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Abstract
This paper focuses on designing and analyzing a control protocol for multiple on-grid systems powered by three renewable 
energy sources, photovoltaic, biomass, and hydroelectric, covering energy demand in the domestic, commercial, or industrial 
sectors. The system connects to the grid to maintain a null energy balance, injecting the excess of generated energy or covering 
the energy unbalance with power from the grid. The photovoltaic array and biomass facility play the principal power source 
for energy demand coverage, with hydroelectric as a secondary source during night or cloudy periods. The simulated system 
operates near a river flow to facilitate hydroelectric generation. Still, it can also work in places far from a water flow by simply 
using two water reservoirs to pump and turbinate water to and from each other depending on the energy balance, excess or 
deficit. The developed analysis shows the system feasibility and economic profitability in small, medium, and large communities 
with available solar and hydro resources and grid connections to exchange energy when necessary. The correct design of the 
hybrid dual system provides a reliable method to self-cover energy demand at optimum performance, promoting the use of local 
renewable resources, reducing dependence on conventional power sources, and limiting the carbon footprint. The paper shows 
how to optimize the hybrid dual system operation by applying specific protocols for power management, ensuring an efficient 
energy supply, and guaranteeing power demand coverage.
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1. Introduction
The energetic and environmental changes produced in the past 
decades determine humanity's future development. Anthropogenic 
atmosphere change represents a world-scale challenge with 
unexpected consequences and negative impacts [1]. On the other 
hand, the world energy scenario shows the predominance of 
fossil fuels up to 100% in some countries and more than 2/3 of 
the total power supply on the planet's average. This situation is 
not sustainable because of the progressive decrease of fossil fuel 
reserves [2]. Despite the continuous search for new oil and gas 
fields, the balance is negative, which brings fossil fuel reserves 
closer to depletion in the not-very-long term; therefore, it is 
mandatory to replace conventional power sources with renewable 
energies in all human activity sectors, residential, commercial, 
industrial, and transportation.

Growing population, especially in countries agglutinating more 

than half of the planet's inhabitants and achieving a high energy 
demand rate, like China, India, Indonesia, Brazil, and others, 
aggravates the problem of fossil fuel consumption and GHG 
emissions since they tend to use cheap and easy access technology 
to produce the energy they need. Considering the average yearly 
population and energy consumption growth, the experts expect 
that the fossil fuel reserves will deplete in about a century, more 
precisely 54 years for oil, 49 years for natural gas, and 139 for 
coal [3-5]. These predictions, however, may be erroneous if 
the population growth confirms the trending change starting in 
1963, which predicts a growth rate reduction from 2.3% to 0.9%. 
Unfortunately, we expect to reach 9.7 billion people in 2050 and 
10.43 billion in 2086 [6].

Applying a simple numerical model, if we consider the total annual 
energy requirement, R, for a population of N people, the yearly 
average per capita energy use, E, is the quotient between R and 
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N [7]. Nevertheless, the per capita energy consumption changes 
with time in a complex manner that depends on many factors like 
welfare development, access to technological devices, appliances 
and facilities, and new energy consumption habits; thus, producing 

the per capita gross national product, S, which linearly depends 
on E through a factor f. Combining all these factors, applying a 
yearly average energy-use growth of 3.5%, and retrieving data for 
population growth, we have:

These predictions, however, may be erroneous if the population growth confirms the 
trending change starting in 1963 [6], which predicts a growth rate reduction from 2.3% 
to 0.9%. Unfortunately, we expect to reach 9.7 billion people in 2050 and 10.43 billion 
in 2086. 
 
Applying a simple numerical model [7], if we consider the total annual energy 
requirement, R, for a population of N people, the yearly average per capita energy use, 
E, is the quotient between R and N. Nevertheless, the per capita energy consumption 
changes with time in a complex manner that depends on many factors like welfare 
development, access to technological devices, appliances and facilities, and new energy 
consumption habits; thus, producing the per capita gross national product, S, which 
linearly depends on E through a factor f. Combining all these factors, applying a yearly 
average energy-use growth of 3.5%, and retrieving data for population growth, we have: 
 

0.035 0.009 0.01 0.054 5.4%R S N f
R S N f
   

         (1) 

 
A continuous energy-use growth of 5.4% per year is not sustainable; therefore, we 
should remedy it in the short to medium term, replacing conventional fossil fuel power 
sources with renewable energy systems. 
 
Renewable sources produce lower environmental impact and carbon footprint [8] but 
suffer from low power density [9], lack of predictability [10], complex storage systems 
[11], and intermittency (nighttime and cloudy periods). On the other hand, the fast 
implementation of renewable power plants may saturate the grid capacity if not adapted 
to the new energy matrix, with unexpected and negative consequences. 
 
The efficient management of renewable energy generation is a challenge modern 
society faces if we want to operate renewable power plants in optimum conditions. To 
this goal, we design a specific protocol based on a control algorithm that regulates the 
power input from different renewable sources, maintaining a null balance between 
power generation and energy consumption. The grid connection allows a two-way 
electric current flow, compensating for energy unbalances. 
 
FUNDAMENTALS 
 
Solar 
Solar photovoltaic generation depends on the type and size of PV panels and solar 
radiation level. For standard operating conditions, with solar radiation of 1000 W/m2 
and a working temperature of 25º C, a PV panel supplies the maximum output power 
(PPV)o. Because of the limited operating voltage and current of PV panels, the PV array 
combines panels in series and parallel to achieve the required working values; 
mathematically: 
 

o
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PVo is the output power of a single panel, Ls is the number of serial panels, and Lp is the 
array rows number. 
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maintaining a null balance between power generation and energy 
consumption. The grid connection allows a two-way electric 
current flow, compensating for energy unbalances.

2. Fundamentals
2.1 Solar
Solar photovoltaic generation depends on the type and size of PV 
panels and solar radiation level. For standard operating conditions, 
with solar radiation of 1000 W/m2 and a working temperature 
of 25º C, a PV panel supplies the maximum output power (PPV)o. 
Because of the limited operating voltage and current of PV panels, 
the PV array combines panels in series and parallel to achieve the 
required working values; mathematically:

PVo is the output power of a single panel, Ls is the number of serial 
panels, and Lp is the array rows number.

We define the Ls and Lp values depending on the operating voltage 
and current, which should match the load. In domestic applications, 
the working voltage is 220 V for the European market and 110 V for 

the American one. Since modern technology allows manufacturing 
PV panels of relatively high voltage, up to 48 V for 96 cell panels 
[12], the number of serial panels is Ls = 5 for the European market 
and Ls = 3  for the American one. The row’s number depends on the 
required power according to the expression:
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European market and 110 V for the American one. Since modern technology allows 
manufacturing PV panels of relatively high voltage, up to 48 V for 96 cell panels [12], 
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one. The row’s number depends on the required power according to the expression: 
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Pload and PL are the load requirement power and transmission line power losses, Vop is 
the PV array working voltage, and (IPV)o is the maximum current generated by a single 
PV panel. 
 
