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Abstract 
With the current trend in large scale, big data applications, there is an increasing need for the design and efficient implementation of 
long to ultra-long Fourier-based transform algorithms, such as with fast Fourier transforms (FFTs) where the transform length varies 
from long (of order one million) up to ultra-long (of order one billion). To address such problems, the paper shows how the applicability 
of the scalable, memory-based architecture of the regularized fast Hartley transform (FHT) or RFHT – which has proved an attractive 
alternative to the FFT for the computation of the discrete Fourier transform (DFT) for when the data is real-valued, as is the case with 
many real-world applications – may be straightforwardly extended to enable the efficient parallel computation of long to ultra long 
transforms to be achieved and maintained in a continuous real-time fashion. In order to implement such algorithms, however, when 
using the memory-based architecture of the RFHT, a timing constraint (and hence transform size limitation) arising from the combined 
effects of the update period and the I/O rate needs to be overcome and the formidable data and coefficient (or twiddle factor) memory 
requirement minimized. With this in mind and with a processing element (PE) defined as comprising one complete RFHT module, it is 
seen how the design of a scalable dual-PE architecture may be derived as a simple extension of the single - PE case – thus possessing 
a number of attractive properties, as held by the RFHT, but not by pipelined real-data FFT implementations –  this being achieved in 
such a way that the transform size limitation is overcome and, when combined with the use of memory-efficient multi level look-up table 
(LUT) techniques for the coefficient generation and storage, offers the ‘potential’ for achieving and maintaining  the real - time parallel 
computation of real-data transforms where the transform length may now range up to one billion. Two hypothetical implementations 
are briefly discussed which illustrate how the dual-PE solutions for the computation of both the one and four million-point real-data 
transforms may each be mapped onto a single commercially-available field programmable gate array (FPGA) device using only fast 
on - chip random access memory (RAM) for the data and coefficient storage. 
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1. Introduction 
With the current trend in large-scale, big data applications, a need 
has arisen for the design and efficient implementation of Fourier-
based transform algorithms where the transform length ranges from 
long (of order one binary million – or 220, referred to hereafter as 
simply one million – as might be encountered with the processing 
of wideband signals embedded in astronomical data) up to ultra-
long (of order one binary billion – or 230, referred to hereafter as 
simply one billion – as might be encountered with the processing 
of ultra-wideband signals embedded in cosmic microwave 
data). The particular problem area of interest is that of spectrum 
estimation which may be effectively used to produce precise high-
resolution images to facilitate the detection and identification of 
those objects or phenomena – such as the relative motion and 
chemical composition of stars and galaxies – that are of particular 

interest to the researcher. The basic algorithm to be solved is thus 
that of the discrete Fourier transform (DFT), as given for the case 
of the N - point transform by the expression

for k = 0,1, … ,N-1, where the inputs/outputs are typically 
complex-valued and

the primitive Nth complex root of unity [1,2]. The DFT is an 
orthogonal transform that is typically carried out by means of 
a suitably chosen member of the class of fast Fourier transform 
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the primitive Nth complex root of unity [1,2]. The DFT 

is an orthogonal transform that is typically carried out 

by means of a suitably chosen member of the class of 

fast Fourier transform (FFT) algorithms [3,4], where 

the complex exponential terms, nk
NW , each comprise 

two trigonometric components, more commonly 

referred to as twiddle factors, which are required to be 

fed into each instance of the FFT‟s butterfly [3,4], this 

being the name of the computational engine used for 

carrying out the algorithm‟s repetitive arithmetic 

operations. 

 A version of this problem, which is of particular 

interest here, is when the input data to the DFT is real- 

valued in nature (as is often the case in many 

real-world applications where the signals of interest 

are wideband in nature), rather than complex-valued, 

with the transform length being typically expressed as 

the power of some fixed integer radix (typically taken 

as two or four). The conventional approach to such a 

problem involves the adoption of a specialized real-

data FFT (or RFFT) algorithm [5,6,7], based upon the 

familiar pipelined computing architecture [8], which 

necessitates the use of multiple processing elements 

(PEs) in order to achieve and maintain continuous real-

time operation. Such designs, however, are typically 

highly complex and involve the need for two or more 

distinct PE designs. 

 An attractive alternative to the standard FFT-

based approach to the solution of the real-data DFT 

involves the derivation of resource-efficient parallel 

solutions to the discrete Hartley transform (DHT) 

algorithm [9], another orthogonal transform which for 

the case of the N-point transform is given by 
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for k = 0,1, … ,N-1, where the inputs/outputs are real-

valued and the transform kernel is given by 

      N/nk2cosN/nk2cas  

   N/nk2sin       (4) 

which is referred to in the literature as the „cas‟ 

function [9]. The trivial conversion of the outputs from 

Hartley-space to Fourier-space – to yield the required 

real-data DFT outputs – is as given by the expressions 

    ]k[X]kN[X2
1]k[XRe )H()H()F(         (5) 

      &    ]k[X]kN[X2
1]k[XIm )H()H()F(         (6) 

where „Re‟ stands for the real DFT component and 

„Im‟ for the imaginary DFT component. This process 

may be straightforwardly performed post-DHT, 

although if the power spectral density (PSD) is to be 

the required output data format then the conversion 

process may be simply discarded as the PSD may be 

obtained directly from either the DFT or the DHT 

outputs [10]. 

 The solution to the DHT that will be pursued 

here is that of the regularized fast Hartley transform 

(FHT) or RFHT [10], which possesses a simple 

memory-based architecture and has the attractions of 

being resource-efficient, scalable, bilateral (that is, 

equal to its own inverse) and highly parallel (yielding 

eight-fold parallelism). The simplicity of the single-PE 

RFHT design results in minimal design costs, in terms 
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(FFT) algorithms, where the complex exponential terms,         
       , each comprise two trigonometric components, more 
commonly referred to as twiddle factors, which are required to be 
fed into each instance of the FFT’s butterfly, this being the name 
of the computational engine used for carrying out the algorithm’s 
repetitive arithmetic operations [3,4].

A version of this problem, which is of particular interest here, is 
when the input data to the DFT is real - valued in nature (as is 
often the case in many real - world applications where the signals 
of interest are wideband in nature), rather than complex-valued, 
with the transform length being typically expressed as the power 
of some fixed integer radix (typically taken as two or four). The 
conventional approach to such a problem involves the adoption of 
a specialized real-data FFT (or RFFT) algorithm, based upon the 
familiar pipelined computing architecture, which necessitates the 
use of multiple processing elements (PEs) in order to achieve and 
maintain continuous real-time operation. Such designs, however, 
are typically highly complex and involve the need for two or more 
distinct PE designs [5-8].

