
Volume 2 | Issue 4 | 1Eng OA, 2024

Design of Scalable Architecture for Real-Time Parallel Computation of Long to
Ultra-Long Real-Data DFTs

Research Article

Keith Jones*

Consultant Mathematician (Retired), Weymouth, Dorset, UK

*Corresponding Author
Keith Jones, Consultant Mathematician (Retired), Weymouth, Dorset, UK.

Submitted: 2024, Oct 16; Accepted: 2024, Nov 18; Published: 2024, Nov 19

Citation: Jones, K. (2024). Design of Scalable Architecture for Real-Time Parallel Computation of Long to Ultra-Long Real-
Data DFTs. Eng OA, 2(4), 01-11.

Keywords: DFT, FFT, FHT, FPGA, Long, Ultra-Long

Abstract
With the current trend in large scale, big data applications, there is an increasing need for the design and efficient implementation of
long to ultra-long Fourier-based transform algorithms, such as with fast Fourier transforms (FFTs) where the transform length varies
from long (of order one million) up to ultra-long (of order one billion). To address such problems, the paper shows how the applicability
of the scalable, memory-based architecture of the regularized fast Hartley transform (FHT) or RFHT – which has proved an attractive
alternative to the FFT for the computation of the discrete Fourier transform (DFT) for when the data is real-valued, as is the case with
many real-world applications – may be straightforwardly extended to enable the efficient parallel computation of long to ultra long
transforms to be achieved and maintained in a continuous real-time fashion. In order to implement such algorithms, however, when
using the memory-based architecture of the RFHT, a timing constraint (and hence transform size limitation) arising from the combined
effects of the update period and the I/O rate needs to be overcome and the formidable data and coefficient (or twiddle factor) memory
requirement minimized. With this in mind and with a processing element (PE) defined as comprising one complete RFHT module, it is
seen how the design of a scalable dual-PE architecture may be derived as a simple extension of the single - PE case – thus possessing
a number of attractive properties, as held by the RFHT, but not by pipelined real-data FFT implementations – this being achieved in
such a way that the transform size limitation is overcome and, when combined with the use of memory-efficient multi level look-up table
(LUT) techniques for the coefficient generation and storage, offers the ‘potential’ for achieving and maintaining the real - time parallel
computation of real-data transforms where the transform length may now range up to one billion. Two hypothetical implementations
are briefly discussed which illustrate how the dual-PE solutions for the computation of both the one and four million-point real-data
transforms may each be mapped onto a single commercially-available field programmable gate array (FPGA) device using only fast
on - chip random access memory (RAM) for the data and coefficient storage.

Engineering: Open Access
ISSN: 2993-8643

1. Introduction
With the current trend in large-scale, big data applications, a need
has arisen for the design and efficient implementation of Fourier-
based transform algorithms where the transform length ranges from
long (of order one binary million – or 220, referred to hereafter as
simply one million – as might be encountered with the processing
of wideband signals embedded in astronomical data) up to ultra-
long (of order one binary billion – or 230, referred to hereafter as
simply one billion – as might be encountered with the processing
of ultra-wideband signals embedded in cosmic microwave
data). The particular problem area of interest is that of spectrum
estimation which may be effectively used to produce precise high-
resolution images to facilitate the detection and identification of
those objects or phenomena – such as the relative motion and
chemical composition of stars and galaxies – that are of particular

interest to the researcher. The basic algorithm to be solved is thus
that of the discrete Fourier transform (DFT), as given for the case
of the N - point transform by the expression

for k = 0,1, … ,N-1, where the inputs/outputs are typically
complex-valued and

the primitive Nth complex root of unity [1,2]. The DFT is an
orthogonal transform that is typically carried out by means of
a suitably chosen member of the class of fast Fourier transform

 2

effectively used to produce precise high-resolution

images to facilitate the detection and identification of

those objects or phenomena – such as the relative

motion and chemical composition of stars and galaxies

– that are of particular interest to the researcher. The

basic algorithm to be solved is thus that of the discrete

Fourier transform (DFT), as given for the case of the

N-point transform by the expression

 ∑
1N

0n

nk
N

)F(W].n[x
N
1]k[X





 (1)

for k = 0,1, … ,N-1, where the inputs/outputs are

typically complex-valued and

)N/2iexp(WN  , 1i  , (2)

the primitive Nth complex root of unity [1,2]. The DFT

is an orthogonal transform that is typically carried out

by means of a suitably chosen member of the class of

fast Fourier transform (FFT) algorithms [3,4], where

the complex exponential terms, nk
NW , each comprise

two trigonometric components, more commonly

referred to as twiddle factors, which are required to be

fed into each instance of the FFT‟s butterfly [3,4], this

being the name of the computational engine used for

carrying out the algorithm‟s repetitive arithmetic

operations.

 A version of this problem, which is of particular

interest here, is when the input data to the DFT is real-

valued in nature (as is often the case in many

real-world applications where the signals of interest

are wideband in nature), rather than complex-valued,

with the transform length being typically expressed as

the power of some fixed integer radix (typically taken

as two or four). The conventional approach to such a

problem involves the adoption of a specialized real-

data FFT (or RFFT) algorithm [5,6,7], based upon the

familiar pipelined computing architecture [8], which

necessitates the use of multiple processing elements

(PEs) in order to achieve and maintain continuous real-

time operation. Such designs, however, are typically

highly complex and involve the need for two or more

distinct PE designs.

 An attractive alternative to the standard FFT-

based approach to the solution of the real-data DFT

involves the derivation of resource-efficient parallel

solutions to the discrete Hartley transform (DHT)

algorithm [9], another orthogonal transform which for

the case of the N-point transform is given by

  





1N

0n

)H(N/nk2cas].n[x
N
1]k[X (3)

for k = 0,1, … ,N-1, where the inputs/outputs are real-

valued and the transform kernel is given by

      N/nk2cosN/nk2cas

  N/nk2sin  (4)

which is referred to in the literature as the „cas‟

function [9]. The trivial conversion of the outputs from

Hartley-space to Fourier-space – to yield the required

real-data DFT outputs – is as given by the expressions

    ]k[X]kN[X2
1]k[XRe)H()H()F( (5)

 &    ]k[X]kN[X2
1]k[XIm)H()H()F( (6)

where „Re‟ stands for the real DFT component and

„Im‟ for the imaginary DFT component. This process

may be straightforwardly performed post-DHT,

although if the power spectral density (PSD) is to be

the required output data format then the conversion

process may be simply discarded as the PSD may be

obtained directly from either the DFT or the DHT

outputs [10].

 The solution to the DHT that will be pursued

here is that of the regularized fast Hartley transform

(FHT) or RFHT [10], which possesses a simple

memory-based architecture and has the attractions of

being resource-efficient, scalable, bilateral (that is,

equal to its own inverse) and highly parallel (yielding

eight-fold parallelism). The simplicity of the single-PE

RFHT design results in minimal design costs, in terms

 2

effectively used to produce precise high-resolution

images to facilitate the detection and identification of

those objects or phenomena – such as the relative

motion and chemical composition of stars and galaxies

– that are of particular interest to the researcher. The

basic algorithm to be solved is thus that of the discrete

Fourier transform (DFT), as given for the case of the

N-point transform by the expression

 ∑
1N

0n

nk
N

)F(W].n[x
N
1]k[X





 (1)

for k = 0,1, … ,N-1, where the inputs/outputs are

typically complex-valued and

)N/2iexp(WN  , 1i  , (2)

the primitive Nth complex root of unity [1,2]. The DFT

is an orthogonal transform that is typically carried out

by means of a suitably chosen member of the class of

fast Fourier transform (FFT) algorithms [3,4], where

the complex exponential terms, nk
NW , each comprise

two trigonometric components, more commonly

referred to as twiddle factors, which are required to be

fed into each instance of the FFT‟s butterfly [3,4], this

being the name of the computational engine used for

carrying out the algorithm‟s repetitive arithmetic

operations.

 A version of this problem, which is of particular

interest here, is when the input data to the DFT is real-

valued in nature (as is often the case in many

real-world applications where the signals of interest

are wideband in nature), rather than complex-valued,

with the transform length being typically expressed as

the power of some fixed integer radix (typically taken

as two or four). The conventional approach to such a

problem involves the adoption of a specialized real-

data FFT (or RFFT) algorithm [5,6,7], based upon the

familiar pipelined computing architecture [8], which

necessitates the use of multiple processing elements

(PEs) in order to achieve and maintain continuous real-

time operation. Such designs, however, are typically

highly complex and involve the need for two or more

distinct PE designs.

 An attractive alternative to the standard FFT-

based approach to the solution of the real-data DFT

involves the derivation of resource-efficient parallel

solutions to the discrete Hartley transform (DHT)

algorithm [9], another orthogonal transform which for

the case of the N-point transform is given by

  





1N

0n

)H(N/nk2cas].n[x
N
1]k[X (3)

for k = 0,1, … ,N-1, where the inputs/outputs are real-

valued and the transform kernel is given by

      N/nk2cosN/nk2cas

  N/nk2sin  (4)

which is referred to in the literature as the „cas‟

function [9]. The trivial conversion of the outputs from

Hartley-space to Fourier-space – to yield the required

real-data DFT outputs – is as given by the expressions

    ]k[X]kN[X2
1]k[XRe)H()H()F( (5)

 &    ]k[X]kN[X2
1]k[XIm)H()H()F( (6)

where „Re‟ stands for the real DFT component and

„Im‟ for the imaginary DFT component. This process

may be straightforwardly performed post-DHT,

although if the power spectral density (PSD) is to be

the required output data format then the conversion

process may be simply discarded as the PSD may be

obtained directly from either the DFT or the DHT

outputs [10].

 The solution to the DHT that will be pursued

here is that of the regularized fast Hartley transform

(FHT) or RFHT [10], which possesses a simple

memory-based architecture and has the attractions of

being resource-efficient, scalable, bilateral (that is,

equal to its own inverse) and highly parallel (yielding

eight-fold parallelism). The simplicity of the single-PE

RFHT design results in minimal design costs, in terms

 2

effectively used to produce precise high-resolution

images to facilitate the detection and identification of

those objects or phenomena – such as the relative

motion and chemical composition of stars and galaxies

– that are of particular interest to the researcher. The

basic algorithm to be solved is thus that of the discrete

Fourier transform (DFT), as given for the case of the

N-point transform by the expression

 ∑
1N

0n

nk
N

)F(W].n[x
N
1]k[X





 (1)

for k = 0,1, … ,N-1, where the inputs/outputs are

typically complex-valued and

)N/2iexp(WN  , 1i  , (2)

the primitive Nth complex root of unity [1,2]. The DFT

is an orthogonal transform that is typically carried out

by means of a suitably chosen member of the class of

fast Fourier transform (FFT) algorithms [3,4], where

the complex exponential terms, nk
NW , each comprise

two trigonometric components, more commonly

referred to as twiddle factors, which are required to be

fed into each instance of the FFT‟s butterfly [3,4], this

being the name of the computational engine used for

carrying out the algorithm‟s repetitive arithmetic

operations.

 A version of this problem, which is of particular

interest here, is when the input data to the DFT is real-

valued in nature (as is often the case in many

real-world applications where the signals of interest

are wideband in nature), rather than complex-valued,

with the transform length being typically expressed as

the power of some fixed integer radix (typically taken

as two or four). The conventional approach to such a

problem involves the adoption of a specialized real-

data FFT (or RFFT) algorithm [5,6,7], based upon the

familiar pipelined computing architecture [8], which

necessitates the use of multiple processing elements

(PEs) in order to achieve and maintain continuous real-

time operation. Such designs, however, are typically

highly complex and involve the need for two or more

distinct PE designs.

 An attractive alternative to the standard FFT-

based approach to the solution of the real-data DFT

involves the derivation of resource-efficient parallel

solutions to the discrete Hartley transform (DHT)

algorithm [9], another orthogonal transform which for

the case of the N-point transform is given by

  





1N

0n

)H(N/nk2cas].n[x
N
1]k[X (3)

for k = 0,1, … ,N-1, where the inputs/outputs are real-

valued and the transform kernel is given by

      N/nk2cosN/nk2cas

  N/nk2sin  (4)

which is referred to in the literature as the „cas‟

function [9]. The trivial conversion of the outputs from

Hartley-space to Fourier-space – to yield the required

real-data DFT outputs – is as given by the expressions

    ]k[X]kN[X2
1]k[XRe)H()H()F( (5)

 &    ]k[X]kN[X2
1]k[XIm)H()H()F( (6)

where „Re‟ stands for the real DFT component and

„Im‟ for the imaginary DFT component. This process

may be straightforwardly performed post-DHT,

although if the power spectral density (PSD) is to be

the required output data format then the conversion

process may be simply discarded as the PSD may be

obtained directly from either the DFT or the DHT

outputs [10].

 The solution to the DHT that will be pursued

here is that of the regularized fast Hartley transform

(FHT) or RFHT [10], which possesses a simple

memory-based architecture and has the attractions of

being resource-efficient, scalable, bilateral (that is,

equal to its own inverse) and highly parallel (yielding

eight-fold parallelism). The simplicity of the single-PE

RFHT design results in minimal design costs, in terms

 2

effectively used to produce precise high-resolution

images to facilitate the detection and identification of

those objects or phenomena – such as the relative

motion and chemical composition of stars and galaxies

– that are of particular interest to the researcher. The

basic algorithm to be solved is thus that of the discrete

Fourier transform (DFT), as given for the case of the

N-point transform by the expression

 ∑
1N

0n

nk
N

)F(W].n[x
N
1]k[X





 (1)

for k = 0,1, … ,N-1, where the inputs/outputs are

typically complex-valued and

)N/2iexp(WN  , 1i  , (2)

the primitive Nth complex root of unity [1,2]. The DFT

is an orthogonal transform that is typically carried out

by means of a suitably chosen member of the class of

fast Fourier transform (FFT) algorithms [3,4], where

the complex exponential terms, nk
NW , each comprise

two trigonometric components, more commonly

referred to as twiddle factors, which are required to be

fed into each instance of the FFT‟s butterfly [3,4], this

being the name of the computational engine used for

carrying out the algorithm‟s repetitive arithmetic

operations.

 A version of this problem, which is of particular

interest here, is when the input data to the DFT is real-

valued in nature (as is often the case in many

real-world applications where the signals of interest

are wideband in nature), rather than complex-valued,

with the transform length being typically expressed as

the power of some fixed integer radix (typically taken

as two or four). The conventional approach to such a

problem involves the adoption of a specialized real-

data FFT (or RFFT) algorithm [5,6,7], based upon the

familiar pipelined computing architecture [8], which

necessitates the use of multiple processing elements

(PEs) in order to achieve and maintain continuous real-

time operation. Such designs, however, are typically

highly complex and involve the need for two or more

distinct PE designs.

 An attractive alternative to the standard FFT-

based approach to the solution of the real-data DFT

involves the derivation of resource-efficient parallel

solutions to the discrete Hartley transform (DHT)

algorithm [9], another orthogonal transform which for

the case of the N-point transform is given by

  





1N

0n

)H(N/nk2cas].n[x
N
1]k[X (3)

for k = 0,1, … ,N-1, where the inputs/outputs are real-

valued and the transform kernel is given by

      N/nk2cosN/nk2cas

  N/nk2sin  (4)

which is referred to in the literature as the „cas‟

function [9]. The trivial conversion of the outputs from

Hartley-space to Fourier-space – to yield the required

real-data DFT outputs – is as given by the expressions

    ]k[X]kN[X2
1]k[XRe)H()H()F( (5)

 &    ]k[X]kN[X2
1]k[XIm)H()H()F( (6)

where „Re‟ stands for the real DFT component and

„Im‟ for the imaginary DFT component. This process

may be straightforwardly performed post-DHT,

although if the power spectral density (PSD) is to be

the required output data format then the conversion

process may be simply discarded as the PSD may be

obtained directly from either the DFT or the DHT

outputs [10].

 The solution to the DHT that will be pursued

here is that of the regularized fast Hartley transform

(FHT) or RFHT [10], which possesses a simple

memory-based architecture and has the attractions of

being resource-efficient, scalable, bilateral (that is,

equal to its own inverse) and highly parallel (yielding

eight-fold parallelism). The simplicity of the single-PE

RFHT design results in minimal design costs, in terms

Volume 2 | Issue 4 | 2Eng OA, 2024

(FFT) algorithms, where the complex exponential terms,
 , each comprise two trigonometric components, more
commonly referred to as twiddle factors, which are required to be
fed into each instance of the FFT’s butterfly, this being the name
of the computational engine used for carrying out the algorithm’s
repetitive arithmetic operations [3,4].

A version of this problem, which is of particular interest here, is
when the input data to the DFT is real - valued in nature (as is
often the case in many real - world applications where the signals
of interest are wideband in nature), rather than complex-valued,
with the transform length being typically expressed as the power
of some fixed integer radix (typically taken as two or four). The
conventional approach to such a problem involves the adoption of
a specialized real-data FFT (or RFFT) algorithm, based upon the
familiar pipelined computing architecture, which necessitates the
use of multiple processing elements (PEs) in order to achieve and
maintain continuous real-time operation. Such designs, however,
are typically highly complex and involve the need for two or more
distinct PE designs [5-8].

An attractive alternative to the standard FFT-based approach to the
solution of the real-data DFT involves the derivation of resource-
efficient parallel solutions to the discrete Hartley transform (DHT)
algorithm [9], another orthogonal transform which for the case of
the N-point transform is given by

for k = 0,1, … ,N-1, where the inputs/outputs are real-valued and
the transform kernel is given by

which is referred to in the literature as the ‘cas’ function [9]. The
trivial conversion of the outputs from Hartley-space to Fourier-
space – to yield the required real-data DFT outputs – is as given
by the expressions

where ‘Re’ stands for the real DFT component and ‘Im’ for the
imaginary DFT component. This process may be straightforwardly
performed post-DHT, although if the power spectral density (PSD)
is to be the required output data format then the conversion process
may be simply discarded as the PSD may be obtained directly from
either the DFT or the DHT outputs [10].

The solution to the DHT that will be pursued here is that of

the regularized fast Hartley transform (FHT) or RFHT, which
possesses a simple memory-based architecture and has the
attractions of being resource-efficient, scalable, bilateral (that is,
equal to its own inverse) and highly parallel (yielding eight-fold
parallelism) [10]. The simplicity of the single-PE RFHT design
results in minimal design costs, in terms of both time and resources,
whilst its scalability enables the same design to be used to cater
for multiple digital signal and image processing applications
possessing varying requirements (in terms of transform length),
again at minimal expense.

Comparing the RFFT and RFHT approaches to solving the real-
data DFT – as is discussed in some detail in – the RFFT approach
is geared to streaming operation and exploits a multi-PE pipelined
architecture, whilst the RFHT approach involves the design of a
memory-based solution geared to batch operation and exploits a
single-PE architecture. Both approaches have yielded attractive
power - efficient solutions, although when compared to those of
the RFFT approach, the RFHT solution, as stated above, possesses
the additional attractions of bilateralism and of increased design
simplicity, regularity and scalability – the RFFT solution would
need to be optimized for each particular application, a potentially
costly process – as well as lending itself more naturally to the
adoption of an accurate conditional scaling strategy for fixed-point
operation (to be briefly discussed in Section 5).

There is a problem to be overcome, however, with the adoption
of a memory-based architecture in that the maximum achievable
transform length is constrained by the combined effects of
the update period (or refresh rate) and the I/O rate. The aim of
this research is thus to produce the design of a simple scalable
computing architecture, based upon the RFHT module, which
overcomes this size limitation, so that the attractive properties of
the FHT – which is a radix 4 fixed-radix algorithm – as stated
above, may be effectively exploited for transform lengths ranging
from the large (taken here to be 410, or one million) up to the ultra
large (taken here to be 415, or one billion). It should be noted,
however, that the maximum achievable transform length will also
be constrained by the existing technology in terms of the amount
of fast on-chip random access memory (RAM) available on the
chosen parallel computing device for dealing with the memory
requirement, although the storage requirements for the coefficients
(or twiddle factors) may be minimized through the adoption of a
suitably defined multi-level look-up table (LUT) scheme.

Thus, following this introductory section, an outline is given
in Section 2 of the regularized FHT, this including mention of:
1) the scalable memory-based architecture; 2) the large highly
parallel double butterfly; and 3) the multi-level LUT-based
schemes. In Section 3, after first defining the timing constraints
associated with the operation of both single-PE and dual-PE
solutions, a simple complexity analysis is carried out in terms of
the memory and arithmetic requirements, where the adoption of
suitable parallel computing equipment is assumed and where the
arithmetic requirement is expressed very simply in terms of the
required numbers of fast multipliers (as made available by the

 2

effectively used to produce precise high-resolution

images to facilitate the detection and identification of

those objects or phenomena – such as the relative

motion and chemical composition of stars and galaxies

– that are of particular interest to the researcher. The

basic algorithm to be solved is thus that of the discrete

Fourier transform (DFT), as given for the case of the

N-point transform by the expression

 ∑
1N

0n

nk
N

)F(W].n[x
N
1]k[X





 (1)

for k = 0,1, … ,N-1, where the inputs/outputs are

typically complex-valued and

)N/2iexp(WN  , 1i  , (2)

the primitive Nth complex root of unity [1,2]. The DFT

is an orthogonal transform that is typically carried out

by means of a suitably chosen member of the class of

fast Fourier transform (FFT) algorithms [3,4], where

the complex exponential terms, nk
NW , each comprise

two trigonometric components, more commonly

referred to as twiddle factors, which are required to be

fed into each instance of the FFT‟s butterfly [3,4], this

being the name of the computational engine used for

carrying out the algorithm‟s repetitive arithmetic

operations.

 A version of this problem, which is of particular

interest here, is when the input data to the DFT is real-

valued in nature (as is often the case in many

real-world applications where the signals of interest

are wideband in nature), rather than complex-valued,

with the transform length being typically expressed as

the power of some fixed integer radix (typically taken

as two or four). The conventional approach to such a

problem involves the adoption of a specialized real-

data FFT (or RFFT) algorithm [5,6,7], based upon the

familiar pipelined computing architecture [8], which

necessitates the use of multiple processing elements

(PEs) in order to achieve and maintain continuous real-

time operation. Such designs, however, are typically

highly complex and involve the need for two or more

distinct PE designs.

