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Abstract
In this study, boundary element equations were formulated by deriving the influence functions of displacement discontinuity 
in an isotropic elastic medium. For the solution of two-dimensional elastic fracture problems, a Displacement Discontinuity 
Method (DDM) formulation was used in conjunction with the fictitious stress method (FSM). These two different boundary 
element equations were applied together to crack problems, and the effectiveness of this method was investigated. In these 
applications, the Mode I and Mode II stress intensity factors at the crack tips, as well as the stresses and displacements in 
the cracks, were calculated. Several numerical examples were presented, and the Stress Intensity Factor (SIF) results were 
compared with existing analytical or reference solutions. Subsequently, by analyzing the crack tips, the crack propagation 
direction was determined, and the maximum fracture toughness of the crack was identified. 
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1. Introduction   
The general problem in two- or three-dimensional elastostatics 
is to calculate the stresses and displacements in any body under 
known boundary conditions. Finding analytical solutions is 
often quite difficult. Therefore, numerical methods have been 
developed. Some of these include the finite difference method, the 
finite element method (FEM), and the boundary element method 
(BEM). The application of the boundary element method is easier 
for solving crack problems because calculations are performed by 
discretizing only the crack into linear boundary elements. Once 
these values are determined, the stresses and deformations in the 
region can be calculated. 
 
In the boundary element method, since the solution domain of the 
problem is the boundaries of the region, discretization is performed 
on the surface of the region for three-dimensional problems 
and on the closed curve at the boundary of the region for two-
dimensional problems. Therefore, the system can be solved using 
fewer elements. In the Boundary Element Method, which is used 
for solving various engineering problems, boundary discretization 
is performed using two different approaches: directly or indirectly. 
 
In the indirect boundary element method, fictitious values on the 
boundary are first determined. Then, these fictitious values are used 
to calculate the stresses and displacements in the region. In the 

displacement discontinuity method, displacement discontinuities 
are used instead of fictitious values. The displacement discontinuity 
method (DDM) is utilized for cracks because it allows for easier 
modeling in fracture mechanics problems. 

In this study, crack problems were solved by combining 
the Fictitious Stress Method (FSM) and the Displacement 
Discontinuity Method (DDM). In these applications, Mode I and 
Mode II stress intensity factors at crack tips, as well as stresses 
and displacements in the cracks, were calculated, and the results 
were presented in tables. Crack propagation was investigated 
using these methods. Several numerical examples were provided, 
and the Stress Intensity Factor (SIF) results were compared with 
reference results. In this study, the entire system was solved by 
combining DDM and FSM solutions in the equilibrium equations. 
In this combined system, cracks were modeled using DDM, while 
other boundaries were modeled using FSM. 
 
2. Obtaining Ddm And Fsm Equations  
It has been observed that the use of the Displacement Discontinuity 
Method (DDM) has increased recently because crack problems can 
be more easily modeled with DDM. In deriving the displacement 
discontinuity equations, Papkovitch functions were used in 
Crouch's approach, and harmonic functions were chosen to satisfy 
various boundary conditions. To obtain singular solutions from 
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dipole stresses in an isotropic medium, as done by Kimençe and 
Brady, derivatives of the fundamental solutions in the direction of 
the singular load were used.

In an infinitely elastic solid medium, at the source point P, under 
the influence of singular force Fi(P) , at the field point Q which is 
ui(Q) , The displacement function is calculated as follows: 

	
                          ui(Q) Fj (P)Uij(P,Q) 	  	        (1) 

here Uij(P,Q)  this function represents the displacement in the xi 
direction due to the unit force applied in the  xj direction. (Figure 
1).
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here ΓF and ΓD indicate boundaries at the surface and 
crack, respectively.   

 

A body and a crack in a finite plate are considered, 
as shown in Figure 1. Here, the boundaries are 
divided into constant elements of length 2a, and the 
stresses and displacements at the midpoint of 
element i are calculated due to loading on the 
element j. 
 
The boundary of the body and the crack is modeled 
using fictitious loads and displacement 
discontinuities. If there are a total of N elements, 
there are M fictitious loads along the body boundary 
and N-M displacement discontinuity elements along 
the crack.The unknown displacement discontinuities 
or fictitious loads are solved by summing all N 
elements to satisfy the boundary conditions. 
 