An attractive alternative to the standard FFT-based approach to the 
solution of the real-data DFT involves the derivation of resource-
efficient parallel solutions to the discrete Hartley transform (DHT) 
algorithm [9], another orthogonal transform which for the case of 
the N-point transform is given by

for k = 0,1, … ,N-1, where the inputs/outputs are real-valued and 
the transform kernel is given by

which is referred to in the literature as the ‘cas’ function [9]. The 
trivial conversion of the outputs from Hartley-space to Fourier-
space – to yield the required real-data DFT outputs – is as given 
by the expressions

where ‘Re’ stands for the real DFT component and ‘Im’ for the 
imaginary DFT component. This process may be straightforwardly 
performed post-DHT, although if the power spectral density (PSD) 
is to be the required output data format then the conversion process 
may be simply discarded as the PSD may be obtained directly from 
either the DFT or the DHT outputs [10].

The solution to the DHT that will be pursued here is that of 

the regularized fast Hartley transform (FHT) or RFHT, which 
possesses a simple memory-based architecture and has the 
attractions of being resource-efficient, scalable, bilateral (that is, 
equal to its own inverse) and highly parallel (yielding eight-fold 
parallelism) [10]. The simplicity of the single-PE RFHT design 
results in minimal design costs, in terms of both time and resources, 
whilst its scalability enables the same design to be used to cater 
for multiple digital signal and image processing applications 
possessing varying requirements (in terms of transform length), 
again at minimal expense. 

Comparing the RFFT and RFHT approaches to solving the real-
data DFT – as is discussed in some detail in – the RFFT approach 
is geared to streaming operation and exploits a multi-PE pipelined 
architecture, whilst the RFHT approach involves the design of a 
memory-based solution geared to batch operation and exploits a 
single-PE architecture. Both approaches have yielded attractive 
power - efficient solutions, although when compared to those of 
the RFFT approach, the RFHT solution, as stated above, possesses 
the additional attractions of bilateralism and of increased design 
simplicity, regularity and scalability – the RFFT solution would 
need to be optimized for each particular application, a potentially 
costly process – as well as lending itself more naturally to the 
adoption of an accurate conditional scaling strategy for fixed-point 
operation (to be briefly discussed in Section 5).

There is a problem to be overcome, however, with the adoption 
of a memory-based architecture in that the maximum achievable 
transform length is constrained by the combined effects of 
the update period (or refresh rate) and the I/O rate. The aim of 
this research is thus to produce the design of a simple scalable 
computing architecture, based upon the RFHT module, which 
overcomes this size limitation, so that the attractive properties of 
the FHT – which is a radix 4 fixed-radix algorithm – as stated 
above, may be effectively exploited for transform lengths ranging 
from the large (taken here to be 410, or one million) up to the ultra 
large (taken here to be 415, or one billion). It should be noted, 
however, that the maximum achievable transform length will also 
be constrained by the existing technology in terms of the amount 
of fast on-chip random access memory (RAM) available on the 
chosen parallel computing device for dealing with the memory 
requirement, although the storage requirements for the coefficients 
(or twiddle factors) may be minimized through the adoption of a 
suitably defined multi-level look-up table (LUT) scheme. 

Thus, following this introductory section, an outline is given 
in Section 2 of the regularized FHT, this including mention of: 
1) the scalable memory-based architecture; 2) the large highly 
parallel double butterfly; and 3) the multi-level LUT-based 
schemes. In Section 3, after first defining the timing constraints 
associated with the operation of both single-PE and dual-PE 
solutions, a simple complexity analysis is carried out in terms of 
the memory and arithmetic requirements, where the adoption of 
suitable parallel computing equipment is assumed and where the 
arithmetic requirement is expressed very simply in terms of the 
required numbers of fast multipliers (as made available by the 
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equipment manufacturer) and adders (as implemented very simply 
in programmable logic). This is followed in Section 4 with a brief 
discussion of two hypothetical implementations which illustrate 
how the dual-PE solutions for the computation of both the one 
and four million-point real-data transforms might each be mapped 
onto a single commercially-available field programmable gate 
array (FPGA) device using only fast on-chip RAM for the data 
and coefficient storage. Finally, a brief description of a potential 
fixed-point scaling strategy is outlined in Section 5, followed by a 
summary and conclusions in Section 6 [12]. 

2. A Brief Outline of Regularized FHT
The RFHT is a resource - efficient means of carrying out the 
DHT (and thus the real-data DFT) that is both highly parallel and 

scalable, whilst its being ‘regularized’ refers to the fact that the 
algorithm structure has been made regular so that the conventional 
need for two separate butterfly designs for the fixed-radix FHT 
is thus avoided. The design includes two key features: a) an 
architecture based upon the use of a single PE, as illustrated in 
Figure 1, which exploits partitioned memory to facilitate the 
parallel computation of the large double butterfly operation; and b) 
conflict-free and in-place parallel memory addressing schemes for 
both the data, as stored in the data memory (DM) – which needs to 
account for double buffering in order for real time operation to be 
achieved and maintained – and the twiddle factors, as stored in the 
coefficient memory (CM). 
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Figure 1: Single-PE Architecture for Computation of N-Point Regularized FHT

2.1 The Double Butterfly
These features of the RFHT enable the resources residing on 
the PE to be maximally utilized and each instance of the double 
butterfly – the computational engine producing eight outputs from 
each set of eight inputs – to produce a new output data set with 
each clock cycle.

The original design for the double butterfly required 12 multipliers 
and 22 adders for carrying out the associated operation, with: a) each 
eight sample (one or two samples per memory bank) data set being 
read/written in parallel from/to the partitioned DM, configurable 
as an array of eight memory banks; and b) the coefficients being 
read in parallel from the partitioned CM, configurable as an array 
of three one-level or multi-level LUTs (one per non-trivial twiddle 
factor). The addressing of the DM, over two consecutive clock 
cycles, enables all those samples required by the two corresponding 
instances of the double butterfly operation to be read from the DM, 
processed and then written back to the DM in a conflict - free and 
in - place manner at the rate of one eight-sample data set per clock 
cycle [10].

Being a radix-4 decimation-in-time (DIT) algorithm, the input 
data to the RFHT needs first to be reordered according to the 
dibit-reversal mapping (that is, involving the exchange of two 
bits at a time rather than just the one bit of the bit - reversal 
mapping), enabling the input data set to be then written to the 
DM with consecutive data samples being stored cyclically within 
consecutive memory banks, whilst on completion of the RFHT, 
the naturally ordered output data set may be read out from the 
DM with consecutive data samples being retrieved cyclically from 
consecutive memory banks [3,4].

