
Adv Theo Comp Phy, 2024       Volume 7 | Issue 4 | 1

Decoding the Mystery of Wave Function Collapse
Research Article

Ping Wang1,2*

Citation: Wang, P. (2024). Decoding the Mystery of Wave Function Collapse. Adv Theo Comp Phy, 7(4), 01-08.

Abstract
We provide a reasonable explanation for measurement where no wave function in the sense of quantum mechanics is 
collapsed. The wave functions of the particles in the measuring device should be considered together with the measured 
particle as one system. The measurement is actually a physical process, which makes the wave functions of different 
paths orthogonal. The collapsed wave function is just an equivalent one to explain certain physical phenomena. 
There is no physical transition or process from the wave function in quantum mechanics to the equivalent one. Our 
understanding of measurement also provides reasonable explanations for both EPR paradox and the experiments of 
delayed quantum eraser.
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The physical phenomena of microscopic systems, such as complementarity, interference, 

uncertainty relation, violation of Bell inequality [1–3], etc, are completely different from the 

classical images of macroscopic systems. These characteristics can be well described and 

explained by quantum mechanics. Although quantum mechanics is a successful and complete 

theory for microscopic systems, we still lack a self-consistent explanation for measurement 

within the framework of quantum theory. Quantum entanglement [4–6], EPR paradox [7–10], 

delayed quantum eraser [11–13], etc, have been hot topics for many years which are all related 

to measurement or so-called wave function collapse.

In order to better understand the measurement and wave function collapse, let’s start 

with the double-slit interference experiment. When a particle reaches the double slits at 

time t1, the wave function of the particle can be written as

ψ(�x, t1) =
1√
2
[ψ1(�x, t1) + ψ2(�x, t1)] , (1)

where ψ1(�x, t1) and ψ2(�x, t1) are the normalized wave functions. They are nonzero only

when �x is located in the corresponding left and right slits. The particle will appear at a

certain point on the screen behind the double slits with a certain probability. One can get

the momentum dependence of ψ(�x, t1) with the Fourier transformation as

ψ(�x, t1) =

∫
d3p

(2π)3
Ψ(�p)e−i�p·�x+ip0t1 , (2)

where Ψ(�p) is a sinc function. Therefore, the probability of the particle appearing on the

screen in the �p direction is

f =
1

2
|Ψ(�p)e−i�p·(�x−�x1)+ip0t +Ψ(�p)e−i�p·(�x−�x2)+ip0t|2 = |Ψ(�p)|2 + |Ψ(�p)|2cos(�p · (�x1 − �x2)), (3)

where �x1 and �x2 are the positions of the two slits, respectively. When L � a, �p · (�x1 − �x2)

can be written as 2πad
λL

, where a, L, and d are the distances between the two slits, between

the two slits and the screen, and between the point on the screen in the p� direction and the 

center of the screen, respectively. λ = 2π/|p�| is the wavelength of the particle. It is clear the 

last term in Eq. (3) is the interference term.

If we put Wilson cloud chambers just behind the two slits, when the particle enters the 

chamber, its motion trajectory will provide which-path information. It is supposed the wave
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function of Eq. (1) collapses instantly into

ψc(�x, t1) = ψ1(�x, t1) or ψc(�x, t1) = ψ2(�x, t1). (4)

Certainly, we have difficulties here. On the one hand, quantum mechanics enables us to

make predictions for the wave function evolution in principle. On the other hand, we cannot

predict the collapsed wave function and the trajectory of the particle even in principle.