Load power depends on the unitary element power and number of elements of the same 
type; therefore: 
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P and f are the element power and occurrence frequency. 
 
Transmission power losses derive from the classical expression: 
 

2
L trP I R   (5) 

 
Itr represents the current global transport in the wiring, corresponding to the addition of 
every individual load current demand operating simultaneously, and R is the wiring 
resistance. 
 
A similar structure applies to the commercial sector since they operate at identical 
domestic sector voltage, with the only difference in the number of rows because 
commercial installations require higher power. Industrial facilities operate at two 
alternate current types: low voltage monophasic current for illumination and small 
appliances and high voltage triphasic current for machinery. In this latter case, we have 
two options for the PV array configuration: to operate at 220 VAC and convert the 
voltage to the highest value, currently 380 VAC or 560 VAC, or group panels in series 
until reaching the selected voltage; the serial includes eight panels for 380 V and twelve 
for 560 V. If we design the PV array for both, residential or commercial and industrial, 
the best option is a five serial panel per row for 220 volts and a booster for the industrial 
facility. 
 
Since the conversion from DC to AC involves power losses, we should reformulate 
equation 3; therefore, replacing equations 4 and 5 in equation 3 and considering voltage 
conversion power losses: 
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Pload and PL are the load requirement power and transmission line 
power losses, Vop is the PV array working voltage, and (IPV)o is the 
maximum current generated by a single PV panel.

Load power depends on the unitary element power and number of 
elements of the same type; therefore:

P and f are the element power and occurrence frequency.

Transmission power losses derive from the classical expression:

Itr represents the current global transport in the wiring, 
corresponding to the addition of every individual load current 
demand operating simultaneously, and R is the wiring resistance.

A similar structure applies to the commercial sector since they 
operate at identical domestic sector voltage, with the only difference 

in the number of rows because commercial installations require 
higher power. Industrial facilities operate at two alternate current 
types: low voltage monophasic current for illumination and small 
appliances and high voltage triphasic current for machinery. In this 
latter case, we have two options for the PV array configuration: to 
operate at 220 VAC and convert the voltage to the highest value, 
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currently 380 VAC or 560 VAC, or group panels in series until 
reaching the selected voltage; the serial includes eight panels for 
380 V and twelve for 560 V. If we design the PV array for both, 
residential or commercial and industrial, the best option is a five 
serial panel per row for 220 volts and a booster for the industrial 
facility.

Since the conversion from DC to AC involves power losses, we 
should reformulate equation 3; therefore, replacing equations 4 
and 5 in equation 3 and considering voltage conversion power 
losses:
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i i i
i

p o
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V I






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I is the load element current demand, and ηDC-AC is the voltage converter efficiency. 
 
Biomass 
Biomass is a resource obtained from organic matter, from which we generate energy in 
various ways. One of the most common and oldest ways to use biomass is burning 
wood to produce heat, but it is not the only way to take advantage of this resource. 
Another way to use biomass is composters, devices in which we add organic waste to 
generate compost as a substitute for fertilizers in crops. Another possibility is the 
generation of fuels such as biodiesel, bio-gasoline, or biogas, which can function as 
substitutes for fossil fuels in combustion engines. 
 
Biomass power generation derives from the combustion of organic matter, converting 
heat into electricity through thermodynamic processes. There are also other methods, 
such as gasification, which consists of decomposing biomass into a biogas that can 
replace natural gas directly in a combined cycle plant, or pyrolysis, a process similar to 
gasification in which, in addition to biogas, we produce liquid biofuels used in another 
process [13]. 
 
Biomass as an energy resource has the advantage of being renewable because of easy 
replenishment: plant resources such as wood can be replenished by replanting trees; 
however, excessive consumption of the resource could be faster than its generation, and 
in the example given of wood, cause deforestation by not being able to replace the trees 
at the same speed that they fall, and that is why biomass requires consumption 
responsible. On the other hand, burning biomass releases GHG, but as it comes mainly 
from plant sources, it has been considered clean energy since plants absorb atmospheric 
carbon dioxide, leading to a null GHG. However, other authors affirm that the 
calculation of this balance is incorrect and should be rectified, proposing alternative 
ways of calculating this carbon footprint in such a way that biomass presents a negative 
balance for the environment [14], although the carbon footprint is still much lower than 
that of fossil fuel. Furthermore, the efficiencies of biomass-to-electric energy 
conversion sciences are comparable to those of gas plants or steam [15,16], so biomass 
is energetically efficient, presenting a lower environmental impact. Biomass is 
sustainable, provided there are no supply problems. 
 
Power delivered by biomass derives from the expression: 
 

bio bioP mQ


   (7) 
 

Q is the biomass heat power, m
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is the biomass consumption rate, and ηbio is the 
conversion process efficiency. 
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bio-gasoline, or biogas, which can function as substitutes for fossil 
fuels in combustion engines.
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mainly from plant sources, it has been considered clean energy 
since plants absorb atmospheric carbon dioxide, leading to a null 
GHG. However, other authors affirm that the calculation of this 
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ways of calculating this carbon footprint in such a way that 
biomass presents a negative balance for the environment, although 
the carbon footprint is still much lower than that of fossil fuel 
[14]. Furthermore, the efficiencies of biomass-to-electric energy 
conversion sciences are comparable to those of gas plants or 
steam, so biomass is energetically efficient, presenting a lower 
environmental impact. Biomass is sustainable, provided there are 
no supply problems [15,16].

Power delivered by biomass derives from the expression:

Equation 8 provides a practical method to determine the biomass 
reservoir to maintain power generation for the operating time. 
Since the biomass reservoir requires refilling periodically, we must 
provide a constant supply to ensure the process is not interrupted.

2.3 Hydroelectric
Hydropower generation links the gravitational to kinetic energy 
conversion in a mechanic turbine, which supplies rotational energy 
to an electric generator to produce electric current. Using the 
classical expression for the hydropower generation, we determine 
the fluid flow, currently water, needed to generate specific power.

 
1

n

i i i
i

bio

f P I R
m

Q








  (8) 

 
Equation 8 provides a practical method to determine the biomass reservoir to maintain 
power generation for the operating time. Since the biomass reservoir requires refilling 
periodically, we must provide a constant supply to ensure the process is not interrupted. 
 