2.2 Trading Off Memory Against Arithmetic
Three additional versions of the PE have been subsequently 
derived (as well as a CORDIC version not considered here) which 
enable the arithmetic component of the space - complexity to be 
traded off against the memory component, which varies according 
to the use of either one - level or multi - level LUTs for storing 
the coefficients [10]. The one-level LUT-based scheme, which is 
the standard approach, involves the sinusoidal and cosinusoidal 
components of the twiddle factors being typically read from a 
sampled version of the sine function with argument defined over a 
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single quadrant, namely from 0 up to π/2 radians.

The aim of the multi-level schemes – which, essentially, involves 
the exploitation of multiple small one-level LUTs – is to reduce the 
total memory requirement at the expense of increased arithmetic 
complexity – see results of recent study [13]. The two-level scheme, 
for example, comprises one coarse-resolution angular region 
catering for both the sine and cosine functions, covering 0 up to  
π/2 radians, and one fine-resolution angular region for each of the 
sine and cosine functions, covering 0 up to  π/2L radians, where 
the optimal choice for L (which is the length of each one-level 

LUT) can be shown to be equal to  2/N , where N is the length 

of the transform to be computed. The required twiddle factors may 
then be obtained from the contents of the two-level LUT through 
the application of the standard trigonometric identities

where  θ corresponds to the angle defined over the coarse-resolution 
angular region and  ϕ to the angle defined over the fine - resolution 
angular region – see the simplified illustration of Figure 2 for the 
decomposition of the cosine function into coarse-resolution and 
fine-resolution angular regions, each of length 4.
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Figure 2 – decomposition of single quadrant of cosine function into coarse-resolution 
and fine-resolution angular regions using single-level LUTs each of length 4 
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Figure 2: Decomposition of Single Quadrant of Cosine Function Into Coarse-Resolution and Fine-Resolution Angular Regions 
Using Single-Level Luts Each of Length 4

Thus, generalizing the results of the above two-level LUT-based 
scheme and expressing them in a concise mathematical form, the 
adoption of K - level LUTs may be said to result in a reduced 

memory requirement of O( K N ) words, as opposed to the O(N) 
requirement of the one - level LUTs, this reduction being obtained 
at the expense of increased addressing complexity through the 
need for the combined use of both coarse - resolution and fine 
- resolution LUTs – as discussed in greater detail in [13]. The 
equations representing the generalized form of the LUTs, where 
K is taken to be an arbitrary integer, may be straightforwardly 
obtained via the repeated application of the standard trigonometric 

identities of Equations 7 and 8.

2.3 Discussion	
A theoretical performance/resource comparison of all four versions 
of the RFHT is provided in  Table 1, with each version achieving  

( )NlogNO ×  latency which corresponds, in clock cycles, to the 
total number of double butterflies to be executed per transform, 

namely  ( ) .Nlog8/N 4×  Note, however, that a small ( )1O    
increment to the latency is required to account for the pipelining of 
the coefficient generation process, when using a multi-level LUT-
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based scheme, as is required if real-time operation is to be achieved 
and maintained. An O(N) update period for each input/output data 
set is achieved for each solution which corresponds to an I/O 

rate of just one sample per clock cycle. The signal flow graph for 
the nine - multiplier version of the generic double butterfly is as 
illustrated in Figure 3.
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Version       

of      

Solution 

Arithmetic Complexity 
Memory Requirement 

(words) 

Time Complexity 
(clock cycles) 

Double Butterfly Coefficient Generator 
Data Memory 

(Double-Buffered) 

Coefficient       

Memory 

 

Update Time /          

Latency Multipliers Adders Multipliers Adders 

I 12 22 0 0 2 × 8× 8
1 N = 2N 3 × 4

1 N = N4
3  NlogN8

1
4  

II 9 25 0 6 2 × 8× 8
1 N = 2N 3 × 4

1 N = N4
3  NlogN8

1
4  

III 12 22 12 18 2 × 8× 8
1 N = 2N 3 × N2

3 = N2
9  NlogN8

1
4  

IV 9 25 12 24 2 × 8× 8
1 N = 2N 3 × N2

3 = N2
9  NlogN8

1
4  

Note: single-level LUTs used for versions I and II & two-level LUTs used for versions III and IV 

Table 1 – performance/resource comparison for computation of N-point regularized FHT 

Note: single-level LUTs used for versions I and II & two-level LUTs used for versions III and IV

Table 1: Performance/Resource Comparison for Computation of N-Point Regularized FHT
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    Figure 3 – signal flow graph for nine-multiplier version of generic double butterfly  
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Figure 3: Signal Flow Graph for Nine-Multiplier Version of Generic Double Butterfly
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3. Complexity of Single-PE and Dual-PE Solutions 
Having described the key components of the regularized FHT, the 
space and time complexities of the single-PE and dual-PE solutions 
to the real-data DFT are now considered where the nine-multiplier 
version of the double butterfly is to be assumed and where 
maximum parallelism is to be exploited through the use of separate 
multi-level LUTs for each of the three non-trivial twiddle factors 
required for input to the double butterfly [14]. The time-complexity 
involves the derivation of the timing constraint that needs to be met 
if continuous real-time operation is to be achieved and maintained, 
whilst the space-complexity involves the derivation of the memory 
and arithmetic requirements, as expressed in terms of the amount 
of fast on-chip RAM and the number of fast multipliers required 
for its implementation, respectively. A wordlength of 18 bits, or 
2.25 bytes, is to be assumed for the data storage, as this fits well 
with the sizes of block (and Ultra) RAM available with the current 
family of Xilinx FPGA devices – as proposed for the hypothetical 
implementations considered in Section 4 – with the wordlength 
for the coefficient storage being 27 bits, as dictated by the size 
of the fast multiplier [15]. The DM will need to be of dual-port 
type for handling both read and write operations, as required for its 
repeated updating, whilst the CM need only be of single-port type 
for handling the read-only operations associated with accessing 
the contents of the LUTs.

3.1 Timing Constraints
The latency, denoted TL, of the RFHT-based PE for the case of N 
input/output samples is given by

clock cycles, whilst the double-buffered DM is updated with a 
new N-point data set every update period of N clock cycles, given 
that the transfer of data from the external source to the fast on-
chip RAM is assumed to be carried out at the rate of one sample 
per clock cycle. Therefore, the single-PE solution – where a PE is 

taken to consist of a single RFHT module – achieves a continuous 
real-time performance when

clock cycles, which occurs when

The operation of the dual-PE solution is defined by having one PE 
process all the even-addressed input data sets and the other PE all 
the odd-addressed data sets, as illustrated in Figure 4, with each 
input data set comprising N real-valued samples. In this way, each 
PE is able to process a new N-point data set every 2N clock cycles 
with the dual-PE solution thereby able to produce a new output 
data set of N samples every N clock cycles. As a result, the dual-
PE solution is able to achieve a continuous real-time performance 
when

clock cycles, which occurs when

or up to one billion samples. 