In the boundary element method, the boundaries are 
divided into N constant elements. Boundary element 
equations were derived by applying the boundary 
conditions on these elements. By solving the linear 
system of equations, the unknowns on the boundary 
were determined. Then, using these boundary 
unknowns, the stresses and displacements in the 
region were calculated. 

 

Due to the fictitious forces on element j, the i 
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Thus, the first 2M equations in the system are obtain
ed. The remaining 2(N-M) equations are derived usi
ng the influence functions of the displacement disco
ntinuities. 
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The sum of these two equations (5) and (6) can b
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here ΓF and ΓD indicate boundaries at the surface and 
crack, respectively.   
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as shown in Figure 1. Here, the boundaries are 
divided into constant elements of length 2a, and the 
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Thus, the first 2M equations in the system are obtain
ed. The remaining 2(N-M) equations are derived usi
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here σs and σn are the tangential and normal stresses 
respectively. In FSM, Influence functions , etc., 
are obtained by integrating Equation 1 over the 
interval (-a,a). In DDM, they are obtained by 
integrating Equation 6 over the interval(-
a,a).Equations 5, 6, and 7 can be solved using 
standard numerical methods.  
 

III. DETERMINATION OF STRESS 
INTENSITY FACTORS 
 

The "stress intensity factor," K, which measures the 
effect of damage in a specific crack region, has been 
determined. Stress intensity factor values are usually 
normalized by the divisor K0, which corresponds to 
a half-length crack on an infinite surface and a crack 
under a normal invariant load. 

 

In this equation, a is the half-length of the crack. 
Solving crack problems using both the finite element 
method and the boundary element method requires 
careful mesh design. As the number of crack tip 
elements increases, the rate at which the numerical 
solution approaches the exact solution can decrease. 
Various methods can be used to overcome this challenge. 

In this study, solutions were obtained using constant 
elements. Since accurate crack tip behavior can only 
be modeled with special elements at the crack tip, it 
is important to note that the length of these elements 
is determinative. In the boundary element method, a 
crack tip element with a length ranging from 0.05a 
to 0.2a (where a is the crack half-length) provides the 
best results in stress intensity factor calculations with 
minimal variation. 

In DDM, Stress Intensity Factors (SIFs) are obtained 
from the displacements of the nodes around the crack 
tip. Through this technique, the general expressions 
for SIFs are given as follows: 
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Here, Ds and Dn are the crack opening 
displacements in the coordinate system associated 
with the examined crack tip, G is the shear modulus, 
ν is the Poisson's ratio, and KI and KII  are the Mode 
I and Mode II SIFs, respectively. The coefficients k 
for plane stress and plane strain are given  
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Figure 2: Crack tip element 

 

A second-order polynomial D(ξ) has been proposed 
to better model the crack tip.  
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For the crack tip, the constants c0 and c1 on the first 
two (and last two) elements are obtained using 
displacement discontinuities, D(ξ=-a) = D1 and 
D(ξ=-3a) = D2 (or D(ξ=-a) = DN ve D(ξ=-3a)= DN-
1 Appropriate boundary influence coefficients at the 
midpoints of these elements can be derived in a 
manner similar to those for the crack tip element  

In this solution approach, the SIFs were 
appropriately determined at ξ=- a/32. 

 

IV. CRACK PROPAGATION 
 
Under LEFM conditions, crack propagation 
modeling requires information about two types of 
parameters: stress intensity factors determined 
analytically and the geometry as a function of load, 
and appropriate fracture toughness, which is an 
experimentally determined material property. 
  
The mixed-mode stress intensity factors are 
calculated as Mode I and Mode II, which are the 
most common fracture modes in fracture mechanics. 
Various mixed-mode fracture criteria have been used 
in the literature to investigate crack initiation 
direction and length. Since most rocks exhibit brittle 
behavior under stress, the maximum tangential stress 
fracture criterion has been employed. Mode I 
fracture toughness, KIC (under plane strain 
conditions), is often used to predict the direction of 
crack propagation.  
 
