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Abstract
The increasing volumes of complex data stored in today’s databases are driving the scientific community towards elaborating 
more efficient methods for data analysis. The data structures contained within them require appropriate mathematical 
modeling, as is the case in network structures, which can be effectively modeled by applying concepts from Graph Theory. 
The search for similar networks is therefore often viewed as a graph matching problem, which poses a fundamental challenge 
in real-world applications. This study introduces a novel approach by leveraging Locality Sensitive Hashing to efficiently 
address the graph matching problem. Finding an isomorphism between graphs as well as the search for the common subgraph 
embedded within them is achieved by hashing the graphs, thus transforming the problem into a similarity search problem. 
Due to its approximate nature the method applied generates false duplicates. Usual diagnostics do not guarantee high levels 
of accuracy of the solution. This study therefore proposes the use of the popular Conformal Prediction framework in order 
to evaluate the validity of the results with greater accuracy. A real-world case study is considered to test the potential of the 
proposed approach.
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1. Introduction
The huge amount of today’s data available for scientific research 
requires the development of increasingly efficient approaches for 
data analysis. A task of great interest for practical applications is 
that of identifying similar complex data structures in largescale 
datasets. A widespread approach in the literature used to 
accomplish this task is the Graph Matching problem (GM) which 
searches for an alignment between the vertex sets of graphs by 
preserving the common structure across them. This is posed 
as minimizing edge disagreements over all possible vertices 
alignments. Graph matching has various applications in diverse 
fields, such as pattern recognition [1-3], machine learning [4,5], 
bioinformatics [6,7] neuroscience [8], social network analysis 
[9] and knowledge discovery in natural language processing 
[10]. networks can be thought of as being a variant of the GM 
problem by selecting the appropriate objective function to be 
optimized. The well-known graph isomorphism problem is 
a special case of GM problem which aims to find a bijection 
between the vertices of two graphs which exactly preserves the 
edge structure. The GM is generally equivalent to the NP-hard 
quadratic assignment problem, which is a challenging problem 
even though polynomial time algorithms are applicable in the 
case of nearly isomorphic graphs [11,12]. Even though an 
extensive review of the literature pertaining to the GM problem 
focuses on pattern recognition topic, it is rather straightforward 
to accept that the graph matching can be also faced as being 
a similarity search problem and nearest neighbors’ graphs are 

detected in accordance with a pre-defined metric [13-15]. Due 
to the fact that in a large-scale datasets applications, pairwise 
comparisons of the input data can hinder the majority of state-
of-the-art methods, the use of approximate nearest neighbors 
search method is more efficient [16]. The idea behind this 
study is to leverage the Locality Sensitive Hashing technique 
in order to detect similar objects in high dimensional spaces by 
tolerating the presence of false duplicates [17-21]. In real-world 
applications the concept of network which is used to describe 
a complex system of entities is more popular as it is better 
understood even by the non-scientific community. A network is 
a set of objects called nodes or vertices that are connected one 
to the other by eges or links. In mathematics, networks are often 
referred to as graphs so that the theoretical background of the 
Graph Theory cam be used for network modelling as well. One 
of the most important issues of network analysis is the detection 
of similar structures embedded in networks as is the same of 
determining similar subgraphs in a collection of graphs. In real 
world networks, nodes may have attributes which are useful for 
network structure exploration [22]. In this paper a large-scale 
dataset containing networks of different dimensions is taken into 
consideration. The proposed approach detects similar networks 
as well as sub-networks embedded into the data in accordance 
with an appropriate metric suitable for graph matching problems. 
As it is well-known from the literature in order to improve 
the acciracy of the results a tradeoff between false negatives 
and false positives is required by setting the algorithm’s 
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hyperparameters appropriately which in real-world applications 
can become difficult. One of the main sources of this uncertainty 
relies on the hashing algorithm itself. It is impossible to avoid 
the hashing collisions in that they givw rise to false duplicates 
and uncertainty as a consequence. This study proposes to adopt 
the Conformal Prediction framework to evaluate the accuracy of 
the results [23-25].