Note that if the latency is sufficiently lower than the update rate 
(which is N clock cycles for the single-PE solution and 2N clock 
cycles for the dual-PE solution), then there might well be sufficient 
down-time available for carrying out those additional post-DHT 
functions, such as the Hartley-space to Fourier-space conversion 
or the PSD estimation, before the next input data set is available 
for processing. Also, assuming the input data and its subsequent 
processing to be fixed-point in nature, the down-time may also be 
used to deal with the incorporation of a suitable scaling strategy – 
as will be briefly discussed in Section 5 – which will involve an 
additional overhead, in terms of latency, following the completion 
of each stage of double butterflies. 
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a PE is taken to consist of a single RFHT module – 

achieves a continuous real-time performance when  

 TL < N     (10) 

clock cycles, which occurs when 

 N ≤ 47 = 16,384   (11) 

 The operation of the dual-PE solution is defined 

by having one PE process all the even-addressed input 

data sets and the other PE all the odd-addressed data 

sets, as illustrated in Figure 4, with each input data set 

comprising N real-valued samples. In this way, each 

PE is able to process a new N-point data set every 2N 

clock cycles with the dual-PE solution thereby able to 

produce a new output data set of N samples every N 

clock cycles. As a result, the dual-PE solution is able 

to achieve a continuous real-time performance when  

 TL < 2N     (12) 

clock cycles, which occurs when  

 48 = 65,536 ≤ N ≤ 415 = 1,073,741,824   (13) 

or up to one billion samples.  

 Note that if the latency is sufficiently lower than 

the update rate (which is N clock cycles for the single-

PE solution and 2N clock cycles for the dual-PE 

solution), then there might well be sufficient down-

time available for carrying out those additional post-

DHT functions, such as the Hartley-space to Fourier-

space conversion or the PSD estimation, before the 

next input data set is available for processing. Also, 

assuming the input data and its subsequent processing 

to be fixed-point in nature, the down-time may also be 

used to deal with the incorporation of a suitable 

scaling strategy – as will be briefly discussed in 

Section 5 – which will involve an additional overhead, 

in terms of latency, following the completion of each 

stage of double butterflies.  
3.2 Memory Requirement 
 The DM requirement, per PE, is given by 

 DM = 2N words = N2
9   bytes (14) 

this figure accounting for the double-buffering of the 

input data whereby one half of the DM is being 

updated with new data whilst the data from the other 

half is being processed . 

 To determine the CM requirement, suppose that 

the figures are firstly to be based upon the adoption of 

two-level LUTs (as might be appropriate for long 

transforms of order one million samples, say, with 

each two-level LUT consisting of three one-level 

LUTs [13]) for each of the three non-trivial twiddle 

factors (in order to facilitate their simultaneous access) 

required by the highly-parallel double butterfly, with 

the length of each one-level LUT being of O  N . 

Then the CM requirement, per PE, is given by 

 CM(2) = 3×( 4/N3 ) = N2
9  words  

 = N8
81   bytes  (15) 

with the total memory requirement for the single-PE 

solution, denoted MS
(2), given by 

 MS
(2) =  N2  +  N2

9   words  

 =  N2
9   +  N8

81   bytes (16) 

and the total memory requirement for the dual-PE 

solution, denoted MD
(2), given by 

 MD
(2) =  N4  +  N9  words  

 =  N9  +  N4
81   bytes         (17) 

 Suppose now that the CM figures are to be based 

upon the adoption of three-level LUTs (as might be 

appropriate for ultra-long transforms of order one 

billion samples, say, with each three-level LUT 

consisting of five one-level LUTs [13]) for each of the 

three non-trivial twiddle factors (in order to facilitate 

their simultaneous access) required by the highly 

parallel double butterfly, with the length of each one- 

level LUT being of O  3 N . Then the CM 

requirement, per PE, is given by 

 CM(3) = 3×( 3 4/N5 ) = 15× 3 4/N  words  

 = 3 4/N4
135   bytes  (18) 

with the total memory requirement for the single-PE 

solution, denoted MS
(3), given by 
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 MS
(3) =  N2  +  3 4/N15  words  

                      =  N2
9   +  3 4/N4

135   bytes  (19) 

and the total memory requirement for the dual-PE 

solution, denoted MD
(3), given by 

 MD
(3) =  N4  +  3 4/N30  words  
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requirements of the two-level LUTs (for one million-
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of comparison.      
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of 233 MHz, say, the dual-PE solution would be able 

to produce a new one million-point output data set 

approximately every 4.29 ms (or, equivalently, 233 

new one million-point output data sets every second). 

The throughput of the single-PE solution is achieved 

primarily through the eight-fold parallelism attained by 

the double butterfly, whilst the throughput of the dual-

PE solution is further enhanced through the 

simultaneous operation of the two PEs. 

4. Mapping of Long Transforms onto FPGA 

 This section provides a brief discussion of two 

hypothetical implementations which illustrate how the 

dual-PE solution to the computation of two long real-
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Note that the superscripts, in each case, simply refer to the size 
of the multi-level LUT-based coefficient generation scheme to be 
adopted, which is set to either 2 for the two-level case or 3 for the 
three-level case.

3.3 Arithmetic Requirement
With the adoption of the two-level LUT-based coefficient generation 
scheme, the twiddle factors require three sets of arithmetic, per PE, 
each of: 4 multipliers and 8 adders, yielding a total per PE, denoted 
ATF

(2), as given by

ATF
(2) = 12 multipliers & 24 adders                                                 (21)

whilst the double butterfly computation requires a total per PE, 
denoted ADB

(2), as given by

ADB
(2) = 9 multipliers & 25 adders	                                               (22)

Thus, the total arithmetic requirement for the single-PE solution, 
denoted AS

(2), is given by

AS
(2) = 21 multipliers & 49 adders                                              (23)

whilst the total arithmetic requirement for the dual-PE solution, 
denoted AD

(2), is given by

AD
(2) = 42 multipliers & 98 adders  	                                                     (24)

Similarly, with the adoption of the three-level LUT-based 
coefficient generation scheme, the twiddle factors require three 
sets of arithmetic, per PE, each of: 8 multipliers and 16 adders, 
yielding a total per PE, denoted ATF

(3), as given by

ATF
(3) = 24 multipliers & 48 adders   	                               (25)

whilst the double butterfly computation requires a total per PE, 
denoted ADB

(3), as given by

ADB
(3) = 9 multipliers & 25 adders 	                                             (26)

Thus, the total arithmetic requirement for the single-PE solution, 
denoted AS

(3), is given by

AS
(3) = 33 multipliers & 73 adders 	                                            (27)

whilst the total arithmetic requirement for the dual-PE solution, 
denoted AD

(3), is given by

AD
(3) = 66 multipliers & 146 adders	                                          (28)

Note, as before, that the superscripts, in each case, simply refer 
to the size of the multi-level LUT based coefficient generation 
scheme to be adopted, which is set to either 2 for the two-level 
case or 3 for the three-level case.