 An attractive alternative to the standard FFT-

based approach to the solution of the real-data DFT

involves the derivation of resource-efficient parallel

solutions to the discrete Hartley transform (DHT)

algorithm [9], another orthogonal transform which for

the case of the N-point transform is given by

  





1N

0n

)H(N/nk2cas].n[x
N
1]k[X (3)

for k = 0,1, … ,N-1, where the inputs/outputs are real-

valued and the transform kernel is given by

      N/nk2cosN/nk2cas

  N/nk2sin  (4)

which is referred to in the literature as the „cas‟

function [9]. The trivial conversion of the outputs from

Hartley-space to Fourier-space – to yield the required

real-data DFT outputs – is as given by the expressions

    ]k[X]kN[X2
1]k[XRe)H()H()F( (5)

 &    ]k[X]kN[X2
1]k[XIm)H()H()F( (6)

where „Re‟ stands for the real DFT component and

„Im‟ for the imaginary DFT component. This process

may be straightforwardly performed post-DHT,

although if the power spectral density (PSD) is to be

the required output data format then the conversion

process may be simply discarded as the PSD may be

obtained directly from either the DFT or the DHT

outputs [10].

 The solution to the DHT that will be pursued

here is that of the regularized fast Hartley transform

(FHT) or RFHT [10], which possesses a simple

memory-based architecture and has the attractions of

being resource-efficient, scalable, bilateral (that is,

equal to its own inverse) and highly parallel (yielding

eight-fold parallelism). The simplicity of the single-PE

RFHT design results in minimal design costs, in terms

 2

effectively used to produce precise high-resolution

images to facilitate the detection and identification of

those objects or phenomena – such as the relative

motion and chemical composition of stars and galaxies

– that are of particular interest to the researcher. The

basic algorithm to be solved is thus that of the discrete

Fourier transform (DFT), as given for the case of the

N-point transform by the expression

 ∑
1N

0n

nk
N

)F(W].n[x
N
1]k[X





 (1)

for k = 0,1, … ,N-1, where the inputs/outputs are

typically complex-valued and

)N/2iexp(WN  , 1i  , (2)

the primitive Nth complex root of unity [1,2]. The DFT

is an orthogonal transform that is typically carried out

by means of a suitably chosen member of the class of

fast Fourier transform (FFT) algorithms [3,4], where

the complex exponential terms, nk
NW , each comprise

two trigonometric components, more commonly

referred to as twiddle factors, which are required to be

fed into each instance of the FFT‟s butterfly [3,4], this

being the name of the computational engine used for

carrying out the algorithm‟s repetitive arithmetic

operations.

 A version of this problem, which is of particular

interest here, is when the input data to the DFT is real-

valued in nature (as is often the case in many

real-world applications where the signals of interest

are wideband in nature), rather than complex-valued,

with the transform length being typically expressed as

the power of some fixed integer radix (typically taken

as two or four). The conventional approach to such a

problem involves the adoption of a specialized real-

data FFT (or RFFT) algorithm [5,6,7], based upon the

familiar pipelined computing architecture [8], which

necessitates the use of multiple processing elements

(PEs) in order to achieve and maintain continuous real-

time operation. Such designs, however, are typically

highly complex and involve the need for two or more

distinct PE designs.

 An attractive alternative to the standard FFT-

based approach to the solution of the real-data DFT

involves the derivation of resource-efficient parallel

solutions to the discrete Hartley transform (DHT)

algorithm [9], another orthogonal transform which for

the case of the N-point transform is given by

  





1N

0n

)H(N/nk2cas].n[x
N
1]k[X (3)

for k = 0,1, … ,N-1, where the inputs/outputs are real-

valued and the transform kernel is given by

      N/nk2cosN/nk2cas

  N/nk2sin  (4)

which is referred to in the literature as the „cas‟

function [9]. The trivial conversion of the outputs from

Hartley-space to Fourier-space – to yield the required

real-data DFT outputs – is as given by the expressions

    ]k[X]kN[X2
1]k[XRe)H()H()F( (5)

 &    ]k[X]kN[X2
1]k[XIm)H()H()F( (6)

where „Re‟ stands for the real DFT component and

„Im‟ for the imaginary DFT component. This process

may be straightforwardly performed post-DHT,

although if the power spectral density (PSD) is to be

the required output data format then the conversion

process may be simply discarded as the PSD may be

obtained directly from either the DFT or the DHT

outputs [10].

 The solution to the DHT that will be pursued

here is that of the regularized fast Hartley transform

(FHT) or RFHT [10], which possesses a simple

memory-based architecture and has the attractions of

being resource-efficient, scalable, bilateral (that is,

equal to its own inverse) and highly parallel (yielding

eight-fold parallelism). The simplicity of the single-PE

RFHT design results in minimal design costs, in terms

 2

effectively used to produce precise high-resolution

images to facilitate the detection and identification of

those objects or phenomena – such as the relative

motion and chemical composition of stars and galaxies

– that are of particular interest to the researcher. The

basic algorithm to be solved is thus that of the discrete

Fourier transform (DFT), as given for the case of the

N-point transform by the expression

 ∑
1N

0n

nk
N

)F(W].n[x
N
1]k[X





 (1)

for k = 0,1, … ,N-1, where the inputs/outputs are

typically complex-valued and

)N/2iexp(WN  , 1i  , (2)

the primitive Nth complex root of unity [1,2]. The DFT

is an orthogonal transform that is typically carried out

by means of a suitably chosen member of the class of

fast Fourier transform (FFT) algorithms [3,4], where

the complex exponential terms, nk
NW , each comprise

two trigonometric components, more commonly

referred to as twiddle factors, which are required to be

fed into each instance of the FFT‟s butterfly [3,4], this

being the name of the computational engine used for

carrying out the algorithm‟s repetitive arithmetic

operations.

 A version of this problem, which is of particular

interest here, is when the input data to the DFT is real-

valued in nature (as is often the case in many

real-world applications where the signals of interest

are wideband in nature), rather than complex-valued,

with the transform length being typically expressed as

the power of some fixed integer radix (typically taken

as two or four). The conventional approach to such a

problem involves the adoption of a specialized real-

data FFT (or RFFT) algorithm [5,6,7], based upon the

familiar pipelined computing architecture [8], which

necessitates the use of multiple processing elements

(PEs) in order to achieve and maintain continuous real-

time operation. Such designs, however, are typically

highly complex and involve the need for two or more

distinct PE designs.

 An attractive alternative to the standard FFT-

based approach to the solution of the real-data DFT

involves the derivation of resource-efficient parallel

solutions to the discrete Hartley transform (DHT)

algorithm [9], another orthogonal transform which for

the case of the N-point transform is given by

  





1N

0n

)H(N/nk2cas].n[x
N
1]k[X (3)

for k = 0,1, … ,N-1, where the inputs/outputs are real-

valued and the transform kernel is given by

      N/nk2cosN/nk2cas

  N/nk2sin  (4)

which is referred to in the literature as the „cas‟

function [9]. The trivial conversion of the outputs from

Hartley-space to Fourier-space – to yield the required

real-data DFT outputs – is as given by the expressions

    ]k[X]kN[X2
1]k[XRe)H()H()F( (5)

 &    ]k[X]kN[X2
1]k[XIm)H()H()F( (6)

where „Re‟ stands for the real DFT component and

„Im‟ for the imaginary DFT component. This process

may be straightforwardly performed post-DHT,

although if the power spectral density (PSD) is to be

the required output data format then the conversion

process may be simply discarded as the PSD may be

obtained directly from either the DFT or the DHT

outputs [10].

 The solution to the DHT that will be pursued

here is that of the regularized fast Hartley transform

(FHT) or RFHT [10], which possesses a simple

memory-based architecture and has the attractions of

being resource-efficient, scalable, bilateral (that is,

equal to its own inverse) and highly parallel (yielding

eight-fold parallelism). The simplicity of the single-PE

RFHT design results in minimal design costs, in terms

 2

effectively used to produce precise high-resolution

images to facilitate the detection and identification of

those objects or phenomena – such as the relative

motion and chemical composition of stars and galaxies

– that are of particular interest to the researcher. The

basic algorithm to be solved is thus that of the discrete

Fourier transform (DFT), as given for the case of the

N-point transform by the expression

 ∑
1N

0n

nk
N

)F(W].n[x
N
1]k[X





 (1)

for k = 0,1, … ,N-1, where the inputs/outputs are

typically complex-valued and

)N/2iexp(WN  , 1i  , (2)

the primitive Nth complex root of unity [1,2]. The DFT

is an orthogonal transform that is typically carried out

by means of a suitably chosen member of the class of

fast Fourier transform (FFT) algorithms [3,4], where

the complex exponential terms, nk
NW , each comprise

two trigonometric components, more commonly

referred to as twiddle factors, which are required to be

fed into each instance of the FFT‟s butterfly [3,4], this

being the name of the computational engine used for

carrying out the algorithm‟s repetitive arithmetic

operations.

 A version of this problem, which is of particular

interest here, is when the input data to the DFT is real-

valued in nature (as is often the case in many

real-world applications where the signals of interest

are wideband in nature), rather than complex-valued,

with the transform length being typically expressed as

the power of some fixed integer radix (typically taken

as two or four). The conventional approach to such a

problem involves the adoption of a specialized real-

data FFT (or RFFT) algorithm [5,6,7], based upon the

familiar pipelined computing architecture [8], which

necessitates the use of multiple processing elements

(PEs) in order to achieve and maintain continuous real-

time operation. Such designs, however, are typically

highly complex and involve the need for two or more

distinct PE designs.

 An attractive alternative to the standard FFT-

based approach to the solution of the real-data DFT

involves the derivation of resource-efficient parallel

solutions to the discrete Hartley transform (DHT)

algorithm [9], another orthogonal transform which for

the case of the N-point transform is given by

  





1N

0n

)H(N/nk2cas].n[x
N
1]k[X (3)

for k = 0,1, … ,N-1, where the inputs/outputs are real-

valued and the transform kernel is given by

      N/nk2cosN/nk2cas

  N/nk2sin  (4)

which is referred to in the literature as the „cas‟

function [9]. The trivial conversion of the outputs from

Hartley-space to Fourier-space – to yield the required

real-data DFT outputs – is as given by the expressions

    ]k[X]kN[X2
1]k[XRe)H()H()F( (5)

 &    ]k[X]kN[X2
1]k[XIm)H()H()F( (6)

where „Re‟ stands for the real DFT component and

„Im‟ for the imaginary DFT component. This process

may be straightforwardly performed post-DHT,

although if the power spectral density (PSD) is to be

the required output data format then the conversion

process may be simply discarded as the PSD may be

obtained directly from either the DFT or the DHT

outputs [10].

 The solution to the DHT that will be pursued

here is that of the regularized fast Hartley transform

(FHT) or RFHT [10], which possesses a simple

memory-based architecture and has the attractions of

being resource-efficient, scalable, bilateral (that is,

equal to its own inverse) and highly parallel (yielding

eight-fold parallelism). The simplicity of the single-PE

RFHT design results in minimal design costs, in terms

 2

effectively used to produce precise high-resolution

images to facilitate the detection and identification of

those objects or phenomena – such as the relative

motion and chemical composition of stars and galaxies

– that are of particular interest to the researcher. The

basic algorithm to be solved is thus that of the discrete

Fourier transform (DFT), as given for the case of the

N-point transform by the expression

 ∑
1N

0n

nk
N

)F(W].n[x
N
1]k[X





 (1)

for k = 0,1, … ,N-1, where the inputs/outputs are

typically complex-valued and

)N/2iexp(WN  , 1i  , (2)

the primitive Nth complex root of unity [1,2]. The DFT

is an orthogonal transform that is typically carried out

by means of a suitably chosen member of the class of

fast Fourier transform (FFT) algorithms [3,4], where

the complex exponential terms, nk
NW , each comprise

two trigonometric components, more commonly

referred to as twiddle factors, which are required to be

fed into each instance of the FFT‟s butterfly [3,4], this

being the name of the computational engine used for

carrying out the algorithm‟s repetitive arithmetic

operations.

 A version of this problem, which is of particular

interest here, is when the input data to the DFT is real-

valued in nature (as is often the case in many

real-world applications where the signals of interest

are wideband in nature), rather than complex-valued,

with the transform length being typically expressed as

the power of some fixed integer radix (typically taken

as two or four). The conventional approach to such a

problem involves the adoption of a specialized real-

data FFT (or RFFT) algorithm [5,6,7], based upon the

familiar pipelined computing architecture [8], which

necessitates the use of multiple processing elements

(PEs) in order to achieve and maintain continuous real-

time operation. Such designs, however, are typically

highly complex and involve the need for two or more

distinct PE designs.

 An attractive alternative to the standard FFT-

based approach to the solution of the real-data DFT

involves the derivation of resource-efficient parallel

solutions to the discrete Hartley transform (DHT)

algorithm [9], another orthogonal transform which for

the case of the N-point transform is given by

  





1N

0n

)H(N/nk2cas].n[x
N
1]k[X (3)

for k = 0,1, … ,N-1, where the inputs/outputs are real-

valued and the transform kernel is given by

      N/nk2cosN/nk2cas

  N/nk2sin  (4)

which is referred to in the literature as the „cas‟

function [9]. The trivial conversion of the outputs from

Hartley-space to Fourier-space – to yield the required

real-data DFT outputs – is as given by the expressions

    ]k[X]kN[X2
1]k[XRe)H()H()F( (5)

 &    ]k[X]kN[X2
1]k[XIm)H()H()F( (6)

where „Re‟ stands for the real DFT component and

„Im‟ for the imaginary DFT component. This process

may be straightforwardly performed post-DHT,

although if the power spectral density (PSD) is to be

the required output data format then the conversion

process may be simply discarded as the PSD may be

obtained directly from either the DFT or the DHT

outputs [10].

 The solution to the DHT that will be pursued

here is that of the regularized fast Hartley transform

(FHT) or RFHT [10], which possesses a simple

memory-based architecture and has the attractions of

being resource-efficient, scalable, bilateral (that is,

equal to its own inverse) and highly parallel (yielding

eight-fold parallelism). The simplicity of the single-PE

RFHT design results in minimal design costs, in terms

 2

effectively used to produce precise high-resolution

images to facilitate the detection and identification of

those objects or phenomena – such as the relative

motion and chemical composition of stars and galaxies

– that are of particular interest to the researcher. The

basic algorithm to be solved is thus that of the discrete

Fourier transform (DFT), as given for the case of the

N-point transform by the expression

 ∑
1N

0n

nk
N

)F(W].n[x
N
1]k[X





 (1)

for k = 0,1, … ,N-1, where the inputs/outputs are

typically complex-valued and

)N/2iexp(WN  , 1i  , (2)

the primitive Nth complex root of unity [1,2]. The DFT

is an orthogonal transform that is typically carried out

by means of a suitably chosen member of the class of

fast Fourier transform (FFT) algorithms [3,4], where

the complex exponential terms, nk
NW , each comprise

two trigonometric components, more commonly

referred to as twiddle factors, which are required to be

fed into each instance of the FFT‟s butterfly [3,4], this

being the name of the computational engine used for

carrying out the algorithm‟s repetitive arithmetic

operations.

 A version of this problem, which is of particular

interest here, is when the input data to the DFT is real-

valued in nature (as is often the case in many

real-world applications where the signals of interest

are wideband in nature), rather than complex-valued,

with the transform length being typically expressed as

the power of some fixed integer radix (typically taken

as two or four). The conventional approach to such a

problem involves the adoption of a specialized real-

data FFT (or RFFT) algorithm [5,6,7], based upon the

familiar pipelined computing architecture [8], which

necessitates the use of multiple processing elements

(PEs) in order to achieve and maintain continuous real-

time operation. Such designs, however, are typically

highly complex and involve the need for two or more

distinct PE designs.

 An attractive alternative to the standard FFT-

based approach to the solution of the real-data DFT

involves the derivation of resource-efficient parallel

solutions to the discrete Hartley transform (DHT)

algorithm [9], another orthogonal transform which for

the case of the N-point transform is given by

  





1N

0n

)H(N/nk2cas].n[x
N
1]k[X (3)

for k = 0,1, … ,N-1, where the inputs/outputs are real-

valued and the transform kernel is given by

      N/nk2cosN/nk2cas

  N/nk2sin  (4)

which is referred to in the literature as the „cas‟

function [9]. The trivial conversion of the outputs from

Hartley-space to Fourier-space – to yield the required

real-data DFT outputs – is as given by the expressions

    ]k[X]kN[X2
1]k[XRe)H()H()F( (5)

 &    ]k[X]kN[X2
1]k[XIm)H()H()F( (6)

where „Re‟ stands for the real DFT component and

„Im‟ for the imaginary DFT component. This process

may be straightforwardly performed post-DHT,

although if the power spectral density (PSD) is to be

the required output data format then the conversion

process may be simply discarded as the PSD may be

obtained directly from either the DFT or the DHT

outputs [10].

 The solution to the DHT that will be pursued

here is that of the regularized fast Hartley transform

(FHT) or RFHT [10], which possesses a simple

memory-based architecture and has the attractions of

being resource-efficient, scalable, bilateral (that is,

equal to its own inverse) and highly parallel (yielding

eight-fold parallelism). The simplicity of the single-PE

RFHT design results in minimal design costs, in terms

 2

effectively used to produce precise high-resolution

images to facilitate the detection and identification of

those objects or phenomena – such as the relative

motion and chemical composition of stars and galaxies

– that are of particular interest to the researcher. The

basic algorithm to be solved is thus that of the discrete

Fourier transform (DFT), as given for the case of the

N-point transform by the expression

 ∑
1N

0n

nk
N

)F(W].n[x
N
1]k[X





 (1)

for k = 0,1, … ,N-1, where the inputs/outputs are

typically complex-valued and

)N/2iexp(WN  , 1i  , (2)

the primitive Nth complex root of unity [1,2]. The DFT

is an orthogonal transform that is typically carried out

by means of a suitably chosen member of the class of

fast Fourier transform (FFT) algorithms [3,4], where

the complex exponential terms, nk
NW , each comprise

two trigonometric components, more commonly

referred to as twiddle factors, which are required to be

fed into each instance of the FFT‟s butterfly [3,4], this

being the name of the computational engine used for

carrying out the algorithm‟s repetitive arithmetic

operations.

 A version of this problem, which is of particular

interest here, is when the input data to the DFT is real-

valued in nature (as is often the case in many

real-world applications where the signals of interest

are wideband in nature), rather than complex-valued,

with the transform length being typically expressed as

the power of some fixed integer radix (typically taken

as two or four). The conventional approach to such a

problem involves the adoption of a specialized real-

data FFT (or RFFT) algorithm [5,6,7], based upon the

familiar pipelined computing architecture [8], which

necessitates the use of multiple processing elements

(PEs) in order to achieve and maintain continuous real-

time operation. Such designs, however, are typically

highly complex and involve the need for two or more

distinct PE designs.

 An attractive alternative to the standard FFT-

based approach to the solution of the real-data DFT

involves the derivation of resource-efficient parallel

solutions to the discrete Hartley transform (DHT)

algorithm [9], another orthogonal transform which for

the case of the N-point transform is given by

  





1N

0n

)H(N/nk2cas].n[x
N
1]k[X (3)

for k = 0,1, … ,N-1, where the inputs/outputs are real-

valued and the transform kernel is given by

      N/nk2cosN/nk2cas

  N/nk2sin  (4)

which is referred to in the literature as the „cas‟

function [9]. The trivial conversion of the outputs from

Hartley-space to Fourier-space – to yield the required

real-data DFT outputs – is as given by the expressions

    ]k[X]kN[X2
1]k[XRe)H()H()F( (5)

 &    ]k[X]kN[X2
1]k[XIm)H()H()F( (6)

where „Re‟ stands for the real DFT component and

„Im‟ for the imaginary DFT component. This process

may be straightforwardly performed post-DHT,

although if the power spectral density (PSD) is to be

the required output data format then the conversion

process may be simply discarded as the PSD may be

obtained directly from either the DFT or the DHT

outputs [10].

 The solution to the DHT that will be pursued

here is that of the regularized fast Hartley transform

(FHT) or RFHT [10], which possesses a simple

memory-based architecture and has the attractions of

being resource-efficient, scalable, bilateral (that is,

equal to its own inverse) and highly parallel (yielding

eight-fold parallelism). The simplicity of the single-PE

RFHT design results in minimal design costs, in terms

 2

effectively used to produce precise high-resolution

images to facilitate the detection and identification of

those objects or phenomena – such as the relative

motion and chemical composition of stars and galaxies

– that are of particular interest to the researcher. The

basic algorithm to be solved is thus that of the discrete

Fourier transform (DFT), as given for the case of the

N-point transform by the expression

 ∑
1N

0n

nk
N

)F(W].n[x
N
1]k[X





 (1)

for k = 0,1, … ,N-1, where the inputs/outputs are

typically complex-valued and

)N/2iexp(WN  , 1i  , (2)

the primitive Nth complex root of unity [1,2]. The DFT

is an orthogonal transform that is typically carried out

by means of a suitably chosen member of the class of

fast Fourier transform (FFT) algorithms [3,4], where

the complex exponential terms, nk
NW , each comprise

two trigonometric components, more commonly

referred to as twiddle factors, which are required to be

fed into each instance of the FFT‟s butterfly [3,4], this

being the name of the computational engine used for

carrying out the algorithm‟s repetitive arithmetic

operations.

 A version of this problem, which is of particular

interest here, is when the input data to the DFT is real-

valued in nature (as is often the case in many

real-world applications where the signals of interest

are wideband in nature), rather than complex-valued,

with the transform length being typically expressed as

the power of some fixed integer radix (typically taken

as two or four). The conventional approach to such a

problem involves the adoption of a specialized real-

data FFT (or RFFT) algorithm [5,6,7], based upon the

familiar pipelined computing architecture [8], which

necessitates the use of multiple processing elements

(PEs) in order to achieve and maintain continuous real-

time operation. Such designs, however, are typically

highly complex and involve the need for two or more

distinct PE designs.

 An attractive alternative to the standard FFT-

based approach to the solution of the real-data DFT

involves the derivation of resource-efficient parallel

solutions to the discrete Hartley transform (DHT)

algorithm [9], another orthogonal transform which for

the case of the N-point transform is given by

  





1N

0n

)H(N/nk2cas].n[x
N
1]k[X (3)

for k = 0,1, … ,N-1, where the inputs/outputs are real-

valued and the transform kernel is given by

      N/nk2cosN/nk2cas

  N/nk2sin  (4)

which is referred to in the literature as the „cas‟

function [9]. The trivial conversion of the outputs from

Hartley-space to Fourier-space – to yield the required

real-data DFT outputs – is as given by the expressions

    ]k[X]kN[X2
1]k[XRe)H()H()F( (5)

 &    ]k[X]kN[X2
1]k[XIm)H()H()F( (6)

where „Re‟ stands for the real DFT component and

„Im‟ for the imaginary DFT component. This process

may be straightforwardly performed post-DHT,

although if the power spectral density (PSD) is to be

the required output data format then the conversion

process may be simply discarded as the PSD may be

obtained directly from either the DFT or the DHT

outputs [10].