Hydroelectric 
Hydropower generation links the gravitational to kinetic energy conversion in a 
mechanic turbine, which supplies rotational energy to an electric generator to produce 
electric current. Using the classical expression for the hydropower generation, we 
determine the fluid flow, currently water, needed to generate specific power. 

 

 hydro p LP V h V H h 
 

     (9) 
 

V


and γ are the water flow and specific weight, H is the gravimetric height, and hL 
represents the mechanic losses, given by: 
 

2

2L
H

L vh f
D g

   (10) 

 
f is the friction factor or Darcy factor, L and DH are the duct length and hydraulic 
diameter, and v is the water speed inside the duct. 
 
The hydraulic diameter corresponds to a circle with the same cross section, S, of the 
current duct; mathematically: 
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The deviation between row numbers with and without considering power losses is 
negligible, lower than 0.13%. Figure 1 shows the PV array layout.  
 
Another factor influencing the PV array row number is the temperature since the current 
generated by a PV panel depends on it. Considering an average coefficient value of 2.17 
mA/ºC [18] and a maximum working temperature of 65º C [19], representing an 
increase of 40º C related to standard conditions [20], the PV array current increase is 
0.9%, which compensates for the wiring power losses. Therefore, we adopt the 2000 
parallel row number as the reference for our system. 
 
Because a power converter of 18.25 MW requires a specific design and is excessively 
expensive, we decided to use a 1 MW converter unit to transform continuous current 
into an alternate current for the external load. We are applying a safety factor of 10% 
for the power conversion, resulting in 20 converter units of 1 MW connected in parallel. 
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it. Considering an average coefficient value of 2.17 mA/ºC and a 
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of 40º C related to standard conditions, the PV array current 
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On the other hand, the Performance Ratio (PR), which represents the efficiency 
associated with wiring and shading power losses are: 
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The obtained PR value corresponds to a well-designed PV array. Figure 1 shows the PV 
array layout. 
 
The PV panel’s tilt is 30º, corresponding to the best inclination for optimum 
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3.2 Biomass Power Plant
Biomass plants operate analogously to steam plants fueled 
by fossil fuels: the biomass burns and heats a fluid work, like 
water, which evaporates, generating steam that rotates a turbine, 
producing electricity. In Spain, there are numerous biomass plants; 
among them is the 50 MW Huelva power plant, with an annual 
consumption of 500,000 tons of biomass per year [21]. For the 
simulation, we initially worked with a power plant of a smaller 
size, 5 MW, operating with oak wood with a heating value of 0.746 
GJ/tree when the diameter exceeds 10 cm [22]. Since these trees 
have a usable biomass of 43.9 kg according to this same source, 
the calorific value of this type of wood per unit of mass is 16.99 
MJ/kg; therefore, to supply the power desired, considering an 
efficiency of 40% of the process, the consumption must be 2648.12 
kg/h.

This energy is produced directly in alternating current, so there is 
no need for an inverter, only transformers to raise and reduce the 
voltage, as in the case of the PV field. The efficiencies are the same 
for the solar PV field: 0.9 for the transformation section between 
low and medium voltage and 0.95 for the section between medium 
and high tension. A significant advantage of the biomass power 
plant is the storage capacity since we can store wood for later 
use if necessary. The biomass power plant can operate at variable 
output power depending on energy demand, adapting the power 
generation by increasing or reducing the wood consumption. We 
can stop the biomass power plant and easily restart operation on 
demand.

Figure 2 shows the schematic representation of the biomass power 
plant.
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Figure 2 Schematic view of a biomass power plant 
 
The wood is introduced into the hopper from which the burner is fed through a trap door 
that allows the required amount to pass through; the combustion process heats the 
water, converting it into steam that is transported to a turbine, causing the blades to 
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The wood is introduced into the hopper from which the burner is 
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through; the combustion process heats the water, converting it into 
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is the vapor flow, To and Tb are the 
initial and boiling temperature of the water, FR is the heat transfer coefficient and top is 
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I and V are the current and voltage of the electric power generation, ηt and ηg are the 
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temperature at the turbine. 
 
Combining equations 1 and 2 and replacing the wood mass flow: 
 

   wood b owood R w w
el t g in out

w w op

T Tm Q F m cP T T
L L t


    

 
 

  (22)  

 
Hydropower plant 
A hydropower plant can operate in a one-way or reversible mode; in the first mode, the 
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3.3 Hydropower Plant
A hydropower plant can operate in a one-way or reversible mode; 
in the first mode, the power plant only generates energy by using 
a one-way turbine; in the second mode, the turbine reverses 
when necessary to pump water, storing energy under gravimetric 
mode. This second option reduces the turbine's global efficiency 

but allows working in a two-way mode, energy generation, and 
storage.

Hydroelectric power plant follows Fluid Mechanic principles to 
determine power generation according to:
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Figure 3 shows the schematic view of the hydropower plant. 
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by the power plants and the fraction covered by the energy sources. The energy demand 
differs since the power requirements of a municipality are not the same as that of an 
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In current operation, the hydroelectric damn uses only a fraction 
of the water flow supply to the reservoir since the other fraction 
corresponds to the ecologic flow used for irrigation, animal 
watering, industrial applications, and human needs. Equation 25 

continues applying with the fluid flow,  V
• ,  now the water supply 

and ecologic flow differential.

3.4 Energy Demand
To design a program to manage energy demand, we need to 
know the energy generated by the power plants and the fraction 
covered by the energy sources. The energy demand differs since 

the power requirements of a municipality are not the same as that 
of an industry, neither in terms of average daily energy nor hourly 
distribution.

The energy demand curve should consider the power generation 
from the power plants, single or combined, to size the curve in a 
way the control unit operates when the energy balance is positive, 
with power generation exceeding energy demand.

Considering a prototype installation whose energy demands 
corresponds to Figure 4:
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Figure 4 Energy demand curve 
 
The energy demand curve derives from current data adapted to the maximum supply 
power from energy sources. 
 
SYSTEM CONFIGURATION 
 
The system configuration is presented in Figure 5. 
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Figure 4: Energy Demand Curve

The energy demand curve derives from current data adapted to the maximum supply power from energy sources.

4. System Configuration
The system configuration is presented in Figure 5.

Figure 5: System Configuration
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The current generated at the power plants is transported at a high 
voltage, 32 kV, to reduce energy losses during transportation; 
therefore, a transformer converts low into high alternate voltage. 
Since the electric generator at any of the three power plants 
supplies power at different voltages, the system includes individual 

transformers for every power plant; the three transportation lines 
merge into one before entering the principal transformer, which 
reduces the line's high voltage (32 kV) to the industrial facility 
operating one, 560 VAC.
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Figure 6 Wiring configuration 
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unity output power from every power plant, we have: 
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Equation 26 shows that the reduction in energy losses is 96.4% per power unit. 
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The objective of the control system is to select the most suitable energy source from a 
multiple renewable hybrid energy system to inject power into the grid when the energy 
balance between generation and demand is positive, operating at optimal performance. 
 
