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Abstract
Gene transfer and biotechnology can develop new beta cells in the human body. Regenerative mechanisms under physiological 
and pathological conditions, factors involved in stimulation of regeneration, and potential pharmaceutical drugs are discussed. 
Replication is mediated by mitogenic signaling pathways and upstream activators. These mechanisms also involve upstream 
activators of mitogenic signaling pathways, including nutrients (glucose, calcium), epidermal and platelet-derived GFs (Glp1, 
Gip), and hormones (leptin, estrogen, prolactin, and progesterone).
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1. Introduction
The exocrine pancreas is composed of acinar and ductal cells 
that secrete digestive enzymes. The endocrine pancreas is 
composed of five different hormone-secreting cell types that 
include glucagon-secreting α cells, insulin-producing β cells, 
somatostatin-releasing δ cells, ghrelin-releasing ε cells, and 
pancreatic polypeptide (PP)-secreting cells. These cells aggregate 
to form the islets of Langerhans, which are intermingled with the 
intra-islet microvascular network and play an essential role in 
regulation of blood glucose levels by directly secreting insulin 
and glucagon into the bloodstream[1,2]. Recently, numerous 
strategies and technologies for producing human insulin-secreting 
cells have emerged, including in vivo stimulation of existing β cell 

replication, reprogramming of other pancreatic cells to differentiate 
into β cells, in vitro differentiation of induced pluripotential stem 
(iPS) cells into new β cells, and generation of human islets from 
genetically engineered pigs [3,4]. For example, strategies for 
enhancing replication of residual β cells have been successful 
in rodent but not in humans. As such, it is critical to determine 
the causes for limited success of clinical trials, and to determine 
possible strategies for improving cell therapy for T1D. In this 
review, we summarize advanced strategies and approaches for 
endogenous β cell regeneration, discuss regenerative mechanisms 
under physiological and pathological conditions, focus on various 
factors involved in stimulation of regeneration, and discuss 
promising potential pharmaceutical drugs.
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1.1 Replication of Existing Pancreatic β Cells
Pancreatic β cells replicate readily in the fetal and neonatal 
stages. However, this ability to replicate rapidly declines after 
these stages. Furthermore, this ability to replicate is different in 
rodents and humans. Proliferation of β cells is precisely controlled 
by cell cycle regulators and circulating soluble factors. Studies 
have shown that many mutagenic agents could stimulate β cell 
replication in young rodents, but not in humans. However, using 
high-throughput chemical screening, a series of inhibitors of 
DYRK1A-NFAT, GSK3, and NF-κB signaling pathways were 
shown to increase human pancreatic β cell replication, suggesting 
that these inhibitors have unique potential for treatment of diabetes.

1.2 Replicative Ability of β Cells Over the Lifetime
During embryonic development, insulin-positive β cells appear at 
approximately embryonic day 13.5 in mice or during weeks 8–9 
in humans. During the fetal period, β cells are mainly generated 
by differentiation of endocrine progenitor cells [5]. During the late 
gestational and neonatal stages, β cells are generated by replication 
of existing β cells [6,7]. The rate of β cell replication reduces after 
weaning, and the renewal capacity of β cells becomes limited 
during adulthood or late adolescence. Nevertheless, β cell mass, 
which is determined on the basis of cell numbers and individual 
cell volumes, correlates in a linear fashion with body weight 
throughout the lifespan of an organism [5,8]. For example, in rats, 
the number and size of β cells expands with body weight during 
the first few months of life. The rate of β cell replication then 
progressively declines, to 1% in young rats (1 month of age), and 
<0.2% in adults (3~7 months) [8]. In aging rats (15~20 months), 
β cell mass primarily increases through increased cell size [9]. 
In healthy rodents, individual β cells have long lifespans, and 
replication of mature β cells is limited during adulthood [5,10]. 
Under some physiological or pathological conditions, rates of β 

cell proliferation are elevated. For example, β cells proliferate 
adaptively in response to pregnancy or obesity via self-replication 
[11,14]. Moreover, in young rodents, β cell proliferation can be 
induced by increased metabolic demands or β cell deficiency 
resulting from tissue injury [8,15].