This is a commonly used mixed-mode fracture 
mechanics criterion. According to this criterion, the 
crack tip will begin to propagate under the following 
conditions: 
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here σs and σn are the tangential and normal stresses respectively. 
In FSM, Influence functions     , etc., are obtained by integrating 
Equation 1 over the interval (-a,a). In DDM, they are obtained by 
integrating Equation 6 over the interval(a,a).Equations 5, 6, and 7 
can be solved using standard numerical methods.  
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problems using both the finite element method and the boundary 
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of crack tip elements increases, the rate at which the numerical 
solution approaches the exact solution can decrease. Various 
methods can be used to overcome this challenge. In this study, 
solutions were obtained using constant elements. Since accurate 
crack tip behavior can only be modeled with special elements at 

the crack tip, it is important to note that the length of these elements 
is determinative. In the boundary element method, a crack tip 
element with a length ranging from 0.05a to 0.2a (where a is the 
crack half-length) provides the best results in stress intensity factor 
calculations with minimal variation. 

In DDM, Stress Intensity Factors (SIFs) are obtained from the 
displacements of the nodes around the crack tip. Through this 
technique, the general expressions for SIFs are given as follows:
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Here, Ds and Dn are the crack opening 
displacements in the coordinate system associated 
with the examined crack tip, G is the shear modulus, 
ν is the Poisson's ratio, and KI and KII  are the Mode 
I and Mode II SIFs, respectively. The coefficients k 
for plane stress and plane strain are given  
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For the crack tip, the constants c0 and c1 on the first 
two (and last two) elements are obtained using 
displacement discontinuities, D(ξ=-a) = D1 and 
D(ξ=-3a) = D2 (or D(ξ=-a) = DN ve D(ξ=-3a)= DN-
1 Appropriate boundary influence coefficients at the 
midpoints of these elements can be derived in a 
manner similar to those for the crack tip element  

In this solution approach, the SIFs were 
appropriately determined at ξ=- a/32. 
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Under LEFM conditions, crack propagation 
modeling requires information about two types of 
parameters: stress intensity factors determined 
analytically and the geometry as a function of load, 
and appropriate fracture toughness, which is an 
experimentally determined material property. 
  
The mixed-mode stress intensity factors are 
calculated as Mode I and Mode II, which are the 
most common fracture modes in fracture mechanics. 
Various mixed-mode fracture criteria have been used 
in the literature to investigate crack initiation 
direction and length. Since most rocks exhibit brittle 
behavior under stress, the maximum tangential stress 
fracture criterion has been employed. Mode I 
fracture toughness, KIC (under plane strain 
conditions), is often used to predict the direction of 
crack propagation.  
 
This is a commonly used mixed-mode fracture 
mechanics criterion. According to this criterion, the 
crack tip will begin to propagate under the following 
conditions: 
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here σs and σn are the tangential and normal stresses 
respectively. In FSM, Influence functions , etc., 
are obtained by integrating Equation 1 over the 
interval (-a,a). In DDM, they are obtained by 
integrating Equation 6 over the interval(-
a,a).Equations 5, 6, and 7 can be solved using 
standard numerical methods.  
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tip. Through this technique, the general expressions 
for SIFs are given as follows: 
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Here, Ds and Dn are the crack opening 
displacements in the coordinate system associated 
with the examined crack tip, G is the shear modulus, 
ν is the Poisson's ratio, and KI and KII  are the Mode 
I and Mode II SIFs, respectively. The coefficients k 
for plane stress and plane strain are given  
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mechanics criterion. According to this criterion, the 
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here σs and σn are the tangential and normal stresses 
respectively. In FSM, Influence functions , etc., 
are obtained by integrating Equation 1 over the 
interval (-a,a). In DDM, they are obtained by 
integrating Equation 6 over the interval(-
a,a).Equations 5, 6, and 7 can be solved using 
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normalized by the divisor K0, which corresponds to 
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under a normal invariant load. 

 

In this equation, a is the half-length of the crack. 
Solving crack problems using both the finite element 
method and the boundary element method requires 
careful mesh design. As the number of crack tip 
elements increases, the rate at which the numerical 
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is important to note that the length of these elements 
is determinative. In the boundary element method, a 
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best results in stress intensity factor calculations with 
minimal variation. 