2. Theoretical Background
In order to introduce the novel approach described in this paper 
to the reader, some notions from the Graph Theory as well as the 
basic concepts of the Locality Sensitive Hashing technique are 
reported in this section.

2.1. Graph Theory Background
A graph G = (V,E) with i = 1,2,...,n vertices vi∈ V and j = 1,2,...,m 
edges ej ∈ E ⊂ V × V is undirected If the edges have no direction 
and simply connect pairs of vertices. The graph is said to be 
connected if every pair of vertices in the graph is connected, i.e. 
there is a path between every pair of vertices. The graph is said 
to be complete or fully connected if each vertex is connected to 
all other vertices so that the set E is constituted by m = n(n−1)/2 
edges as is the case in undirected graphs. The geometric structure 
of the graph is summarized by its adjacency matrix A = {akh} 
defined as follows:

This matrix is symmetric if the graph is undirected. The graph 
is said to be weighted if there exists a real number wkh (weight) 
related to each edge ekh in that the adjacency matrix W = {wkh} 
is as follows:

A simple closed path of length k starting from vertex i and 
returning to the same is a sequence of distinct vertices connected 
by k edges. In a weighted graph the simple closed path of 
minimum cost is the sequence of edges related to the smallest 
value of the sum of their weights. A complete subgraph S(G) is 
a group of fully connected vertices belonging to the vertices set 
of the graph.

2.2. Graph Matching Basics
The problem of the graph matching between the graphs Gi = 
(Vi,Ei) and Gj = (Vj,Ej) is generally formulated as follows:

P∈Π
where Ai and Aj are the adjacency matrices of the graphs to 
compare. The objective is to find the matrix P which represents 
the optimal assignment. A general version of this problem is 
in general NP-hard even though in some practical applications 
turns into a linear assignment problem which is solvable in O(n3) 
for an assignment of n vertices.

2.3. Locality Sensitive Hashing Fundamentsls
In data science Locality Sensitive Hashing (LSH) refers to a 
method designed for an approximate similarity search in high-
dimensional spaces where traditional search methods become 
computationally expensive. There are several metrics that LSH 
encompasses for finding near-duplicates by means of a suitable 
family of hash functions h(·) which establish a relation between 
two input data points (xk,xh) ∈ X and the probability of sharing 
the same hash code: sim(xk,xh) = P[h(xk) = h(xh)]. The choice of 
the hash function determines the metric to approximate. Every 
family associates input data to integers which are thought of as 
being buckets with the purpose of hashing is to group similar 
data points together into the same bucket so that neighboring 
data fall into the same bucket with a high probability while data 
which are likely to be distant in the input space belong to different 
buckets. In a database context, this facilitates the detection 
of pairwise similar observations in accordance with varying 
degrees of similarity. In this study the LSH-family known as 
minhash tailored for evaluating the similarity between sets by 
approximating the Jaccard index is adopted. In order to use this 
specific LSH-family, each input object is transformed into a set 
of features called shingles. As an example, if the data objects 
in the input dataset were texts they would be broken down into 
k-shingles which are sequences of k consecutive characters so 
that each text would be transformed into a set of shingles. As 
is the case every input data has to be transformed into a set of 
appropriate features which will be referred to as shingles. Every 
shingle s is subsequently hashed into an integer number by using 
a hash function h(s). By applying this function to every shingle 
belonging to the set in which the input object has been converted 
it becomes a set of integer numbers. The minimum value 
of these integers is the minhash code pertaining to the input 
object. By means of a sequence of H randomly generated hash 
functions hi(s), the input dataset is transformed into a dataset of 
signatures which are sequences of H i.i.d. hash codes. As a result 
the input dataset containing N objects of varying dimension is 
transformed into a (N × H) signature matrix which is elaborated 
in the section which follows.

