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Abstract
Observations in space and on earth can be subject to wide dynamic ranges of light levels which may need to be controlled 
by neutral density filters. The optical density (OD) of neutral density (ND) filters made with single metal layers is often not 
very neutral or constant in OD versus wavelength over the wavelength band of interest. Photographers are the major users of 
quantities of ND filters, but there are many other applications for smaller numbers of ND filters. There are a limited number of 
publications on how to design metallic ND filters. It is shown here that designs of metal-dielectric-metal (MDM) can be designed 
to have more constant OD over a wavelength band. Designs are shown employing software which accommodates the fact that 
the indices of thin metal films usually vary with film thickness. 
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1. Introduction
A literature search for designing ND filters only came up with eight 
references that were closely related. There are several possibilities 
to create an ND filter [1-8]. A glass can be used which absorbs 
the light, such as provided by the colored filter glass providers 
such as Schott and Hoya. A high-reflecting/low-transmitting stack 
of all-dielectric layers can be used to make an ND filter. Thin films 
of metals are commonly used to make ND filters. Combination 
of these three basic options is also possible. Metallic ND filters 
are the subject of this paper. Common metallic ND filters are 
made with pure metals and also alloys such as Inconel (Ni, Cr, 
Fe), Nichrome (Ni, Cr), and Chromium (Cr). The OD of single 

metal layers of these materials vary somewhat with wavelength as 
reported by Amotchkina, et al [9]. 

The paper by Goodell, Coulter, and Johnson characterized the n and 
k of Inconel 600 (75.31% Ni, 15.54% Cr, 7.71% Fe) in layers of 
22, 37.3, and 62.5 nm from 331 to 1923 nm wavelength [1]. Their 
data is used in the results of the present work. Index values versus 
thickness were also available from projects with which the author 
has been associated for Nichrome and Chrome in thicknesses that 
had some residual transmittance. These three sets of materials are 
used in this discussion and their indices at measured thicknesses 
are plotted in Figs. 1-3.

Figure 1: Measured Indices of Refraction for Inconel 600
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Figure 2: Measured Indices of Refraction for Chromium

Figure 3: Measured Indices of Refraction for Nichrome

Shibukawa explored the approach of co-evaporating silver and 
silica to provide a ceramet with a percentage composition which 
would provide nearly the same OD versus wavelength in the 1-to-
2.5-micron wavelength region. With a 56% volume composition, 
he could get any OD from 0 to 2.3 with a reasonably flat spectral 
response just by depositing the right thickness film of the mixture.
Cushing and Simons addressed the problem of the reflections from 
the filter which would cause errors due to the multiple internal 
reflections when two or more ND filters were stacked to provide 
higher OD. They antireflected the ND filters to reduce this problem 
[2,3].

Bittar and White did similar things to that of the work of Shibukawa, 
but for the ultraviolet range of 200 to 800 nm using metals like Ni 
or Pt and SiO2 in a ceramet [4].

Kaplan, et al. worked with metallic ND filters deposited on 
ultrathin substrates of Lexan. This was to avoid the spectral 
ripples or etaloning caused by second surface reflections of thicker 
substrates in FT-IR spectrophotometers and laser measurements 
[5].

Frenkel and Zhang performed work that is most closely related to 
that of this report for the 2–25-micron spectral region [6]. They 
emphasize the non-uniformity of OD with wavelength problem. 
They also mention that some materials “are strongly dependent 

on film thickness, and their behavior is much different from that 
of bulk materials.” They also focused on the etaloning effects 
studied by Kaplan, et al. [5]. To get flat OD versus wavelenght 
response, they combined metals like gold and nichrome, gold and 
vanadium, and nichrome and palladium. However, they did not 
employ the MDM approach reported here. Zhang, Hanssen, and 
Datla demonstrated measuring down to OD 6 in the infrared using 
ND and other filters. Sullivan and Byrt used metal/dielectric filters 
and described how to protect silver from oxidation.
 