The protocol for the control system operates under the following specific criteria: 

 The hydropower plant is the last to connect because water is easily stored in the 
reservoir until necessary for supplying hydroelectric energy; therefore, we can 
regulate the power supply, keeping the hydro resource 
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The wiring configuration (Figure 6) significantly reduces energy losses. Considering a unity output power from every power plant, we 
have:

Equation 26 shows that the reduction in energy losses is 96.4% per 
power unit.

4.1 Control System
The objective of the control system is to select the most suitable 
energy source from a multiple renewable hybrid energy system 
to inject power into the grid when the energy balance between 
generation and demand is positive, operating at optimal 
performance.

The protocol for the control system operates under the following 
specific criteria:
• The hydropower plant is the last to connect because water is easily 
stored in the reservoir until necessary for supplying hydroelectric 
energy; therefore, we can regulate the power supply, keeping the 
hydro resource

• Hydraulic resources are prioritized over biomass since water 
is essential for human life and fluvial ecosystems; therefore, we 
prioritize water reservoirs over biomass storage
• The protocol algorithm preserves water reserve, if possible
• The control system evaluates the efficiency in supplying power 
to load from photovoltaic and biomass power plants, considering 
the generation process, energy conversion from DC to AC or vice 
versa, and transportation losses
• The protocol operates based on the absence of an electric storage 
system

We develop the protocol in MATLAB language. Annex shows the 
Matlab program developed for the control system protocol. Figure 
7 shows the protocol flowchart.
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 Hydraulic resources are prioritized over biomass since water is essential for 
human life and fluvial ecosystems; therefore, we prioritize water reservoirs over 
biomass storage 

 The protocol algorithm preserves water reserve, if possible 
 The control system evaluates the efficiency in supplying power to load from 

photovoltaic and biomass power plants, considering the generation process, 
energy conversion from DC to AC or vice versa, and transportation losses 

 The protocol operates based on the absence of an electric storage system 
 
We develop the protocol in MATLAB language. Annex shows the Matlab program 
developed for the control system protocol. Figure 7 shows the protocol flowchart. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 Protocol flowchart 
Figure 7: Protocol Flowchart

As seen in Figure 7, the protocol sequentially compares the 
energy demand with power generation at every power plant, 
photovoltaic, biomass, and hydroelectric. Photovoltaic is 
always the priority, followed by biomass, leaving hydropower 
as an energy reservoir. The protocol stops the checking process, 
connecting the tested power plant with the industrial facility and 
interrupting the connection to the other plants if any power source 
exceeds the energy demand. The protocol compares the combined 
output power of two power sources with the energy demand 
following the sequence: photovoltaic plus biomass as the first 
option, photovoltaic and hydro as the second option, and biomass 
plus hydro as the last option if none of the three power sources 

supplies enough power to cover the energy demand. As in the first 
comparative loop, if any of the combinations produce a positive 
balance, power generation exceeds energy demand, the protocol 
stops the checking process, connecting the two selected power 
plants to the load and disconnecting the remaining power source.

If none of the combinations produce a positive balance, the 
protocol compares the power generation of the three combined 
power sources with the energy demand; if the balance is positive, 
the protocol leaves the three power sources connected to the load; 
otherwise, it opens the grid connection and regulates the energy 
entering from the grid to obtain a null energy balance.



J Data Analytic Eng Decision Making, 2024 Volume 1 | Issue 2 | 11

5. Simulation
We consider a homogeneous geographical distribution of the 
power plants located 5 km from the load center. We obtain the 
power plant efficiency from the literature, using an average 
value for every energy source type; in our case, the efficiency is 
45% for the biomass, 18% for the photovoltaic, and 80% for the 
hydropower [23-25].

Applying the protocol program shown in the Annex to the energy 
demand curve in Figure 4, we obtain the following results (Figures 
8 and 9):

As seen in Figure 7, the protocol sequentially compares the energy demand with power 
generation at every power plant, photovoltaic, biomass, and hydroelectric. Photovoltaic 
is always the priority, followed by biomass, leaving hydropower as an energy reservoir. 
The protocol stops the checking process, connecting the tested power plant with the 
industrial facility and interrupting the connection to the other plants if any power source 
exceeds the energy demand. 
 
The protocol compares the combined output power of two power sources with the 
energy demand following the sequence: photovoltaic plus biomass as the first option, 
photovoltaic and hydro as the second option, and biomass plus hydro as the last option 
if none of the three power sources supplies enough power to cover the energy demand. 
As in the first comparative loop, if any of the combinations produce a positive balance, 
power generation exceeds energy demand, the protocol stops the checking process, 
connecting the two selected power plants to the load and disconnecting the remaining 
power source. 
 
If none of the combinations produce a positive balance, the protocol compares the 
power generation of the three combined power sources with the energy demand; if the 
balance is positive, the protocol leaves the three power sources connected to the load; 
otherwise, it opens the grid connection and regulates the energy entering from the grid 
to obtain a null energy balance. 
 
SIMULATION 
 
We consider a homogeneous geographical distribution of the power plants located 5 km 
from the load center. We obtain the power plant efficiency from the literature, using an 
average value for every energy source type; in our case, the efficiency is 45% for the 
biomass [23], 18% for the photovoltaic [24], and 80% for the hydropower [25]. 
 
Applying the protocol program shown in the Annex to the energy demand curve in 
Figure 4, we obtain the following results (Figures 8 and 9): 
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Figure 8: Evolution of Daily Power Supply, Energy Demand and Grid Injection (Summer Solstice) (Symmetric Geographical 
Configuration)

Figure 8 Evolution of daily power supply, energy demand and grid injection       
(summer solstice) (symmetric geographical configuration) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9 Energy fraction supplied to the grid normalized to demand in each hour 
(summer solstice) (symmetric geographical configuration) 

 
We realize in Figure 8 that the biomass power plant supplies constant energy to the grid. 
At central day hours, when hydropower disconnects because the photovoltaic power 
plant operates at maximum performance, the control system regulates this last power 
type according to energy demand; the reason why we observe a drop in the photovoltaic 
power injection to the grid, around 14 h, with ups and downs between 10 h and 16 h. 
This behavior shows that PV power is not the priority but the biomass. 
 
On the other hand, looking at Figure 9, we observe the intervals where the balance 
between power generation and energy demand is negative, between 6 and 10 h and from 
17 to 21 h. These two periods match the lowest solar photovoltaic generation. 
 
