10����� � 10����� � 𝑠𝑠, during which 

universe expanded 60 e – fold times, i.e., Δ𝑑𝑑 � 60. So 

𝐻𝐻� � 𝑑𝑑� � 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 �

60
10���𝑠𝑠 � 60 � 10�� � 2.732 � 10���

� 1.64 � 10�� 𝑀𝑀� 

𝜌𝜌� 𝐻𝐻� �  Λ3  � 8𝜋𝜋𝐺𝐺
3 𝜌𝜌�, 𝑖𝑖𝑒𝑒. ,𝜌𝜌� �  3𝐻𝐻�

8𝜋𝜋𝐺𝐺 � 3 �𝑀𝑀�� � 𝐻𝐻� 

Therefore, Present value of vacuum energy density is  

𝜌𝜌� � 3 � �2.4 � 10���� � �1.492 � 10����� 𝐺𝐺𝑒𝑒𝑉𝑉� � 3.8 � 10��� 𝐺𝐺𝑒𝑒𝑉𝑉� 

 𝜌𝜌��� 
The sum of 

zero-point 

energies of 

〈𝑇𝑇��〉��� � 𝜌𝜌��� �  � 𝐾𝐾� 𝑑𝑑𝐾𝐾 � 10�� 𝐺𝐺𝑒𝑒𝑉𝑉����� 
� . 

A naive calculation: Frequency at Grand Unified (GUT) scale is  

𝜈𝜈��� � 2.4 � 10�� 𝐻𝐻𝐻𝐻.  
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Table 4: Some Important Physical Parameters in Different Powers of Energy Unit

vibrational 

modes of all 

the quantum 

fields. 

 𝜌𝜌��� � � ����
�� � ��

� 𝑑𝑑𝑑𝑑
����
���� � 2.56 � 10�� 𝐽𝐽 � ��.�������

��������� �
�
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So, 𝜌𝜌��� � 3.15 � 10�� 𝐺𝐺𝐺𝐺𝐺𝐺. 

Thus, ������ � 10���� 

𝑅𝑅�: Value of 

Ricci scalar 

on earth 

Einstein’s GTR implies: 𝑅𝑅 � ���
�� 𝑇𝑇 �

���
�� �𝜌𝜌𝑐𝑐� � 3�� for perfect fluid. 

For objects like the sun, the earth one can neglect pressure. So in the present 

unit, 𝑅𝑅 � �
���

. So, 𝑅𝑅� � �.�
���

 𝑔𝑔𝑔𝑔. 𝑐𝑐𝑔𝑔��. Using relations (13) and (28) one can 

compute 𝑅𝑅� � 10��� 𝐺𝐺𝐺𝐺�. 

Table 4: Some important physical parameters in different powers of energy unit. 

Energy-Temperature relation: 
Finally, we present temperature-energy relation 

1.602 � 10��� 𝐽𝐽 �  1 𝐺𝐺𝐺𝐺 �  𝑘𝑘 𝑇𝑇 �  1.38 𝑥𝑥 10��� 𝐽𝐽.𝐾𝐾�� � T. 

Therefore, temperature corresponding to 1 𝐺𝐺𝐺𝐺 is, 
 T �  �.���

�.�� � 10� 𝐾𝐾 �  1.16087 � 10� 𝐾𝐾 �  11609 𝐾𝐾. 
Conversely, 1 𝐾𝐾 � 8.614 � 10�� 𝐺𝐺𝐺𝐺. 
Temperature corresponding to the ionizing potential of hydrogen and the present cosmic 

microwave background temperature are, 

13.6 𝐺𝐺𝐺𝐺 �  157878 𝐾𝐾 and 2.7𝐾𝐾 �  2.3𝑥𝑥10��𝐺𝐺𝐺𝐺 � 10��𝐺𝐺𝐺𝐺 respectively. 

Universe was reheated after graceful exit from inflation due to rapid oscillation of the scalar 

field that drives inflation, which results in particle production. In this process, hot big-bang 

resurrects with temperature equivalent to 10� 𝐺𝐺𝐺𝐺𝐺𝐺 �  10�� 𝐺𝐺𝐺𝐺 �  1.16 �  10�� 𝐾𝐾. 

Finally, for the sake of completeness, let us mention that in the recent years teleparallel gravity 

theories are in the limelight. In metric teleparallel theory, which is also dubbed as gravity with 

torsion, the torsion scalar T plays the role of the Ricci scalar 𝑅𝑅. In symmetric teleparallel theory, 

on the contrary, the non-metricity scalar 𝑄𝑄 plays the role of 𝑅𝑅. Thus, both T and 𝑄𝑄 have the 

dimension of 𝑅𝑅.  