3.4 Discussion
The total resource requirements for the one million-point and one 
billion-point transforms are as outlined in Table 2, from which it 
is evident that the only change in the two sets of figures lies in 
the memory requirement arising primarily from the three orders 
of magnitude difference in the sizes of the input/output data sets. 
The difference in the memory requirements of the two-level LUTs 
(for one million-point transform) and three-level LUTs (for one 
billion-point transform) for the coefficient storage is minimal in 
comparison. The resource requirements for the 45-point (or one 
thousand-point) transform – which requires a single-PE solution 
and uses the simple single-quadrant scheme for the coefficient 
generation and storage – are provided purely for the purposes of 
comparison [13].     
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                    Note: 1) two-level LUTs used for one million-point transform & three-level LUTs used for one billion-point transform 
                              2) one thousand-point transform requires single-PE solution & single-level LUT for single-quadrant storage scheme 

Table 2 – space and time complexities of dual-PE solutions to one million-point and one billion-point transforms 

Size             

of      

Transform 

Arithmetic Complexity 
Memory Requirement 

(words) 

Time Complexity 
(update periods) 

Double Butterflies Coefficient Generators 
Data Memory 

(Double-Buffered) 

Coefficient               

Memory 

 

Update Time /          

Latency Multipliers Adders Multipliers Adders 

N = 45        

(one thousand) 
9 25 0 6 2 × N = 2 × 45 N4

13   = 443  Nlog8
1

4 = 8
5  

N = 410      

(one million) 
2 × 9 = 18 2 × 25 = 50 2 × 12 = 24 2 × 24 = 48 2 × (2 × N) = 411  N2

332   = 644
9   Nlog8

1
4 = 4

5  

N = 415      

(one billion) 
2 × 9 = 18 2 × 25 = 50 2 × 24 = 48 2 × 48 = 96 2 × (2 × N) = 416  3 4/N532   ≈ 745

6   Nlog8
1

4 = 8
15  
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Table 2: Space and Time Complexities of Dual-PE Solutions to One Million-Point and One Billion-Point Transforms

Note that with the adoption of a clock frequency of 233 MHz, say, 
the dual-PE solution would be able to produce a new one million-
point output data set approximately every 4.29 ms (or, equivalently, 
233 new one million-point output data sets every second). The 
throughput of the single-PE solution is achieved primarily through 
the eight-fold parallelism attained by the double butterfly, whilst 
the throughput of the dual-PE solution is further enhanced through 
the simultaneous operation of the two PEs.

4. Mapping of Long Transforms onto FPGA
This section provides a brief discussion of two hypothetical 
implementations which illustrate how the dual-PE solution to 
the computation of two long real-data transforms might each be 
mapped onto a single commercially-available FPGA device using 
only fast on-chip RAM for the data and coefficient storage – as 
measured in binary KBytes and MBytes.

4.1 One Million-Point Transform
Suppose, for our first example, that the real-data transform of 
interest is of length 

N = 410				                                             (29)

which equates to one million samples. Then from the timing 
constraints of Section 3.1, the solution requires the adoption of 
the dual-PE architecture in order to maintain continuous real-time 
operation as the associated latency, TL, is given from Equation 9 by 

clock cycles, which is clearly in excess of the update period of N 
clock cycles for each input data set, but less than twice the update 
period of 2N clock cycles.

The proposed computing device for its hypothetical implementation 
is taken to be a Virtex UltraScale (model VU125) FPGA, which 
has a total memory capacity of approximately 13 MBytes of 
RAM – this comprising 11.75 MBytes of block RAM and 1.25 
MBytes of distributed RAM – and an arithmetic provision of 
1200 fast multipliers, each of size (18 bit)×(27-bit). Then the 
two sets of double-buffered DM data, where each set involves 
2 × 410 ×2.25 bytes of input data, when added to the two sets of 
CM data, where each set is based upon the adoption of a two-
level LUT-based scheme for the coefficient generation and storage 
and involves approximately 10.2 KBytes of data, yields a total 
memory requirement of approximately 9 MBytes. This equates to 
the utilization, denoted UM, of the block RAM available on the 
chosen device, of

UM ≈ 77%				                               (31)

leaving the distributed RAM to cater for additional processing 
tasks needing to be performed on the device. The corresponding 
arithmetic requirement, on the other hand, is minimal, involving 
the use of just 42 of the 1200 fast multipliers available on the 
device which equates to the utilization, denoted UA, of just

UA ≈ 3.5%				                               (32)

whilst the 86 associated adders may be easily and efficiently 
implemented in silicon through the use of programmable logic. 

4.2 Four Million-Point Transform
Suppose, for our second example, that the real-data transform of 
interest is of length 

N = 411				                                               (33)
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data transforms might each be mapped onto a single 

commercially-available FPGA device using only fast 

on-chip RAM for the data and coefficient storage – as 

measured in binary KBytes and MBytes. 

4.1 One Million-Point Transform 

 Suppose, for our first example, that the real-data 

transform of interest is of length  

 N = 410    (29) 

which equates to one million samples. Then from the 

timing constraints of Section 3.1, the solution requires 

the adoption of the dual-PE architecture in order to 

maintain continuous real-time operation as the 

associated latency, TL, is given from Equation 9 by  

 TL ≈ N4
5     (30) 

clock cycles, which is clearly in excess of the update 

period of N clock cycles for each input data set, but 

less than twice the update period of 2N clock cycles. 

 The proposed computing device for its 

hypothetical implementation is taken to be a Virtex 

UltraScale (model VU125) FPGA, which has a total 

memory capacity of approximately 13 MBytes of 

RAM – this comprising 11.75 MBytes of block RAM 

and 1.25 MBytes of distributed RAM – and an 

arithmetic provision of 1200 fast multipliers, each of 

size (18-bit)×(27-bit). Then the two sets of double-

buffered DM data, where each set involves 

25.242 10   bytes of input data, when added to the 

two sets of CM data, where each set is based upon the 

adoption of a two-level LUT-based scheme for the 

coefficient generation and storage and involves 

approximately 10.2 KBytes of data, yields a total 

memory requirement of approximately 9 MBytes. This 

equates to the utilization, denoted UM, of the block 

RAM available on the chosen device, of 

 UM ≈ 77%    (31) 

leaving the distributed RAM to cater for additional 

processing tasks needing to be performed on the 

device. The corresponding arithmetic requirement, on 

the other hand, is minimal, involving the use of just 42 

of the 1200 fast multipliers available on the device 

which equates to the utilization, denoted UA, of just 

 UA ≈ 3.5%    (32) 

whilst the 86 associated adders may be easily and 

efficiently implemented in silicon through the use of 

programmable logic.  