We should call the reader’s attention to the fact that the simulation runs for the 21st of 
June, matching the summer solstice when solar production is maximum; if we deal with 
the winter solstice on the 21st of December, the simulation results are as follows (Figure 
10). 
 
We observe in Figure 10 a lower photovoltaic power generation and the need to use the 
hydropower supply most of the time. Extra energy supply is also a characteristic of this 
year due to a 10% drop in renewable energy generation. 
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Figure 9: Energy Fraction Supplied to the Grid Normalized to Demand in Each Hour (Summer Solstice) (Symmetric Geographical 
Configuration)
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We realize in Figure 8 that the biomass power plant supplies 
constant energy to the grid. At central day hours, when 
hydropower disconnects because the photovoltaic power plant 
operates at maximum performance, the control system regulates 
this last power type according to energy demand; the reason why 
we observe a drop in the photovoltaic power injection to the grid, 
around 14 h, with ups and downs between 10 h and 16 h. This 
behavior shows that PV power is not the priority but the biomass.

On the other hand, looking at Figure 9, we observe the intervals 
where the balance between power generation and energy demand 

is negative, between 6 and 10 h and from 17 to 21 h. These two 
periods match the lowest solar photovoltaic generation. We should 
call the reader’s attention to the fact that the simulation runs for the 
21st of June, matching the summer solstice when solar production 
is maximum; if we deal with the winter solstice on the 21st of 
December, the simulation results are as follows (Figure 10). We 
observe in Figure 10 a lower photovoltaic power generation and 
the need to use the hydropower supply most of the time. Extra 
energy supply is also a characteristic of this year due to a 10% drop 
in renewable energy generation.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10 Evolution of daily power supply, energy demand and grid injection        
(winter solstice) (symmetric geographical configuration) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11 Energy fraction supplied to the grid normalized to demand in each hour 
(winter solstice) (symmetric geographical configuration) 

 
Optimization process 
 
We can optimize the system performance by making the biomass power plant to supply 
higher output power when necessary. In such a case, the global output power is 10 MW, 
operating for 18 hours daily. This configuration, however, represents a 50% increase in 
biomass consumption, a fact that plant managers should consider to avoid unexpected 
stops due to a lack of primary matter. 
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Figure 10 Evolution of daily power supply, energy demand and grid injection        
(winter solstice) (symmetric geographical configuration) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11 Energy fraction supplied to the grid normalized to demand in each hour 
(winter solstice) (symmetric geographical configuration) 

 
Optimization process 
 
We can optimize the system performance by making the biomass power plant to supply 
higher output power when necessary. In such a case, the global output power is 10 MW, 
operating for 18 hours daily. This configuration, however, represents a 50% increase in 
biomass consumption, a fact that plant managers should consider to avoid unexpected 
stops due to a lack of primary matter. 
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Figure 10: Evolution of Daily Power Supply, Energy Demand and Grid Injection (Winter Solstice) (Symmetric Geographical 
Configuration)

Figure 11: Energy Fraction Supplied to the Grid Normalized to Demand in Each Hour (Winter Solstice) (Symmetric Geographical 
Configuration)
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5.1 Optimization Process
We can optimize the system performance by making the biomass 
power plant to supply higher output power when necessary. In such 
a case, the global output power is 10 MW, operating for 18 hours 
daily. This configuration, however, represents a 50% increase in 

biomass consumption, a fact that plant managers should consider 
to avoid unexpected stops due to a lack of primary matter.

Figures 12 and 13 show the simulation results for the optimized 
process.Figures 12 and 13 show the simulation results for the optimized process. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12 Evolution of daily power supply, energy demand and grid injection for 
optimum performance (summer solstice) (symmetric geographical configuration) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure13 Energy fraction supplied to the grid normalized to demand in each hour for 
optimum performance (summer solstice) (symmetric geographical configuration) 

 
We observe that the optimized system matches the energy demand with higher accuracy 
since it does not require an external power supply in the morning or at the afternoon 
peak energy demand between 17 and 21 h. 
 
In the non-optimized case, renewable energies cover 50% to 60% of the gap between 
power generation and energy demand, while in the optimized configuration, the 
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Figures 12 and 13 show the simulation results for the optimized process. 
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optimum performance (summer solstice) (symmetric geographical configuration) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure13 Energy fraction supplied to the grid normalized to demand in each hour for 
optimum performance (summer solstice) (symmetric geographical configuration) 

 
We observe that the optimized system matches the energy demand with higher accuracy 
since it does not require an external power supply in the morning or at the afternoon 
peak energy demand between 17 and 21 h. 
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Figure 12: Evolution of Daily Power Supply, Energy Demand and Grid Injection for Optimum Performance (Summer Solstice) 
(Symmetric Geographical Configuration)

Figure 13: Energy Fraction Supplied to the Grid Normalized to Demand in Each Hour for Optimum Performance (Summer 
Solstice) (Symmetric Geographical Configuration)

We observe that the optimized system matches the energy demand 
with higher accuracy since it does not require an external power 
supply in the morning or at the afternoon peak energy demand 
between 17 and 21 h. In the non-optimized case, renewable 
energies cover 50% to 60% of the gap between power generation 

and energy demand, while in the optimized configuration, the 
coverage factor is 70%. Besides, the biomass power plant does 
not operate at maximum output power in the early morning since 
the energy demand lowers, reducing the power requirements. On 
the other hand, the biomass power plant may cover the lowest 
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energy requirement daily period, 1.5 MW, which occurs around 
16 h, if operating at a higher output power than average due to the 
decrease in energy demand.

In the late afternoon, it is necessary to supply extra power from the 
hydroelectric plant or the grid. We should respect the ecological 
water flow to preserve human, cattle, or agricultural demand when 
using the hydropower plant at higher output power.

coverage factor is 70%. Besides, the biomass power plant does not operate at maximum 
output power in the early morning since the energy demand lowers, reducing the power 
requirements. 
 
On the other hand, the biomass power plant may cover the lowest energy requirement 
daily period, 1.5 MW, which occurs around 16 h, if operating at a higher output power 
than average due to the decrease in energy demand. 
 
In the late afternoon, it is necessary to supply extra power from the hydroelectric plant 
or the grid. We should respect the ecological water flow to preserve human, cattle, or 
agricultural demand when using the hydropower plant at higher output power. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14 Evolution of daily power supply, energy demand and grid injection for 
optimum performance (winter solstice) (symmetric geographical configuration) 
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coverage factor is 70%. Besides, the biomass power plant does not operate at maximum 
output power in the early morning since the energy demand lowers, reducing the power 
requirements. 
 
On the other hand, the biomass power plant may cover the lowest energy requirement 
daily period, 1.5 MW, which occurs around 16 h, if operating at a higher output power 
than average due to the decrease in energy demand. 
 