Now we deal with the difficulties in the framework of quantum theory. The crucial point is

that we should treat the incident particle and the particles in the cloud chambers together as

one system. The initial wave function of the system at time t1 is

ψi(�x, t1) =
1√
2

[
i
1(�x, t1) + ψi

2(�x, t1)
]
ψi(�xLi, ..., �xLn, t1)ψ

i(�xR1, ..., �xRn, t1)

=
1√
2

i
1(�x, t1)ψ

i(�xL1, ..., �xLn, t1)ψ
i(�xR1, ..., �xRn, t1)

+
1√
2

i
2(�x, t1)ψ

i(�xL1, ..., �xLn, t1)ψ
i(�xR1, ..., �xRn, t1), (5)

where ψi(�xL1, ..., �xLn, t1) and ψi(�xR1, ..., �xRn, t1) are the normalized wave functions for the

particles in the left and right chambers, respectively. After the incident particle entering the

chamber (measurement), the final wave function at time t2 when it left the chamber can be

generally written as

ψf (�x, t2) =
1√
2
ψf
1 (�x, t2)ψ

f (�xL1, ..., �xLn, t2)ψ
i(�xR1, ..., �xRn, t2)

+
1√
2
ψf
2 (�x, t2)ψ

i(�xL1, ..., �xLn, t2)ψ
f (�xR1, ..., �xRn, t2). (6)

The above final wave function means the incident particle has the same probability to

interact with the particles in the left and right chambers. The incident particle will appear

on the screen in the �p direction with the probability

f = |Ψf (�p)|2 + |Ψf (�p)|2 [cos(�p · (�x1 − �x2))Re(W ) + sin(�p · (�x1 − �x2))Im(W )] , (7)

where W is expressed as

W =

∫
d3xL1...d

3xLnd
3xR1...d

3xRn

3
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3xLnd
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3xRn

3× f∗(�xL1, ..., �xLn, t2)ψ
i(�xL1, ..., �xLn, t2)ψ

i∗(�xR1, ..., �xRn, t2)ψ
f (�xR1, ..., �xRn, t2). (8)

If the initial and final wave functions of the particles in the left chamber ψ i(�xL1, ..., �xLn, t2) 

and ψf (�xL1, ..., �xLn, t2), or in the right chamber ψi(�xR1, ..., �xRn, t2) and ψf (�xR1, ..., �xRn, t2), 

are orthogonal, the second term in Eq. (7) which includes the real and imaginary parts of W 

will be zero. As a result, the interference fringes on the screen will disappear. One can see that 

the particle still passes through both chambers even though there is no interference between 

the two paths.

Therefore, when there is no measurement, the particle has to pass through the two slits 

simultaneously in order to generate interference. The wave function is uniquely determined. 

When the particle is measured, we could have two kinds of wave functions which can describe 

the same phenomenon. One wave function Eq. (6) can be derived using time evolution of 

quantum theory in principle and the other is the collapsed wave function Eq. (4) which 

corresponds to the outcome of an individual observation. We should emphasis that the 

“classical” collapsed wave function is just an equivalent one to describe certain physical 

phenomenon which cannot be calculated with quantum theory. The initial wave function 

will never evolve into the equivalent one. In this sense, there is no process called wave 

function collapse.

The measurement in quantum mechanics had been studied by Zurek with density matrix ρ 

[14]. After the measurement, the off-diagonal terms of ρ vanish, which means the system 

evolves from coherent superposition state to a mixture of eigenstates. With the diagonal 

density matrix, it was supposed that the state of the measured system collapsed to one of its 

eigenstates. As a result, “reduction of the wave packet”, postulated by von Neumann to 

explain definiteness of an outcome of an individual observation, can be explained [14, 15]. It is 

still an open question whether collapse is a physical process [16–18]. We have effectively 

reproduced the decoherence result using wave function directly rather than introducing 

density matrix. However, in our opinion, the final wave function obtained from quantum 

theory would not collapse to one of the eigenstates when the particle is measured. In this 

classical limit, there is no transition or process from the wave function determined by 

quantum theory to the equivalent one.