 The solution to the DHT that will be pursued

here is that of the regularized fast Hartley transform

(FHT) or RFHT [10], which possesses a simple

memory-based architecture and has the attractions of

being resource-efficient, scalable, bilateral (that is,

equal to its own inverse) and highly parallel (yielding

eight-fold parallelism). The simplicity of the single-PE

RFHT design results in minimal design costs, in terms

 2

effectively used to produce precise high-resolution

images to facilitate the detection and identification of

those objects or phenomena – such as the relative

motion and chemical composition of stars and galaxies

– that are of particular interest to the researcher. The

basic algorithm to be solved is thus that of the discrete

Fourier transform (DFT), as given for the case of the

N-point transform by the expression

 ∑
1N

0n

nk
N

)F(W].n[x
N
1]k[X





 (1)

for k = 0,1, … ,N-1, where the inputs/outputs are

typically complex-valued and

)N/2iexp(WN  , 1i  , (2)

the primitive Nth complex root of unity [1,2]. The DFT

is an orthogonal transform that is typically carried out

by means of a suitably chosen member of the class of

fast Fourier transform (FFT) algorithms [3,4], where

the complex exponential terms, nk
NW , each comprise

two trigonometric components, more commonly

referred to as twiddle factors, which are required to be

fed into each instance of the FFT‟s butterfly [3,4], this

being the name of the computational engine used for

carrying out the algorithm‟s repetitive arithmetic

operations.

 A version of this problem, which is of particular

interest here, is when the input data to the DFT is real-

valued in nature (as is often the case in many

real-world applications where the signals of interest

are wideband in nature), rather than complex-valued,

with the transform length being typically expressed as

the power of some fixed integer radix (typically taken

as two or four). The conventional approach to such a

problem involves the adoption of a specialized real-

data FFT (or RFFT) algorithm [5,6,7], based upon the

familiar pipelined computing architecture [8], which

necessitates the use of multiple processing elements

(PEs) in order to achieve and maintain continuous real-

time operation. Such designs, however, are typically

highly complex and involve the need for two or more

distinct PE designs.

 An attractive alternative to the standard FFT-

based approach to the solution of the real-data DFT

involves the derivation of resource-efficient parallel

solutions to the discrete Hartley transform (DHT)

algorithm [9], another orthogonal transform which for

the case of the N-point transform is given by

  





1N

0n

)H(N/nk2cas].n[x
N
1]k[X (3)

for k = 0,1, … ,N-1, where the inputs/outputs are real-

valued and the transform kernel is given by

      N/nk2cosN/nk2cas

  N/nk2sin  (4)

which is referred to in the literature as the „cas‟

function [9]. The trivial conversion of the outputs from

Hartley-space to Fourier-space – to yield the required

real-data DFT outputs – is as given by the expressions

    ]k[X]kN[X2
1]k[XRe)H()H()F( (5)

 &    ]k[X]kN[X2
1]k[XIm)H()H()F( (6)

where „Re‟ stands for the real DFT component and

„Im‟ for the imaginary DFT component. This process

may be straightforwardly performed post-DHT,

although if the power spectral density (PSD) is to be

the required output data format then the conversion

process may be simply discarded as the PSD may be

obtained directly from either the DFT or the DHT

outputs [10].

 The solution to the DHT that will be pursued

here is that of the regularized fast Hartley transform

(FHT) or RFHT [10], which possesses a simple

memory-based architecture and has the attractions of

being resource-efficient, scalable, bilateral (that is,

equal to its own inverse) and highly parallel (yielding

eight-fold parallelism). The simplicity of the single-PE

RFHT design results in minimal design costs, in terms

Volume 2 | Issue 4 | 3Eng OA, 2024

equipment manufacturer) and adders (as implemented very simply
in programmable logic). This is followed in Section 4 with a brief
discussion of two hypothetical implementations which illustrate
how the dual-PE solutions for the computation of both the one
and four million-point real-data transforms might each be mapped
onto a single commercially-available field programmable gate
array (FPGA) device using only fast on-chip RAM for the data
and coefficient storage. Finally, a brief description of a potential
fixed-point scaling strategy is outlined in Section 5, followed by a
summary and conclusions in Section 6 [12].

2. A Brief Outline of Regularized FHT
The RFHT is a resource - efficient means of carrying out the
DHT (and thus the real-data DFT) that is both highly parallel and

scalable, whilst its being ‘regularized’ refers to the fact that the
algorithm structure has been made regular so that the conventional
need for two separate butterfly designs for the fixed-radix FHT
is thus avoided. The design includes two key features: a) an
architecture based upon the use of a single PE, as illustrated in
Figure 1, which exploits partitioned memory to facilitate the
parallel computation of the large double butterfly operation; and b)
conflict-free and in-place parallel memory addressing schemes for
both the data, as stored in the data memory (DM) – which needs to
account for double buffering in order for real time operation to be
achieved and maintained – and the twiddle factors, as stored in the
coefficient memory (CM).

 12

Figures & Tables

 Figure 1 – single-PE architecture for computation of N-point regularized FHT

output
data

loop
through

(N/8)× log4N
butterflies

input
data

Generic
Double

Butterfly

Partitioned
Coefficient

Memory

Pa
rti

tio
ne

d

D
at

a
M

em
or

y

Note: data memory is double buffered

Note: data memory is double buffered

Figure 1: Single-PE Architecture for Computation of N-Point Regularized FHT

2.1 The Double Butterfly
These features of the RFHT enable the resources residing on
the PE to be maximally utilized and each instance of the double
butterfly – the computational engine producing eight outputs from
each set of eight inputs – to produce a new output data set with
each clock cycle.

The original design for the double butterfly required 12 multipliers
and 22 adders for carrying out the associated operation, with: a) each
eight sample (one or two samples per memory bank) data set being
read/written in parallel from/to the partitioned DM, configurable
as an array of eight memory banks; and b) the coefficients being
read in parallel from the partitioned CM, configurable as an array
of three one-level or multi-level LUTs (one per non-trivial twiddle
factor). The addressing of the DM, over two consecutive clock
cycles, enables all those samples required by the two corresponding
instances of the double butterfly operation to be read from the DM,
processed and then written back to the DM in a conflict - free and
in - place manner at the rate of one eight-sample data set per clock
cycle [10].

Being a radix-4 decimation-in-time (DIT) algorithm, the input
data to the RFHT needs first to be reordered according to the
dibit-reversal mapping (that is, involving the exchange of two
bits at a time rather than just the one bit of the bit - reversal
mapping), enabling the input data set to be then written to the
DM with consecutive data samples being stored cyclically within
consecutive memory banks, whilst on completion of the RFHT,
the naturally ordered output data set may be read out from the
DM with consecutive data samples being retrieved cyclically from
consecutive memory banks [3,4].

2.2 Trading Off Memory Against Arithmetic
Three additional versions of the PE have been subsequently
derived (as well as a CORDIC version not considered here) which
enable the arithmetic component of the space - complexity to be
traded off against the memory component, which varies according
to the use of either one - level or multi - level LUTs for storing
the coefficients [10]. The one-level LUT-based scheme, which is
the standard approach, involves the sinusoidal and cosinusoidal
components of the twiddle factors being typically read from a
sampled version of the sine function with argument defined over a

Volume 2 | Issue 4 | 4Eng OA, 2024

single quadrant, namely from 0 up to π/2 radians.

The aim of the multi-level schemes – which, essentially, involves
the exploitation of multiple small one-level LUTs – is to reduce the
total memory requirement at the expense of increased arithmetic
complexity – see results of recent study [13]. The two-level scheme,
for example, comprises one coarse-resolution angular region
catering for both the sine and cosine functions, covering 0 up to
π/2 radians, and one fine-resolution angular region for each of the
sine and cosine functions, covering 0 up to π/2L radians, where
the optimal choice for L (which is the length of each one-level

LUT) can be shown to be equal to 2/N , where N is the length

of the transform to be computed. The required twiddle factors may
then be obtained from the contents of the two-level LUT through
the application of the standard trigonometric identities

where θ corresponds to the angle defined over the coarse-resolution
angular region and ϕ to the angle defined over the fine - resolution
angular region – see the simplified illustration of Figure 2 for the
decomposition of the cosine function into coarse-resolution and
fine-resolution angular regions, each of length 4.

 4

upon the use of a single PE, as illustrated in Figure 1,

which exploits partitioned memory to facilitate the

parallel computation of the large double butterfly

operation; and b) conflict-free and in-place parallel

memory addressing schemes for both the data, as

stored in the data memory (DM) – which needs to

account for double buffering in order for real-time

operation to be achieved and maintained – and the

twiddle factors, as stored in the coefficient memory

(CM).

2.1 The Double Butterfly

 These features of the RFHT enable the resources

residing on the PE to be maximally utilized and each

instance of the double butterfly – the computational

engine producing eight outputs from each set of eight

inputs – to produce a new output data set with each

clock cycle.

 The original design [10] for the double butterfly

required 12 multipliers and 22 adders for carrying out

the associated operation, with: a) each eight-sample

(one or two samples per memory bank) data set being

read/written in parallel from/to the partitioned DM,

configurable as an array of eight memory banks; and

b) the coefficients being read in parallel from the

partitioned CM, configurable as an array of three one-

level or multi-level LUTs (one per non-trivial twiddle

factor). The addressing of the DM, over two

consecutive clock cycles, enables all those samples

required by the two corresponding instances of the

double butterfly operation to be read from the DM,

processed and then written back to the DM in a

conflict-free and in-place manner at the rate of one

eight-sample data set per clock cycle.

 Being a radix-4 decimation-in-time (DIT)

algorithm [3,4], the input data to the RFHT needs first

to be reordered according to the dibit-reversal mapping

(that is, involving the exchange of two bits at a time

rather than just the one bit of the bit-reversal mapping),

enabling the input data set to be then written to the DM

with consecutive data samples being stored cyclically

within consecutive memory banks, whilst on

completion of the RFHT, the naturally-ordered output

data set may be read out from the DM with

consecutive data samples being retrieved cyclically

from consecutive memory banks.

2.2 Trading Off Memory against Arithmetic

 Three additional versions of the PE have been

subsequently derived (as well as a CORDIC version

not considered here) which enable the arithmetic

component of the space-complexity to be traded off

against the memory component, which varies

according to the use of either one-level or multi-level

LUTs for storing the coefficients [10]. The one-level

LUT-based scheme, which is the standard approach,

involves the sinusoidal and cosinusoidal components

of the twiddle factors being typically read from a

sampled version of the sine function with argument

defined over a single quadrant, namely from 0 up to

π/2 radians.

 The aim of the multi-level schemes – which,

essentially, involves the exploitation of multiple small

one-level LUTs – is to reduce the total memory

requirement at the expense of increased arithmetic

complexity – see results of recent study [13]. The two-

level scheme, for example, comprises one coarse-

resolution angular region catering for both the sine and

cosine functions, covering 0 up to 2/ radians, and

one fine-resolution angular region for each of the sine

and cosine functions, covering 0 up to L2/ radians,

where the optimal choice for L (which is the length of

each one-level LUT) can be shown to be equal to

2/N , where N is the length of the transform to be

computed. The required twiddle factors may then be

obtained from the contents of the two-level LUT

through the application of the standard trigonometric

identities

           sinsincoscoscos (7)

 &           sincoscossinsin (8)

 4

upon the use of a single PE, as illustrated in Figure 1,

which exploits partitioned memory to facilitate the

parallel computation of the large double butterfly

operation; and b) conflict-free and in-place parallel

memory addressing schemes for both the data, as

stored in the data memory (DM) – which needs to

account for double buffering in order for real-time

operation to be achieved and maintained – and the

twiddle factors, as stored in the coefficient memory

(CM).

2.1 The Double Butterfly

 These features of the RFHT enable the resources

residing on the PE to be maximally utilized and each

instance of the double butterfly – the computational

engine producing eight outputs from each set of eight

inputs – to produce a new output data set with each

clock cycle.

 The original design [10] for the double butterfly

required 12 multipliers and 22 adders for carrying out

the associated operation, with: a) each eight-sample

(one or two samples per memory bank) data set being

read/written in parallel from/to the partitioned DM,

configurable as an array of eight memory banks; and

b) the coefficients being read in parallel from the

partitioned CM, configurable as an array of three one-

level or multi-level LUTs (one per non-trivial twiddle

factor). The addressing of the DM, over two

consecutive clock cycles, enables all those samples

required by the two corresponding instances of the

double butterfly operation to be read from the DM,

processed and then written back to the DM in a

conflict-free and in-place manner at the rate of one

eight-sample data set per clock cycle.

 Being a radix-4 decimation-in-time (DIT)

algorithm [3,4], the input data to the RFHT needs first

to be reordered according to the dibit-reversal mapping

(that is, involving the exchange of two bits at a time

rather than just the one bit of the bit-reversal mapping),

enabling the input data set to be then written to the DM

with consecutive data samples being stored cyclically

within consecutive memory banks, whilst on

completion of the RFHT, the naturally-ordered output

data set may be read out from the DM with

consecutive data samples being retrieved cyclically

from consecutive memory banks.

2.2 Trading Off Memory against Arithmetic

 Three additional versions of the PE have been

subsequently derived (as well as a CORDIC version

not considered here) which enable the arithmetic

component of the space-complexity to be traded off

against the memory component, which varies

according to the use of either one-level or multi-level

LUTs for storing the coefficients [10]. The one-level

LUT-based scheme, which is the standard approach,

involves the sinusoidal and cosinusoidal components

of the twiddle factors being typically read from a

sampled version of the sine function with argument

defined over a single quadrant, namely from 0 up to

π/2 radians.

 The aim of the multi-level schemes – which,

essentially, involves the exploitation of multiple small

one-level LUTs – is to reduce the total memory

requirement at the expense of increased arithmetic

complexity – see results of recent study [13]. The two-

level scheme, for example, comprises one coarse-

resolution angular region catering for both the sine and

cosine functions, covering 0 up to 2/ radians, and

one fine-resolution angular region for each of the sine

and cosine functions, covering 0 up to L2/ radians,

where the optimal choice for L (which is the length of

each one-level LUT) can be shown to be equal to

2/N , where N is the length of the transform to be

computed. The required twiddle factors may then be

obtained from the contents of the two-level LUT

through the application of the standard trigonometric

identities

           sinsincoscoscos (7)

 &           sincoscossinsin (8)

 13

Figure 2 – decomposition of single quadrant of cosine function into coarse-resolution
and fine-resolution angular regions using single-level LUTs each of length 4

π/8 π/4

 3π/8

π/2

 0

 π/32

Full line ordinates correspond to
coarse resolution angular spacing
Dashed line ordinates correspond
to fine resolution angular spacing

Figure 2: Decomposition of Single Quadrant of Cosine Function Into Coarse-Resolution and Fine-Resolution Angular Regions
Using Single-Level Luts Each of Length 4

Thus, generalizing the results of the above two-level LUT-based
scheme and expressing them in a concise mathematical form, the
adoption of K - level LUTs may be said to result in a reduced

memory requirement of O(K N) words, as opposed to the O(N)
requirement of the one - level LUTs, this reduction being obtained
at the expense of increased addressing complexity through the
need for the combined use of both coarse - resolution and fine
- resolution LUTs – as discussed in greater detail in [13]. The
equations representing the generalized form of the LUTs, where
K is taken to be an arbitrary integer, may be straightforwardly
obtained via the repeated application of the standard trigonometric

identities of Equations 7 and 8.

2.3 Discussion	
A theoretical performance/resource comparison of all four versions
of the RFHT is provided in Table 1, with each version achieving

()NlogNO × latency which corresponds, in clock cycles, to the
total number of double butterflies to be executed per transform,

namely () .Nlog8/N 4× Note, however, that a small ()1O
increment to the latency is required to account for the pipelining of
the coefficient generation process, when using a multi-level LUT-

Volume 2 | Issue 4 | 5Eng OA, 2024

based scheme, as is required if real-time operation is to be achieved
and maintained. An O(N) update period for each input/output data
set is achieved for each solution which corresponds to an I/O

rate of just one sample per clock cycle. The signal flow graph for
the nine - multiplier version of the generic double butterfly is as
illustrated in Figure 3.

 16

Version

of

Solution

Arithmetic Complexity
Memory Requirement

(words)

Time Complexity
(clock cycles)

Double Butterfly Coefficient Generator
Data Memory

(Double-Buffered)

Coefficient

Memory

Update Time /

Latency Multipliers Adders Multipliers Adders

I 12 22 0 0 2 × 8× 8
1 N = 2N 3 × 4

1 N = N4
3 NlogN8

1
4

II 9 25 0 6 2 × 8× 8
1 N = 2N 3 × 4

1 N = N4
3 NlogN8

1
4

III 12 22 12 18 2 × 8× 8
1 N = 2N 3 × N2

3 = N2
9 NlogN8

1
4

IV 9 25 12 24 2 × 8× 8
1 N = 2N 3 × N2

3 = N2
9 NlogN8

1
4

Note: single-level LUTs used for versions I and II & two-level LUTs used for versions III and IV

Table 1 – performance/resource comparison for computation of N-point regularized FHT

Note: single-level LUTs used for versions I and II & two-level LUTs used for versions III and IV

Table 1: Performance/Resource Comparison for Computation of N-Point Regularized FHT

 14

 Figure 3 – signal flow graph for nine-multiplier version of generic double butterfly

 I
n

p
u

t
D

 a
 t

a
 S

 e
 t

 ±

±

 ±

±

 ±

±

-

-

-

-

-

-

- -

 coefficients 4 3 2 1
 Twiddle
 Factors

A
 d

 d
 r

e
s s

 P
 e

 r
m

 u
 t

a
t i

 o
 n

A
 d

 d
 r

e
s s

 P
 e

 r
m

 u
 t

a
t i

 o
 n

A
 d

 d
 r

e
s s

 P
 e

 r
m

 u
 t

a
t i

 o
 n

A
 d

 d
 r

e
s s

 P
 e

 r
m

 u
 t

a
t i

 o
 n

O
 u

 t
p

u
t

D
 a

 t
a

 S
 e

 t

Figure 3: Signal Flow Graph for Nine-Multiplier Version of Generic Double Butterfly

Volume 2 | Issue 4 | 6Eng OA, 2024

3. Complexity of Single-PE and Dual-PE Solutions
Having described the key components of the regularized FHT, the
space and time complexities of the single-PE and dual-PE solutions
to the real-data DFT are now considered where the nine-multiplier
version of the double butterfly is to be assumed and where
maximum parallelism is to be exploited through the use of separate
multi-level LUTs for each of the three non-trivial twiddle factors
required for input to the double butterfly [14]. The time-complexity
involves the derivation of the timing constraint that needs to be met
if continuous real-time operation is to be achieved and maintained,
whilst the space-complexity involves the derivation of the memory
and arithmetic requirements, as expressed in terms of the amount
of fast on-chip RAM and the number of fast multipliers required
for its implementation, respectively. A wordlength of 18 bits, or
2.25 bytes, is to be assumed for the data storage, as this fits well
with the sizes of block (and Ultra) RAM available with the current
family of Xilinx FPGA devices – as proposed for the hypothetical
implementations considered in Section 4 – with the wordlength
for the coefficient storage being 27 bits, as dictated by the size
of the fast multiplier [15]. The DM will need to be of dual-port
type for handling both read and write operations, as required for its
repeated updating, whilst the CM need only be of single-port type
for handling the read-only operations associated with accessing
the contents of the LUTs.

3.1 Timing Constraints
The latency, denoted TL, of the RFHT-based PE for the case of N
input/output samples is given by

clock cycles, whilst the double-buffered DM is updated with a
new N-point data set every update period of N clock cycles, given
that the transfer of data from the external source to the fast on-
chip RAM is assumed to be carried out at the rate of one sample
per clock cycle. Therefore, the single-PE solution – where a PE is

taken to consist of a single RFHT module – achieves a continuous
real-time performance when

clock cycles, which occurs when

The operation of the dual-PE solution is defined by having one PE
process all the even-addressed input data sets and the other PE all
the odd-addressed data sets, as illustrated in Figure 4, with each
input data set comprising N real-valued samples. In this way, each
PE is able to process a new N-point data set every 2N clock cycles
with the dual-PE solution thereby able to produce a new output
data set of N samples every N clock cycles. As a result, the dual-
PE solution is able to achieve a continuous real-time performance
when

clock cycles, which occurs when

or up to one billion samples.

Note that if the latency is sufficiently lower than the update rate
(which is N clock cycles for the single-PE solution and 2N clock
cycles for the dual-PE solution), then there might well be sufficient
down-time available for carrying out those additional post-DHT
functions, such as the Hartley-space to Fourier-space conversion
or the PSD estimation, before the next input data set is available
for processing. Also, assuming the input data and its subsequent
processing to be fixed-point in nature, the down-time may also be
used to deal with the incorporation of a suitable scaling strategy –
as will be briefly discussed in Section 5 – which will involve an
additional overhead, in terms of latency, following the completion
of each stage of double butterflies.

 5

where  corresponds to the angle defined over the

coarse-resolution angular region and  to the angle

defined over the fine-resolution angular region – see

the simplified illustration of Figure 2 for the

decomposition of the cosine function into coarse-

resolution and fine-resolution angular regions, each of

length 4.

 Thus, generalizing the results of the above two-

level LUT-based scheme and expressing them in a

concise mathematical form, the adoption of K-level

LUTs may be said to result in a reduced memory

requirement of O(K N) words, as opposed to the O(N)

requirement of the one-level LUTs, this reduction

being obtained at the expense of increased addressing

complexity through the need for the combined use of

both coarse- resolution and fine-resolution LUTs – as

discussed in greater detail in [13]. The equations

representing the generalized form of the LUTs, where

K is taken to be an arbitrary integer, may be

straightforwardly obtained via the repeated application

of the standard trigonometric identities of Equations 7

and 8.

2.3 Discussion

 A theoretical performance/resource comparison

of all four versions of the RFHT is provided in

Table 1, with each version achieving  NlogNO 

latency which corresponds, in clock cycles, to the total

number of double butterflies to be executed per

transform, namely   .Nlog8/N 4 Note, however,

that a small  1O increment to the latency is required

to account for the pipelining of the coefficient

generation process, when using a multi-level LUT-

based scheme, as is required if real-time operation is to

be achieved and maintained. An O(N) update period

for each input/output data set is achieved for each

solution which corresponds to an I/O rate of just one

sample per clock cycle. The signal flow graph for the

nine-multiplier version of the generic double butterfly

is as illustrated in Figure 3.