2.4. Near-Duplicates Search
Subsequent to the generation of the aforementioned matrix 
each signature is shrunk into B bands in order to speed up the 
search for near-duplicates. Each band consists of R adjacent 
combined hash codes so that the relation H = BR holds. Similar 
input objects are finally detected by sorting the (N × B) banded 
signature matrix and sequentially scanning it B times. Every 
pair of consecutive signatures with at least one corresponding 
equal band indicates a pair of near-duplicate input objects. 
The probability of there being a pair of similar objects with a 
similarity value σ is given by:

It is widely reported in the literature that the LSH is an approximate 
method which may give rise to false duplicates in the solution. 
The rate of the same as up to now being controlled solely by 
means of an appropriate tuning process of the hyperparameters.

3. Detection of Similar Network Structures
The proposed algorithm is devised for detecting isomorphic 
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2.3 Locality Sensitive Hashing fundamentsls

In data science Locality Sensitive Hashing (LSH) refers to a method designed for
an approximate similarity search in high-dimensional spaces where traditional search
methods become computationally expensive. There are several metrics that LSH
encompasses for finding near-duplicates by means of a suitable family of hash func-
tions h(·) which establish a relation between two input data points (xk,xh) ∈ X and
the probability of sharing the same hash code: sim(xk,xh) = P[h(xk) = h(xh)]. The
choice of the hash function determines the metric to approximate. Every family asso-
ciates input data to integers which are thought of as being buckets with the purpose of
hashing is to group similar data points together into the same bucket so that neighbor-
ing data fall into the same bucket with a high probability while data which are likely
to be distant in the input space belong to different buckets. In a database context,
this facilitates the detection of pairwise similar observations in accordance with vary-
ing degrees of similarity. In this study the LSH-family known as minhash tailored for
evaluating the similarity between sets by approximating the Jaccard index is adopted.
In order to use this specific LSH-family, each input object is transformed into a set of
features called shingles. As an example, if the data objects in the input dataset were
texts they would be broken down into k-shingles which are sequences of k consecutive
characters so that each text would be transformed into a set of shingles. As is the case
every input data has to be transformed into a set of appropriate features which will be
referred to as shingles. Every shingle s is subsequently hashed into an integer number
by using a hash function h(s). By applying this function to every shingle belonging
to the set in which the input object has been converted it becomes a set of integer
numbers. The minimum value of these integers is the minhash code pertaining to the
input object. By means of a sequence of H randomly generated hash functions hi(s),
the input dataset is transformed into a dataset of signatures which are sequences of
H i.i.d. hash codes. As a result the input dataset containing N objects of varying
dimension is transformed into a (N ×H) signature matrix which is elaborated in the
section which follows.

2.4 Near-duplicates search

Subsequent to the generation of the aforementioned matrix each signature is shrunk
into B bands in order to speed up the search for near-duplicates. Each band consists
of R adjacent combined hash codes so that the relation H = BR holds. Similar input
objects are finally detected by sorting the (N × B) banded signature matrix and
sequentially scanning it B times. Every pair of consecutive signatures with at least
one corresponding equal band indicates a pair of near-duplicate input objects. The
probability of there being a pair of similar objects with a similarity value σ is given by:

π = 1− (1− σR)B (4)

It is widely reported in the literature that the LSH is an approximate method which
may give rise to false duplicates in the solution. The rate of the same as up to now being
controlled solely by means of an appropriate tuning process of the hyperparameters.
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networks as well as similar sub-networks embedded in different 
ones contained in a large dataset. The main steps of the algorithm 
are described in this section.