One can imagine the cloud chambers consist of a sealed environment containing unsat-

uratedrather than supersaturated vapor of water. In this case, the initial and final wave

4

× f∗(�xL1, ..., �xLn, t2)ψ
i(�xL1, ..., �xLn, t2)ψ

i∗(�xR1, ..., �xRn, t2)ψ
f (�xR1, ..., �xRn, t2). (8)

If the initial and final wave functions of the particles in the left chamber ψ i(�xL1, ..., �xLn, t2) 

and ψf (�xL1, ..., �xLn, t2), or in the right chamber ψi(�xR1, ..., �xRn, t2) and ψf (�xR1, ..., �xRn, t2), 

are orthogonal, the second term in Eq. (7) which includes the real and imaginary parts of W 

will be zero. As a result, the interference fringes on the screen will disappear. One can see that 

the particle still passes through both chambers even though there is no interference between 

the two paths.

Therefore, when there is no measurement, the particle has to pass through the two slits 

simultaneously in order to generate interference. The wave function is uniquely determined. 

When the particle is measured, we could have two kinds of wave functions which can describe 

the same phenomenon. One wave function Eq. (6) can be derived using time evolution of 

quantum theory in principle and the other is the collapsed wave function Eq. (4) which 

corresponds to the outcome of an individual observation. We should emphasis that the 

“classical” collapsed wave function is just an equivalent one to describe certain physical 

phenomenon which cannot be calculated with quantum theory. The initial wave function 

will never evolve into the equivalent one. In this sense, there is no process called wave 

function collapse.

The measurement in quantum mechanics had been studied by Zurek with density matrix ρ 

[14]. After the measurement, the off-diagonal terms of ρ vanish, which means the system 

evolves from coherent superposition state to a mixture of eigenstates. With the diagonal 

density matrix, it was supposed that the state of the measured system collapsed to one of its 

eigenstates. As a result, “reduction of the wave packet”, postulated by von Neumann to 

explain definiteness of an outcome of an individual observation, can be explained [14, 15]. It is 

still an open question whether collapse is a physical process [16–18]. We have effectively 

reproduced the decoherence result using wave function directly rather than introducing 

density matrix. However, in our opinion, the final wave function obtained from quantum 

theory would not collapse to one of the eigenstates when the particle is measured. In this 

classical limit, there is no transition or process from the wave function determined by 

quantum theory to the equivalent one.

One can imagine the cloud chambers consist of a sealed environment containing unsat-

uratedrather than supersaturated vapor of water. In this case, the initial and final wave

4

× f∗(�xL1, ..., �xLn, t2)ψ
i(�xL1, ..., �xLn, t2)ψ

i∗(�xR1, ..., �xRn, t2)ψ
f (�xR1, ..., �xRn, t2). (8)

If the initial and final wave functions of the particles in the left chamber ψ i(�xL1, ..., �xLn, t2) 

and ψf (�xL1, ..., �xLn, t2), or in the right chamber ψi(�xR1, ..., �xRn, t2) and ψf (�xR1, ..., �xRn, t2), 

are orthogonal, the second term in Eq. (7) which includes the real and imaginary parts of W 

will be zero. As a result, the interference fringes on the screen will disappear. One can see that 

the particle still passes through both chambers even though there is no interference between 

the two paths.

Therefore, when there is no measurement, the particle has to pass through the two slits 

simultaneously in order to generate interference. The wave function is uniquely determined. 

When the particle is measured, we could have two kinds of wave functions which can describe 

the same phenomenon. One wave function Eq. (6) can be derived using time evolution of 

quantum theory in principle and the other is the collapsed wave function Eq. (4) which 

corresponds to the outcome of an individual observation. We should emphasis that the 

“classical” collapsed wave function is just an equivalent one to describe certain physical 

phenomenon which cannot be calculated with quantum theory. The initial wave function 

will never evolve into the equivalent one. In this sense, there is no process called wave 

function collapse.

The measurement in quantum mechanics had been studied by Zurek with density matrix ρ 

[14]. After the measurement, the off-diagonal terms of ρ vanish, which means the system 

evolves from coherent superposition state to a mixture of eigenstates. With the diagonal 

density matrix, it was supposed that the state of the measured system collapsed to one of its 

eigenstates. As a result, “reduction of the wave packet”, postulated by von Neumann to 

explain definiteness of an outcome of an individual observation, can be explained [14, 15]. It is 

still an open question whether collapse is a physical process [16–18]. We have effectively 

reproduced the decoherence result using wave function directly rather than introducing 

density matrix. However, in our opinion, the final wave function obtained from quantum 

theory would not collapse to one of the eigenstates when the particle is measured. In this 

classical limit, there is no transition or process from the wave function determined by 

quantum theory to the equivalent one.