In the late afternoon, it is necessary to supply extra power from the hydroelectric plant 
or the grid. We should respect the ecological water flow to preserve human, cattle, or 
agricultural demand when using the hydropower plant at higher output power. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14 Evolution of daily power supply, energy demand and grid injection for 
optimum performance (winter solstice) (symmetric geographical configuration) 
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Figure 14: Evolution of Daily Power Supply, Energy Demand and Grid Injection for Optimum Performance (Winter Solstice) 
(Symmetric Geographical Configuration)

Figure 15: Energy Fraction Supplied to the Grid Normalized to Demand in Each Hour for Optimum Performance (Winter 
Solstice) (Symmetric Geographical Configuration)

In winter (Figures 14 and 15), the biomass power plant operates 
during peak energy demand since the photovoltaic resource is 
lower than in summer. Applying this configuration, we obtain a 
renewable coverage factor of 60% instead of 50%.

Oversizing the renewable power plants guarantees a 100% coverage 
factor at the peak energy demand; however, this configuration 
wastes power during the out-of-peak energy demand time intervals 
or forces the power plant to reduce energy generation with the 
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subsequent efficiency lowering; therefore, it is interesting to use 
the grid to cover negative balance or to install a storage unit to 
compensate for excess and deficit of energy balance.

5.2 Geographical Configuration
The proposed geographical distribution may change according to 

nearby orography and space availability for power plant building. 
Rearranging the power plant layout, moving the PV array closer to 
the industrial facility because of its higher adaptability, maintaining 
the biomass power plant on the original site, and moving away the 
hydropower plant due to easy access to water flow, we have the 
following proposed geographical configuration (Table 1):

Figure15 Energy fraction supplied to the grid normalized to demand in each hour for 
optimum performance (winter solstice) (symmetric geographical configuration) 

 
In winter (Figures 14 and 15), the biomass power plant operates during peak energy 
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Oversizing the renewable power plants guarantees a 100% coverage factor at the peak 
energy demand; however, this configuration wastes power during the out-of-peak 
energy demand time intervals or forces the power plant to reduce energy generation 
with the subsequent efficiency lowering; therefore, it is interesting to use the grid to 
cover negative balance or to install a storage unit to compensate for excess and deficit 
of energy balance. 
 
Geographical configuration 
 
The proposed geographical distribution may change according to nearby orography and 
space availability for power plant building. Rearranging the power plant layout, moving 
the PV array closer to the industrial facility because of its higher adaptability, 
maintaining the biomass power plant on the original site, and moving away the 
hydropower plant due to easy access to water flow, we have the following proposed 
geographical configuration (Table 1): 
 

Table 1 Comparison of the distance between the power plant and consumption center 
 

Power plant type → PV array Biomass Hydropower 
Distance 

(km) 
Original 5.0 5.0 5.0 

New 0.5 5.0 50.0 
 

We reduce and enlarge the PV array and hydropower's original distance by ten times. 
We randomly chose this factor to evaluate the influence of changing distance on power 
plant performance, individual and collective. 
 
Figures 16 and 17 show the simulation results for the new geographical configuration. 
Hydroelectric power generation remains constant, having an average energy production 
of 4.80 MWh. The increase in energy losses due to the distance enlargement is 
negligible compared to power generation, barely 0.02%. A similar situation occurs with 
the PV array, where the energy loss reduction represents 0.015% of the power 
generation. Therefore, geographical configuration does not interfere with net power 
generation, provided the distance is not too long. 
 
Since the distance between the PV array and load center is shorter, we determine the 
influence of transporting power at lower voltage. For a peak power of 19.6 MW and a 
transportation voltage of 360 KV, the generated current is: 
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Table 1: Comparison of the Distance between the Power Plant and Consumption Center

We reduce and enlarge the PV array and hydropower's original 
distance by ten times. We randomly chose this factor to evaluate 
the influence of changing distance on power plant performance, 
individual and collective. Figures 16 and 17 show the simulation 
results for the new geographical configuration. Hydroelectric power 
generation remains constant, having an average energy production 
of 4.80 MWh. The increase in energy losses due to the distance 
enlargement is negligible compared to power generation, barely 
0.02%. A similar situation occurs with the PV array, where the 

energy loss reduction represents 0.015% of the power generation. 
Therefore, geographical configuration does not interfere with net 
power generation, provided the distance is not too long.

Since the distance between the PV array and load center is shorter, 
we determine the influence of transporting power at lower voltage. 
For a peak power of 19.6 MW and a transportation voltage of 360 
KV, the generated current is:

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16 Evolution of daily power supply, energy demand and grid injection       
(summer solstice) (irregular geographical configuration) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17 Energy fraction supplied to the grid normalized to demand in each hour 
(summer solstice) (irregular geographical configuration) 

 
 
If we reduce the transportation voltage to 25 kV, the current yields: 
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Determining the power losses during transportation for both cases, we obtain: 
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Figure 16: Evolution of Daily Power Supply, Energy Demand and Grid Injection (Summer Solstice) (Irregular Geographical 
Configuration)
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Figure 16 Evolution of daily power supply, energy demand and grid injection       
(summer solstice) (irregular geographical configuration) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17 Energy fraction supplied to the grid normalized to demand in each hour 
(summer solstice) (irregular geographical configuration) 
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Figure 16 Evolution of daily power supply, energy demand and grid injection       
(summer solstice) (irregular geographical configuration) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17 Energy fraction supplied to the grid normalized to demand in each hour 
(summer solstice) (irregular geographical configuration) 

 
 
If we reduce the transportation voltage to 25 kV, the current yields: 
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Figure 17: Energy Fraction Supplied to the Grid Normalized to Demand in Each Hour (Summer Solstice) (Irregular Geographical 
Configuration)

If we reduce the transportation voltage to 25 kV, the current yields:

Determining the power losses during transportation for both cases, we obtain:

 
   

2

2

45.7 (0.045) 93.1 ( 500 )

658.6 0.045 19.5 ( 5 )
L

W d m
P

kW d km

  


  
 (29)  

 
On the other hand, considering that the voltage boosting at the transformer produces a 
5% power loss, and because the 360 kV transportation voltage requires two 
transformers, one from low to medium voltage (860 V to 25 kV), and another from 
medium to high voltage (25 to 360 kV), we have: 
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Combining data from equations 29 and 30, we realize that the short distance 
configuration for the PV array produces half the power losses than the long distance 
case, 999.5 kW vs 1960 kW; therefore, we conclude that reducing the transportation 
voltage to a medium tension value reduces the transmission power losses. 
 
An identical analysis developed for hydropower and biomass power plants leads to a 
similar conclusion: operating at medium transportation voltage for short distances 
reduces power losses and improves the system's global performance. 
 