3.1. Input Networks
The input dataset is constituted by N networks which are 
mathematically described as being fully connected undirected 
weighted graphs of n vertices. The number of vertices is variable 
so that there are networks of different dimensions in the input 
dataset. Every vertex is related to a sequence of K categorical 
attributes 			   called profile related to the 
i-th vertex (i = 1,2,...,n). A sketch of input network is reported in 
Figure 1. The edges eij of the graph are related to real numbers 
wij ∈ [0,1]

Figure 1: Input Network of N = 5 Vertices

which indicate the relative frequency of the pair of profiles of the 
node i and the node j with respect to the total number of profiles 
in the entire dataset. The similarities of interest are respect to the 
attributes related to the vertices. A pair of networks which share 
the same node profiles corresponds to a value of the Jaccard 
similarity equal to 1 while this value decreases as the number of 
profiles in common decreases. For an isomorphism between two 
graphs, there has to be a one-to-one correspondence between 
their vertices while preserving the links between them at the 
same time. As a consequence only the networks having the same 
number of nodes as well as the same profiles are considered 
isomorphic. The special case of two networks having the same 
node profiles but a different number of nodes is emphasized 
by the proposed approach. Therefore, the cases which remain 
reveal the correspondence between s ubgraphs.

3.2. Network Hashing
Every possible profile j = 1,1,...,P is coded by randomly coupling 
it with a unique integer number xj ∼ U[0,m − 1] of fixed length L 
in bits so that the total number of possible integers is equal to m 
= 2L. This length depends on the number of all possible profiles	
		  where | · | is the cardinality of the categorical 
variable. For each graph in the input dataset, the list of all the 
shingles of length 3, i.e. triangles of minimum cost is created so 
that there is a resulting list of n triangles pertaining to a graph 
of n nodes. Every triangle ti is constituted by a triplet of integers 
{xi,xh,xk} where i,h,k = 1,2,...,n (i ̸= h ̸= k) which is hashed on the 
basis of the following:

where ti(1) = xi, ti(2) = xh and ti(3) = xk. The parameters (αq,γq) 
are selected in order to reduce the number of collisions as much 

as possible. The function reported in Equation 5 is applied to all 
the i = 1,2,...,n triangles in the list TGj related to the graph Gj in 
the input dataset. The minimum value of the integers in the list 
is the minhash code of the network. By generating q = 1,2,...,H 
i.i.d. hash functions every graph is identified by a sequence of H 
minhash codes (signature). Subsequent to the the transformation 
of the input dataset of N graphs into a (N × H) signature matrix 
the search for near-duplicate graphs is carried out as described 
in Section 2.

3.3. Optimization of The Solution
The LSH-family of minhash approximates the pairwise Jaccard 
similarity between the graphs. The solution set should be 
composed solely by all the pairs with a high probability of being 
similar with a high degree of similarity. Due to the probabilistic 
nature of the LSH, the presence of false duplicates must be 
controlled by carefully setting the parameters {H,B,R}. Their 
setting is generally a critical aspect of the nearest neighbors 
search insofar as a inappropriate setting could compromise the 
the solution. The parameters in the algorithm proposed here are 
therefore set in order to achieve an almost zero false negatives 
rate in opposition to a probable higher false positives rate. In 
order to lower the rate of false positives, the number of the pairs 
detected can be reduced by evaluating the Jaccard index of every 
detected pair directly and therefore by by filtering out all the 
pairs whose Jaccard similarity is below a predefined threshold 
τ. This minimum acceptable similarity threshold is usually 
defined by inverting the Equation 4 and assuming a user-defined 
probability value of finding a pair of similar data. Setting this 
threshold has no influence on pairs of isomorphic networks and 
those with similarity equal to 1 but different number of vertices.