3. Complexity of Single-PE and Dual-PE Solutions

 Having described the key components of the

regularized FHT, the space and time complexities [14]

of the single-PE and dual-PE solutions to the real-data

DFT are now considered where the nine-multiplier

version of the double butterfly is to be assumed and

where maximum parallelism is to be exploited through

the use of separate multi-level LUTs for each of the

three non-trivial twiddle factors required for input to

the double butterfly. The time-complexity involves the

derivation of the timing constraint that needs to be met

if continuous real-time operation is to be achieved and

maintained, whilst the space-complexity involves the

derivation of the memory and arithmetic requirements,

as expressed in terms of the amount of fast on-chip

RAM and the number of fast multipliers required for

its implementation, respectively. A wordlength of 18

bits, or 2.25 bytes, is to be assumed for the data

storage, as this fits well with the sizes of block (and

Ultra) RAM available with the current family of Xilinx

FPGA devices [15] – as proposed for the hypothetical

implementations considered in Section 4 – with the

wordlength for the coefficient storage being 27 bits, as

dictated by the size of the fast multiplier. The DM will

need to be of dual-port type for handling both read and

write operations, as required for its repeated updating,

whilst the CM need only be of single-port type for

handling the read-only operations associated with

accessing the contents of the LUTs.

3.1 Timing Constraints

 The latency, denoted TL, of the RFHT-based PE

for the case of N input/output samples is given by

 TL ≈   Nlog8
N

4 (9)

clock cycles, whilst the double-buffered DM is

updated with a new N-point data set every update

period of N clock cycles, given that the transfer of data

from the external source to the fast on-chip RAM is

assumed to be carried out at the rate of one sample per

clock cycle. Therefore, the single-PE solution – where

 5

where  corresponds to the angle defined over the

coarse-resolution angular region and  to the angle

defined over the fine-resolution angular region – see

the simplified illustration of Figure 2 for the

decomposition of the cosine function into coarse-

resolution and fine-resolution angular regions, each of

length 4.

 Thus, generalizing the results of the above two-

level LUT-based scheme and expressing them in a

concise mathematical form, the adoption of K-level

LUTs may be said to result in a reduced memory

requirement of O(K N) words, as opposed to the O(N)

requirement of the one-level LUTs, this reduction

being obtained at the expense of increased addressing

complexity through the need for the combined use of

both coarse- resolution and fine-resolution LUTs – as

discussed in greater detail in [13]. The equations

representing the generalized form of the LUTs, where

K is taken to be an arbitrary integer, may be

straightforwardly obtained via the repeated application

of the standard trigonometric identities of Equations 7

and 8.

2.3 Discussion

 A theoretical performance/resource comparison

of all four versions of the RFHT is provided in

Table 1, with each version achieving  NlogNO 

latency which corresponds, in clock cycles, to the total

number of double butterflies to be executed per

transform, namely   .Nlog8/N 4 Note, however,

that a small  1O increment to the latency is required

to account for the pipelining of the coefficient

generation process, when using a multi-level LUT-

based scheme, as is required if real-time operation is to

be achieved and maintained. An O(N) update period

for each input/output data set is achieved for each

solution which corresponds to an I/O rate of just one

sample per clock cycle. The signal flow graph for the

nine-multiplier version of the generic double butterfly

is as illustrated in Figure 3.

3. Complexity of Single-PE and Dual-PE Solutions

 Having described the key components of the

regularized FHT, the space and time complexities [14]

of the single-PE and dual-PE solutions to the real-data

DFT are now considered where the nine-multiplier

version of the double butterfly is to be assumed and

where maximum parallelism is to be exploited through

the use of separate multi-level LUTs for each of the

three non-trivial twiddle factors required for input to

the double butterfly. The time-complexity involves the

derivation of the timing constraint that needs to be met

if continuous real-time operation is to be achieved and

maintained, whilst the space-complexity involves the

derivation of the memory and arithmetic requirements,

as expressed in terms of the amount of fast on-chip

RAM and the number of fast multipliers required for

its implementation, respectively. A wordlength of 18

bits, or 2.25 bytes, is to be assumed for the data

storage, as this fits well with the sizes of block (and

Ultra) RAM available with the current family of Xilinx

FPGA devices [15] – as proposed for the hypothetical

implementations considered in Section 4 – with the

wordlength for the coefficient storage being 27 bits, as

dictated by the size of the fast multiplier. The DM will

need to be of dual-port type for handling both read and

write operations, as required for its repeated updating,

whilst the CM need only be of single-port type for

handling the read-only operations associated with

accessing the contents of the LUTs.

3.1 Timing Constraints

 The latency, denoted TL, of the RFHT-based PE

for the case of N input/output samples is given by

 TL ≈   Nlog8
N

4 (9)

clock cycles, whilst the double-buffered DM is

updated with a new N-point data set every update

period of N clock cycles, given that the transfer of data

from the external source to the fast on-chip RAM is

assumed to be carried out at the rate of one sample per

clock cycle. Therefore, the single-PE solution – where

 6

a PE is taken to consist of a single RFHT module –

achieves a continuous real-time performance when

 TL < N (10)

clock cycles, which occurs when

 N ≤ 47 = 16,384 (11)

 The operation of the dual-PE solution is defined

by having one PE process all the even-addressed input

data sets and the other PE all the odd-addressed data

sets, as illustrated in Figure 4, with each input data set

comprising N real-valued samples. In this way, each

PE is able to process a new N-point data set every 2N

clock cycles with the dual-PE solution thereby able to

produce a new output data set of N samples every N

clock cycles. As a result, the dual-PE solution is able

to achieve a continuous real-time performance when

 TL < 2N (12)

clock cycles, which occurs when

 48 = 65,536 ≤ N ≤ 415 = 1,073,741,824 (13)

or up to one billion samples.

 Note that if the latency is sufficiently lower than

the update rate (which is N clock cycles for the single-

PE solution and 2N clock cycles for the dual-PE

solution), then there might well be sufficient down-

time available for carrying out those additional post-

DHT functions, such as the Hartley-space to Fourier-

space conversion or the PSD estimation, before the

next input data set is available for processing. Also,

assuming the input data and its subsequent processing

to be fixed-point in nature, the down-time may also be

used to deal with the incorporation of a suitable

scaling strategy – as will be briefly discussed in

Section 5 – which will involve an additional overhead,

in terms of latency, following the completion of each

stage of double butterflies.
3.2 Memory Requirement
 The DM requirement, per PE, is given by

 DM = 2N words = N2
9  bytes (14)

this figure accounting for the double-buffering of the

input data whereby one half of the DM is being

updated with new data whilst the data from the other

half is being processed .

 To determine the CM requirement, suppose that

the figures are firstly to be based upon the adoption of

two-level LUTs (as might be appropriate for long

transforms of order one million samples, say, with

each two-level LUT consisting of three one-level

LUTs [13]) for each of the three non-trivial twiddle

factors (in order to facilitate their simultaneous access)

required by the highly-parallel double butterfly, with

the length of each one-level LUT being of O  N .

Then the CM requirement, per PE, is given by

 CM(2) = 3×(4/N3) = N2
9  words

 = N8
81  bytes (15)

with the total memory requirement for the single-PE

solution, denoted MS
(2), given by

 MS
(2) =  N2 +  N2

9  words

 =  N2
9  +  N8

81  bytes (16)

and the total memory requirement for the dual-PE

solution, denoted MD
(2), given by

 MD
(2) =  N4 +  N9 words

 =  N9 +  N4
81  bytes (17)

 Suppose now that the CM figures are to be based

upon the adoption of three-level LUTs (as might be

appropriate for ultra-long transforms of order one

billion samples, say, with each three-level LUT

consisting of five one-level LUTs [13]) for each of the

three non-trivial twiddle factors (in order to facilitate

their simultaneous access) required by the highly

parallel double butterfly, with the length of each one-

level LUT being of O  3 N . Then the CM

requirement, per PE, is given by

 CM(3) = 3×(3 4/N5) = 15× 3 4/N words

 = 3 4/N4
135  bytes (18)

with the total memory requirement for the single-PE

solution, denoted MS
(3), given by

 6

a PE is taken to consist of a single RFHT module –

achieves a continuous real-time performance when

 TL < N (10)

clock cycles, which occurs when

 N ≤ 47 = 16,384 (11)

 The operation of the dual-PE solution is defined

by having one PE process all the even-addressed input

data sets and the other PE all the odd-addressed data

sets, as illustrated in Figure 4, with each input data set

comprising N real-valued samples. In this way, each

PE is able to process a new N-point data set every 2N

clock cycles with the dual-PE solution thereby able to

produce a new output data set of N samples every N

clock cycles. As a result, the dual-PE solution is able

to achieve a continuous real-time performance when

 TL < 2N (12)

clock cycles, which occurs when

 48 = 65,536 ≤ N ≤ 415 = 1,073,741,824 (13)

or up to one billion samples.

 Note that if the latency is sufficiently lower than

the update rate (which is N clock cycles for the single-

PE solution and 2N clock cycles for the dual-PE

solution), then there might well be sufficient down-

time available for carrying out those additional post-

DHT functions, such as the Hartley-space to Fourier-

space conversion or the PSD estimation, before the

next input data set is available for processing. Also,

assuming the input data and its subsequent processing

to be fixed-point in nature, the down-time may also be

used to deal with the incorporation of a suitable

scaling strategy – as will be briefly discussed in

Section 5 – which will involve an additional overhead,

in terms of latency, following the completion of each

stage of double butterflies.
3.2 Memory Requirement
 The DM requirement, per PE, is given by

 DM = 2N words = N2
9  bytes (14)

this figure accounting for the double-buffering of the

input data whereby one half of the DM is being

updated with new data whilst the data from the other

half is being processed .

 To determine the CM requirement, suppose that

the figures are firstly to be based upon the adoption of

two-level LUTs (as might be appropriate for long

transforms of order one million samples, say, with

each two-level LUT consisting of three one-level

LUTs [13]) for each of the three non-trivial twiddle

factors (in order to facilitate their simultaneous access)

required by the highly-parallel double butterfly, with

the length of each one-level LUT being of O  N .

Then the CM requirement, per PE, is given by

 CM(2) = 3×(4/N3) = N2
9  words

 = N8
81  bytes (15)

with the total memory requirement for the single-PE

solution, denoted MS
(2), given by

 MS
(2) =  N2 +  N2

9  words

 =  N2
9  +  N8

81  bytes (16)

and the total memory requirement for the dual-PE

solution, denoted MD
(2), given by

 MD
(2) =  N4 +  N9 words

 =  N9 +  N4
81  bytes (17)

 Suppose now that the CM figures are to be based

upon the adoption of three-level LUTs (as might be

appropriate for ultra-long transforms of order one

billion samples, say, with each three-level LUT

consisting of five one-level LUTs [13]) for each of the

three non-trivial twiddle factors (in order to facilitate

their simultaneous access) required by the highly

parallel double butterfly, with the length of each one-

level LUT being of O  3 N . Then the CM

requirement, per PE, is given by

 CM(3) = 3×(3 4/N5) = 15× 3 4/N words

 = 3 4/N4
135  bytes (18)

with the total memory requirement for the single-PE

solution, denoted MS
(3), given by

 6

a PE is taken to consist of a single RFHT module –

achieves a continuous real-time performance when

 TL < N (10)

clock cycles, which occurs when

 N ≤ 47 = 16,384 (11)

 The operation of the dual-PE solution is defined

by having one PE process all the even-addressed input

data sets and the other PE all the odd-addressed data

sets, as illustrated in Figure 4, with each input data set

comprising N real-valued samples. In this way, each

PE is able to process a new N-point data set every 2N

clock cycles with the dual-PE solution thereby able to

produce a new output data set of N samples every N

clock cycles. As a result, the dual-PE solution is able

to achieve a continuous real-time performance when

 TL < 2N (12)

clock cycles, which occurs when

 48 = 65,536 ≤ N ≤ 415 = 1,073,741,824 (13)

or up to one billion samples.

 Note that if the latency is sufficiently lower than

the update rate (which is N clock cycles for the single-

PE solution and 2N clock cycles for the dual-PE

solution), then there might well be sufficient down-

time available for carrying out those additional post-

DHT functions, such as the Hartley-space to Fourier-

space conversion or the PSD estimation, before the

next input data set is available for processing. Also,

assuming the input data and its subsequent processing

to be fixed-point in nature, the down-time may also be

used to deal with the incorporation of a suitable

scaling strategy – as will be briefly discussed in

Section 5 – which will involve an additional overhead,

in terms of latency, following the completion of each

stage of double butterflies.
3.2 Memory Requirement
 The DM requirement, per PE, is given by

 DM = 2N words = N2
9  bytes (14)

this figure accounting for the double-buffering of the

input data whereby one half of the DM is being

updated with new data whilst the data from the other

half is being processed .

 To determine the CM requirement, suppose that

the figures are firstly to be based upon the adoption of

two-level LUTs (as might be appropriate for long

transforms of order one million samples, say, with

each two-level LUT consisting of three one-level

LUTs [13]) for each of the three non-trivial twiddle

factors (in order to facilitate their simultaneous access)

required by the highly-parallel double butterfly, with

the length of each one-level LUT being of O  N .

Then the CM requirement, per PE, is given by

 CM(2) = 3×(4/N3) = N2
9  words

 = N8
81  bytes (15)

with the total memory requirement for the single-PE

solution, denoted MS
(2), given by

 MS
(2) =  N2 +  N2

9  words

 =  N2
9  +  N8

81  bytes (16)

and the total memory requirement for the dual-PE

solution, denoted MD
(2), given by

 MD
(2) =  N4 +  N9 words

 =  N9 +  N4
81  bytes (17)

 Suppose now that the CM figures are to be based

upon the adoption of three-level LUTs (as might be

appropriate for ultra-long transforms of order one

billion samples, say, with each three-level LUT

consisting of five one-level LUTs [13]) for each of the

three non-trivial twiddle factors (in order to facilitate

their simultaneous access) required by the highly

parallel double butterfly, with the length of each one-

level LUT being of O  3 N . Then the CM

requirement, per PE, is given by

 CM(3) = 3×(3 4/N5) = 15× 3 4/N words

 = 3 4/N4
135  bytes (18)

with the total memory requirement for the single-PE

solution, denoted MS
(3), given by

 6

a PE is taken to consist of a single RFHT module –

achieves a continuous real-time performance when

 TL < N (10)

clock cycles, which occurs when

 N ≤ 47 = 16,384 (11)

 The operation of the dual-PE solution is defined

by having one PE process all the even-addressed input

data sets and the other PE all the odd-addressed data

sets, as illustrated in Figure 4, with each input data set

comprising N real-valued samples. In this way, each

PE is able to process a new N-point data set every 2N

clock cycles with the dual-PE solution thereby able to

produce a new output data set of N samples every N

clock cycles. As a result, the dual-PE solution is able

to achieve a continuous real-time performance when

 TL < 2N (12)

clock cycles, which occurs when

 48 = 65,536 ≤ N ≤ 415 = 1,073,741,824 (13)

or up to one billion samples.

 Note that if the latency is sufficiently lower than

the update rate (which is N clock cycles for the single-

PE solution and 2N clock cycles for the dual-PE

solution), then there might well be sufficient down-

time available for carrying out those additional post-

DHT functions, such as the Hartley-space to Fourier-

space conversion or the PSD estimation, before the

next input data set is available for processing. Also,

assuming the input data and its subsequent processing

to be fixed-point in nature, the down-time may also be

used to deal with the incorporation of a suitable

scaling strategy – as will be briefly discussed in

Section 5 – which will involve an additional overhead,

in terms of latency, following the completion of each

stage of double butterflies.
3.2 Memory Requirement
 The DM requirement, per PE, is given by

 DM = 2N words = N2
9  bytes (14)

this figure accounting for the double-buffering of the

input data whereby one half of the DM is being

updated with new data whilst the data from the other

half is being processed .

 To determine the CM requirement, suppose that

the figures are firstly to be based upon the adoption of

two-level LUTs (as might be appropriate for long

transforms of order one million samples, say, with

each two-level LUT consisting of three one-level

LUTs [13]) for each of the three non-trivial twiddle

factors (in order to facilitate their simultaneous access)

required by the highly-parallel double butterfly, with

the length of each one-level LUT being of O  N .

Then the CM requirement, per PE, is given by

 CM(2) = 3×(4/N3) = N2
9  words

 = N8
81  bytes (15)

with the total memory requirement for the single-PE

solution, denoted MS
(2), given by

 MS
(2) =  N2 +  N2

9  words

 =  N2
9  +  N8

81  bytes (16)

and the total memory requirement for the dual-PE

solution, denoted MD
(2), given by

 MD
(2) =  N4 +  N9 words

 =  N9 +  N4
81  bytes (17)

 Suppose now that the CM figures are to be based

upon the adoption of three-level LUTs (as might be

appropriate for ultra-long transforms of order one

billion samples, say, with each three-level LUT

consisting of five one-level LUTs [13]) for each of the

three non-trivial twiddle factors (in order to facilitate

their simultaneous access) required by the highly

parallel double butterfly, with the length of each one-

level LUT being of O  3 N . Then the CM

requirement, per PE, is given by

 CM(3) = 3×(3 4/N5) = 15× 3 4/N words

 = 3 4/N4
135  bytes (18)

with the total memory requirement for the single-PE

solution, denoted MS
(3), given by

 6

a PE is taken to consist of a single RFHT module –

achieves a continuous real-time performance when

 TL < N (10)

clock cycles, which occurs when

 N ≤ 47 = 16,384 (11)

 The operation of the dual-PE solution is defined

by having one PE process all the even-addressed input

data sets and the other PE all the odd-addressed data

sets, as illustrated in Figure 4, with each input data set

comprising N real-valued samples. In this way, each

PE is able to process a new N-point data set every 2N

clock cycles with the dual-PE solution thereby able to

produce a new output data set of N samples every N

clock cycles. As a result, the dual-PE solution is able

to achieve a continuous real-time performance when

 TL < 2N (12)

clock cycles, which occurs when

 48 = 65,536 ≤ N ≤ 415 = 1,073,741,824 (13)

or up to one billion samples.

 Note that if the latency is sufficiently lower than

the update rate (which is N clock cycles for the single-

PE solution and 2N clock cycles for the dual-PE

solution), then there might well be sufficient down-

time available for carrying out those additional post-

DHT functions, such as the Hartley-space to Fourier-

space conversion or the PSD estimation, before the

next input data set is available for processing. Also,

assuming the input data and its subsequent processing

to be fixed-point in nature, the down-time may also be

used to deal with the incorporation of a suitable

scaling strategy – as will be briefly discussed in

Section 5 – which will involve an additional overhead,

in terms of latency, following the completion of each

stage of double butterflies.
3.2 Memory Requirement
 The DM requirement, per PE, is given by

 DM = 2N words = N2
9  bytes (14)

this figure accounting for the double-buffering of the

input data whereby one half of the DM is being

updated with new data whilst the data from the other

half is being processed .

 To determine the CM requirement, suppose that

the figures are firstly to be based upon the adoption of

two-level LUTs (as might be appropriate for long

transforms of order one million samples, say, with

each two-level LUT consisting of three one-level

LUTs [13]) for each of the three non-trivial twiddle

factors (in order to facilitate their simultaneous access)

required by the highly-parallel double butterfly, with

the length of each one-level LUT being of O  N .

Then the CM requirement, per PE, is given by

 CM(2) = 3×(4/N3) = N2
9  words

 = N8
81  bytes (15)

with the total memory requirement for the single-PE

solution, denoted MS
(2), given by

 MS
(2) =  N2 +  N2

9  words

 =  N2
9  +  N8

81  bytes (16)

and the total memory requirement for the dual-PE

solution, denoted MD
(2), given by

 MD
(2) =  N4 +  N9 words

 =  N9 +  N4
81  bytes (17)

 Suppose now that the CM figures are to be based

upon the adoption of three-level LUTs (as might be

appropriate for ultra-long transforms of order one

billion samples, say, with each three-level LUT

consisting of five one-level LUTs [13]) for each of the

three non-trivial twiddle factors (in order to facilitate

their simultaneous access) required by the highly

parallel double butterfly, with the length of each one-

level LUT being of O  3 N . Then the CM

requirement, per PE, is given by

 CM(3) = 3×(3 4/N5) = 15× 3 4/N words

 = 3 4/N4
135  bytes (18)

with the total memory requirement for the single-PE

solution, denoted MS
(3), given by

 6

a PE is taken to consist of a single RFHT module –

achieves a continuous real-time performance when

 TL < N (10)

clock cycles, which occurs when

 N ≤ 47 = 16,384 (11)

 The operation of the dual-PE solution is defined

by having one PE process all the even-addressed input

data sets and the other PE all the odd-addressed data

sets, as illustrated in Figure 4, with each input data set

comprising N real-valued samples. In this way, each

PE is able to process a new N-point data set every 2N

clock cycles with the dual-PE solution thereby able to

produce a new output data set of N samples every N

clock cycles. As a result, the dual-PE solution is able

to achieve a continuous real-time performance when

 TL < 2N (12)

clock cycles, which occurs when

 48 = 65,536 ≤ N ≤ 415 = 1,073,741,824 (13)

or up to one billion samples.

 Note that if the latency is sufficiently lower than

the update rate (which is N clock cycles for the single-

PE solution and 2N clock cycles for the dual-PE

solution), then there might well be sufficient down-

time available for carrying out those additional post-

DHT functions, such as the Hartley-space to Fourier-

space conversion or the PSD estimation, before the

next input data set is available for processing. Also,

assuming the input data and its subsequent processing

to be fixed-point in nature, the down-time may also be

used to deal with the incorporation of a suitable

scaling strategy – as will be briefly discussed in

Section 5 – which will involve an additional overhead,

in terms of latency, following the completion of each

stage of double butterflies.
3.2 Memory Requirement
 The DM requirement, per PE, is given by

 DM = 2N words = N2
9  bytes (14)

this figure accounting for the double-buffering of the

input data whereby one half of the DM is being

updated with new data whilst the data from the other

half is being processed .

 To determine the CM requirement, suppose that

the figures are firstly to be based upon the adoption of

two-level LUTs (as might be appropriate for long

transforms of order one million samples, say, with

each two-level LUT consisting of three one-level

LUTs [13]) for each of the three non-trivial twiddle

factors (in order to facilitate their simultaneous access)

required by the highly-parallel double butterfly, with

the length of each one-level LUT being of O  N .