In DDM, Stress Intensity Factors (SIFs) are obtained 
from the displacements of the nodes around the crack 
tip. Through this technique, the general expressions 
for SIFs are given as follows: 
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Here, Ds and Dn are the crack opening 
displacements in the coordinate system associated 
with the examined crack tip, G is the shear modulus, 
ν is the Poisson's ratio, and KI and KII  are the Mode 
I and Mode II SIFs, respectively. The coefficients k 
for plane stress and plane strain are given  
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here σs and σn are the tangential and normal stresses 
respectively. In FSM, Influence functions , etc., 
are obtained by integrating Equation 1 over the 
interval (-a,a). In DDM, they are obtained by 
integrating Equation 6 over the interval(-
a,a).Equations 5, 6, and 7 can be solved using 
standard numerical methods.  
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effect of damage in a specific crack region, has been 
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normalized by the divisor K0, which corresponds to 
a half-length crack on an infinite surface and a crack 
under a normal invariant load. 

 

In this equation, a is the half-length of the crack. 
Solving crack problems using both the finite element 
method and the boundary element method requires 
careful mesh design. As the number of crack tip 
elements increases, the rate at which the numerical 
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Various methods can be used to overcome this challenge. 
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minimal variation. 

In DDM, Stress Intensity Factors (SIFs) are obtained 
from the displacements of the nodes around the crack 
tip. Through this technique, the general expressions 
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Here, Ds and Dn are the crack opening 
displacements in the coordinate system associated 
with the examined crack tip, G is the shear modulus, 
ν is the Poisson's ratio, and KI and KII  are the Mode 
I and Mode II SIFs, respectively. The coefficients k 
for plane stress and plane strain are given  
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Figure 2: Crack tip Element

A second-order polynomial D(ξ) has been proposed to better 
model the crack tip.  
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here σs and σn are the tangential and normal stresses 
respectively. In FSM, Influence functions , etc., 
are obtained by integrating Equation 1 over the 
interval (-a,a). In DDM, they are obtained by 
integrating Equation 6 over the interval(-
a,a).Equations 5, 6, and 7 can be solved using 
standard numerical methods.  
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a half-length crack on an infinite surface and a crack 
under a normal invariant load. 
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is determinative. In the boundary element method, a 
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minimal variation. 

In DDM, Stress Intensity Factors (SIFs) are obtained 
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Here, Ds and Dn are the crack opening 
displacements in the coordinate system associated 
with the examined crack tip, G is the shear modulus, 
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Crack propagation criterion

5. Numerical Examples  
5.1. Centrally Inclined Crack Plate 
A rectangular crack plate with boundary conditions shown in 
Figure 5 is subjected to a uniform tensile stress σ. The crack is 
inclined at an angle ϕ relative to the load direction. The ratios 

are H/W=2.0 and a/W=0.5. KI and KII are calculated for various 
values of ϕ where 0< ϕ < π/2. The Young's modulus E is taken as 
1, and the Poisson's ratio ν is 0.25. In the inclined crack example, 
the outer boundary of the plate is divided into 48 constant FSM 
elements. The crack line is divided into 16 equal-length constant 
DDM elements. The SIFs are calculated from the crack opening 
displacements at a distance of approximately 0.031a from the 
crack tip. These SIF values are presented in a dimensionless form, 
                       applied divided with  the static SIF remote stress). 
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Figure 3: Central Crack Rectangular Plate

5.2. Two Crack-Circular Hole 
In the second example, the geometry of the two cracks is shown 
in Figure 4. It is assumed that c/R=2.0, a/(c-R)=0.8 ve σ1=σ12=0, 
σ2= . The left crack is in a horizontal position, and the right crack 
is subjected to a rotation by an angle φ. The boundary of the 
circular hole is discretized with 24 constant FSM elements. The 

crack lines are discretized with 32 equal-length constant DDM 
elements. The calculated SIFs are listed in Tables 2-4. We observe 
that the SIFs at crack tips A and B generally change slightly when 
the angle φ is varied. However, the SIFs at crack tips C and D 
change significantly with variations in the angle φ.