3.4. Evaluating the Solution
The solution set is split into the partitions which follow:
S1: is the subset of pairs of isomorphic graphs Gi and Gj (i ̸= j) 
with the Jaccard index J(Gi,Gj) = 1 and |Vi| = |Vj|;
S2: is the subset of pairs Gi and Gj (i ̸= j) with the Jaccard index 
J(Gi,Gj) = 1 and |Vi| ̸= |Vj|. The graphs in every pair of this set 
share the same node profiles; 
S3: is the subset of pairs Gi and Gj (i ̸= j) with the Jaccard index 
J(Gi,Gj) < 1. The graphs in every pair of this set have a matching 
subgraph;

The probability of there being a pair of networks with a given 
degree of similarity estimated as in Equation 4 does not 
guarantee a reliable tuning process of the LSH hyperparameters. 
Due to collisions caused by the hashing algorithm employed for 
transforming networks into signatures, false duplicates may be 
accidentally generated. Therefore, it is worth investigating to 
what extent the hashing in Equation 5 affects the accuracy of 
the proposed approach by means of the Conformal Prediction 
framework. This is a popular distribution-free technique for 
providing valid predictive inference for arbitrary machine 
learning model. It is a statistically rigorous uncertainty 
quantification class of methods which aims to evaluate 
prediction sets for classification and prediction intervals for 
regression depending on the type of dependent variable in 
the model. In this perspective the aforementioned subsets are 
analyzed separately. In order to evaluate the LSH model every 

3 Detection of similar network structures

The proposed algorithm is devised for detecting isomorphic networks as well as similar
sub-networks embedded in different ones contained in a large dataset. The main steps
of the algorithm are described in this section.

3.1 Input networks
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being fully connected undirected weighted graphs of n vertices. The number of vertices
is variable so that there are networks of different dimensions in the input dataset. Every

vertex is related to a sequence of K categorical attributes a(i) = {a(i)1 , a
(i)
2 , . . . , a

(i)
K }

called profile related to the i-th vertex (i = 1, 2, . . . , n). A sketch of input network is
reported in Figure 1. The edges eij of the graph are related to real numbers wij ∈ [0, 1]
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Fig. 1 Input network of n = 5 vertices

which indicate the relative frequency of the pair of profiles of the node i and the node
j with respect to the total number of profiles in the entire dataset. The similarities
of interest are respect to the attributes related to the vertices. A pair of networks
which share the same node profiles corresponds to a value of the Jaccard similarity
equal to 1 while this value decreases as the number of profiles in common decreases.
For an isomorphism between two graphs, there has to be a one-to-one correspondence
between their vertices while preserving the links between them at the same time. As a
consequence only the networks having the same number of nodes as well as the same
profiles are considered isomorphic. The special case of two networks having the same
node profiles but a different number of nodes is emphasized by the proposed approach.
Therefore, the cases which remain reveal the correspondence between s ubgraphs.

3.2 Network hashing

Every possible profile j = 1, 1, . . . , P is coded by randomly coupling it with a unique
integer number xj ∼ U [0,m− 1] of fixed length L in bits so that the total number of
possible integers is equal to m = 2L. This length depends on the number of all possible
profiles P =

∏K
h=1 |ah| where | · | is the cardinality of the categorical variable. For

each graph in the input dataset, the list of all the shingles of length 3, i.e. triangles of
minimum cost is created so that there is a resulting list of n triangles pertaining to a
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graph of n nodes. Every triangle ti is constituted by a triplet of integers {xi, xh, xk}
where i, h, k = 1, 2, . . . , n (i ̸= h ̸= k) which is hashed on the basis of the following:

hq(ti) =

3∑
k=1

[(γq + ti(k) α
(k−1)
q ) mod m] (5)

where ti(1) = xi, ti(2) = xh and ti(3) = xk. The parameters (αq, γq) are selected in
order to reduce the number of collisions as much as possible. The function reported
in Equation 5 is applied to all the i = 1, 2, . . . , n triangles in the list TGj

related to
the graph Gj in the input dataset. The minimum value of the integers in the list is
the minhash code of the network. By generating q = 1, 2, . . . , H i.i.d. hash functions
every graph is identified by a sequence of H minhash codes (signature). Subsequent
to the the transformation of the input dataset of N graphs into a (N ×H) signature
matrix the search for near-duplicate graphs is carried out as described in Section 2.