Then the CM requirement, per PE, is given by

 CM(2) = 3×(4/N3) = N2
9  words

 = N8
81  bytes (15)

with the total memory requirement for the single-PE

solution, denoted MS
(2), given by

 MS
(2) =  N2 +  N2

9  words

 =  N2
9  +  N8

81  bytes (16)

and the total memory requirement for the dual-PE

solution, denoted MD
(2), given by

 MD
(2) =  N4 +  N9 words

 =  N9 +  N4
81  bytes (17)

 Suppose now that the CM figures are to be based

upon the adoption of three-level LUTs (as might be

appropriate for ultra-long transforms of order one

billion samples, say, with each three-level LUT

consisting of five one-level LUTs [13]) for each of the

three non-trivial twiddle factors (in order to facilitate

their simultaneous access) required by the highly

parallel double butterfly, with the length of each one-

level LUT being of O  3 N . Then the CM

requirement, per PE, is given by

 CM(3) = 3×(3 4/N5) = 15× 3 4/N words

 = 3 4/N4
135  bytes (18)

with the total memory requirement for the single-PE

solution, denoted MS
(3), given by

 6

a PE is taken to consist of a single RFHT module –

achieves a continuous real-time performance when

 TL < N (10)

clock cycles, which occurs when

 N ≤ 47 = 16,384 (11)

 The operation of the dual-PE solution is defined

by having one PE process all the even-addressed input

data sets and the other PE all the odd-addressed data

sets, as illustrated in Figure 4, with each input data set

comprising N real-valued samples. In this way, each

PE is able to process a new N-point data set every 2N

clock cycles with the dual-PE solution thereby able to

produce a new output data set of N samples every N

clock cycles. As a result, the dual-PE solution is able

to achieve a continuous real-time performance when

 TL < 2N (12)

clock cycles, which occurs when

 48 = 65,536 ≤ N ≤ 415 = 1,073,741,824 (13)

or up to one billion samples.

 Note that if the latency is sufficiently lower than

the update rate (which is N clock cycles for the single-

PE solution and 2N clock cycles for the dual-PE

solution), then there might well be sufficient down-

time available for carrying out those additional post-

DHT functions, such as the Hartley-space to Fourier-

space conversion or the PSD estimation, before the

next input data set is available for processing. Also,

assuming the input data and its subsequent processing

to be fixed-point in nature, the down-time may also be

used to deal with the incorporation of a suitable

scaling strategy – as will be briefly discussed in

Section 5 – which will involve an additional overhead,

in terms of latency, following the completion of each

stage of double butterflies.
3.2 Memory Requirement
 The DM requirement, per PE, is given by

 DM = 2N words = N2
9  bytes (14)

this figure accounting for the double-buffering of the

input data whereby one half of the DM is being

updated with new data whilst the data from the other

half is being processed .

 To determine the CM requirement, suppose that

the figures are firstly to be based upon the adoption of

two-level LUTs (as might be appropriate for long

transforms of order one million samples, say, with

each two-level LUT consisting of three one-level

LUTs [13]) for each of the three non-trivial twiddle

factors (in order to facilitate their simultaneous access)

required by the highly-parallel double butterfly, with

the length of each one-level LUT being of O  N .

Then the CM requirement, per PE, is given by

 CM(2) = 3×(4/N3) = N2
9  words

 = N8
81  bytes (15)

with the total memory requirement for the single-PE

solution, denoted MS
(2), given by

 MS
(2) =  N2 +  N2

9  words

 =  N2
9  +  N8

81  bytes (16)

and the total memory requirement for the dual-PE

solution, denoted MD
(2), given by

 MD
(2) =  N4 +  N9 words

 =  N9 +  N4
81  bytes (17)

 Suppose now that the CM figures are to be based

upon the adoption of three-level LUTs (as might be

appropriate for ultra-long transforms of order one

billion samples, say, with each three-level LUT

consisting of five one-level LUTs [13]) for each of the

three non-trivial twiddle factors (in order to facilitate

their simultaneous access) required by the highly

parallel double butterfly, with the length of each one-

level LUT being of O  3 N . Then the CM

requirement, per PE, is given by

 CM(3) = 3×(3 4/N5) = 15× 3 4/N words

 = 3 4/N4
135  bytes (18)

with the total memory requirement for the single-PE

solution, denoted MS
(3), given by

 6

a PE is taken to consist of a single RFHT module –

achieves a continuous real-time performance when

 TL < N (10)

clock cycles, which occurs when

 N ≤ 47 = 16,384 (11)

 The operation of the dual-PE solution is defined

by having one PE process all the even-addressed input

data sets and the other PE all the odd-addressed data

sets, as illustrated in Figure 4, with each input data set

comprising N real-valued samples. In this way, each

PE is able to process a new N-point data set every 2N

clock cycles with the dual-PE solution thereby able to

produce a new output data set of N samples every N

clock cycles. As a result, the dual-PE solution is able

to achieve a continuous real-time performance when

 TL < 2N (12)

clock cycles, which occurs when

 48 = 65,536 ≤ N ≤ 415 = 1,073,741,824 (13)

or up to one billion samples.

 Note that if the latency is sufficiently lower than

the update rate (which is N clock cycles for the single-

PE solution and 2N clock cycles for the dual-PE

solution), then there might well be sufficient down-

time available for carrying out those additional post-

DHT functions, such as the Hartley-space to Fourier-

space conversion or the PSD estimation, before the

next input data set is available for processing. Also,

assuming the input data and its subsequent processing

to be fixed-point in nature, the down-time may also be

used to deal with the incorporation of a suitable

scaling strategy – as will be briefly discussed in

Section 5 – which will involve an additional overhead,

in terms of latency, following the completion of each

stage of double butterflies.
3.2 Memory Requirement
 The DM requirement, per PE, is given by

 DM = 2N words = N2
9  bytes (14)

this figure accounting for the double-buffering of the

input data whereby one half of the DM is being

updated with new data whilst the data from the other

half is being processed .

 To determine the CM requirement, suppose that

the figures are firstly to be based upon the adoption of

two-level LUTs (as might be appropriate for long

transforms of order one million samples, say, with

each two-level LUT consisting of three one-level

LUTs [13]) for each of the three non-trivial twiddle

factors (in order to facilitate their simultaneous access)

required by the highly-parallel double butterfly, with

the length of each one-level LUT being of O  N .

Then the CM requirement, per PE, is given by

 CM(2) = 3×(4/N3) = N2
9  words

 = N8
81  bytes (15)

with the total memory requirement for the single-PE

solution, denoted MS
(2), given by

 MS
(2) =  N2 +  N2

9  words

 =  N2
9  +  N8

81  bytes (16)

and the total memory requirement for the dual-PE

solution, denoted MD
(2), given by

 MD
(2) =  N4 +  N9 words

 =  N9 +  N4
81  bytes (17)

 Suppose now that the CM figures are to be based

upon the adoption of three-level LUTs (as might be

appropriate for ultra-long transforms of order one

billion samples, say, with each three-level LUT

consisting of five one-level LUTs [13]) for each of the

three non-trivial twiddle factors (in order to facilitate

their simultaneous access) required by the highly

parallel double butterfly, with the length of each one-

level LUT being of O  3 N . Then the CM

requirement, per PE, is given by

 CM(3) = 3×(3 4/N5) = 15× 3 4/N words

 = 3 4/N4
135  bytes (18)

with the total memory requirement for the single-PE

solution, denoted MS
(3), given by

Volume 2 | Issue 4 | 7Eng OA, 2024

 15

Figure 4 – dual-PE architecture for computation of real-data DFT via regularized FHT

Odd-Addressed
Input Data Sets

Even-Addressed
Input Data Sets

Input Data Stream

Single-PE

Regularized FHT

Module

Single-PE

Regularized FHT

Module

 Output Data Stream

Figure 4: Dual-PE Architecture for Computation of Real-Data DFT Via Regularized FHT

3.2 Memory Requirement
The DM requirement, per PE, is given by

this figure accounting for the double-buffering of the input data
whereby one half of the DM is being updated with new data whilst
the data from the other half is being processed.

To determine the CM requirement, suppose that the figures are
firstly to be based upon the adoption of two-level LUTs (as might
be appropriate for long transforms of order one million samples,
say, with each two-level LUT consisting of three one-level LUTs
[13]) for each of the three non-trivial twiddle factors (in order to
facilitate their simultaneous access) required by the highly-parallel
double butterfly, with the length of each one-level LUT being of

O ()N . Then the CM requirement, per PE, is given by

with the total memory requirement for the single-PE solution,
denoted MS

(2), given by

and the total memory requirement for the dual-PE solution,
denoted MD

(2), given by

Suppose now that the CM figures are to be based upon the adoption
of three-level LUTs (as might be appropriate for ultra-long
transforms of order one billion samples, say, with each three-level
LUT consisting of five one-level LUTs [13]) for each of the three
non-trivial twiddle factors (in order to facilitate their simultaneous
access) required by the highly parallel double butterfly, with the

length of each one-level LUT being of O ()3 N . Then the CM
requirement, per PE, is given by

with the total memory requirement for the single-PE solution,
denoted MS

(3), given by

and the total memory requirement for the dual-PE solution,
denoted MD

(3), given by

 6

a PE is taken to consist of a single RFHT module –

achieves a continuous real-time performance when

 TL < N (10)

clock cycles, which occurs when

 N ≤ 47 = 16,384 (11)

 The operation of the dual-PE solution is defined

by having one PE process all the even-addressed input

data sets and the other PE all the odd-addressed data

sets, as illustrated in Figure 4, with each input data set

comprising N real-valued samples. In this way, each

PE is able to process a new N-point data set every 2N

clock cycles with the dual-PE solution thereby able to

produce a new output data set of N samples every N

clock cycles. As a result, the dual-PE solution is able

to achieve a continuous real-time performance when

 TL < 2N (12)

clock cycles, which occurs when

 48 = 65,536 ≤ N ≤ 415 = 1,073,741,824 (13)

or up to one billion samples.

 Note that if the latency is sufficiently lower than

the update rate (which is N clock cycles for the single-

PE solution and 2N clock cycles for the dual-PE

solution), then there might well be sufficient down-

time available for carrying out those additional post-

DHT functions, such as the Hartley-space to Fourier-

space conversion or the PSD estimation, before the

next input data set is available for processing. Also,

assuming the input data and its subsequent processing

to be fixed-point in nature, the down-time may also be

used to deal with the incorporation of a suitable

scaling strategy – as will be briefly discussed in

Section 5 – which will involve an additional overhead,

in terms of latency, following the completion of each

stage of double butterflies.
3.2 Memory Requirement
 The DM requirement, per PE, is given by

 DM = 2N words = N2
9  bytes (14)

this figure accounting for the double-buffering of the

input data whereby one half of the DM is being

updated with new data whilst the data from the other

half is being processed .

 To determine the CM requirement, suppose that

the figures are firstly to be based upon the adoption of

two-level LUTs (as might be appropriate for long

transforms of order one million samples, say, with

each two-level LUT consisting of three one-level

LUTs [13]) for each of the three non-trivial twiddle

factors (in order to facilitate their simultaneous access)

required by the highly-parallel double butterfly, with

the length of each one-level LUT being of O  N .

Then the CM requirement, per PE, is given by

 CM(2) = 3×(4/N3) = N2
9  words

 = N8
81  bytes (15)

with the total memory requirement for the single-PE

solution, denoted MS
(2), given by

 MS
(2) =  N2 +  N2

9  words

 =  N2
9  +  N8

81  bytes (16)

and the total memory requirement for the dual-PE

solution, denoted MD
(2), given by

 MD
(2) =  N4 +  N9 words

 =  N9 +  N4
81  bytes (17)

 Suppose now that the CM figures are to be based

upon the adoption of three-level LUTs (as might be

appropriate for ultra-long transforms of order one

billion samples, say, with each three-level LUT

consisting of five one-level LUTs [13]) for each of the

three non-trivial twiddle factors (in order to facilitate

their simultaneous access) required by the highly

parallel double butterfly, with the length of each one-

level LUT being of O  3 N . Then the CM

requirement, per PE, is given by

 CM(3) = 3×(3 4/N5) = 15× 3 4/N words

 = 3 4/N4
135  bytes (18)

with the total memory requirement for the single-PE

solution, denoted MS
(3), given by

 6

a PE is taken to consist of a single RFHT module –

achieves a continuous real-time performance when

 TL < N (10)

clock cycles, which occurs when

 N ≤ 47 = 16,384 (11)

 The operation of the dual-PE solution is defined

by having one PE process all the even-addressed input

data sets and the other PE all the odd-addressed data

sets, as illustrated in Figure 4, with each input data set

comprising N real-valued samples. In this way, each

PE is able to process a new N-point data set every 2N

clock cycles with the dual-PE solution thereby able to

produce a new output data set of N samples every N

clock cycles. As a result, the dual-PE solution is able

to achieve a continuous real-time performance when

 TL < 2N (12)

clock cycles, which occurs when

 48 = 65,536 ≤ N ≤ 415 = 1,073,741,824 (13)

or up to one billion samples.

 Note that if the latency is sufficiently lower than

the update rate (which is N clock cycles for the single-

PE solution and 2N clock cycles for the dual-PE

solution), then there might well be sufficient down-

time available for carrying out those additional post-

DHT functions, such as the Hartley-space to Fourier-

space conversion or the PSD estimation, before the

next input data set is available for processing. Also,

assuming the input data and its subsequent processing

to be fixed-point in nature, the down-time may also be

used to deal with the incorporation of a suitable

scaling strategy – as will be briefly discussed in

Section 5 – which will involve an additional overhead,

in terms of latency, following the completion of each

stage of double butterflies.
3.2 Memory Requirement
 The DM requirement, per PE, is given by

 DM = 2N words = N2
9  bytes (14)

this figure accounting for the double-buffering of the

input data whereby one half of the DM is being

updated with new data whilst the data from the other

half is being processed .

 To determine the CM requirement, suppose that

the figures are firstly to be based upon the adoption of

two-level LUTs (as might be appropriate for long

transforms of order one million samples, say, with

each two-level LUT consisting of three one-level

LUTs [13]) for each of the three non-trivial twiddle

factors (in order to facilitate their simultaneous access)

required by the highly-parallel double butterfly, with

the length of each one-level LUT being of O  N .

Then the CM requirement, per PE, is given by

 CM(2) = 3×(4/N3) = N2
9  words

 = N8
81  bytes (15)

with the total memory requirement for the single-PE

solution, denoted MS
(2), given by

 MS
(2) =  N2 +  N2

9  words

 =  N2
9  +  N8

81  bytes (16)

and the total memory requirement for the dual-PE

solution, denoted MD
(2), given by

 MD
(2) =  N4 +  N9 words

 =  N9 +  N4
81  bytes (17)

 Suppose now that the CM figures are to be based

upon the adoption of three-level LUTs (as might be

appropriate for ultra-long transforms of order one

billion samples, say, with each three-level LUT

consisting of five one-level LUTs [13]) for each of the

three non-trivial twiddle factors (in order to facilitate

their simultaneous access) required by the highly

parallel double butterfly, with the length of each one-

level LUT being of O  3 N . Then the CM

requirement, per PE, is given by

 CM(3) = 3×(3 4/N5) = 15× 3 4/N words

 = 3 4/N4
135  bytes (18)

with the total memory requirement for the single-PE

solution, denoted MS
(3), given by

 6

a PE is taken to consist of a single RFHT module –

achieves a continuous real-time performance when

 TL < N (10)

clock cycles, which occurs when

 N ≤ 47 = 16,384 (11)

 The operation of the dual-PE solution is defined

by having one PE process all the even-addressed input

data sets and the other PE all the odd-addressed data

sets, as illustrated in Figure 4, with each input data set

comprising N real-valued samples. In this way, each

PE is able to process a new N-point data set every 2N

clock cycles with the dual-PE solution thereby able to

produce a new output data set of N samples every N

clock cycles. As a result, the dual-PE solution is able

to achieve a continuous real-time performance when

 TL < 2N (12)

clock cycles, which occurs when

 48 = 65,536 ≤ N ≤ 415 = 1,073,741,824 (13)

or up to one billion samples.

 Note that if the latency is sufficiently lower than

the update rate (which is N clock cycles for the single-

PE solution and 2N clock cycles for the dual-PE

solution), then there might well be sufficient down-

time available for carrying out those additional post-

DHT functions, such as the Hartley-space to Fourier-

space conversion or the PSD estimation, before the

next input data set is available for processing. Also,

assuming the input data and its subsequent processing

to be fixed-point in nature, the down-time may also be

used to deal with the incorporation of a suitable

scaling strategy – as will be briefly discussed in

Section 5 – which will involve an additional overhead,

in terms of latency, following the completion of each

stage of double butterflies.
3.2 Memory Requirement
 The DM requirement, per PE, is given by

 DM = 2N words = N2
9  bytes (14)

this figure accounting for the double-buffering of the

input data whereby one half of the DM is being

updated with new data whilst the data from the other

half is being processed .

 To determine the CM requirement, suppose that

the figures are firstly to be based upon the adoption of

two-level LUTs (as might be appropriate for long

transforms of order one million samples, say, with

each two-level LUT consisting of three one-level

LUTs [13]) for each of the three non-trivial twiddle

factors (in order to facilitate their simultaneous access)

required by the highly-parallel double butterfly, with

the length of each one-level LUT being of O  N .

Then the CM requirement, per PE, is given by

 CM(2) = 3×(4/N3) = N2
9  words

 = N8
81  bytes (15)

with the total memory requirement for the single-PE

solution, denoted MS
(2), given by

 MS
(2) =  N2 +  N2

9  words

 =  N2
9  +  N8

81  bytes (16)

and the total memory requirement for the dual-PE

solution, denoted MD
(2), given by

 MD
(2) =  N4 +  N9 words

 =  N9 +  N4
81  bytes (17)

 Suppose now that the CM figures are to be based

upon the adoption of three-level LUTs (as might be

appropriate for ultra-long transforms of order one

billion samples, say, with each three-level LUT

consisting of five one-level LUTs [13]) for each of the

three non-trivial twiddle factors (in order to facilitate

their simultaneous access) required by the highly

parallel double butterfly, with the length of each one-

level LUT being of O  3 N . Then the CM

requirement, per PE, is given by

 CM(3) = 3×(3 4/N5) = 15× 3 4/N words

 = 3 4/N4
135  bytes (18)

with the total memory requirement for the single-PE

solution, denoted MS
(3), given by

 6

a PE is taken to consist of a single RFHT module –

achieves a continuous real-time performance when

 TL < N (10)

clock cycles, which occurs when

 N ≤ 47 = 16,384 (11)

 The operation of the dual-PE solution is defined

by having one PE process all the even-addressed input

data sets and the other PE all the odd-addressed data

sets, as illustrated in Figure 4, with each input data set

comprising N real-valued samples. In this way, each

PE is able to process a new N-point data set every 2N

clock cycles with the dual-PE solution thereby able to

produce a new output data set of N samples every N

clock cycles. As a result, the dual-PE solution is able

to achieve a continuous real-time performance when

 TL < 2N (12)

clock cycles, which occurs when

 48 = 65,536 ≤ N ≤ 415 = 1,073,741,824 (13)

or up to one billion samples.

 Note that if the latency is sufficiently lower than

the update rate (which is N clock cycles for the single-

PE solution and 2N clock cycles for the dual-PE

solution), then there might well be sufficient down-

time available for carrying out those additional post-

DHT functions, such as the Hartley-space to Fourier-

space conversion or the PSD estimation, before the

next input data set is available for processing. Also,

assuming the input data and its subsequent processing

to be fixed-point in nature, the down-time may also be

used to deal with the incorporation of a suitable

scaling strategy – as will be briefly discussed in

Section 5 – which will involve an additional overhead,

in terms of latency, following the completion of each

stage of double butterflies.
3.2 Memory Requirement
 The DM requirement, per PE, is given by

 DM = 2N words = N2
9  bytes (14)

this figure accounting for the double-buffering of the

input data whereby one half of the DM is being

updated with new data whilst the data from the other

half is being processed .

 To determine the CM requirement, suppose that

the figures are firstly to be based upon the adoption of

two-level LUTs (as might be appropriate for long

transforms of order one million samples, say, with

each two-level LUT consisting of three one-level

LUTs [13]) for each of the three non-trivial twiddle

factors (in order to facilitate their simultaneous access)

required by the highly-parallel double butterfly, with

the length of each one-level LUT being of O  N .

Then the CM requirement, per PE, is given by

 CM(2) = 3×(4/N3) = N2
9  words

 = N8
81  bytes (15)

with the total memory requirement for the single-PE

solution, denoted MS
(2), given by

 MS
(2) =  N2 +  N2

9  words

 =  N2
9  +  N8

81  bytes (16)

and the total memory requirement for the dual-PE

solution, denoted MD
(2), given by

 MD
(2) =  N4 +  N9 words

 =  N9 +  N4
81  bytes (17)

 Suppose now that the CM figures are to be based

upon the adoption of three-level LUTs (as might be

appropriate for ultra-long transforms of order one

billion samples, say, with each three-level LUT

consisting of five one-level LUTs [13]) for each of the

three non-trivial twiddle factors (in order to facilitate

their simultaneous access) required by the highly

parallel double butterfly, with the length of each one-

level LUT being of O  3 N . Then the CM

requirement, per PE, is given by

 CM(3) = 3×(3 4/N5) = 15× 3 4/N words

 = 3 4/N4
135  bytes (18)

with the total memory requirement for the single-PE

solution, denoted MS
(3), given by

 6

a PE is taken to consist of a single RFHT module –

achieves a continuous real-time performance when

 TL < N (10)

clock cycles, which occurs when

 N ≤ 47 = 16,384 (11)

 The operation of the dual-PE solution is defined

by having one PE process all the even-addressed input

data sets and the other PE all the odd-addressed data

sets, as illustrated in Figure 4, with each input data set

comprising N real-valued samples. In this way, each

PE is able to process a new N-point data set every 2N

clock cycles with the dual-PE solution thereby able to

produce a new output data set of N samples every N

clock cycles. As a result, the dual-PE solution is able

to achieve a continuous real-time performance when

 TL < 2N (12)

clock cycles, which occurs when

 48 = 65,536 ≤ N ≤ 415 = 1,073,741,824 (13)

or up to one billion samples.

 Note that if the latency is sufficiently lower than

the update rate (which is N clock cycles for the single-

PE solution and 2N clock cycles for the dual-PE

solution), then there might well be sufficient down-

time available for carrying out those additional post-

DHT functions, such as the Hartley-space to Fourier-

space conversion or the PSD estimation, before the

next input data set is available for processing. Also,

assuming the input data and its subsequent processing

to be fixed-point in nature, the down-time may also be

used to deal with the incorporation of a suitable

scaling strategy – as will be briefly discussed in

Section 5 – which will involve an additional overhead,

in terms of latency, following the completion of each

stage of double butterflies.
3.2 Memory Requirement
 The DM requirement, per PE, is given by

 DM = 2N words = N2
9  bytes (14)

this figure accounting for the double-buffering of the

input data whereby one half of the DM is being

updated with new data whilst the data from the other

half is being processed .