Figure 4: An Infinite Plate with A Hole and Two Cracks

 Table 2: Crack Angle at the Carac tip A

from the crack opening displacements at a distance of approximately 0.031a from the crack 

tip. These SIF values are presented in a dimensionless form,  

K0 a  applied divided with  the static SIF remote stress).   
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φ  KI/K0  KII/K0  θ  KIc  

30  1.3285  0.0155  -1.34  0  

60  1.2927  0.0147  -1.30  0  

 Table 2: Crack Angle at the Carac tip A 

 

φ  KI/K0  KII/K0  θ  KIc  

30  1.4573  0.6020  36  1.519  

60  0.6372  0.5763  52  0.804  

90  0.2589  0.0732  28  0.262  

 

Table 3: Crack Angle at the Carac tip C 

 

φ   KI/K0  KII/K0  θ  KIc  

30  1.0684 0.4281  35  0.125  

60  0.5143 0.4157  50  0.150  

90  0.2589 0.0732  28  0.021  

 

Table 4: Crack Angle at the Carac tip D 
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Table 3: Crack Angle at the Carac tip C

Table 4: Crack Angle at the Carac tip D

5.3. Segmented Crack in a Rectangular Plate Under Tensile Stress

Table 2 
Crack angle at the carac tip  A 

φ KI/K0 KII/K0 θ KIc 
30 1.3285 0.0155 -1.34 0 
60 1.2927 0.0147 -1.30 0 

 

Table 3 
Crack angle at the carac tip  C 

φ KI/K0 KII/K0 θ KIc 
30 1.4573 0.6020 36 1.519 
60 0.6372 0.5763 52 0.804 
90 0.2589 0.0732 28 0.262 

 

Table 4 
Crack angle at the carac tip  D 

φ KI/K0 KII/K0 θ KIc 
30 1.0684 0.4281 35 0.125 
60 0.5143 0.4157 50 0.150 
90 0.2589 0.0732 28 0.021 

 
 
 

C. Segmented Crack in a Rectangular Plate 
Under Tensile Stress 

 
 
 

Figure 5: Segmented crack in a rectangular 
plate under tensile stress. 

(h/w=2, a/w=0.1) 
 

In this example, the problem of a segmented crack in 
a rectangular plate under tensile stress is examined, 
as shown in Figure 5. One segment of the crack has 
a horizontal length of a, while the other makes an 
angle of 45 degrees with the horizontal and has a 
length of b the horizontal representation of the entire 

crack 2c a 2b / 2   is given. The width of the plate 
is shown as 2w=20 cm, and the height is 2h=40 cm. 

σ=100 MPa, modulus of elasticity E=21 MPa, 
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Table 6: Crack tip Angle at the Carac tip B

6. Conclusion 
In this study, displacement discontinuity equations were derived 
using dipole solutions calculated from known singular force 
solutions in an isotropic medium. By combining the displacement 
discontinuity method with fictitious stress methods using the 
solutions from these equations, various examples were solved. 
The formulation for obtaining displacement discontinuities in an 
isotropic medium using fundamental solutions has been presented. 
Using this formulation, various engineering problems such as 
tunnels and cracks have been solved. 

The problem of a central inclined crack in a rectangular plate 
under tensile stress is solved using the combined FSM and DDM 
methods. The results are compared with those obtained by Wen 
using the equivalent stress method. It is observed that the SIFs 
calculated at the 0.031 point using the combined FSM-DDM 
formulation are in good agreement with those given by Wen. 

The problem of two series cracks in an infinite region has been 
solved using the combined FSM and DDM methods. As shown in 
the tables, the stress intensity factors are compared with the values 
from

If the crack length is longer, modeling with only DDM is more 
appropriate. For longer boundary lengths, combined DDM-FSM 
models yield better results. While the FSM-DDM combination 
provides better results in the first example, modeling with DDM 
alone gives better results in the second example. 

In conclusion, this study examined various crack problems with 
different geometries in finite and infinite rectangular plates under 
tensile stress, using the combined FSM and DDM methods in an 
isotropic medium. The effectiveness of the combined method was 
demonstrated [1-16].
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