Applying the simulation for the medium transportation voltage, we obtain (Figures 18 
and 19): 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18 Evolution of daily power supply, energy demand and grid injection       
(summer solstice) (irregular geographical configuration) (medium transportation 

voltage) 
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On the other hand, considering that the voltage boosting at the transformer produces a 
5% power loss, and because the 360 kV transportation voltage requires two 
transformers, one from low to medium voltage (860 V to 25 kV), and another from 
medium to high voltage (25 to 360 kV), we have: 
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Combining data from equations 29 and 30, we realize that the short distance 
configuration for the PV array produces half the power losses than the long distance 
case, 999.5 kW vs 1960 kW; therefore, we conclude that reducing the transportation 
voltage to a medium tension value reduces the transmission power losses. 
 
An identical analysis developed for hydropower and biomass power plants leads to a 
similar conclusion: operating at medium transportation voltage for short distances 
reduces power losses and improves the system's global performance. 
 
Applying the simulation for the medium transportation voltage, we obtain (Figures 18 
and 19): 
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On the other hand, considering that the voltage boosting at the transformer produces a 5% power loss, and because the 360 kV 
transportation voltage requires two transformers, one from low to medium voltage (860 V to 25 kV), and another from medium to high 
voltage (25 to 360 kV), we have:

Combining data from equations 29 and 30, we realize that the 
short distance configuration for the PV array produces half the 
power losses than the long distance case, 999.5 kW vs 1960 kW; 
therefore, we conclude that reducing the transportation voltage to 
a medium tension value reduces the transmission power losses.

An identical analysis developed for hydropower and biomass 

power plants leads to a similar conclusion: operating at medium 
transportation voltage for short distances reduces power losses and 
improves the system's global performance.

Applying the simulation for the medium transportation voltage, 
we obtain (Figures 18 and 19):
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Figure 18: Evolution of Daily Power Supply, Energy Demand and Grid Injection (Summer Solstice) (Irregular Geographical 
Configuration) (Medium Transportation Voltage)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 19 Energy fraction supplied to the grid normalized to demand in each hour 
(summer solstice) (irregular geographical configuration) (medium transportation 

voltage) 
 

Comparing Figures 17 and 19, we realize that solar photovoltaic power increases in all 
sunny periods, especially at midday. Indeed, at 16 h, the coverage factor rises from 80% 
to 85%. A similar situation occurs when comparing data from Figures 16 and 18. 
 
Despite the improvement in PV array performance, the biomass power plant continues 
to have the highest global efficiency, as we see comparing data in the 9 to 10 am 
interval (Figure 16) when the biomass plant supplies continuous power and the control 
system regulates the PV array power generation. This situation occurs even when 
increasing the distance from the biomass power plant to the load center; indeed, the 
distance at which biomass and PV array efficiency match is: 
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The obtained distance is nonsense; therefore, the control system protocol establishes 
that biomass global efficiency is higher no matter which is the distance from the load 
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Figure 19: Energy Fraction Supplied to the Grid Normalized to Demand in Each Hour (Summer Solstice) (Irregular Geographical 
Configuration) (Medium Transportation Voltage)

Comparing Figures 17 and 19, we realize that solar photovoltaic 
power increases in all sunny periods, especially at midday. Indeed, 
at 16 h, the coverage factor rises from 80% to 85%. A similar 
situation occurs when comparing data from Figures 16 and 18. 
Despite the improvement in PV array performance, the biomass 
power plant continues to have the highest global efficiency, as we 

see comparing data in the 9 to 10 am interval (Figure 16) when the 
biomass plant supplies continuous power and the control system 
regulates the PV array power generation. This situation occurs 
even when increasing the distance from the biomass power plant 
to the load center; indeed, the distance at which biomass and PV 
array efficiency match is:
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η is the efficiency, with subscripts PV, bio, tr, and conv accounting for PV array, biomass power plant, transmission line, and voltage 
converter. Pgrid is the grid power injection, I is the transported current, and S and ρwr are the wiring section and electric resistivity.

Replacing data from our system:

The obtained distance is nonsense; therefore, the control system 
protocol establishes that biomass global efficiency is higher 
no matter which is the distance from the load center, and it is 
considered as the first option for power supply under the setup 
operating conditions.

5.3 Efficiency Influence
The control system protocol prioritizes the power source depending 
on the efficiency when the energy demand requires a power supply 
for more than a single source, selecting the most efficient one to 
cover the maximum energy requirement fraction and leaving the 
remaining energy demand for the other sources. The Figure 20 
diagram shows the protocol flowchart.
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energy demand, resulting in a negative value according to previous control statements. 
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system regulates the power supply to the value that makes the energy balance null; 
otherwise, the loop continues selecting the third power source and evaluating the energy 
balance, which should be now positive. If the balance is negative, the control system 
derives the power supply to the grid connection to equalize global power supply and 
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We run a simulation test for reduced biomass efficiency, 10% lower, to verify the 
validity of the control system protocol in improving the system performance; Figures 21 
and 22 show the simulation results. 
 

Figure 20: Flowchart of Control System Protocol for Power Source Selection

The control system protocol collects information about the energy 
demand and individual power source generation, comparing energy 
supply from every source with energy demand; if the balance is 
positive, the protocol ends, and the routine of the control system 
verification stops.

If the energy balance is negative, the control system evaluates the 
efficiency of every power source and selects the one with higher 
efficiency. Next, the control system determines the energy balance 
between the power supply from the chosen source and energy 
demand, resulting in a negative value according to previous 
control statements. Once the energy balance is established, the 
control system selects the second higher power source efficiency 

and recalculates the energy balance; if positive, the control system 
regulates the power supply to the value that makes the energy 
balance null; otherwise, the loop continues selecting the third 
power source and evaluating the energy balance, which should be 
now positive. If the balance is negative, the control system derives 
the power supply to the grid connection to equalize global power 
supply and energy demand.

We run a simulation test for reduced biomass efficiency, 10% 
lower, to verify the validity of the control system protocol in 
improving the system performance; Figures 21 and 22 show the 
simulation results.
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Figure 21 Evolution of daily power supply, energy demand and grid injection       
(summer solstice) (irregular geographical configuration) (reduced biomass power plant 

efficiency) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 22 Energy fraction supplied to the grid normalized to demand in each hour 
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Figure 21: Evolution of Daily Power Supply, Energy Demand and Grid Injection (Summer Solstice) (Irregular Geographical 
Configuration) (Reduced Biomass Power Plant Efficiency)

Figure 22: Energy Fraction Supplied to the Grid Normalized to Demand in Each Hour (Summer Solstice) (Irregular Geographical 
Configuration) (Reduced Biomass Power Plant Efficiency)

As can be seen, in the morning hours when biomass generation was 
previously constant, it now falls, while the injected solar energy 
increases and decreases with the hours of the day, except at 2 p.m., 
when demand drops and the generated solar photovoltaic energy is 
higher than energy demand, proving that the program reorganizes 
the energy that enters and leaves the grid based on its generation 
efficiency. We verified that if the solar and biomass power plants 
had the same generation efficiency, were at the same distance 
from the consumption point, and had the same transformers with 

identical efficiencies, the solar park inverter would make the 
system prioritize biomass.