 To determine the CM requirement, suppose that

the figures are firstly to be based upon the adoption of

two-level LUTs (as might be appropriate for long

transforms of order one million samples, say, with

each two-level LUT consisting of three one-level

LUTs [13]) for each of the three non-trivial twiddle

factors (in order to facilitate their simultaneous access)

required by the highly-parallel double butterfly, with

the length of each one-level LUT being of O  N .

Then the CM requirement, per PE, is given by

 CM(2) = 3×(4/N3) = N2
9  words

 = N8
81  bytes (15)

with the total memory requirement for the single-PE

solution, denoted MS
(2), given by

 MS
(2) =  N2 +  N2

9  words

 =  N2
9  +  N8

81  bytes (16)

and the total memory requirement for the dual-PE

solution, denoted MD
(2), given by

 MD
(2) =  N4 +  N9 words

 =  N9 +  N4
81  bytes (17)

 Suppose now that the CM figures are to be based

upon the adoption of three-level LUTs (as might be

appropriate for ultra-long transforms of order one

billion samples, say, with each three-level LUT

consisting of five one-level LUTs [13]) for each of the

three non-trivial twiddle factors (in order to facilitate

their simultaneous access) required by the highly

parallel double butterfly, with the length of each one-

level LUT being of O  3 N . Then the CM

requirement, per PE, is given by

 CM(3) = 3×(3 4/N5) = 15× 3 4/N words

 = 3 4/N4
135  bytes (18)

with the total memory requirement for the single-PE

solution, denoted MS
(3), given by

 6

a PE is taken to consist of a single RFHT module –

achieves a continuous real-time performance when

 TL < N (10)

clock cycles, which occurs when

 N ≤ 47 = 16,384 (11)

 The operation of the dual-PE solution is defined

by having one PE process all the even-addressed input

data sets and the other PE all the odd-addressed data

sets, as illustrated in Figure 4, with each input data set

comprising N real-valued samples. In this way, each

PE is able to process a new N-point data set every 2N

clock cycles with the dual-PE solution thereby able to

produce a new output data set of N samples every N

clock cycles. As a result, the dual-PE solution is able

to achieve a continuous real-time performance when

 TL < 2N (12)

clock cycles, which occurs when

 48 = 65,536 ≤ N ≤ 415 = 1,073,741,824 (13)

or up to one billion samples.

 Note that if the latency is sufficiently lower than

the update rate (which is N clock cycles for the single-

PE solution and 2N clock cycles for the dual-PE

solution), then there might well be sufficient down-

time available for carrying out those additional post-

DHT functions, such as the Hartley-space to Fourier-

space conversion or the PSD estimation, before the

next input data set is available for processing. Also,

assuming the input data and its subsequent processing

to be fixed-point in nature, the down-time may also be

used to deal with the incorporation of a suitable

scaling strategy – as will be briefly discussed in

Section 5 – which will involve an additional overhead,

in terms of latency, following the completion of each

stage of double butterflies.
3.2 Memory Requirement
 The DM requirement, per PE, is given by

 DM = 2N words = N2
9  bytes (14)

this figure accounting for the double-buffering of the

input data whereby one half of the DM is being

updated with new data whilst the data from the other

half is being processed .

 To determine the CM requirement, suppose that

the figures are firstly to be based upon the adoption of

two-level LUTs (as might be appropriate for long

transforms of order one million samples, say, with

each two-level LUT consisting of three one-level

LUTs [13]) for each of the three non-trivial twiddle

factors (in order to facilitate their simultaneous access)

required by the highly-parallel double butterfly, with

the length of each one-level LUT being of O  N .

Then the CM requirement, per PE, is given by

 CM(2) = 3×(4/N3) = N2
9  words

 = N8
81  bytes (15)

with the total memory requirement for the single-PE

solution, denoted MS
(2), given by

 MS
(2) =  N2 +  N2

9  words

 =  N2
9  +  N8

81  bytes (16)

and the total memory requirement for the dual-PE

solution, denoted MD
(2), given by

 MD
(2) =  N4 +  N9 words

 =  N9 +  N4
81  bytes (17)

 Suppose now that the CM figures are to be based

upon the adoption of three-level LUTs (as might be

appropriate for ultra-long transforms of order one

billion samples, say, with each three-level LUT

consisting of five one-level LUTs [13]) for each of the

three non-trivial twiddle factors (in order to facilitate

their simultaneous access) required by the highly

parallel double butterfly, with the length of each one-

level LUT being of O  3 N . Then the CM

requirement, per PE, is given by

 CM(3) = 3×(3 4/N5) = 15× 3 4/N words

 = 3 4/N4
135  bytes (18)

with the total memory requirement for the single-PE

solution, denoted MS
(3), given by

 6

a PE is taken to consist of a single RFHT module –

achieves a continuous real-time performance when

 TL < N (10)

clock cycles, which occurs when

 N ≤ 47 = 16,384 (11)

 The operation of the dual-PE solution is defined

by having one PE process all the even-addressed input

data sets and the other PE all the odd-addressed data

sets, as illustrated in Figure 4, with each input data set

comprising N real-valued samples. In this way, each

PE is able to process a new N-point data set every 2N

clock cycles with the dual-PE solution thereby able to

produce a new output data set of N samples every N

clock cycles. As a result, the dual-PE solution is able

to achieve a continuous real-time performance when

 TL < 2N (12)

clock cycles, which occurs when

 48 = 65,536 ≤ N ≤ 415 = 1,073,741,824 (13)

or up to one billion samples.

 Note that if the latency is sufficiently lower than

the update rate (which is N clock cycles for the single-

PE solution and 2N clock cycles for the dual-PE

solution), then there might well be sufficient down-

time available for carrying out those additional post-

DHT functions, such as the Hartley-space to Fourier-

space conversion or the PSD estimation, before the

next input data set is available for processing. Also,

assuming the input data and its subsequent processing

to be fixed-point in nature, the down-time may also be

used to deal with the incorporation of a suitable

scaling strategy – as will be briefly discussed in

Section 5 – which will involve an additional overhead,

in terms of latency, following the completion of each

stage of double butterflies.
3.2 Memory Requirement
 The DM requirement, per PE, is given by

 DM = 2N words = N2
9  bytes (14)

this figure accounting for the double-buffering of the

input data whereby one half of the DM is being

updated with new data whilst the data from the other

half is being processed .

 To determine the CM requirement, suppose that

the figures are firstly to be based upon the adoption of

two-level LUTs (as might be appropriate for long

transforms of order one million samples, say, with

each two-level LUT consisting of three one-level

LUTs [13]) for each of the three non-trivial twiddle

factors (in order to facilitate their simultaneous access)

required by the highly-parallel double butterfly, with

the length of each one-level LUT being of O  N .

Then the CM requirement, per PE, is given by

 CM(2) = 3×(4/N3) = N2
9  words

 = N8
81  bytes (15)

with the total memory requirement for the single-PE

solution, denoted MS
(2), given by

 MS
(2) =  N2 +  N2

9  words

 =  N2
9  +  N8

81  bytes (16)

and the total memory requirement for the dual-PE

solution, denoted MD
(2), given by

 MD
(2) =  N4 +  N9 words

 =  N9 +  N4
81  bytes (17)

 Suppose now that the CM figures are to be based

upon the adoption of three-level LUTs (as might be

appropriate for ultra-long transforms of order one

billion samples, say, with each three-level LUT

consisting of five one-level LUTs [13]) for each of the

three non-trivial twiddle factors (in order to facilitate

their simultaneous access) required by the highly

parallel double butterfly, with the length of each one-

level LUT being of O  3 N . Then the CM

requirement, per PE, is given by

 CM(3) = 3×(3 4/N5) = 15× 3 4/N words

 = 3 4/N4
135  bytes (18)

with the total memory requirement for the single-PE

solution, denoted MS
(3), given by

 6

a PE is taken to consist of a single RFHT module –

achieves a continuous real-time performance when

 TL < N (10)

clock cycles, which occurs when

 N ≤ 47 = 16,384 (11)

 The operation of the dual-PE solution is defined

by having one PE process all the even-addressed input

data sets and the other PE all the odd-addressed data

sets, as illustrated in Figure 4, with each input data set

comprising N real-valued samples. In this way, each

PE is able to process a new N-point data set every 2N

clock cycles with the dual-PE solution thereby able to

produce a new output data set of N samples every N

clock cycles. As a result, the dual-PE solution is able

to achieve a continuous real-time performance when

 TL < 2N (12)

clock cycles, which occurs when

 48 = 65,536 ≤ N ≤ 415 = 1,073,741,824 (13)

or up to one billion samples.

 Note that if the latency is sufficiently lower than

the update rate (which is N clock cycles for the single-

PE solution and 2N clock cycles for the dual-PE

solution), then there might well be sufficient down-

time available for carrying out those additional post-

DHT functions, such as the Hartley-space to Fourier-

space conversion or the PSD estimation, before the

next input data set is available for processing. Also,

assuming the input data and its subsequent processing

to be fixed-point in nature, the down-time may also be

used to deal with the incorporation of a suitable

scaling strategy – as will be briefly discussed in

Section 5 – which will involve an additional overhead,

in terms of latency, following the completion of each

stage of double butterflies.
3.2 Memory Requirement
 The DM requirement, per PE, is given by

 DM = 2N words = N2
9  bytes (14)

this figure accounting for the double-buffering of the

input data whereby one half of the DM is being

updated with new data whilst the data from the other

half is being processed .

 To determine the CM requirement, suppose that

the figures are firstly to be based upon the adoption of

two-level LUTs (as might be appropriate for long

transforms of order one million samples, say, with

each two-level LUT consisting of three one-level

LUTs [13]) for each of the three non-trivial twiddle

factors (in order to facilitate their simultaneous access)

required by the highly-parallel double butterfly, with

the length of each one-level LUT being of O  N .

Then the CM requirement, per PE, is given by

 CM(2) = 3×(4/N3) = N2
9  words

 = N8
81  bytes (15)

with the total memory requirement for the single-PE

solution, denoted MS
(2), given by

 MS
(2) =  N2 +  N2

9  words

 =  N2
9  +  N8

81  bytes (16)

and the total memory requirement for the dual-PE

solution, denoted MD
(2), given by

 MD
(2) =  N4 +  N9 words

 =  N9 +  N4
81  bytes (17)

 Suppose now that the CM figures are to be based

upon the adoption of three-level LUTs (as might be

appropriate for ultra-long transforms of order one

billion samples, say, with each three-level LUT

consisting of five one-level LUTs [13]) for each of the

three non-trivial twiddle factors (in order to facilitate

their simultaneous access) required by the highly

parallel double butterfly, with the length of each one-

level LUT being of O  3 N . Then the CM

requirement, per PE, is given by

 CM(3) = 3×(3 4/N5) = 15× 3 4/N words

 = 3 4/N4
135  bytes (18)

with the total memory requirement for the single-PE

solution, denoted MS
(3), given by

 6

a PE is taken to consist of a single RFHT module –

achieves a continuous real-time performance when

 TL < N (10)

clock cycles, which occurs when

 N ≤ 47 = 16,384 (11)

 The operation of the dual-PE solution is defined

by having one PE process all the even-addressed input

data sets and the other PE all the odd-addressed data

sets, as illustrated in Figure 4, with each input data set

comprising N real-valued samples. In this way, each

PE is able to process a new N-point data set every 2N

clock cycles with the dual-PE solution thereby able to

produce a new output data set of N samples every N

clock cycles. As a result, the dual-PE solution is able

to achieve a continuous real-time performance when

 TL < 2N (12)

clock cycles, which occurs when

 48 = 65,536 ≤ N ≤ 415 = 1,073,741,824 (13)

or up to one billion samples.

 Note that if the latency is sufficiently lower than

the update rate (which is N clock cycles for the single-

PE solution and 2N clock cycles for the dual-PE

solution), then there might well be sufficient down-

time available for carrying out those additional post-

DHT functions, such as the Hartley-space to Fourier-

space conversion or the PSD estimation, before the

next input data set is available for processing. Also,

assuming the input data and its subsequent processing

to be fixed-point in nature, the down-time may also be

used to deal with the incorporation of a suitable

scaling strategy – as will be briefly discussed in

Section 5 – which will involve an additional overhead,

in terms of latency, following the completion of each

stage of double butterflies.
3.2 Memory Requirement
 The DM requirement, per PE, is given by

 DM = 2N words = N2
9  bytes (14)

this figure accounting for the double-buffering of the

input data whereby one half of the DM is being

updated with new data whilst the data from the other

half is being processed .

 To determine the CM requirement, suppose that

the figures are firstly to be based upon the adoption of

two-level LUTs (as might be appropriate for long

transforms of order one million samples, say, with

each two-level LUT consisting of three one-level

LUTs [13]) for each of the three non-trivial twiddle

factors (in order to facilitate their simultaneous access)

required by the highly-parallel double butterfly, with

the length of each one-level LUT being of O  N .

Then the CM requirement, per PE, is given by

 CM(2) = 3×(4/N3) = N2
9  words

 = N8
81  bytes (15)

with the total memory requirement for the single-PE

solution, denoted MS
(2), given by

 MS
(2) =  N2 +  N2

9  words

 =  N2
9  +  N8

81  bytes (16)

and the total memory requirement for the dual-PE

solution, denoted MD
(2), given by

 MD
(2) =  N4 +  N9 words

 =  N9 +  N4
81  bytes (17)

 Suppose now that the CM figures are to be based

upon the adoption of three-level LUTs (as might be

appropriate for ultra-long transforms of order one

billion samples, say, with each three-level LUT

consisting of five one-level LUTs [13]) for each of the

three non-trivial twiddle factors (in order to facilitate

their simultaneous access) required by the highly

parallel double butterfly, with the length of each one-

level LUT being of O  3 N . Then the CM

requirement, per PE, is given by

 CM(3) = 3×(3 4/N5) = 15× 3 4/N words

 = 3 4/N4
135  bytes (18)

with the total memory requirement for the single-PE

solution, denoted MS
(3), given by

 6

a PE is taken to consist of a single RFHT module –

achieves a continuous real-time performance when

 TL < N (10)

clock cycles, which occurs when

 N ≤ 47 = 16,384 (11)

 The operation of the dual-PE solution is defined

by having one PE process all the even-addressed input

data sets and the other PE all the odd-addressed data

sets, as illustrated in Figure 4, with each input data set

comprising N real-valued samples. In this way, each

PE is able to process a new N-point data set every 2N

clock cycles with the dual-PE solution thereby able to

produce a new output data set of N samples every N

clock cycles. As a result, the dual-PE solution is able

to achieve a continuous real-time performance when

 TL < 2N (12)

clock cycles, which occurs when

 48 = 65,536 ≤ N ≤ 415 = 1,073,741,824 (13)

or up to one billion samples.

 Note that if the latency is sufficiently lower than

the update rate (which is N clock cycles for the single-

PE solution and 2N clock cycles for the dual-PE

solution), then there might well be sufficient down-

time available for carrying out those additional post-

DHT functions, such as the Hartley-space to Fourier-

space conversion or the PSD estimation, before the

next input data set is available for processing. Also,

assuming the input data and its subsequent processing

to be fixed-point in nature, the down-time may also be

used to deal with the incorporation of a suitable

scaling strategy – as will be briefly discussed in

Section 5 – which will involve an additional overhead,

in terms of latency, following the completion of each

stage of double butterflies.
3.2 Memory Requirement
 The DM requirement, per PE, is given by

 DM = 2N words = N2
9  bytes (14)

this figure accounting for the double-buffering of the

input data whereby one half of the DM is being

updated with new data whilst the data from the other

half is being processed .

 To determine the CM requirement, suppose that

the figures are firstly to be based upon the adoption of

two-level LUTs (as might be appropriate for long

transforms of order one million samples, say, with

each two-level LUT consisting of three one-level

LUTs [13]) for each of the three non-trivial twiddle

factors (in order to facilitate their simultaneous access)

required by the highly-parallel double butterfly, with

the length of each one-level LUT being of O  N .

Then the CM requirement, per PE, is given by

 CM(2) = 3×(4/N3) = N2
9  words

 = N8
81  bytes (15)

with the total memory requirement for the single-PE

solution, denoted MS
(2), given by

 MS
(2) =  N2 +  N2

9  words

 =  N2
9  +  N8

81  bytes (16)

and the total memory requirement for the dual-PE

solution, denoted MD
(2), given by

 MD
(2) =  N4 +  N9 words

 =  N9 +  N4
81  bytes (17)

 Suppose now that the CM figures are to be based

upon the adoption of three-level LUTs (as might be

appropriate for ultra-long transforms of order one

billion samples, say, with each three-level LUT

consisting of five one-level LUTs [13]) for each of the

three non-trivial twiddle factors (in order to facilitate

their simultaneous access) required by the highly

parallel double butterfly, with the length of each one-

level LUT being of O  3 N . Then the CM

requirement, per PE, is given by

 CM(3) = 3×(3 4/N5) = 15× 3 4/N words

 = 3 4/N4
135  bytes (18)

with the total memory requirement for the single-PE

solution, denoted MS
(3), given by

 6

a PE is taken to consist of a single RFHT module –

achieves a continuous real-time performance when

 TL < N (10)

clock cycles, which occurs when

 N ≤ 47 = 16,384 (11)

 The operation of the dual-PE solution is defined

by having one PE process all the even-addressed input

data sets and the other PE all the odd-addressed data

sets, as illustrated in Figure 4, with each input data set

comprising N real-valued samples. In this way, each

PE is able to process a new N-point data set every 2N

clock cycles with the dual-PE solution thereby able to

produce a new output data set of N samples every N

clock cycles. As a result, the dual-PE solution is able

to achieve a continuous real-time performance when

 TL < 2N (12)

clock cycles, which occurs when

 48 = 65,536 ≤ N ≤ 415 = 1,073,741,824 (13)

or up to one billion samples.

 Note that if the latency is sufficiently lower than

the update rate (which is N clock cycles for the single-

PE solution and 2N clock cycles for the dual-PE

solution), then there might well be sufficient down-

time available for carrying out those additional post-

DHT functions, such as the Hartley-space to Fourier-

space conversion or the PSD estimation, before the

next input data set is available for processing. Also,

assuming the input data and its subsequent processing

to be fixed-point in nature, the down-time may also be

used to deal with the incorporation of a suitable

scaling strategy – as will be briefly discussed in

Section 5 – which will involve an additional overhead,

in terms of latency, following the completion of each

stage of double butterflies.
3.2 Memory Requirement
 The DM requirement, per PE, is given by

 DM = 2N words = N2
9  bytes (14)

this figure accounting for the double-buffering of the

input data whereby one half of the DM is being

updated with new data whilst the data from the other

half is being processed .

 To determine the CM requirement, suppose that

the figures are firstly to be based upon the adoption of

two-level LUTs (as might be appropriate for long

transforms of order one million samples, say, with

each two-level LUT consisting of three one-level

LUTs [13]) for each of the three non-trivial twiddle

factors (in order to facilitate their simultaneous access)

required by the highly-parallel double butterfly, with

the length of each one-level LUT being of O  N .

Then the CM requirement, per PE, is given by

 CM(2) = 3×(4/N3) = N2
9  words

 = N8
81  bytes (15)

with the total memory requirement for the single-PE

solution, denoted MS
(2), given by

 MS
(2) =  N2 +  N2

9  words

 =  N2
9  +  N8

81  bytes (16)

and the total memory requirement for the dual-PE

solution, denoted MD
(2), given by

 MD
(2) =  N4 +  N9 words

 =  N9 +  N4
81  bytes (17)

 Suppose now that the CM figures are to be based

upon the adoption of three-level LUTs (as might be

appropriate for ultra-long transforms of order one

billion samples, say, with each three-level LUT

consisting of five one-level LUTs [13]) for each of the

three non-trivial twiddle factors (in order to facilitate

their simultaneous access) required by the highly

parallel double butterfly, with the length of each one-

level LUT being of O  3 N . Then the CM

requirement, per PE, is given by

 CM(3) = 3×(3 4/N5) = 15× 3 4/N words

 = 3 4/N4
135  bytes (18)

with the total memory requirement for the single-PE

solution, denoted MS
(3), given by

 6

a PE is taken to consist of a single RFHT module –

achieves a continuous real-time performance when

 TL < N (10)

clock cycles, which occurs when

 N ≤ 47 = 16,384 (11)

 The operation of the dual-PE solution is defined

by having one PE process all the even-addressed input

data sets and the other PE all the odd-addressed data

sets, as illustrated in Figure 4, with each input data set

comprising N real-valued samples. In this way, each

PE is able to process a new N-point data set every 2N

clock cycles with the dual-PE solution thereby able to

produce a new output data set of N samples every N

clock cycles. As a result, the dual-PE solution is able

to achieve a continuous real-time performance when

 TL < 2N (12)

clock cycles, which occurs when

 48 = 65,536 ≤ N ≤ 415 = 1,073,741,824 (13)

or up to one billion samples.

 Note that if the latency is sufficiently lower than

the update rate (which is N clock cycles for the single-

PE solution and 2N clock cycles for the dual-PE

solution), then there might well be sufficient down-

time available for carrying out those additional post-

DHT functions, such as the Hartley-space to Fourier-

space conversion or the PSD estimation, before the

next input data set is available for processing. Also,

assuming the input data and its subsequent processing

to be fixed-point in nature, the down-time may also be

used to deal with the incorporation of a suitable

scaling strategy – as will be briefly discussed in

Section 5 – which will involve an additional overhead,

in terms of latency, following the completion of each

stage of double butterflies.
3.2 Memory Requirement
 The DM requirement, per PE, is given by

 DM = 2N words = N2
9  bytes (14)

this figure accounting for the double-buffering of the

input data whereby one half of the DM is being

updated with new data whilst the data from the other

half is being processed .

 To determine the CM requirement, suppose that

the figures are firstly to be based upon the adoption of

two-level LUTs (as might be appropriate for long

transforms of order one million samples, say, with

each two-level LUT consisting of three one-level

LUTs [13]) for each of the three non-trivial twiddle

factors (in order to facilitate their simultaneous access)

required by the highly-parallel double butterfly, with

the length of each one-level LUT being of O  N .

