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Abstract
Herein, kinetics parameters, Km and Vmax, of oxidase-like Ce/Fe-bimetallic nanozymes toward 3,3′,5,5′-tetramethylbenzidine 
oxidation were determined. The Michaelis–Menten kinetic model was used for the evaluation of the kinetic of the nanozyme-
mediated oxidation of 3,3′,5,5′-tetramethylbenzidine. To provide the quantitative and accurate values of kinetics parameters, Km 
and Vmax, the linear plot of Lineweaver–Burk was constructed. The results exhibited a Vmax as high as 67.56 nM min-1 for the 
oxidase-like Ce/Fe-bimetallic nanozymes. Besides, Km was found to be as low as 0.06 mM for the as-prepared nanozymes, revealing 
the high affinity of the nanozymes toward 3,3′,5,5′-tetramethylbenzidine. Moreover, the ratio Vmax/Km was estimated as a reliable 
index of catalytic efficiency of the nanozymes, revealing a high value of 1.0×10-3 min-1.
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1. Introduction
Native enzymes suffer some disadvantages such as instability in 
harsh reaction conditions, difficult recovery, etc [1-10]. In contrast, 
nanomaterials with enzyme-like activity reveal high stability 
against pH and temperature changes along with excellent kinetic 
performances [11-19]. In fact, with the development of nanoscience, 
several types of nanomaterials were introduced with unique spectral, 
optical, catalytic, and stability as a result of the fast development 
of nanoscience in recent years, some of them reveal significant 
enzyme-like activity especially peroxidase-like properties with 
significant advantages over native enzymes for example, high pH 
and thermal stability, excellent reusability, and high storage stability 
[20-43]. Up to now, nanozymes have been utilized in organic dye 
biodegradation, battery development, sensor, and biosensor design, 
especially after the first report of COVID-19, they applied for its 
clinical sensing [44-64]. In this field proving the catalytic mechanism 
of the reaction is an attractive research topic. Hence, herein, 
kinetics parameters, Km and Vmax, of oxidase-like Ce/Fe-bimetallic 
nanozymes toward 3,3′,5,5′-tetramethylbenzidine oxidation were 
determined. The Michaelis–Menten kinetic model was used for 
the evaluation of the kinetic of the nanozyme-mediated oxidation 
of 3,3′,5,5′-tetramethylbenzidine. To provide the quantitative and 

accurate values of kinetics parameters, Km and Vmax, the linear plot 
of Lineweaver–Burk was constructed.
 
2. Experimental
2.1. Synthesis of Nanozymes
To synthesize the oxidase-like Ce/Fe-bimetallic nanozymes, 0.4 g 
fumaric acid was added to 25.0 mL water (solution#1). Besides, 
0.3 g (NH4)2[Ce(NO3)6] and 0.3 g Fe(NO₃)₃.9H₂O were introduced 
to 25 mL water (solution#2) . Afterward, solution#1 was added 
drop by drop to solution#2, totaling 50 mL, and stirred for 1 hour. 
The reaction mixture was then heated at 120 ℃ for 2 hours to 
complete the synthesis process. 

2.2. Kinetic Studies
The Michaelis–Menten kinetic model was used for the 
evaluation of the kinetic of the nanozyme-mediated oxidation of 
3,3′,5,5′-tetramethylbenzidine. To provide the quantitative and 
accurate values of kinetics parameters, Km and Vmax, the linear 
plot of Lineweaver–Burk was constructed. It is notable that 
3,3′,5,5′-tetramethylbenzidine was used as the standard substrate 
[65-67]. 
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3. Results and Discussion
The kinetics of the oxidation process involving TMB chromogenic 
agents on oxidase-like Ce/Fe-bimetallic nanozymes were 
investigated. This examination involved analyzing the kinetic 
components of the Michaelis-Menten equation using the following 
formula;
V0=(Vmax[S])/(Km+[S]
 
where V0 represents the initial velocity, Vmax stands for the 
maximum reaction velocity, [S] denotes the concentration of 
chromogenic agents, TMB, and Km signifies the Michaelis constant 
as previously reported in the literature [68-75]. To do this, a series 
of experiments were carried out for the oxidation of different 
concentrations of TMB in different concentrations of 0.015-0.2 
mM over the developed nanozymes. The oxidation reaction rate 
was then calculated in nM min-1. Afterward, the Michaelis-Menten 
curve was plotted by plotting the rate as a function of TMB 
concentration. The results are shown in Figure 1. As can be seen 
in this figure, the rate of the oxidation process was increased by 
increasing the TMB concentration and then leveling off. Based 
on the Michaelis-Menten curve, a Vmax as high as 55. 5 nM min-

1 was provided for the oxidase-like Ce/Fe-bimetallic nanozymes, 
revealing their high catalytic activity.  Besides, the Km value was 
found to be about 0.05 mM. Moreover, Vmax/Km was calculated 
as a crucial indicator of enzyme catalytic efficiency, the results 
revealed a ratio of 1.10 ×10-3 min-1 from the non-linear Michaelis-
Menten curve. 

Figure 1: The non-linear Michaelis-Menten curve of the oxidase-
like Ce/Fe-bimetallic nanozymes

Besides, the linear Burk diagram was also constructed by plotting 
the 1/V against 1/[TMB]. The results are shown in Figure 2.  As can 
be seen in this figure, based on the linear-Burk diagram, a Vmax 
as high as 67.56 nM min-1 was provided for the oxidase-like Ce/
Fe-bimetallic nanozymes, revealing their high catalytic activity.  
Besides, the Km value was found to be about 0.067 mM, revealing 
the high affinity of the oxidase-like Ce/Fe-bimetallic nanozymes 

to TMB. It is notable that the results of the non-linear Michaelis-
Menten curve and linear Burk diagram are in good agreement 
with each other. Moreover, Vmax/Km was calculated as a crucial 
indicator of enzyme catalytic efficiency, the results revealed a ratio 
of 1.0×10-3 min-1 from the linear-Burk diagram which is close to 
that of the results of the non-linear Michaelis-Menten curve. It is 
notable, that the summary of the kinetic parameters of the oxidase-
like Ce/Fe-bimetallic nanozymes provided from linear-Burk 
diagram and non-linear Michaelis-Menten curve are represented 
in Table 1. 

Figure 2: The linear-Burk diagram of the oxidase-like Ce/Fe-
bimetallic nanozymes.

Table 1: Kinetic parameters of the oxidase-like Ce/Fe-
bimetallic nanozymes provided from the linear-Burk diagram 
and non-linear Michaelis-Menten curve

4. Conclusions
Herein, kinetics parameters, Km and Vmax, of oxidase-like Ce/
Fe-bimetallic nanozymes toward 3,3′,5,5′-tetramethylbenzidine 
oxidation were determined. The Michaelis–Menten kinetic model 
was used for the evaluation of the kinetic of the nanozyme-
mediated oxidation of 3,3′,5,5′-tetramethylbenzidine. To provide 
the quantitative and accurate values of kinetics parameters, Km and 
Vmax, the linear plot of Lineweaver–Burk was constructed. The 
results exhibited a Vmax as high as 67.56 nM min-1 for the oxidase-
like Ce/Fe-bimetallic nanozymes. Besides, Km was found to be as 
low as 0.06 mM for the as-prepared nanozymes, revealing the high 
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affinity of the nanozymes toward 3,3′,5,5′-tetramethylbenzidine. 
Moreover, the ratio Vmax/Km was estimated as a reliable index 
of catalytic efficiency of the nanozymes, revealing a high value of 
1.0×10-3 min-1.
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