4.2 Four Million-Point Transform 

 Suppose, for our second example, that the real-

data transform of interest is of length  

 N = 411    (33) 

which equates to four million samples. Then, as with 

the first example, the solution requires the adoption of 

the dual-PE architecture in order to maintain 

continuous real-time operation as the associated 

latency, TL, is given from Equation 9 by  

 TL ≈ N8
11     (34) 

clock cycles, which is clearly in excess of the update 

period of N clock cycles for each input data set, but 

less than twice the update period of 2N clock cycles. 

  The proposed computing device for its 

hypothetical implementation is taken to be a Virtex 

UltraScale+ (model VU9P) FPGA, which has a total 

memory capacity of approximately 46.25 MBytes of 

RAM – this comprising 9.5 MBytes of block RAM, 

33.75 MBytes of Ultra RAM and 3 MBytes of 

distributed RAM – and an arithmetic provision of 6840 

fast multipliers, each of size (18-bit)×(27-bit). Then 

the two sets of double-buffered DM data, where each 

set involves 25.242 11  bytes of input data, when 

added to the two sets of CM data, where each set is 

again based upon the adoption of a two-level LUT-

based scheme for the coefficient generation and 

storage and involves approximately 20.25 KBytes of 

data, yields a total memory requirement of 

approximately 36 MBytes. This equates to the 

utilization, denoted UM, of the block+Ultra RAM 

available on the chosen device, of 

 UM ≈ 83%    (35) 

(assuming that the Ultra RAM is able to be effectively 

utilized) leaving the distributed RAM to cater for 
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timing constraints of Section 3.1, the solution requires 

the adoption of the dual-PE architecture in order to 

maintain continuous real-time operation as the 

associated latency, TL, is given from Equation 9 by  

 TL ≈ N4
5     (30) 

clock cycles, which is clearly in excess of the update 

period of N clock cycles for each input data set, but 

less than twice the update period of 2N clock cycles. 

 The proposed computing device for its 

hypothetical implementation is taken to be a Virtex 

UltraScale (model VU125) FPGA, which has a total 

memory capacity of approximately 13 MBytes of 

RAM – this comprising 11.75 MBytes of block RAM 

and 1.25 MBytes of distributed RAM – and an 

arithmetic provision of 1200 fast multipliers, each of 

size (18-bit)×(27-bit). Then the two sets of double-

buffered DM data, where each set involves 

25.242 10   bytes of input data, when added to the 

two sets of CM data, where each set is based upon the 

adoption of a two-level LUT-based scheme for the 

coefficient generation and storage and involves 

approximately 10.2 KBytes of data, yields a total 

memory requirement of approximately 9 MBytes. This 

equates to the utilization, denoted UM, of the block 

RAM available on the chosen device, of 

 UM ≈ 77%    (31) 

leaving the distributed RAM to cater for additional 

processing tasks needing to be performed on the 

device. The corresponding arithmetic requirement, on 

the other hand, is minimal, involving the use of just 42 

of the 1200 fast multipliers available on the device 

which equates to the utilization, denoted UA, of just 

 UA ≈ 3.5%    (32) 

whilst the 86 associated adders may be easily and 

efficiently implemented in silicon through the use of 

programmable logic.  

4.2 Four Million-Point Transform 

 Suppose, for our second example, that the real-

data transform of interest is of length  

 N = 411    (33) 

which equates to four million samples. Then, as with 

the first example, the solution requires the adoption of 

the dual-PE architecture in order to maintain 

continuous real-time operation as the associated 

latency, TL, is given from Equation 9 by  

 TL ≈ N8
11     (34) 

clock cycles, which is clearly in excess of the update 

period of N clock cycles for each input data set, but 

less than twice the update period of 2N clock cycles. 

  The proposed computing device for its 

hypothetical implementation is taken to be a Virtex 

UltraScale+ (model VU9P) FPGA, which has a total 

memory capacity of approximately 46.25 MBytes of 

RAM – this comprising 9.5 MBytes of block RAM, 

33.75 MBytes of Ultra RAM and 3 MBytes of 

distributed RAM – and an arithmetic provision of 6840 

fast multipliers, each of size (18-bit)×(27-bit). Then 

the two sets of double-buffered DM data, where each 

set involves 25.242 11  bytes of input data, when 

added to the two sets of CM data, where each set is 

again based upon the adoption of a two-level LUT-

based scheme for the coefficient generation and 

storage and involves approximately 20.25 KBytes of 

data, yields a total memory requirement of 

approximately 36 MBytes. This equates to the 

utilization, denoted UM, of the block+Ultra RAM 

available on the chosen device, of 

 UM ≈ 83%    (35) 

(assuming that the Ultra RAM is able to be effectively 

utilized) leaving the distributed RAM to cater for 
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which equates to four million samples. Then, as with the first 
example, the solution requires the adoption of the dual-PE 
architecture in order to maintain continuous real-time operation as 
the associated latency, TL, is given from Equation 9 by 

clock cycles, which is clearly in excess of the update period of N clock 
cycles for each input data set, but less than twice the update period of 
2N clock cycles.

 The proposed computing device for its hypothetical implementation 
is taken to be a Virtex UltraScale+ (model VU9P) FPGA, which has a 
total memory capacity of approximately 46.25 MBytes of RAM – this 
comprising 9.5 MBytes of block RAM, 33.75 MBytes of Ultra RAM 
and 3 MBytes of distributed RAM – and an arithmetic provision of 
6840 fast multipliers, each of size (18 bit)×(27-bit). Then the two sets 
of double-buffered DM data, where each set involves  2 × 411 ×2.25 
bytes of input data, when added to the two sets of CM data, where each 
set is again based upon the adoption of a two-level LUT-based scheme 
for the coefficient generation and storage and involves approximately 
20.25 KBytes of data, yields a total memory requirement of 
approximately 36 MBytes. This equates to the utilization, denoted UM, 
of the block+Ultra RAM available on the chosen device, of

UM ≈ 83%				                                  (35)

(assuming that the Ultra RAM is able to be effectively utilized) 
leaving the distributed RAM to cater for additional processing tasks 
needing to be performed on the device. The corresponding arithmetic 
requirement, on the other hand, is again minimal, involving the use 
of just 42 of the 6840 fast multipliers available on the device which 
equates to the utilization, denoted UA, of just

UA ≈ 0.6%				                                 (36)

whilst the 86 associated adders may again be easily and efficiently 
implemented in silicon through the use of programmable logic.