2. Interpolating Indices Versus Wavelength and Thickness
The variation of indices with thickness mentioned by Frenkel and 
Zhang has been the thrust of our work reported in recent years 
[10,11]. Indices versus wavelength are measured on samples 
prepared at several thicknesses in the spectral range and thickness 
range of interest. For example, Goodell, et al. measured layers 
of Inconel of 22, 37.3, and 62.5 nm thickness from 331 to 1923 
nm wavelength. The chromium of the project with which I was 
associated was measured at 1.5, 3, 5, 9, and 60 nm thickness from 
380 to 2000 nm wavelength. Nichrome was measured at 5, 20, and 
50 nm thickness from 350 to 1000 nm wavelength. These plots of 
indices are shown in Figs. 1-3.

The software reported in Refs. 9 and 10 interpolates between the 
measured spectra for any thickness desired as the design process 
optimizes the parameters with respect to target goals of OD or 
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other parameters. Figures 4-6 show the interpolated indices in 5 
nm increments for each of these three materials using that software. 
Figures 7-9 show the OD versus wavelength that single layers of 
these three materials could generate in increments of 5 nm. The 
OD is more constant with wavelength at some layer thicknesses, 

depending on the material as seen in Figs. 7-9. It will be shown 
below that the OD plot can be made more constant at any OD by 
a MDM design, and the two metal layers might be different metals 
to give the best results.

and Datla [7] demonstrated measuring down to OD 6 in the infrared using ND and other 
filters. Sullivan and Byrt [8] used metal/dielectric filters and described how to protect silver 
from oxidation. 
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Fig. 4. Interpolated indices of refraction for Inconel 600 
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Figure 5: Interpolated Indices of Refraction for Chromium from 5 to 60 nm in Increments of 5 nm
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Fig. 6. Interpolated indices of refraction of NiCr 
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From 5 to 50 nm in increments of 5 nm  
  

Fig. 7. OD of Inconel 600 in thicknesses of 20 to 
65 nm in increments if 5 nm. 
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Fig. 7. OD of Inconel 600 in thicknesses of 20 to 
65 nm in increments if 5 nm. 

 

Figure 6: Interpolated Indices of Refraction of NiCr

Figure 7: OD of Inconel 600 in Thickness of 20 to 65 nm in Increments if 5 nm

Figure 8: OD of Chromium in Thickness of 5 to 60 nm in Increments if 5 nm 
Fig. 8. OD of Chromium in thicknesses of 5 to 

60 nm in increments if 5 nm. 
 

 
 

Fig. 9. OD of Nichrome in thicknesses of 5 to 
100 nm in increments if 5 nm. 
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design is of 28.48 nm Inconel, 103.55 nm Silica and 1.64 nm Nichrome gives the best result. 
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Figure 12 compares the four best of the MDM designs to make an OD3 filter with 

minimum average deviation from an OD of 3.0. This design is of 82.63 nm Inconel, 114.41 
nm Silica and 6.53 nm Chrome. 

 
Fig. 12. OD3 MDM filter designs with using the  
interpolating software with the different material  

combinations on an expanded OD scale. 
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Figure 13 compares the four best of the MDM designs to make an OD4 filter with 
minimum average deviation from an OD of 4.0. This design is of 107.46 nm Inconel, 125.82 
nm Silica and 11.68 nm Chrome. 
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Figure 13: OD4 MDM Filter Designs with Using the Interpolating Software with the Different Material Combinations on an 
Expanded OD Scale

Figure 14: The Constancy of OD with Wavelength for MDM Designs of OD from 1 to 4 Using Mixed Metals and Software which 
Deals with the Variation of Index with Thickness
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4. Conclusions
It has been demonstrated that ND filters can be designed with a 
more constant OD with wavelength (flatter) in the 400 to 1000 nm 
wavelength band by using three materials in a MDM configuration. 
These designs have been expedited by using software which 
interpolates between measured values of indices of refraction 
versus wavelength to use indices in thicknesses that have not been 
measured in the design optimization process.
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