Then the CM requirement, per PE, is given by

 CM(2) = 3×(4/N3) = N2
9  words

 = N8
81  bytes (15)

with the total memory requirement for the single-PE

solution, denoted MS
(2), given by

 MS
(2) =  N2 +  N2

9  words

 =  N2
9  +  N8

81  bytes (16)

and the total memory requirement for the dual-PE

solution, denoted MD
(2), given by

 MD
(2) =  N4 +  N9 words

 =  N9 +  N4
81  bytes (17)

 Suppose now that the CM figures are to be based

upon the adoption of three-level LUTs (as might be

appropriate for ultra-long transforms of order one

billion samples, say, with each three-level LUT

consisting of five one-level LUTs [13]) for each of the

three non-trivial twiddle factors (in order to facilitate

their simultaneous access) required by the highly

parallel double butterfly, with the length of each one-

level LUT being of O  3 N . Then the CM

requirement, per PE, is given by

 CM(3) = 3×(3 4/N5) = 15× 3 4/N words

 = 3 4/N4
135  bytes (18)

with the total memory requirement for the single-PE

solution, denoted MS
(3), given by

 7

 MS
(3) =  N2 +  3 4/N15 words

 =  N2
9  +  3 4/N4

135  bytes (19)

and the total memory requirement for the dual-PE

solution, denoted MD
(3), given by

 MD
(3) =  N4 +  3 4/N30 words

 =  N9 +  3 4/N2
135  bytes (20)

 Note that the superscripts, in each case, simply

refer to the size of the multi-level LUT-based

coefficient generation scheme to be adopted, which is

set to either 2 for the two-level case or 3 for the three-

level case.

3.3 Arithmetic Requirement

 With the adoption of the two-level LUT-based

coefficient generation scheme, the twiddle factors

require three sets of arithmetic, per PE, each of: 4

multipliers and 8 adders, yielding a total per PE,

denoted ATF
(2), as given by

 ATF
(2) = 12 multipliers & 24 adders (21)

whilst the double butterfly computation requires a total

per PE, denoted ADB
(2), as given by

 ADB
(2) = 9 multipliers & 25 adders (22)

Thus, the total arithmetic requirement for the single-

PE solution, denoted AS
(2), is given by

 AS
(2) = 21 multipliers & 49 adders (23)

whilst the total arithmetic requirement for the dual-PE

solution, denoted AD
(2), is given by

 AD
(2) = 42 multipliers & 98 adders (24)

 Similarly, with the adoption of the three-level

LUT-based coefficient generation scheme, the twiddle

factors require three sets of arithmetic, per PE, each of:

8 multipliers and 16 adders, yielding a total per PE,

denoted ATF
(3), as given by

 ATF
(3) = 24 multipliers & 48 adders (25)

whilst the double butterfly computation requires a total

per PE, denoted ADB
(3), as given by

 ADB
(3) = 9 multipliers & 25 adders (26)

Thus, the total arithmetic requirement for the single-

PE solution, denoted AS
(3), is given by

 AS
(3) = 33 multipliers & 73 adders (27)

whilst the total arithmetic requirement for the dual-PE

solution, denoted AD
(3), is given by

 AD
(3) = 66 multipliers & 146 adders (28)

 Note, as before, that the superscripts, in each

case, simply refer to the size of the multi-level

LUT-based coefficient generation scheme to be

adopted, which is set to either 2 for the two-level case

or 3 for the three-level case.

3.4 Discussion

 The total resource requirements for the one

million-point and one billion-point transforms are as

outlined in Table 2, from which it is evident that the

only change in the two sets of figures lies in the

memory requirement arising primarily from the three

orders of magnitude difference in the sizes of the

input/output data sets. The difference in the memory

requirements of the two-level LUTs (for one million-

point transform) and three-level LUTs (for one billion-

point transform) for the coefficient storage is minimal

in comparison. The resource requirements for the

45-point (or one thousand-point) transform – which

requires a single-PE solution and uses the simple

single-quadrant scheme for the coefficient generation

and storage [13] – are provided purely for the purposes

of comparison.

 Note that with the adoption of a clock frequency

of 233 MHz, say, the dual-PE solution would be able

to produce a new one million-point output data set

approximately every 4.29 ms (or, equivalently, 233

new one million-point output data sets every second).

The throughput of the single-PE solution is achieved

primarily through the eight-fold parallelism attained by

the double butterfly, whilst the throughput of the dual-

PE solution is further enhanced through the

simultaneous operation of the two PEs.

4. Mapping of Long Transforms onto FPGA

 This section provides a brief discussion of two

hypothetical implementations which illustrate how the

dual-PE solution to the computation of two long real-

 7

 MS
(3) =  N2 +  3 4/N15 words

 =  N2
9  +  3 4/N4

135  bytes (19)

and the total memory requirement for the dual-PE

solution, denoted MD
(3), given by

 MD
(3) =  N4 +  3 4/N30 words

 =  N9 +  3 4/N2
135  bytes (20)

 Note that the superscripts, in each case, simply

refer to the size of the multi-level LUT-based

coefficient generation scheme to be adopted, which is

set to either 2 for the two-level case or 3 for the three-

level case.

3.3 Arithmetic Requirement

 With the adoption of the two-level LUT-based

coefficient generation scheme, the twiddle factors

require three sets of arithmetic, per PE, each of: 4

multipliers and 8 adders, yielding a total per PE,

denoted ATF
(2), as given by

 ATF
(2) = 12 multipliers & 24 adders (21)

whilst the double butterfly computation requires a total

per PE, denoted ADB
(2), as given by

 ADB
(2) = 9 multipliers & 25 adders (22)

Thus, the total arithmetic requirement for the single-

PE solution, denoted AS
(2), is given by

 AS
(2) = 21 multipliers & 49 adders (23)

whilst the total arithmetic requirement for the dual-PE

solution, denoted AD
(2), is given by

 AD
(2) = 42 multipliers & 98 adders (24)

 Similarly, with the adoption of the three-level

LUT-based coefficient generation scheme, the twiddle

factors require three sets of arithmetic, per PE, each of:

8 multipliers and 16 adders, yielding a total per PE,

denoted ATF
(3), as given by

 ATF
(3) = 24 multipliers & 48 adders (25)

whilst the double butterfly computation requires a total

per PE, denoted ADB
(3), as given by

 ADB
(3) = 9 multipliers & 25 adders (26)

Thus, the total arithmetic requirement for the single-

PE solution, denoted AS
(3), is given by

 AS
(3) = 33 multipliers & 73 adders (27)

whilst the total arithmetic requirement for the dual-PE

solution, denoted AD
(3), is given by

 AD
(3) = 66 multipliers & 146 adders (28)

 Note, as before, that the superscripts, in each

case, simply refer to the size of the multi-level

LUT-based coefficient generation scheme to be

adopted, which is set to either 2 for the two-level case

or 3 for the three-level case.

3.4 Discussion

 The total resource requirements for the one

million-point and one billion-point transforms are as

outlined in Table 2, from which it is evident that the

only change in the two sets of figures lies in the

memory requirement arising primarily from the three

orders of magnitude difference in the sizes of the

input/output data sets. The difference in the memory

requirements of the two-level LUTs (for one million-

point transform) and three-level LUTs (for one billion-

point transform) for the coefficient storage is minimal

in comparison. The resource requirements for the

45-point (or one thousand-point) transform – which

requires a single-PE solution and uses the simple

single-quadrant scheme for the coefficient generation

and storage [13] – are provided purely for the purposes

of comparison.

 Note that with the adoption of a clock frequency

of 233 MHz, say, the dual-PE solution would be able

to produce a new one million-point output data set

approximately every 4.29 ms (or, equivalently, 233

new one million-point output data sets every second).

The throughput of the single-PE solution is achieved

primarily through the eight-fold parallelism attained by

the double butterfly, whilst the throughput of the dual-

PE solution is further enhanced through the

simultaneous operation of the two PEs.

4. Mapping of Long Transforms onto FPGA

 This section provides a brief discussion of two

hypothetical implementations which illustrate how the

dual-PE solution to the computation of two long real-

Volume 2 | Issue 4 | 8Eng OA, 2024

Note that the superscripts, in each case, simply refer to the size
of the multi-level LUT-based coefficient generation scheme to be
adopted, which is set to either 2 for the two-level case or 3 for the
three-level case.

3.3 Arithmetic Requirement
With the adoption of the two-level LUT-based coefficient generation
scheme, the twiddle factors require three sets of arithmetic, per PE,
each of: 4 multipliers and 8 adders, yielding a total per PE, denoted
ATF

(2), as given by

ATF
(2) = 12 multipliers & 24 adders (21)

whilst the double butterfly computation requires a total per PE,
denoted ADB

(2), as given by

ADB
(2) = 9 multipliers & 25 adders	 (22)

Thus, the total arithmetic requirement for the single-PE solution,
denoted AS

(2), is given by

AS
(2) = 21 multipliers & 49 adders (23)

whilst the total arithmetic requirement for the dual-PE solution,
denoted AD

(2), is given by

AD
(2) = 42 multipliers & 98 adders 	 (24)

Similarly, with the adoption of the three-level LUT-based
coefficient generation scheme, the twiddle factors require three
sets of arithmetic, per PE, each of: 8 multipliers and 16 adders,
yielding a total per PE, denoted ATF

(3), as given by

ATF
(3) = 24 multipliers & 48 adders 	 (25)

whilst the double butterfly computation requires a total per PE,
denoted ADB

(3), as given by

ADB
(3) = 9 multipliers & 25 adders 	 (26)

Thus, the total arithmetic requirement for the single-PE solution,
denoted AS

(3), is given by

AS
(3) = 33 multipliers & 73 adders 	 (27)

whilst the total arithmetic requirement for the dual-PE solution,
denoted AD

(3), is given by

AD
(3) = 66 multipliers & 146 adders	 (28)

Note, as before, that the superscripts, in each case, simply refer
to the size of the multi-level LUT based coefficient generation
scheme to be adopted, which is set to either 2 for the two-level
case or 3 for the three-level case.

3.4 Discussion
The total resource requirements for the one million-point and one
billion-point transforms are as outlined in Table 2, from which it
is evident that the only change in the two sets of figures lies in
the memory requirement arising primarily from the three orders
of magnitude difference in the sizes of the input/output data sets.
The difference in the memory requirements of the two-level LUTs
(for one million-point transform) and three-level LUTs (for one
billion-point transform) for the coefficient storage is minimal in
comparison. The resource requirements for the 45-point (or one
thousand-point) transform – which requires a single-PE solution
and uses the simple single-quadrant scheme for the coefficient
generation and storage – are provided purely for the purposes of
comparison [13].

 7

 MS
(3) =  N2 +  3 4/N15 words

 =  N2
9  +  3 4/N4

135  bytes (19)

and the total memory requirement for the dual-PE

solution, denoted MD
(3), given by

 MD
(3) =  N4 +  3 4/N30 words

 =  N9 +  3 4/N2
135  bytes (20)

 Note that the superscripts, in each case, simply

refer to the size of the multi-level LUT-based

coefficient generation scheme to be adopted, which is

set to either 2 for the two-level case or 3 for the three-

level case.

3.3 Arithmetic Requirement

 With the adoption of the two-level LUT-based

coefficient generation scheme, the twiddle factors

require three sets of arithmetic, per PE, each of: 4

multipliers and 8 adders, yielding a total per PE,

denoted ATF
(2), as given by

 ATF
(2) = 12 multipliers & 24 adders (21)

whilst the double butterfly computation requires a total

per PE, denoted ADB
(2), as given by

 ADB
(2) = 9 multipliers & 25 adders (22)

Thus, the total arithmetic requirement for the single-

PE solution, denoted AS
(2), is given by

 AS
(2) = 21 multipliers & 49 adders (23)

whilst the total arithmetic requirement for the dual-PE

solution, denoted AD
(2), is given by

 AD
(2) = 42 multipliers & 98 adders (24)

 Similarly, with the adoption of the three-level

LUT-based coefficient generation scheme, the twiddle

factors require three sets of arithmetic, per PE, each of:

8 multipliers and 16 adders, yielding a total per PE,

denoted ATF
(3), as given by

 ATF
(3) = 24 multipliers & 48 adders (25)

whilst the double butterfly computation requires a total

per PE, denoted ADB
(3), as given by

 ADB
(3) = 9 multipliers & 25 adders (26)

Thus, the total arithmetic requirement for the single-

PE solution, denoted AS
(3), is given by

 AS
(3) = 33 multipliers & 73 adders (27)

whilst the total arithmetic requirement for the dual-PE

solution, denoted AD
(3), is given by

 AD
(3) = 66 multipliers & 146 adders (28)

 Note, as before, that the superscripts, in each

case, simply refer to the size of the multi-level

LUT-based coefficient generation scheme to be

adopted, which is set to either 2 for the two-level case

or 3 for the three-level case.

3.4 Discussion

 The total resource requirements for the one

million-point and one billion-point transforms are as

outlined in Table 2, from which it is evident that the

only change in the two sets of figures lies in the

memory requirement arising primarily from the three

orders of magnitude difference in the sizes of the

input/output data sets. The difference in the memory

requirements of the two-level LUTs (for one million-

point transform) and three-level LUTs (for one billion-

point transform) for the coefficient storage is minimal

in comparison. The resource requirements for the

45-point (or one thousand-point) transform – which

requires a single-PE solution and uses the simple

single-quadrant scheme for the coefficient generation

and storage [13] – are provided purely for the purposes

of comparison.

 Note that with the adoption of a clock frequency

of 233 MHz, say, the dual-PE solution would be able

to produce a new one million-point output data set

approximately every 4.29 ms (or, equivalently, 233

new one million-point output data sets every second).

The throughput of the single-PE solution is achieved

primarily through the eight-fold parallelism attained by

the double butterfly, whilst the throughput of the dual-

PE solution is further enhanced through the

simultaneous operation of the two PEs.

4. Mapping of Long Transforms onto FPGA

 This section provides a brief discussion of two

hypothetical implementations which illustrate how the

dual-PE solution to the computation of two long real-

 7

 MS
(3) =  N2 +  3 4/N15 words

 =  N2
9  +  3 4/N4

135  bytes (19)

and the total memory requirement for the dual-PE

solution, denoted MD
(3), given by

 MD
(3) =  N4 +  3 4/N30 words

 =  N9 +  3 4/N2
135  bytes (20)

 Note that the superscripts, in each case, simply

refer to the size of the multi-level LUT-based

coefficient generation scheme to be adopted, which is

set to either 2 for the two-level case or 3 for the three-

level case.

3.3 Arithmetic Requirement

 With the adoption of the two-level LUT-based

coefficient generation scheme, the twiddle factors

require three sets of arithmetic, per PE, each of: 4

multipliers and 8 adders, yielding a total per PE,

denoted ATF
(2), as given by

 ATF
(2) = 12 multipliers & 24 adders (21)

whilst the double butterfly computation requires a total

per PE, denoted ADB
(2), as given by

 ADB
(2) = 9 multipliers & 25 adders (22)

Thus, the total arithmetic requirement for the single-

PE solution, denoted AS
(2), is given by

 AS
(2) = 21 multipliers & 49 adders (23)

whilst the total arithmetic requirement for the dual-PE

solution, denoted AD
(2), is given by

 AD
(2) = 42 multipliers & 98 adders (24)

 Similarly, with the adoption of the three-level

LUT-based coefficient generation scheme, the twiddle

factors require three sets of arithmetic, per PE, each of:

8 multipliers and 16 adders, yielding a total per PE,

denoted ATF
(3), as given by

 ATF
(3) = 24 multipliers & 48 adders (25)

whilst the double butterfly computation requires a total

per PE, denoted ADB
(3), as given by

 ADB
(3) = 9 multipliers & 25 adders (26)

Thus, the total arithmetic requirement for the single-

PE solution, denoted AS
(3), is given by

 AS
(3) = 33 multipliers & 73 adders (27)

whilst the total arithmetic requirement for the dual-PE

solution, denoted AD
(3), is given by

 AD
(3) = 66 multipliers & 146 adders (28)

 Note, as before, that the superscripts, in each

case, simply refer to the size of the multi-level

LUT-based coefficient generation scheme to be

adopted, which is set to either 2 for the two-level case

or 3 for the three-level case.

3.4 Discussion

 The total resource requirements for the one

million-point and one billion-point transforms are as

outlined in Table 2, from which it is evident that the

only change in the two sets of figures lies in the

memory requirement arising primarily from the three

orders of magnitude difference in the sizes of the

input/output data sets. The difference in the memory

requirements of the two-level LUTs (for one million-

point transform) and three-level LUTs (for one billion-

point transform) for the coefficient storage is minimal

in comparison. The resource requirements for the

45-point (or one thousand-point) transform – which

requires a single-PE solution and uses the simple

single-quadrant scheme for the coefficient generation

and storage [13] – are provided purely for the purposes

of comparison.

 Note that with the adoption of a clock frequency

of 233 MHz, say, the dual-PE solution would be able

to produce a new one million-point output data set

approximately every 4.29 ms (or, equivalently, 233

new one million-point output data sets every second).

The throughput of the single-PE solution is achieved

primarily through the eight-fold parallelism attained by

the double butterfly, whilst the throughput of the dual-

PE solution is further enhanced through the

simultaneous operation of the two PEs.

4. Mapping of Long Transforms onto FPGA

 This section provides a brief discussion of two

hypothetical implementations which illustrate how the

dual-PE solution to the computation of two long real-

Volume 2 | Issue 4 | 9Eng OA, 2024

 17

 Note: 1) two-level LUTs used for one million-point transform & three-level LUTs used for one billion-point transform
 2) one thousand-point transform requires single-PE solution & single-level LUT for single-quadrant storage scheme

Table 2 – space and time complexities of dual-PE solutions to one million-point and one billion-point transforms

Size

of

Transform

Arithmetic Complexity
Memory Requirement

(words)

Time Complexity
(update periods)

Double Butterflies Coefficient Generators
Data Memory

(Double-Buffered)

Coefficient

Memory

Update Time /

Latency Multipliers Adders Multipliers Adders

N = 45

(one thousand)
9 25 0 6 2 × N = 2 × 45 N4

13  = 443 Nlog8
1

4 = 8
5

N = 410

(one million)
2 × 9 = 18 2 × 25 = 50 2 × 12 = 24 2 × 24 = 48 2 × (2 × N) = 411  N2

332  = 644
9  Nlog8

1
4 = 4

5

N = 415

(one billion)
2 × 9 = 18 2 × 25 = 50 2 × 24 = 48 2 × 48 = 96 2 × (2 × N) = 416  3 4/N532  ≈ 745

6  Nlog8
1

4 = 8
15

 17

 Note: 1) two-level LUTs used for one million-point transform & three-level LUTs used for one billion-point transform
 2) one thousand-point transform requires single-PE solution & single-level LUT for single-quadrant storage scheme

Table 2 – space and time complexities of dual-PE solutions to one million-point and one billion-point transforms

Size

of

Transform

Arithmetic Complexity
Memory Requirement

(words)

Time Complexity
(update periods)

Double Butterflies Coefficient Generators
Data Memory

(Double-Buffered)

Coefficient

Memory

Update Time /

Latency Multipliers Adders Multipliers Adders

N = 45

(one thousand)
9 25 0 6 2 × N = 2 × 45 N4

13  = 443 Nlog8
1

4 = 8
5

N = 410

(one million)
2 × 9 = 18 2 × 25 = 50 2 × 12 = 24 2 × 24 = 48 2 × (2 × N) = 411  N2

332  = 644
9  Nlog8

1
4 = 4

5

N = 415

(one billion)
2 × 9 = 18 2 × 25 = 50 2 × 24 = 48 2 × 48 = 96 2 × (2 × N) = 416  3 4/N532  ≈ 745

6  Nlog8
1

4 = 8
15

Table 2: Space and Time Complexities of Dual-PE Solutions to One Million-Point and One Billion-Point Transforms

Note that with the adoption of a clock frequency of 233 MHz, say,
the dual-PE solution would be able to produce a new one million-
point output data set approximately every 4.29 ms (or, equivalently,
233 new one million-point output data sets every second). The
throughput of the single-PE solution is achieved primarily through
the eight-fold parallelism attained by the double butterfly, whilst
the throughput of the dual-PE solution is further enhanced through
the simultaneous operation of the two PEs.

4. Mapping of Long Transforms onto FPGA
This section provides a brief discussion of two hypothetical
implementations which illustrate how the dual-PE solution to
the computation of two long real-data transforms might each be
mapped onto a single commercially-available FPGA device using
only fast on-chip RAM for the data and coefficient storage – as
measured in binary KBytes and MBytes.

4.1 One Million-Point Transform
Suppose, for our first example, that the real-data transform of
interest is of length

N = 410				 (29)

which equates to one million samples. Then from the timing
constraints of Section 3.1, the solution requires the adoption of
the dual-PE architecture in order to maintain continuous real-time
operation as the associated latency, TL, is given from Equation 9 by

clock cycles, which is clearly in excess of the update period of N
clock cycles for each input data set, but less than twice the update
period of 2N clock cycles.

The proposed computing device for its hypothetical implementation
is taken to be a Virtex UltraScale (model VU125) FPGA, which
has a total memory capacity of approximately 13 MBytes of
RAM – this comprising 11.75 MBytes of block RAM and 1.25
MBytes of distributed RAM – and an arithmetic provision of
1200 fast multipliers, each of size (18 bit)×(27-bit). Then the
two sets of double-buffered DM data, where each set involves
2 × 410 ×2.25 bytes of input data, when added to the two sets of
CM data, where each set is based upon the adoption of a two-
level LUT-based scheme for the coefficient generation and storage
and involves approximately 10.2 KBytes of data, yields a total
memory requirement of approximately 9 MBytes. This equates to
the utilization, denoted UM, of the block RAM available on the
chosen device, of

UM ≈ 77%				 (31)

leaving the distributed RAM to cater for additional processing
tasks needing to be performed on the device. The corresponding
arithmetic requirement, on the other hand, is minimal, involving
the use of just 42 of the 1200 fast multipliers available on the
device which equates to the utilization, denoted UA, of just

UA ≈ 3.5%				 (32)

whilst the 86 associated adders may be easily and efficiently
implemented in silicon through the use of programmable logic.

4.2 Four Million-Point Transform
Suppose, for our second example, that the real-data transform of
interest is of length

N = 411				 (33)

 8

data transforms might each be mapped onto a single

commercially-available FPGA device using only fast

on-chip RAM for the data and coefficient storage – as

measured in binary KBytes and MBytes.

4.1 One Million-Point Transform

 Suppose, for our first example, that the real-data

transform of interest is of length

 N = 410 (29)

which equates to one million samples. Then from the

timing constraints of Section 3.1, the solution requires

the adoption of the dual-PE architecture in order to

maintain continuous real-time operation as the

associated latency, TL, is given from Equation 9 by

 TL ≈ N4
5 (30)

clock cycles, which is clearly in excess of the update

period of N clock cycles for each input data set, but

less than twice the update period of 2N clock cycles.