 

6. Concluding remarks: 
 

In this manuscript, we have explored virtues and some problems associated with different 

system of units used in high energy physics, such as, GTR, Astroparticle physics, Physical 

cosmology etc. We think that the most comfortable system of units requires a subtle relaxation 
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Cubic Potential Quartic Potential Inverse Potential Exponential 

Potential 

𝑉𝑉�𝜙𝜙�
� 𝑉𝑉�𝜙𝜙� 
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�  𝒱𝒱�𝑒𝑒��� 

𝐿𝐿�� 𝑉𝑉� � 𝑀𝑀���𝐿𝐿���𝑇𝑇 𝜆𝜆
� 𝑀𝑀��𝐿𝐿��𝑇𝑇^2 

𝑉𝑉� � 𝑀𝑀�
�𝐿𝐿���𝑇𝑇�� 𝒱𝒱� � 𝐿𝐿��𝑀𝑀𝑇𝑇�� 

𝑉𝑉� � 𝑀𝑀�� 𝑉𝑉� � 𝑀𝑀�� 𝜆𝜆 dimensionless 𝑉𝑉� � 𝑀𝑀�� 𝒱𝒱� � 𝑀𝑀�� 

Table 3: Dimensions of some standard potential coupling parameters.  

 

We also compute numerical values of some fundamental cosmological parameters in the 

energy unit. These are enlisted in the following table 3. 

Cosmological 

parameters  

Cosmological parameters in terms of powers of energy unit (𝑒𝑒𝑉𝑉 / 𝐺𝐺𝑒𝑒𝑉𝑉 ) 

𝐺𝐺: Newton’s 

Gravitational 

constant. 

𝐺𝐺 � 1
8𝜋𝜋𝑀𝑀��

� 1
8𝜋𝜋 � 2.4� � 10�� � 6.91 � 10��� 𝐺𝐺𝑒𝑒𝑉𝑉�� 

𝐻𝐻�: Hubble 

parameter, 

present value 

for (ℎ � 0.7). 

100ℎ 𝐾𝐾𝐾𝐾. 𝑠𝑠��𝑀𝑀𝑀𝑀𝑀𝑀�� � 100ℎ
3 � 10� 𝑀𝑀𝑀𝑀𝑀𝑀

�� � ℎ
3000𝑀𝑀𝑀𝑀𝑀𝑀

�� � 

0.7
3000 � �3.086 � 10��� � �5.068 � 10��� �  1.492 � 10��� 𝐺𝐺𝑒𝑒𝑉𝑉

� 6.22 � 10��� 𝑀𝑀�  
𝐻𝐻�: Hubble 

parameter at 

Big Bang 

Inflation lasted for Δ 𝑑𝑑 � 10���𝑠𝑠 �10����� � 10����� � 𝑠𝑠, during which 

universe expanded 60 e – fold times, i.e., Δ𝑑𝑑 � 60. So 

𝐻𝐻� � 𝑑𝑑� � 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 �

60
10���𝑠𝑠 � 60 � 10�� � 2.732 � 10���

� 1.64 � 10�� 𝑀𝑀� 

𝜌𝜌� 𝐻𝐻� �  Λ3  � 8𝜋𝜋𝐺𝐺
3 𝜌𝜌�, 𝑖𝑖𝑒𝑒. ,𝜌𝜌� �  3𝐻𝐻�

8𝜋𝜋𝐺𝐺 � 3 �𝑀𝑀�� � 𝐻𝐻� 

Therefore, Present value of vacuum energy density is  

𝜌𝜌� � 3 � �2.4 � 10���� � �1.492 � 10����� 𝐺𝐺𝑒𝑒𝑉𝑉� � 3.8 � 10��� 𝐺𝐺𝑒𝑒𝑉𝑉� 

 𝜌𝜌��� 
The sum of 

zero-point 

energies of 

〈𝑇𝑇��〉��� � 𝜌𝜌��� �  � 𝐾𝐾� 𝑑𝑑𝐾𝐾 � 10�� 𝐺𝐺𝑒𝑒𝑉𝑉����� 
� . 

A naive calculation: Frequency at Grand Unified (GUT) scale is  

𝜈𝜈��� � 2.4 � 10�� 𝐻𝐻𝐻𝐻.  

Energy-Tempaerature Relation
Finally, we present temperature-energy relation
1.602× 10 -19 J = 1 eV = k T = 1.38 × 10 -23 J.K-1 × T.

Therefore, temperature corresponding to 1 eV is,

Conversely, 1 K = 8.614 × 10-5 eV.
Temperature corresponding to the ionizing potential of hydrogen and the present cosmic microwave background temperature are,
13.6 eV = 157878 K and 2.7K = 2.3 × 10-4 eV = 10-3 eV respectively.

Universe was reheated after graceful exit from inflation due to rapid oscillation of the scalar field that drives inflation, which results 
in particle production. In this process, hot big-bang resurrects with temperature equivalent to 109 GeV = 1018 eV = 1.16× 1022 K.