3.3 Optimization of the solution

The LSH-family of minhash approximates the pairwise Jaccard similarity between
the graphs. The solution set should be composed solely by all the pairs with a high
probability of being similar with a high degree of similarity. Due to the probabilistic
nature of the LSH, the presence of false duplicates must be controlled by carefully
setting the parameters {H,B,R}. Their setting is generally a critical aspect of the
nearest neighbors search insofar as a inappropriate setting could compromise the the
solution. The parameters in the algorithm proposed here are therefore set in order to
achieve an almost zero false negatives rate in opposition to a probable higher false
positives rate. In order to lower the rate of false positives, the number of the pairs
detected can be reduced by evaluating the Jaccard index of every detected pair directly
and therefore by by filtering out all the pairs whose Jaccard similarity is below a pre-
defined threshold τ . This minimum acceptable similarity threshold is usually defined
by inverting the Equation 4 and assuming a user-defined probability value of finding
a pair of similar data. Setting this threshold has no influence on pairs of isomorphic
networks and those with similarity equal to 1 but different number of vertices.

3.4 Evaluating the solution

The solution set is split into the partitions which follow:

� S1: is the subset of pairs of isomorphic graphs Gi and Gj (i ̸= j) with the Jaccard
index J(Gi, Gj) = 1 and |Vi| = |Vj |;

� S2: is the subset of pairs Gi and Gj (i ̸= j) with the Jaccard index J(Gi, Gj) = 1
and |Vi| ≠ |Vj |. The graphs in every pair of this set share the same node profiles;

� S3: is the subset of pairs Gi and Gj (i ̸= j) with the Jaccard index J(Gi, Gj) < 1.
The graphs in every pair of this set have a matching subgraph;

The probability of there being a pair of networks with a given degree of similar-
ity estimated as in Equation 4 does not guarantee a reliable tuning process of the
LSH hyperparameters. Due to collisions caused by the hashing algorithm employed

6
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detected pair is considered as being an outcome of a predictive 
black-box model y = f(G) which is considered as beung already 
trained by using an undefined training dataset extracted from 
the input data. Each pair of similar graphs act as one only  so 
that in general is  while   is considered as being the true value 
and  is the predicted value of the dependent variable for each 
observation i,1,2,... in the partitions of the solution. In this study 
the variable y is defined as being the ratio between the minimum 
and the maximum edge-weights of the graph OR the common 
subgraph in the pair. The reasoning behind this is that if there 
were no collisions due to to the hashing then it would be y ≡ yˆ 
in all cases. conformal prediction is therefore a valid strategy for 
quantifying the uncertainty due to the hashing collisions.

4. Application to A Statistical Population Register
The detection of complex data structures contained in statistical 
registers is an interesting case study for testing the potential of 
the proposed approach. The data source is a collection on socio-
economic individual attributes describing the living conditions 
of a population referred to a specific time period obtained by 
integrating several statistical registers and administrative 

data pertaining to: demographic characteristics, occupation, 
education and income.

4.1. The Input Dataset
Input data comprises a subset of the entire available 
aforementioned dataset of a specific territory. A population 
of 940535 people is grouped into N = 253286 households by 
means of an identification number. In this case the number of 
households was restricted to groups of n ≥ 3 members only, so 
that the complex data structures to investigate concern different 
number of people ranging from n = 3 to n = 14 members. The 
list of the attributes of each individual is reported in Table 1. As 
a consequence, the total number of possible profiles is equal to 
P = 224.