1.3 Different β Cell Replicative Ability between Rodent and 
Human
Human and rodent islets have distinct structural and molecular 
characteristics [16]. Replicative ability of human and rodent β 
cells have common and different features. For example, β cell mass 
increases during the earlier stages of life and declines with aging 
in both species. Adaptive β cell proliferation during pregnancy 
and obesity occurs extensively in rodents, but is limited in humans 
[17]. Pregnancy-associated insulin resistance induces amplified 
insulin production to maintain glucose homeostasis. In rodents, 
elevated insulin production is accompanied by increased β cell 
numbers mediated by lactotrophic hormones [13,14,18]. Humans 
also exhibit a compensatory increase in insulin secretion. New 
β cells originate from other pancreatic cell lineages and existing 
β-cells. Moreover, β cell proliferation mediated by lactotrophic 
hormones or other mitogenic stimuli is limited in humans [19]. 
In addition, obesity-induced insulin resistance is associated with 
dramatic expansion of β cell mass in several rodent models, but 
not in human islets [20]. Various mutagenic agents, hormones, and 
growth factors (GFs) such as Glp-1, Gip-1, exendin-4, prolactin, 
Hgf, and Igf-1 stimulate β cell proliferation in rodents but not in 
humans [21-27].

1.4 Mediators of β Cell Replication
• Cell Cycle Regulators 
β cell replication is mediated by multiple mitogenic signaling 
pathways such as Irs–Pi3k–Akt, Gsk3, mTor, ChREBP/cMyc, 

Figure 1: Beta Cell Regeneration Therapy
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Ras/Raf/Erk, and Nfats. These mechanisms also involve upstream 
activators of mitogenic signaling pathways, including nutrients 
(glucose, calcium), epidermal and platelet-derived GFs (Glp1, 
Gip), and hormones (leptin, estrogen, prolactin, and progesterone). 
Mitogenic signals stimulate quiescent β cells to re-enter the cell 
cycle by regulating the expression of downstream cell cycle 
regulators such as cyclins, cyclin-dependent kinases (Cdks), cell-
cycle inhibitors, and E2F factors [28-33]. For example, exendin-4 
and glucagon-like peptide 1 (Glp-1) exert mitogenic effects on β 
cell proliferation by activating cell cycle activators (cyclin A and 
Cdk1) and proliferation-activating transcription factors (TFs) 
through the cAMP-dependent calcineurin/Nfat pathway [24,25,34-
37]. Menin is an endocrine tumor suppressor that suppresses β cell 
proliferation by epigenetically promoting the expression of the 
cell-cycle inhibitors p27 and p18 or by inhibiting K-Ras signaling 
[38-40]. Moreover, Ezh2 mediates increased trimethylation of 
p16INK4a and p19Arf by H3K27, which epigenetically represses 
Ink4a/Arf production and contributes to proliferation of pancreatic 
β cells [40-41].

2. Method and Material
We conducted this review by observing the different types of 
reviews, as well as conducting and evaluating literature review 
papers.

3. Conclusion
In our review, we concluded that The endocrine pancreas is 
composed of five different hormone-secreting cell types that 
include glucagon-secreting α cells, insulin-producing β cells, 
somatostatin-releasing δ cells, ghrelin-releasing ε cells, and 
pancreatic polypeptide (PP)-secreting cells. Recently, numerous 
strategies and technologies for producing human insulin-secreting 
cells have emerged, including in vivo stimulation of existing β cell 
replication, reprogramming of other pancreatic cells to differentiate 
into β cells, in vitro differentiation of induced pluripotential stem 
(iPS) cells into new β cells, and generation of human islets from 
genetically engineered pigs.
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