6. Conclusions
An energy management system has been designed for a hybrid set 
of renewable sources that allows the use of generated energy to be 
optimized for a given consumption.

Although the hybrid generation system model studied has focused 



J Data Analytic Eng Decision Making, 2024 Volume 1 | Issue 2 | 20

on three specific energy sources, the management system applies 
to any type of energy source, renewable or not, and any demand 
curve. The management system prioritizes generation efficiency 
when selecting the first energy source as a priority, including 
losses due to transport, generation, and voltage variation in said 
efficiency. Whenever working with low or moderate currents, the 
distance from the power plant to the consumption center is a factor 
with little influence, but it can be more critical if working at higher 
powers.

Optimization in energy management at work has not been based 
solely on controlling power plants but adapting generation to 
demand throughout the day hour to minimize excess or lack of 
energy and tend towards a zero balance. This measure must be 
extended and adapted to any time of the year. It is advisable 
to use energy sources on which the generated power can be 
controlled, such as hydroelectric and biomass, to obtain a null 
energy balance over time since this allows optimizing the overall 
generation efficiency by using a resource whose energy conversion 
performance does not depend on external factors, as is the case 
with solar photovoltaic or wind power. Although the system 
optimizes energy management, it may happen that, depending on 
the distribution of generation and demand, the energy balance is 
negative, requiring additional sources.
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ANNEX

The input parameters are the energy demand (D), the power generation, photovoltaic (S), biomass (B), and hydro (H), the distance 
from power plant to load center, ds for photovoltaic, db for biomass, and dh for hydropower, and the power plant efficiency, rs for 
photovoltaic, rb for biomass, and rh for hydropower. 

function[S,B,H,fs,fb,fh]=SelectorEnergia(D,S,ds,rs,B,db,rb,H,dh,
rh)
rho=0.0178; %Ohm*mmˆ2/m
A=200; %mmˆ2
IS=S/360000;
IB=B/360000;
IH=H/360000;
PR=0.84;
r_ts1=0.9;
r_ts2=0.95;
r_ts3=0.95;
r_ts4=0.9;
r_tb1=0.9;
r_tb2=0.95;
r_tb3=0.95;
r_tb4=0.9;
r_th1=0.9;
r_th2=0.95;
r_th3=0.95;
r_th4=0.9;
S1=S.*PR.*r_ts1*r_ts2;
B1=B.*r_tb1*r_tb2;
H1=H.*r_th1*r_th2;
S2=S1-rho*ds/A.*IS.ˆ2;
B2=B1-rho*db/A.*IB.ˆ2;
H2=H1-rho*dh/A.*IH.ˆ2;
S3=S2.*r_ts3*r_ts4;
B3=B2.*r_tb3*r_tb4;
H3=H2.*r_th3*r_th4;
function[S,B,H,fs,fb,fh]=EnergySelector(D,S,ds,rs,B,db,rb,H,dh,
rh)
rho=0.0178; %Ohm*mmˆ2/m
A=200; %mmˆ2
IS=S/360000;
IB=B/360000;
IH=H/360000;
PR=0.84;
r_ts1=0.9;
r_ts2=0.95;
r_ts3=0.95;
r_ts4=0.9;
r_tb1=0.9;
r_tb2=0.95;
r_tb3=0.95;
r_tb4=0.9;
r_th1=0.9;
r_th2=0.95;
r_th3=0.95;
r_th4=0.9;
S1=S.*PR.*r_ts1*r_ts2;
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B1=B.*r_tb1*r_tb2;
H1=H.*r_th1*r_th2;
S2=S1-rho*ds/A.*IS.ˆ2;
B2=B1-rho*db/A.*IB.ˆ2;
H2=H1-rho*dh/A.*IH.ˆ2;
S3=S2.*r_ts3*r_ts4;
B3=B2.*r_tb3*r_tb4;
H3=H2.*r_th3*r_th4;
end
else
if ps==max(ps,pb)
if S(i)>D(i)
fs(i)=D(i)/S(i);
fb(i)=0;
fh(i)=0;
disp ’photovoltaic power source energy demand coverage factor fs’
elseif S(i)==D(i)
fs(i)=1;
fb(i)=0;
fh(i)=0;
disp ’Photovoltaic power source covers all energy demand’
elseif S(i)<D(i)
if B(i)>D(i)-S(i)
fs(i)=1;
fb(i)=(D(i)-S(i))/B(i);
fh(i)=0;
disp ’Energy demand is covered with photovoltaic power source and a fraction of biomass power source, fb’
elseif B(i)==D(i)-S(i)
fs(i)=1;
fb(i)=1;
fh(i)=0;
disp ’Energy demand covered with photovoltaic and biomass power source’
elseif B(i)<D(i)-S(i)
fs(i)=1;
fb(i)=1;
fh(i)=(D(i)-S(i)-B(i))/H(i);
disp ’Energy demand covered with photovoltaic, biomass and a fraction of hydropower source, fh’
end
end
elseif pb==max(ps,pb)
if B(i)>D(i)
fs(i)=0;
fb(i)=D(i)/B(i);
fh(i)=0;
disp ’Energy demand is covered with a fraction, fb, of biomass power source’
elseif B(i)==D(i)
fs(i)=0;
fb(i)=1;
fh(i)=0;
disp ’Energy demand is covered with biomass power source’
elseif B(i)<D(i)
if S(i)>D(i)-B(i)
fs(i)=(D(i)-B(i))/S(i);
fb(i)=1;
fh(i)=0;
disp ’Eenrgy demand is covered with biomass and a fraction, fs, of photovoltaic power source’
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elseif S(i)==D(i)-B(i)
fs(i)=1;
fb(i)=1;
fh(i)=0;
disp ’Energy demand covered with photovoltaic and biomass power source’
elseif S(i)<D(i)-B(i)
fs(i)=1;
fb(i)=1;
fh(i)=(D(i)-S(i)-B(i))/H(i);
disp ’Energy demand covered with photovoltaic, biomass and a fraction, fh, of hydroelectric power source’
end
end
end
end
end
end
S=S.*fs;
B=B.*fb;
H=H.*fh;
end