One can imagine the cloud chambers consist of a sealed environment containing unsat-

uratedrather than supersaturated vapor of water. In this case, the initial and final wave

4



Adv Theo Comp Phy, 2024       Volume 7 | Issue 4 | 4

× f∗(�xL1, ..., �xLn, t2)ψ
i(�xL1, ..., �xLn, t2)ψ

i∗(�xR1, ..., �xRn, t2)ψ
f (�xR1, ..., �xRn, t2). (8)

If the initial and final wave functions of the particles in the left chamber ψ i(�xL1, ..., �xLn, t2) 

and ψf (�xL1, ..., �xLn, t2), or in the right chamber ψi(�xR1, ..., �xRn, t2) and ψf (�xR1, ..., �xRn, t2), 

are orthogonal, the second term in Eq. (7) which includes the real and imaginary parts of W 

will be zero. As a result, the interference fringes on the screen will disappear. One can see that 

the particle still passes through both chambers even though there is no interference between 

the two paths.

Therefore, when there is no measurement, the particle has to pass through the two slits 

simultaneously in order to generate interference. The wave function is uniquely determined. 

When the particle is measured, we could have two kinds of wave functions which can describe 

the same phenomenon. One wave function Eq. (6) can be derived using time evolution of 

quantum theory in principle and the other is the collapsed wave function Eq. (4) which 

corresponds to the outcome of an individual observation. We should emphasis that the 

“classical” collapsed wave function is just an equivalent one to describe certain physical 

phenomenon which cannot be calculated with quantum theory. The initial wave function 

will never evolve into the equivalent one. In this sense, there is no process called wave 

function collapse.

The measurement in quantum mechanics had been studied by Zurek with density matrix ρ 

[14]. After the measurement, the off-diagonal terms of ρ vanish, which means the system 

evolves from coherent superposition state to a mixture of eigenstates. With the diagonal 

density matrix, it was supposed that the state of the measured system collapsed to one of its 

eigenstates. As a result, “reduction of the wave packet”, postulated by von Neumann to 

explain definiteness of an outcome of an individual observation, can be explained [14, 15]. It is 

still an open question whether collapse is a physical process [16–18]. We have effectively 

reproduced the decoherence result using wave function directly rather than introducing 

density matrix. However, in our opinion, the final wave function obtained from quantum 

theory would not collapse to one of the eigenstates when the particle is measured. In this 

classical limit, there is no transition or process from the wave function determined by 

quantum theory to the equivalent one.

One can imagine the cloud chambers consist of a sealed environment containing unsat-

uratedrather than supersaturated vapor of water. In this case, the initial and final wave

4
functions in the chambers are not orthogonal. With the increasing of the saturation of wa-

ter vapor, the fringes become more and more blurry. And finally, with the appearance of 

the motion trajectory in the chamber with supersaturated vapor of water, the interference 

fringes disappear. In the process of continuous changes of water vapor density, the value 

of the integral W varies from 1 to 0. It is clear the wave function is always expressed as 

Eq. (6) which can be calculated with quantum theory in principle. There is no wave function 

collapse even though the which-path information is provided. The collapsed wave function 

is just an equivalent one to describe the physical phenomenon of disappearing fringes. 