 The proposed computing device for its

hypothetical implementation is taken to be a Virtex

UltraScale (model VU125) FPGA, which has a total

memory capacity of approximately 13 MBytes of

RAM – this comprising 11.75 MBytes of block RAM

and 1.25 MBytes of distributed RAM – and an

arithmetic provision of 1200 fast multipliers, each of

size (18-bit)×(27-bit). Then the two sets of double-

buffered DM data, where each set involves

25.242 10  bytes of input data, when added to the

two sets of CM data, where each set is based upon the

adoption of a two-level LUT-based scheme for the

coefficient generation and storage and involves

approximately 10.2 KBytes of data, yields a total

memory requirement of approximately 9 MBytes. This

equates to the utilization, denoted UM, of the block

RAM available on the chosen device, of

 UM ≈ 77% (31)

leaving the distributed RAM to cater for additional

processing tasks needing to be performed on the

device. The corresponding arithmetic requirement, on

the other hand, is minimal, involving the use of just 42

of the 1200 fast multipliers available on the device

which equates to the utilization, denoted UA, of just

 UA ≈ 3.5% (32)

whilst the 86 associated adders may be easily and

efficiently implemented in silicon through the use of

programmable logic.

4.2 Four Million-Point Transform

 Suppose, for our second example, that the real-

data transform of interest is of length

 N = 411 (33)

which equates to four million samples. Then, as with

the first example, the solution requires the adoption of

the dual-PE architecture in order to maintain

continuous real-time operation as the associated

latency, TL, is given from Equation 9 by

 TL ≈ N8
11 (34)

clock cycles, which is clearly in excess of the update

period of N clock cycles for each input data set, but

less than twice the update period of 2N clock cycles.

 The proposed computing device for its

hypothetical implementation is taken to be a Virtex

UltraScale+ (model VU9P) FPGA, which has a total

memory capacity of approximately 46.25 MBytes of

RAM – this comprising 9.5 MBytes of block RAM,

33.75 MBytes of Ultra RAM and 3 MBytes of

distributed RAM – and an arithmetic provision of 6840

fast multipliers, each of size (18-bit)×(27-bit). Then

the two sets of double-buffered DM data, where each

set involves 25.242 11 bytes of input data, when

added to the two sets of CM data, where each set is

again based upon the adoption of a two-level LUT-

based scheme for the coefficient generation and

storage and involves approximately 20.25 KBytes of

data, yields a total memory requirement of

approximately 36 MBytes. This equates to the

utilization, denoted UM, of the block+Ultra RAM

available on the chosen device, of

 UM ≈ 83% (35)

(assuming that the Ultra RAM is able to be effectively

utilized) leaving the distributed RAM to cater for

 8

data transforms might each be mapped onto a single

commercially-available FPGA device using only fast

on-chip RAM for the data and coefficient storage – as

measured in binary KBytes and MBytes.

4.1 One Million-Point Transform

 Suppose, for our first example, that the real-data

transform of interest is of length

 N = 410 (29)

which equates to one million samples. Then from the

timing constraints of Section 3.1, the solution requires

the adoption of the dual-PE architecture in order to

maintain continuous real-time operation as the

associated latency, TL, is given from Equation 9 by

 TL ≈ N4
5 (30)

clock cycles, which is clearly in excess of the update

period of N clock cycles for each input data set, but

less than twice the update period of 2N clock cycles.

 The proposed computing device for its

hypothetical implementation is taken to be a Virtex

UltraScale (model VU125) FPGA, which has a total

memory capacity of approximately 13 MBytes of

RAM – this comprising 11.75 MBytes of block RAM

and 1.25 MBytes of distributed RAM – and an

arithmetic provision of 1200 fast multipliers, each of

size (18-bit)×(27-bit). Then the two sets of double-

buffered DM data, where each set involves

25.242 10  bytes of input data, when added to the

two sets of CM data, where each set is based upon the

adoption of a two-level LUT-based scheme for the

coefficient generation and storage and involves

approximately 10.2 KBytes of data, yields a total

memory requirement of approximately 9 MBytes. This

equates to the utilization, denoted UM, of the block

RAM available on the chosen device, of

 UM ≈ 77% (31)

leaving the distributed RAM to cater for additional

processing tasks needing to be performed on the

device. The corresponding arithmetic requirement, on

the other hand, is minimal, involving the use of just 42

of the 1200 fast multipliers available on the device

which equates to the utilization, denoted UA, of just

 UA ≈ 3.5% (32)

whilst the 86 associated adders may be easily and

efficiently implemented in silicon through the use of

programmable logic.

4.2 Four Million-Point Transform

 Suppose, for our second example, that the real-

data transform of interest is of length

 N = 411 (33)

which equates to four million samples. Then, as with

the first example, the solution requires the adoption of

the dual-PE architecture in order to maintain

continuous real-time operation as the associated

latency, TL, is given from Equation 9 by

 TL ≈ N8
11 (34)

clock cycles, which is clearly in excess of the update

period of N clock cycles for each input data set, but

less than twice the update period of 2N clock cycles.

 The proposed computing device for its

hypothetical implementation is taken to be a Virtex

UltraScale+ (model VU9P) FPGA, which has a total

memory capacity of approximately 46.25 MBytes of

RAM – this comprising 9.5 MBytes of block RAM,

33.75 MBytes of Ultra RAM and 3 MBytes of

distributed RAM – and an arithmetic provision of 6840

fast multipliers, each of size (18-bit)×(27-bit). Then

the two sets of double-buffered DM data, where each

set involves 25.242 11 bytes of input data, when

added to the two sets of CM data, where each set is

again based upon the adoption of a two-level LUT-

based scheme for the coefficient generation and

storage and involves approximately 20.25 KBytes of

data, yields a total memory requirement of

approximately 36 MBytes. This equates to the

utilization, denoted UM, of the block+Ultra RAM

available on the chosen device, of

 UM ≈ 83% (35)

(assuming that the Ultra RAM is able to be effectively

utilized) leaving the distributed RAM to cater for

Volume 2 | Issue 4 | 10Eng OA, 2024

which equates to four million samples. Then, as with the first
example, the solution requires the adoption of the dual-PE
architecture in order to maintain continuous real-time operation as
the associated latency, TL, is given from Equation 9 by

clock cycles, which is clearly in excess of the update period of N clock
cycles for each input data set, but less than twice the update period of
2N clock cycles.

 The proposed computing device for its hypothetical implementation
is taken to be a Virtex UltraScale+ (model VU9P) FPGA, which has a
total memory capacity of approximately 46.25 MBytes of RAM – this
comprising 9.5 MBytes of block RAM, 33.75 MBytes of Ultra RAM
and 3 MBytes of distributed RAM – and an arithmetic provision of
6840 fast multipliers, each of size (18 bit)×(27-bit). Then the two sets
of double-buffered DM data, where each set involves 2 × 411 ×2.25
bytes of input data, when added to the two sets of CM data, where each
set is again based upon the adoption of a two-level LUT-based scheme
for the coefficient generation and storage and involves approximately
20.25 KBytes of data, yields a total memory requirement of
approximately 36 MBytes. This equates to the utilization, denoted UM,
of the block+Ultra RAM available on the chosen device, of

UM ≈ 83%				 (35)

(assuming that the Ultra RAM is able to be effectively utilized)
leaving the distributed RAM to cater for additional processing tasks
needing to be performed on the device. The corresponding arithmetic
requirement, on the other hand, is again minimal, involving the use
of just 42 of the 6840 fast multipliers available on the device which
equates to the utilization, denoted UA, of just

UA ≈ 0.6%				 (36)

whilst the 86 associated adders may again be easily and efficiently
implemented in silicon through the use of programmable logic.

4.3 Discussion
Note that for the dual-PE solution to the one million-point transform
the latency is given by just 5/4 times the update period (of one
million clock cycles). As a result, each PE – which includes its
CM and double-buffered DM – is actually utilized for just 5/8 of
the available processing time, although the two PEs are actually
operating simultaneously for just 1/4 of the available processing
time. The resulting down-time for each PE – which corresponds to
the up-time of the remaining PE and therefore accounts for 3/8 of the
available processing time – could of course be used for carrying out
other tasks, as is briefly discussed in Section 3.1, or alternatively left
inactive to enable the associated power consumption – which with the
large memory requirement of the memory-based dual-PE architecture
could be significant – to be kept to a minimum. 	

Note also that with the FPGA implementation of the one million-

point transform discussed in which assumes complex-valued rather
than real-valued input data (which might typically involve the need
for a digital down conversion (DDC) process to be carried out prior to
the execution of the complex-data FFT, adding to the overall timing/
resource requirements), similar utilization figures are achieved as to
those derived above but using the smaller VU095 model, which is
one lower in the UltraScale family to the VU125 model and possesses
approximately 2/3 of its memory and arithmetic resources [16]. This
reduction in resource requirements is only achieved, however, through
the use of a highly-optimized complex design whose advantages/
disadvantages need to be carefully weighed against those of the much
simpler memory-based designs, such as that of the RFHT-based dual-
PE architecture adopted here, which from the timing constraints of
Section 3.1 caters for transforms possessing lengths ranging from 48
up to 415, with only the memory capacity needing to be modified from
one application (or transform length) to another, as demonstrated here
for both the one and four million-point examples.

Thus, with the appropriate choice of computing device, possessing
sufficient fast memory, it is theoretically possible for both the one
and four million-point real-data transforms to each be implemented
in a very straightforward manner using only fast on-chip RAM and a
trivial quantity of fast multipliers. The current situation for the billion-
point transform is somewhat different, however, as the limitations on
the availability of fast on-chip memory with existing silicon-based
FPGA or application-specific integrated circuit (ASIC) technologies
would necessitate the reliance on the use of slower off-chip memory
which would severely degrade the potential for obtaining a solution
capable of achieving continuous real-time operation. The most likely
way forward, at present, with transforms of this length, is via the
adoption of sparse FFT techniques which can perform well using
limited quantities of suitably randomized data provided the signal
being processed comprises a limited number of significant spectral
components [17,18].

5. Scaling Strategy for Fixed-Point Processing
With the adoption of fixed-point processing – as is to be assumed
here – a suitable scaling strategy would be needed in order to prevent
arithmetic overflow from occurring, as each instance of the PE’s large
double butterfly may incur up to a maximum of three bits of word
growth (one bit for each stage of adders following the fast multipliers).
Such a situation needs to be accounted for within the processing in
order to avoid a possible loss of precision – and thus of signal-to-
noise ratio (SNR) – through the loss of one or more of the data’s most
significant bits.

The best way to achieve this will be by applying an optimal or
‘conditional’ scaling strategy in the form of the block floating-point
scheme to the output of each stage of double butterflies, with the
resulting scaling factor being then applied, in each case, to the input
data for the succeeding stage of double butterflies. This ensures that
the scaling factor obtained for each stage of double butterflies is
optimized and that any magnification incurred during the last stage of
double butterflies is not scaled out of the results [10].

Note that although an optimal scheme such as this comes at a

 8

data transforms might each be mapped onto a single

commercially-available FPGA device using only fast

on-chip RAM for the data and coefficient storage – as

measured in binary KBytes and MBytes.

4.1 One Million-Point Transform

 Suppose, for our first example, that the real-data

transform of interest is of length

 N = 410 (29)

which equates to one million samples. Then from the

timing constraints of Section 3.1, the solution requires

the adoption of the dual-PE architecture in order to

maintain continuous real-time operation as the

associated latency, TL, is given from Equation 9 by

 TL ≈ N4
5 (30)

clock cycles, which is clearly in excess of the update

period of N clock cycles for each input data set, but

less than twice the update period of 2N clock cycles.

 The proposed computing device for its

hypothetical implementation is taken to be a Virtex

UltraScale (model VU125) FPGA, which has a total

memory capacity of approximately 13 MBytes of

RAM – this comprising 11.75 MBytes of block RAM

and 1.25 MBytes of distributed RAM – and an

arithmetic provision of 1200 fast multipliers, each of

size (18-bit)×(27-bit). Then the two sets of double-

buffered DM data, where each set involves

25.242 10  bytes of input data, when added to the

two sets of CM data, where each set is based upon the

adoption of a two-level LUT-based scheme for the

coefficient generation and storage and involves

approximately 10.2 KBytes of data, yields a total

memory requirement of approximately 9 MBytes. This

equates to the utilization, denoted UM, of the block

RAM available on the chosen device, of

 UM ≈ 77% (31)

leaving the distributed RAM to cater for additional

processing tasks needing to be performed on the

device. The corresponding arithmetic requirement, on

the other hand, is minimal, involving the use of just 42

of the 1200 fast multipliers available on the device

which equates to the utilization, denoted UA, of just

 UA ≈ 3.5% (32)

whilst the 86 associated adders may be easily and

efficiently implemented in silicon through the use of

programmable logic.

4.2 Four Million-Point Transform

 Suppose, for our second example, that the real-

data transform of interest is of length

 N = 411 (33)

which equates to four million samples. Then, as with

the first example, the solution requires the adoption of

the dual-PE architecture in order to maintain

continuous real-time operation as the associated

latency, TL, is given from Equation 9 by

 TL ≈ N8
11 (34)

clock cycles, which is clearly in excess of the update

period of N clock cycles for each input data set, but

less than twice the update period of 2N clock cycles.

 The proposed computing device for its

hypothetical implementation is taken to be a Virtex

UltraScale+ (model VU9P) FPGA, which has a total

memory capacity of approximately 46.25 MBytes of

RAM – this comprising 9.5 MBytes of block RAM,

33.75 MBytes of Ultra RAM and 3 MBytes of

distributed RAM – and an arithmetic provision of 6840

fast multipliers, each of size (18-bit)×(27-bit). Then

the two sets of double-buffered DM data, where each

set involves 25.242 11 bytes of input data, when

added to the two sets of CM data, where each set is

again based upon the adoption of a two-level LUT-

based scheme for the coefficient generation and

storage and involves approximately 20.25 KBytes of

data, yields a total memory requirement of

approximately 36 MBytes. This equates to the

utilization, denoted UM, of the block+Ultra RAM

available on the chosen device, of

 UM ≈ 83% (35)

(assuming that the Ultra RAM is able to be effectively

utilized) leaving the distributed RAM to cater for

 8

data transforms might each be mapped onto a single

commercially-available FPGA device using only fast

on-chip RAM for the data and coefficient storage – as

measured in binary KBytes and MBytes.

4.1 One Million-Point Transform

 Suppose, for our first example, that the real-data

transform of interest is of length

 N = 410 (29)

which equates to one million samples. Then from the

timing constraints of Section 3.1, the solution requires

the adoption of the dual-PE architecture in order to

maintain continuous real-time operation as the

associated latency, TL, is given from Equation 9 by

 TL ≈ N4
5 (30)

clock cycles, which is clearly in excess of the update

period of N clock cycles for each input data set, but

less than twice the update period of 2N clock cycles.

 The proposed computing device for its

hypothetical implementation is taken to be a Virtex

UltraScale (model VU125) FPGA, which has a total

memory capacity of approximately 13 MBytes of

RAM – this comprising 11.75 MBytes of block RAM

and 1.25 MBytes of distributed RAM – and an

arithmetic provision of 1200 fast multipliers, each of

size (18-bit)×(27-bit). Then the two sets of double-

buffered DM data, where each set involves

25.242 10  bytes of input data, when added to the

two sets of CM data, where each set is based upon the

adoption of a two-level LUT-based scheme for the

coefficient generation and storage and involves

approximately 10.2 KBytes of data, yields a total

memory requirement of approximately 9 MBytes. This

equates to the utilization, denoted UM, of the block

RAM available on the chosen device, of

 UM ≈ 77% (31)

leaving the distributed RAM to cater for additional

processing tasks needing to be performed on the

device. The corresponding arithmetic requirement, on

the other hand, is minimal, involving the use of just 42

of the 1200 fast multipliers available on the device

which equates to the utilization, denoted UA, of just

 UA ≈ 3.5% (32)

whilst the 86 associated adders may be easily and

efficiently implemented in silicon through the use of

programmable logic.

4.2 Four Million-Point Transform

 Suppose, for our second example, that the real-

data transform of interest is of length

 N = 411 (33)

which equates to four million samples. Then, as with

the first example, the solution requires the adoption of

the dual-PE architecture in order to maintain

continuous real-time operation as the associated

latency, TL, is given from Equation 9 by

 TL ≈ N8
11 (34)

clock cycles, which is clearly in excess of the update

period of N clock cycles for each input data set, but

less than twice the update period of 2N clock cycles.

 The proposed computing device for its

hypothetical implementation is taken to be a Virtex

UltraScale+ (model VU9P) FPGA, which has a total

memory capacity of approximately 46.25 MBytes of

RAM – this comprising 9.5 MBytes of block RAM,

33.75 MBytes of Ultra RAM and 3 MBytes of

distributed RAM – and an arithmetic provision of 6840

fast multipliers, each of size (18-bit)×(27-bit). Then

the two sets of double-buffered DM data, where each

set involves 25.242 11 bytes of input data, when

added to the two sets of CM data, where each set is

again based upon the adoption of a two-level LUT-

based scheme for the coefficient generation and

storage and involves approximately 20.25 KBytes of

data, yields a total memory requirement of

approximately 36 MBytes. This equates to the

utilization, denoted UM, of the block+Ultra RAM

available on the chosen device, of

 UM ≈ 83% (35)

(assuming that the Ultra RAM is able to be effectively

utilized) leaving the distributed RAM to cater for

Volume 2 | Issue 4 | 11Eng OA, 2024

computational cost (including the marginally increased latency of
each stage of double butterflies), it is conceptually simple to apply
with the memory-based architecture of the RFHT. However, this is
not the case with the familiar pipelined FFT architectures [11], which
must rely upon the use of a sub-optimal or ‘unconditional’ scaling
strategy, whereby the data is typically over-scaled in order to prevent
arithmetic overflow from occurring, resulting in reduced SNR when
compared to that achieved with the memory-based approach.

6. Summary and Conclusions
With the current trend in large scale, big data applications, there is
an increasing need for the design and efficient implementation of
long to ultra-long Fourier-based transform algorithms, such as with
FFTs where the transform length varies from long up to ultra-long.
This paper has shown that in order to implement such algorithms
when using the memory-based architecture of the RFHT, a timing
constraint (and hence transform size limitation) due to the combined
effects of the update period and the I/O rate needs to be overcome and
the formidable data and coefficient memory requirement minimized
if continuous real-time operation, using suitably defined parallel
computing equipment, is to be achieved and maintained.

With this in mind and with a PE defined as comprising one complete
RFHT module – which has the attraction of being resource-efficient,
scalable and highly parallel (yielding eight-fold parallelism) – it has
been demonstrated how the design of a scalable, dual-PE architecture
may be derived as a simple extension of the single-PE case – thus
possessing a number of attractive properties, as held by the RFHT,
but not by pipelined RFFT implementations – this being achieved
in such a way that the transform size limitation resulting from the
timing constraint may be effectively overcome. When combined with
the use of memory-efficient multi-level LUT-based schemes (a two-
level scheme being adopted here for both the one and four million-
point cases) for the coefficient generation and storage, this offered the
‘potential’ for achieving and maintaining the parallel computation of
real-data transforms, in a continuous real-time fashion, for transform
lengths of up to one billion.

Finally, the study concluded with a brief description of two hypothetical
implementations of real-time parallel solutions to the real-data DFT,
these illustrating in particular how the dual-PE solutions for the
parallel computation of both the one and four million-point real-
data transforms may each be mapped onto a single commercially-
available FPGA device, with each implementation using only fast
on-chip RAM for the data and coefficient storage, so as to achieve and
maintain continuous real-time operation.

The author declares No Conflicts of Interest relating to the production
of this paper.

References
1.	 Birkhoff, G., & Mac Lane, S. (2017). A survey of modern algebra.

AK Peters/CRC Press.
2.	 McClellen, J. H., & Rader, C. M. (1979). Number theory in

digital signal processing. Prentice Hall Professional Technical

Reference.
3.	 Brigham, E. O., & Yuen, C. K. (1978). The fast Fourier transform.

IEEE Transactions on Systems, Man, and Cybernetics, 8(2), 146-
146.

4.	 Chu, E., & George, A. (1999). Inside the FFT black box: serial
and parallel fast Fourier transform algorithms. CRC press.

5.	 Garrido, M., Unnikrishnan, N. K., & Parhi, K. K. (2017). A serial
commutator fast Fourier transform architecture for real-valued
signals. IEEE Transactions on Circuits and Systems II: Express
Briefs, 65(11), 1693-1697.

6.	 Park, S., & Jeon, D. (2020, October). A modified serial
commutator architecture for real-valued fast Fourier transform.
In 2020 IEEE Workshop on Signal Processing Systems (SiPS)
(pp. 1-6). IEEE.

7.	 Eleftheriadis, C., & Karakonstantis, G. (2022). Energy-efficient
fast Fourier transform for real-valued applications. IEEE
Transactions on Circuits and Systems II: Express Briefs, 69(5),
2458-2462.

8.	 Akl, S. G. (1989). The design and analysis of parallel algorithms.
Prentice-Hall, Inc.

9.	 Bracewell, R. N. (Ed.). (1986). The Hartley transform. Oxford
University Press, Inc.

10.	 Jones, K. (2022). The Regularized Fast Hartley Transform: Low-
Complexity Parallel Computation of FHT in One and Multiple
Dimensions, 2nd Edition, Springer.

11.	 Jones, K. (2023, July). A Comparison of Two Recent Approaches,
Exploiting Pipelined FFT and Memory‑Based FHT Architectures,
for Resource-Efficient Parallel Computation of Real-Data DFT,
Journal of Applied Science and Technology (Open Access), Vol.
1, No. 2

12.	 Maxfield, C. (2004). The design warrior's guide to FPGAs:
devices, tools and flows. Elsevier.

13.	 Jones, K. (2024, July). Schemes for Resource-Efficient
Generation of Twiddle Factors for Fixed-Radix FFT Algorithms,
Engineering (Open Access), Vol. 2, No. 3.

14.	 Harel, D., & Feldman, Y. A. (2004). Algorithmics: The spirit of
computing. Pearson Education.

15.	 https://www.amd.com/en.html
16.	 Kanders, H., Mellqvist, T., Garrido, M., Palmkvist, K., &

Gustafsson, O. (2019). A 1 million-point FFT on a single FPGA.
IEEE Transactions on Circuits and Systems I: Regular Papers,
66(10), 3863-3873.

17.	 Hassanieh, H., Indyk, P., Katabi, D., & Price, E. (2012, January).
Simple and practical algorithm for sparse Fourier transform. In
Proceedings of the twenty-third annual ACM-SIAM symposium
on Discrete Algorithms (pp. 1183-1194). Society for Industrial
and Applied Mathematics.

18.	 K. Jones (2023, August). Design for Resource-Efficient Parallel
Solution to Real-Data Sparse FFT. Journal of Applied Science
and Technology (Open Access), Vol. 1, No. 2.

Copyright: ©2024 Keith Jones. This is an open-access article
distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction
in any medium, provided the original author and source are credited.

https://opastpublishers.com