Finally, for the sake of completeness, let us mention that in the recent years teleparallel gravity theories are in the limelight. In metric 
teleparallel theory, which is also dubbed as gravity with torsion, the torsion scalar T plays the role of the Ricci scalar R. In symmetric 
teleparallel theory, on the contrary, the non-metricity scalar Q plays the role of R. Thus, both T and Q have the dimension of R. 

6. Concluding Remarks
In this manuscript, we have explored virtues and some problems associated with different system of units used in high energy 
physics, such as, GTR, Astroparticle physics, Physical cosmology etc. We think that the most comfortable system of units requires a 
subtle relaxation of Planck's natural system of units, by choosing ℏ = c =1, while the reduced Planck's mass, viz. MP

2 = (8πG)-1 is not 
set to unity. It allows to express all the physical parameters in terms of different powers of MP which helps to compare theoretically 
obtained parameters with observational data. Further, in the quantum domain, one can perform perturbative analysis by expanding 
the Hamilton-Jacobi function in terms of different powers of MP. However, if one finds discomfort, it is then suggestive not to fix ℏ 
to unity, while working in the quantum domain. Once, classical transition is established under a suitable (Oscillatory wave function) 
semi-classical approximation, one can then fix ℏ = 1 and do the computations in the classical regime, so that all the parameters are 
expressed in terms of MP yet again. In this process, all the stuffs get easier to set and compare. For example, in the chaotic inflationary 
scenario, the scalar field slow rolls from a value ϕi  > MP. The inflation ends as ϕf  < MP, where the suffix i and f stand for the initial 
and the final values of ϕ. The scale of inflation given by the Hubble parameter H* should be of the order of H* ≈ 10-5 MP and so on.

vibrational 

modes of all 

the quantum 

fields. 
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So, 𝜌𝜌��� � 3.15 � 10�� 𝐺𝐺𝐺𝐺𝐺𝐺. 
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Ricci scalar 

on earth 

Einstein’s GTR implies: 𝑅𝑅 � ���
�� 𝑇𝑇 �

���
�� �𝜌𝜌𝑐𝑐� � 3�� for perfect fluid. 

For objects like the sun, the earth one can neglect pressure. So in the present 

unit, 𝑅𝑅 � �
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 𝑔𝑔𝑔𝑔. 𝑐𝑐𝑔𝑔��. Using relations (13) and (28) one can 

compute 𝑅𝑅� � 10��� 𝐺𝐺𝐺𝐺�. 

Table 4: Some important physical parameters in different powers of energy unit. 

Energy-Temperature relation: 
Finally, we present temperature-energy relation 

1.602 � 10��� 𝐽𝐽 �  1 𝐺𝐺𝐺𝐺 �  𝑘𝑘 𝑇𝑇 �  1.38 𝑥𝑥 10��� 𝐽𝐽.𝐾𝐾�� � T. 

Therefore, temperature corresponding to 1 𝐺𝐺𝐺𝐺 is, 
 T �  �.���

�.�� � 10� 𝐾𝐾 �  1.16087 � 10� 𝐾𝐾 �  11609 𝐾𝐾. 
Conversely, 1 𝐾𝐾 � 8.614 � 10�� 𝐺𝐺𝐺𝐺. 
Temperature corresponding to the ionizing potential of hydrogen and the present cosmic 

microwave background temperature are, 

13.6 𝐺𝐺𝐺𝐺 �  157878 𝐾𝐾 and 2.7𝐾𝐾 �  2.3𝑥𝑥10��𝐺𝐺𝐺𝐺 � 10��𝐺𝐺𝐺𝐺 respectively. 

Universe was reheated after graceful exit from inflation due to rapid oscillation of the scalar 

field that drives inflation, which results in particle production. In this process, hot big-bang 

resurrects with temperature equivalent to 10� 𝐺𝐺𝐺𝐺𝐺𝐺 �  10�� 𝐺𝐺𝐺𝐺 �  1.16 �  10�� 𝐾𝐾. 

Finally, for the sake of completeness, let us mention that in the recent years teleparallel gravity 

theories are in the limelight. In metric teleparallel theory, which is also dubbed as gravity with 

torsion, the torsion scalar T plays the role of the Ricci scalar 𝑅𝑅. In symmetric teleparallel theory, 

on the contrary, the non-metricity scalar 𝑄𝑄 plays the role of 𝑅𝑅. Thus, both T and 𝑄𝑄 have the 

dimension of 𝑅𝑅.  

 

6. Concluding remarks: 
 

In this manuscript, we have explored virtues and some problems associated with different 

system of units used in high energy physics, such as, GTR, Astroparticle physics, Physical 

cosmology etc. We think that the most comfortable system of units requires a subtle relaxation 
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