Similar as in the noninterference case, when the saturation of water vapor in the chambers 

continuously increases, one can also have the collapsed wave function as

ψc(�x, t) = Aψ1(�x, t) +
√
1− A2ψ2(�x, t) or ψc(�x, t) =

√
1− A2ψ1(�x, t) + Aψ2(�x, t), (9)

where 0 ≤ A ≤ 1/
√
2. A = 0 when the which-path information is known and A = 1/

√
2

when there is no cloud chamber. With the increasing saturation, A changes from 1/
√
2 to 0,

causing a continuous loss of interference. With this collapsed wave function, the probability

of the particle appearing on the screen in the �p direction is

f = |Ψ(�p)|2 + 2A
√
1− A2|Ψ(�p)|2cos(�p · ( �x1 − �x2)). (10)

The above equation is comparable with Eq. (7) only if Im(W ) is zero and

2A
√
1− A2 =

∫
d3xL1...d

3xLnd
3xR1...d

3xRn

× f∗(�xL1, ..., �xLn, t2)ψ
i(�xL1, ..., �xLn, t2)ψ

i∗(�xR1, ..., �xRn, t2)ψ
f (�xR1, ..., �xRn, t2). (11)

Therefore, the collapsed wave function is not exactly equivalent to the one obtained from 

quantum theory when the wave functions of the particles in the chambers are not orthogonal. 

The interference disappears when which-path information is obtained and it could reap-pear 

when which-path information is erased. This can be easily understood because the particle 

always passes through the two paths simultaneously and quantum eraser is to make the wave 

functions of the two paths non-orthogonal. Since 1982, quantum eraser behavior has been 

reported in many experiments [19–25]. The schematic diagram of the experimental setup was 

shown in Fig. 2 in Ref. [23]. If we do not detect the entangled photons ϕ(�x, t)
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quantum theory when the wave functions of the particles in the chambers are not orthogonal. 

The interference disappears when which-path information is obtained and it could reap-pear 

when which-path information is erased. This can be easily understood because the particle 

always passes through the two paths simultaneously and quantum eraser is to make the wave 

functions of the two paths non-orthogonal. Since 1982, quantum eraser behavior has been 

reported in many experiments [19–25]. The schematic diagram of the experimental setup was 

shown in Fig. 2 in Ref. [23]. If we do not detect the entangled photons ϕ(�x, t)
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√
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√
2
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5
and φ(�x, t), the wave function of the photon at detector D0 is

ψ(�x, t) =
1√
2
[ψ1(�xD0 , t)ϕ(�x, t) + ψ2(�xD0 , t)φ(�x, t)] . (12)

The probability of the photon at D0 is

f = |Ψ(�p)|2 + |Ψ(�p)|2 [cos(�p · (�x1 − �x2))Re(Wet) + sin(�p · (�x1 − �x2))Im(Wet)] , (13)

where Wet is the wave function integral of the entangled photons

Wet =

∫
d3xϕ∗(�x, t)φ(�x, t). (14)

The intensity of interference is determined by the magnitude of the integration value Wet.

If we make a joint detection at D0 and D1 for the entangled photon pairs, the joint wave

function will be

ψD0D1 =
1√
2
[ψ1(�xD0 , t)ϕ(�xD1 , t1) + ψ2(�xD0 , t)φ(�xD1 , t1)] . (15)

The corresponding joint probability of photons is

fD0D1 = |Ψ(�pD0)|2|Ψ(�pD1)|2 + |Ψ(�pD0)|2|Ψ(�pD1)|2cos((�pD0 + �pD1) · (�x1 − �x2)). (16)

If there is no optical path difference between the entangled photons at D1, fD0D1 becomes

fD0D1 = 2|Ψ(�pD0)|2|Ψ(�pD1)|2cos2(�pD0. · (�x1 − �x2)/2). (17)

The joint probability fD0D2 has the same expression as fD0D1 if we do not consider the π

phase shift. Similarly, the joint wave function at D0 and D3 is

ψD0D3 =
1√
2
[ψ1(�xD0 , t)ϕ(�xD3 , t3) + ψ2(�xD0 , t)φ(�xD3 , t3)] . (18)

Since the photon emitted from the second slit cannot arrive at D3 which means φ(�xD3 , t3) =

6

0, the corresponding joint probability fD0D3 is

fD0D3 =
1

2
|Ψ(�pD0)|2|Ψ(�pD3)|2. (19)

Therefore, there is no interference at detector D0 in this case. Our results are consistent 

with those in Ref. [23].