4.3 Discussion
Note that for the dual-PE solution to the one million-point transform 
the latency is given by just 5/4 times the update period (of one 
million clock cycles). As a result, each PE – which includes its 
CM and double-buffered DM – is actually utilized for just 5/8 of 
the available processing time, although the two PEs are actually 
operating simultaneously for just 1/4 of the available processing 
time. The resulting down-time for each PE – which corresponds to 
the up-time of the remaining PE and therefore accounts for 3/8 of the 
available processing time – could of course be used for carrying out 
other tasks, as is briefly discussed in Section 3.1, or alternatively left 
inactive to enable the associated power consumption – which with the 
large memory requirement of the memory-based dual-PE architecture 
could be significant – to be kept to a minimum. 	

Note also that with the FPGA implementation of the one million-

point transform discussed in which assumes complex-valued rather 
than real-valued input data (which might typically involve the need 
for a digital down conversion (DDC) process to be carried out prior to 
the execution of the complex-data FFT, adding to the overall timing/
resource requirements), similar utilization figures are achieved as to 
those derived above but using the smaller VU095 model, which is 
one lower in the UltraScale family to the VU125 model and possesses 
approximately 2/3 of its memory and arithmetic resources [16]. This 
reduction in resource requirements is only achieved, however, through 
the use of a highly-optimized complex design whose advantages/
disadvantages need to be carefully weighed against those of the much 
simpler memory-based designs, such as that of the RFHT-based dual-
PE architecture adopted here, which from the timing constraints of 
Section 3.1 caters for transforms possessing lengths ranging from 48 
up to 415, with only the memory capacity needing to be modified from 
one application (or transform length) to another, as demonstrated here 
for both the one and four million-point examples.

Thus, with the appropriate choice of computing device, possessing 
sufficient fast memory, it is theoretically possible for both the one 
and four million-point real-data transforms to each be implemented 
in a very straightforward manner using only fast on-chip RAM and a 
trivial quantity of fast multipliers. The current situation for the billion-
point transform is somewhat different, however, as the limitations on 
the availability of fast on-chip memory with existing silicon-based 
FPGA or application-specific integrated circuit (ASIC) technologies 
would necessitate the reliance on the use of slower off-chip memory 
which would severely degrade the potential for obtaining a solution 
capable of achieving continuous real-time operation. The most likely 
way forward, at present, with transforms of this length, is via the 
adoption of sparse FFT techniques which can perform well using 
limited quantities of suitably randomized data provided the signal 
being processed comprises a limited number of significant spectral 
components [17,18].  

5. Scaling Strategy for Fixed-Point Processing
With the adoption of fixed-point processing – as is to be assumed 
here – a suitable scaling strategy would be needed in order to prevent 
arithmetic overflow from occurring, as each instance of the PE’s large 
double butterfly may incur up to a maximum of three bits of word 
growth (one bit for each stage of adders following the fast multipliers). 
Such a situation needs to be accounted for within the processing in 
order to avoid a possible loss of precision – and thus of signal-to-
noise ratio (SNR) – through the loss of one or more of the data’s most 
significant bits. 

The best way to achieve this will be by applying an optimal or 
‘conditional’ scaling strategy in the form of the block floating-point 
scheme to the output of each stage of double butterflies, with the 
resulting scaling factor being then applied, in each case, to the input 
data for the succeeding stage of double butterflies. This ensures that 
the scaling factor obtained for each stage of double butterflies is 
optimized and that any magnification incurred during the last stage of 
double butterflies is not scaled out of the results [10]. 

Note that although an optimal scheme such as this comes at a 
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data transforms might each be mapped onto a single 

commercially-available FPGA device using only fast 

on-chip RAM for the data and coefficient storage – as 

measured in binary KBytes and MBytes. 

4.1 One Million-Point Transform 

 Suppose, for our first example, that the real-data 

transform of interest is of length  

 N = 410    (29) 

which equates to one million samples. Then from the 

timing constraints of Section 3.1, the solution requires 

the adoption of the dual-PE architecture in order to 

maintain continuous real-time operation as the 

associated latency, TL, is given from Equation 9 by  

 TL ≈ N4
5     (30) 

clock cycles, which is clearly in excess of the update 

period of N clock cycles for each input data set, but 

less than twice the update period of 2N clock cycles. 

 The proposed computing device for its 

hypothetical implementation is taken to be a Virtex 

UltraScale (model VU125) FPGA, which has a total 

memory capacity of approximately 13 MBytes of 

RAM – this comprising 11.75 MBytes of block RAM 

and 1.25 MBytes of distributed RAM – and an 

arithmetic provision of 1200 fast multipliers, each of 

size (18-bit)×(27-bit). Then the two sets of double-

buffered DM data, where each set involves 

25.242 10   bytes of input data, when added to the 

two sets of CM data, where each set is based upon the 

adoption of a two-level LUT-based scheme for the 

coefficient generation and storage and involves 

approximately 10.2 KBytes of data, yields a total 

memory requirement of approximately 9 MBytes. This 

equates to the utilization, denoted UM, of the block 

RAM available on the chosen device, of 

 UM ≈ 77%    (31) 

leaving the distributed RAM to cater for additional 

processing tasks needing to be performed on the 

device. The corresponding arithmetic requirement, on 

the other hand, is minimal, involving the use of just 42 

of the 1200 fast multipliers available on the device 

which equates to the utilization, denoted UA, of just 

 UA ≈ 3.5%    (32) 

whilst the 86 associated adders may be easily and 

efficiently implemented in silicon through the use of 

programmable logic.  

4.2 Four Million-Point Transform 

 Suppose, for our second example, that the real-

data transform of interest is of length  

 N = 411    (33) 

which equates to four million samples. Then, as with 

the first example, the solution requires the adoption of 

the dual-PE architecture in order to maintain 

continuous real-time operation as the associated 

latency, TL, is given from Equation 9 by  

 TL ≈ N8
11     (34) 

clock cycles, which is clearly in excess of the update 

period of N clock cycles for each input data set, but 

less than twice the update period of 2N clock cycles. 