4.2. Complex Data Structures Hashing
Representiing households as networks or graphs makes sense 
in the context about to be described. Every household is a fully 
connected undirected graph. Nodal profiles are the observed 
combinations of the attributes reported in Table 1. Edge weights 
are

N Variable Description Number of classes
1 GENDER Gender of the household member 2
2 AGE Age of the household member (in classes) 4
3 CITIZEN Citizenship of the household member 2
4 INCOME Individual income (in classes) 7
5 RETIRED Is the household member retired? 2

Table 1: Attributes in The Input Dataset

equal to the relative frequency of the two adjacent nodal profiles 
combination with respect to all the observed combinations. Every 
graph is hashed in accordance with the procedure described in 
Section 3.

4.3. LSH Hyperparameters Setting
The setting provides that every network is signed by a sequence 
of H = 200 i.i.d. minhashes. Every hash is a n = 32 bits long 
integer which is a sufficient length for hashing the graphs. 
Each signature is grouped into B = 50 bands of R = 4 hashes 
combined in bitwise XOR. The application of the similarity 
threshold τ for refining the solution only affects the subset of 
the correspondences between subgraphs S3. By increasing the 
value of the threshold for the minimum acceptable similarity 
the dimensions of the detected common subgraph increase even 
if the number of the involved pairs decrease. In this case the 
minimum value τ for the Jaccard similarity is equal to 0.491074 
by assuming a 95% probability of detecting similar pairs.

4.4. Some Results
In order to better investigate the results the three partitions of 
the solution set are analyzed separately. The number of pairs 
detected is respectively equal to: |S1| = 254227, |S2| = 29870 and 

|S3| = 394627. The first subset contains isomorphic households 
which share the same number of members with the same profiles 
and therefore the same structure. The number of distinct profiles 
may be equal to the number of household members at maximum. 
The second subset includes all the pairs of households with 
different numbers of members which share the same profiles. 
The third subset contains the pairs of households which share 
a common nucleus embedded in the households of the pair. 
The number of pairs in these subsets distributed by number of 
household members and number of common distinct profiles are 
reported in Table 2, Table 3 and Table 4 respectively. Except 
for the first subset, the number of household members reported 
in the tables is always equal to the minimum value between 
the numbers of members of the two households in the pair. All 
the results reported in the table are overall counts of pairs of 
housenolds and nucleus pertaining to different arrangements of 
the household members profiles.

4.5. Uncertainty Quantification
On the basis of the reasoning described in Section 3 every subset 
of the solution was split into a calibration set (80%) and a test 
set (20%). The uncertainty was evaluated
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Table 2:  Pairs Distribution in The Subset S1

Table 3: Pairs Distribution in The Subset S2

Table 4:  Pairs Distribution in The Subset S3

Table 2 Pairs distribution in the subset S1

1 2 3 4 5 6

3 29 6684 157708 0 0 0
4 1 55 21651 61368 0 0
5 0 0 387 3247 2628 0
6 0 0 4 86 188 175
7 0 0 0 4 3 6
8 0 0 1 0 2 0

Table 3 Pairs distribution in the subset S2

1 2 3 4 5 6 7

3 14 370 15445 0 0 0 0
4 0 7 2586 9166 0 0 0
5 0 1 79 973 1001 0 0
6 0 0 1 48 75 79 0
7 0 0 0 4 11 4 2
8 0 0 0 0 1 2 0
9 0 0 0 0 0 1 0

Table 4 Pairs distribution in the subset S3

3 4 5 6 7 8

3 244560 0 0 0 0 0
4 30897 63008 0 0 0 0
5 1074 6783 7048 0 0 0
6 53 384 753 379 0 0
7 2 42 85 77 11 0
8 1 5 30 15 6 0
9 0 2 10 3 1 0
10 0 0 1 1 0 1
11 0 0 0 0 2 0

by using the standardized scores defined as follows:

s(x, y) =
|y − ŷ|

σ̂
(6)

where σ̂ is the the standard deviation of the predicted variable ŷ = f(x) estimated for
each observation x = G in the calibration dataset. As it is well-known the prediction
interval for each observation in the test dataset is equal to C(x) = [f̂(x)−σ̂q̂, f̂(x)+σ̂q̂]
where q̂ is the ⌈(1−α)(n+1)⌉/n quantile with n equal to the number of observations
in the calibration dataset and α = 0.05 is the user-defined level of accuracy. The
probabilitiy that the true value y falls into the prediction interval is as follows:

P[s(x, y) ≤ q̂] ≥ 1− α (7)

9

by using the standardized scores defined as follows:

where σ is the the standard deviation of the predicted variable 
y = f(x) estimated for each observation x = G in the calibration 
dataset. As it is well-known the prediction interval for each 
observation in the test dataset is equal to C(x) = [f (x)−σ q, f 
(x)+σ q ] where q is the ⌈(1−α)(n+1)⌉/n quantile with n equal 
to the number of observations in the calibration dataset and α = 
0.05 is the user-defined level of accuracy. The probabilitiy that 
the true value y falls into the prediction interval is as follows:

	 P[s(x,y) ≤ q] ≥ 1 − α	 (7)

where the scores are computed for each observarion belonging 
to the test dataset. This is the property to assess in order to test 
for the accuracy of the LSH detection in the proposed approach. 
The correctness of this coverage property was checked out by 

using the efficient score caching proposed by Angelopoulos and 
Bates. The resulting coverage is approximately equal to 95.05% 
in the case of the pairs belonging to S1 subset, 95.36% in the case 
of the S2 subset and 95.04% in the case of the S3 subset.

5. Conclusion
The proposed approach identifies similarities between complex 
data structures, for example networks of individuals grouped 
together by any type of utility bond. By leveraging the well-
known computational efficiency of the Locality Sensitive 
Hashing technique, the proposed approach is particularly 
suitable for detecting similar networks in large datasets. The 
use of some basic concepts from the Graph Theory offers a 
strong mathematical representation of these objects in that it 
facilitates their exploration. Networks of varying dimensions 
are represented as being fully connected undirected weighted 
graphs with attributes relating to their vertices. These attributes 
are comprised by a set of pre-defined categorical variables 
and every combination of their possible values is a profile. 

ˆ
ˆ

ˆ ˆ ˆ ˆ
ˆ ˆ ˆ

ˆ
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The weights pertaining to the edges of the graph are equal to 
the relative frequency of the combinations between a pair of 
adjacent profiles with respect to the total of the observed patrs 
in the input dataset. By listing all the triangles of minimum 
cost, every graph is transformed in a sequence of hash codes 
by means of an appropriate hashing algorithm. The advantage 
of reducing the dimensions of the problem is straightforward as 
the resolution of graph matching problems between all possible 
pairs of graphs in the input dataset turns into a more scalable 
search for near-duplicate graphs by approximating their Jaccard 
similarity index. The interesting aspect is that the proposed 
method addresses two types of well-known hard graph matching 
problems at the same time, namely the problem of finding 
isomorphic networks as well as the problem of detecting the 
common subgraph in a pair of networks. Due to its approximate 
nature even the most accurate setting of the hyperparameters 
is not sufficient to avoid the presence of false duplicates. The 
setting proposed in this study reduces the probability of there 
being false negatives almost to zero while this does not apply 
to the probability of there being false positives even if the rate 
of the same is reduced by usinng a pre-defined threshold of the 
minimum acceptable Jaccard similarity. As it is known from 
the literature, hashing gives rise to inevitable collisions which 
may generate false duplicates which are not avidable even with 
the most accurate tuning process of the hyperparameters. As a 
consequence, the standard disgnostic of the LSH tecnique is not 
reliable. On the basis of this reasoning, the application of the 
Conformal Prediction framework is employed for evaluating the 
accuracy of the results. The case study indicates that the proposed 
approach is computationally efficient as well as accurate as it 
is demonstrated by applying a simple but rigorous uncertainty 
quantification method of the Conformal Prediction.
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