With the clear understanding of the measurement in quantum mechanics, we can have a 

reasonable explanation for EPR paradox [7, 8]. For example, the two entangled spin-1/2 

particles form a spin-0 state. The initial wave function of a spin-0 system is

ψi(S = 0) =
1√
2
[ψ1(+u)ψ2(−u)− ψ1(−u)ψ2(+u)] , (20)

where +u and −u are for the positive and negative spins along any axis. The two parti-

cles could be far away from each other. If we assume the wave function is collapsed into

ψ1(+u)ψ2(−u) or ψ1(−u)ψ2(+u) when we measure the spin of one particle, it is hard to 

explain why the measurement on one particle can instantaneously affect the other far away 

particle. It was concluded that quantum mechanics did not provide a complete description of 

reality and there must be some local hidden variables accounting for the behavior of entan-

gled particles. Though Bell inequality tests [26–35] have supported the theory of quantum 

mechanics, and not the hypothesis of local hidden variables, we still need to understand the 

EPR paradox as well as the so-called nonlocal behavior of quantum theory.

In our opinion, when we measure the spin of one particle, say particle 2, the wave function of 

the final system including all the interacting particles turns into

ψf =
1√
2
[ψ1(+u)ψ2(−u)ϕ(�x1, ..., �xn, t)− ψ1(−u)ψ2(+u)φ(�x1, ..., �xn, t)] , (21)

where φ(�x1, ..., �xn, t) and ϕ(�x1, ..., �xn, t) are the wave functions of the particles in the mea-

suring device after interacting with particle 2 with spin +u and −u, respectively. If the wave

function ϕ(�x1, ..., �xn, t) and φ(�x1, ..., �xn, t) are orthogonal, i.e.

∫
d3x1...d

3xnϕ
∗(�x1, ..., �xn, t)φ(�x1, ..., �xn, t) = 0, (22)

there is no interference between the first and second terms of Eq. (21). It is therefore
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equivalent to regard the particle’s spin is fixed to be either +u or −u. From the wave function 

of Eq. (21), one can see the spin of particle 1 would not be changed when the spin of particle 2 

was measured, i.e., there was no information transferred instantly from particle 2 to particle 1. 

Certainly, the wave function in quantum mechanics can only tell us particle 1 has 50% 

probability of spin +u and 50% probability of spin −u. The final wave function Eq. (21) can be 

obtained in principle with quantum theory. Similar as in the double-slit case, the “classical” 

collapsed wave function ψ1(+u)ψ2(−u) or ψ1(−u)ψ2(+u) is just an equivalent one where the 

spin of particle 1 and particle 2 are both fixed. This equivalent wave function can not be 

predicted. There is no physical “process” from the initial wave function of Eq. (20) to the 

equivalent collapsed one, i.e., there is no instant change of the spin of particle 1 when the spin 

of particle 2 is measured. Therefore, EPR paradox can be easily understood without assuming 

the hidden variables or nonlocal behavior.

In summary, the process of measurement is a physical process which can be described by 

quantum theory in principle. From the case of double-slit interference, we can see the 

incident particle always passes through the double slits with the same probability. The 

disappearance of interference fringes on the screen is because the wave functions of the 

particles in the measurement system are orthogonal, resulting in a zero interference term. 

The so-called collapsed wave function is just an equivalent one which cannot be predicted 

or calculated from quantum theory. Based on our understanding of measurement, we can 

also provide a reasonable explanation for the EPR paradox. When measuring particle 1, the 

wave function of particle 2 in the sense of quantum mechanics is not changed. Similarly, the 

quantum eraser experiments are also easily explained by including all the entangled particles 

in the system. The joint probability is determined by the interference of both photon pairs. 

The explanations of the measurement in quantum theory in this manuscript are very helpful 

to understand many quantum phenomena.
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