  The proposed computing device for its 

hypothetical implementation is taken to be a Virtex 

UltraScale+ (model VU9P) FPGA, which has a total 

memory capacity of approximately 46.25 MBytes of 

RAM – this comprising 9.5 MBytes of block RAM, 

33.75 MBytes of Ultra RAM and 3 MBytes of 

distributed RAM – and an arithmetic provision of 6840 

fast multipliers, each of size (18-bit)×(27-bit). Then 

the two sets of double-buffered DM data, where each 

set involves 25.242 11  bytes of input data, when 

added to the two sets of CM data, where each set is 

again based upon the adoption of a two-level LUT-

based scheme for the coefficient generation and 

storage and involves approximately 20.25 KBytes of 

data, yields a total memory requirement of 

approximately 36 MBytes. This equates to the 

utilization, denoted UM, of the block+Ultra RAM 

available on the chosen device, of 

 UM ≈ 83%    (35) 

(assuming that the Ultra RAM is able to be effectively 

utilized) leaving the distributed RAM to cater for 
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data transforms might each be mapped onto a single 

commercially-available FPGA device using only fast 

on-chip RAM for the data and coefficient storage – as 

measured in binary KBytes and MBytes. 

4.1 One Million-Point Transform 

 Suppose, for our first example, that the real-data 

transform of interest is of length  

 N = 410    (29) 

which equates to one million samples. Then from the 

timing constraints of Section 3.1, the solution requires 

the adoption of the dual-PE architecture in order to 

maintain continuous real-time operation as the 

associated latency, TL, is given from Equation 9 by  

 TL ≈ N4
5     (30) 

clock cycles, which is clearly in excess of the update 

period of N clock cycles for each input data set, but 

less than twice the update period of 2N clock cycles. 

 The proposed computing device for its 

hypothetical implementation is taken to be a Virtex 

UltraScale (model VU125) FPGA, which has a total 

memory capacity of approximately 13 MBytes of 

RAM – this comprising 11.75 MBytes of block RAM 

and 1.25 MBytes of distributed RAM – and an 

arithmetic provision of 1200 fast multipliers, each of 

size (18-bit)×(27-bit). Then the two sets of double-

buffered DM data, where each set involves 

25.242 10   bytes of input data, when added to the 

two sets of CM data, where each set is based upon the 

adoption of a two-level LUT-based scheme for the 

coefficient generation and storage and involves 

approximately 10.2 KBytes of data, yields a total 

memory requirement of approximately 9 MBytes. This 

equates to the utilization, denoted UM, of the block 

RAM available on the chosen device, of 

 UM ≈ 77%    (31) 

leaving the distributed RAM to cater for additional 

processing tasks needing to be performed on the 

device. The corresponding arithmetic requirement, on 

the other hand, is minimal, involving the use of just 42 

of the 1200 fast multipliers available on the device 

which equates to the utilization, denoted UA, of just 

 UA ≈ 3.5%    (32) 

whilst the 86 associated adders may be easily and 

efficiently implemented in silicon through the use of 

programmable logic.  

4.2 Four Million-Point Transform 

 Suppose, for our second example, that the real-

data transform of interest is of length  

 N = 411    (33) 

which equates to four million samples. Then, as with 

the first example, the solution requires the adoption of 

the dual-PE architecture in order to maintain 

continuous real-time operation as the associated 

latency, TL, is given from Equation 9 by  

 TL ≈ N8
11     (34) 

clock cycles, which is clearly in excess of the update 

period of N clock cycles for each input data set, but 

less than twice the update period of 2N clock cycles. 

  The proposed computing device for its 

hypothetical implementation is taken to be a Virtex 

UltraScale+ (model VU9P) FPGA, which has a total 

memory capacity of approximately 46.25 MBytes of 

RAM – this comprising 9.5 MBytes of block RAM, 

33.75 MBytes of Ultra RAM and 3 MBytes of 

distributed RAM – and an arithmetic provision of 6840 

fast multipliers, each of size (18-bit)×(27-bit). Then 

the two sets of double-buffered DM data, where each 

set involves 25.242 11  bytes of input data, when 

added to the two sets of CM data, where each set is 

again based upon the adoption of a two-level LUT-

based scheme for the coefficient generation and 

storage and involves approximately 20.25 KBytes of 

data, yields a total memory requirement of 

approximately 36 MBytes. This equates to the 

utilization, denoted UM, of the block+Ultra RAM 

available on the chosen device, of 

 UM ≈ 83%    (35) 

(assuming that the Ultra RAM is able to be effectively 

utilized) leaving the distributed RAM to cater for 
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computational cost (including the marginally increased latency of 
each stage of double butterflies), it is conceptually simple to apply 
with the memory-based architecture of the RFHT. However, this is 
not the case with the familiar pipelined FFT architectures [11], which 
must rely upon the use of a sub-optimal or ‘unconditional’ scaling 
strategy, whereby the data is typically over-scaled in order to prevent 
arithmetic overflow from occurring, resulting in reduced SNR when 
compared to that achieved with the memory-based approach.

6. Summary and Conclusions
With the current trend in large scale, big data applications, there is 
an increasing need for the design and efficient implementation of 
long to ultra-long Fourier-based transform algorithms, such as with 
FFTs where the transform length varies from long up to ultra-long. 
This paper has shown that in order to implement such algorithms 
when using the memory-based architecture of the RFHT, a timing 
constraint (and hence transform size limitation) due to the combined 
effects of the update period and the I/O rate needs to be overcome and 
the formidable data and coefficient memory requirement minimized 
if continuous real-time operation, using suitably defined parallel 
computing equipment, is to be achieved and maintained. 

With this in mind and with a PE defined as comprising one complete 
RFHT module – which has the attraction of being resource-efficient, 
scalable and highly parallel (yielding eight-fold parallelism) – it has 
been demonstrated how the design of a scalable, dual-PE architecture 
may be derived as a simple extension of the single-PE case – thus 
possessing a number of attractive properties, as held by the RFHT, 
but not by pipelined RFFT implementations – this being achieved 
in such a way that the transform size limitation resulting from the 
timing constraint may be effectively overcome. When combined with 
the use of memory-efficient multi-level LUT-based schemes (a two-
level scheme being adopted here for both the one and four million-
point cases) for the coefficient generation and storage, this offered the 
‘potential’ for achieving and maintaining the parallel computation of 
real-data transforms, in a continuous real-time fashion, for transform 
lengths of up to one billion. 

Finally, the study concluded with a brief description of two hypothetical 
implementations of real-time parallel solutions to the real-data DFT, 
these illustrating in particular how the dual-PE solutions for the 
parallel computation of both the one and four million-point real-
data transforms may each be mapped onto a single commercially-
available FPGA device, with each implementation using only fast 
on-chip RAM for the data and coefficient storage, so as to achieve and 
maintain continuous real-time operation.

The author declares No Conflicts of Interest relating to the production 
of this paper.
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