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Abstract
Part of the scientific community has spent considerable time and resources to somehow validate Collatz’s conjecture, 
countless efforts have achieved considerable progress in this direction, but this conjecture lacked definitive confirmation 
that choosing an odd number any xi ∈ ℕ∗, we will obtain x(i+1) = 3xi + 1, this being an even number x(i+1), divide it if the 
same by the number two (successively) until another odd number ∈ ℕ∗ is obtained, the process xn = 3x(n−1) + 1 and divisions 
by two until the result is a number equal to 1. This work presents deductions, algorithms and equations that corroborate 
this proposition, supporting this perception and conclusion that Collatz’s conjecture points to the final cycle 4 → 2 → 1.

Keywords: Collatz Conjecture, Chaotic Dynamics, Limit Cycle, Periodic Orbit, Principle of Mathematical Induction, Python and 
‘R‘ Language

Journal of Mathematical Techniques and Computational Mathematics 
ISSN: 2834-7706

1. Introduction
The direct approach that seeks proofs of convergence to conjunction has proven undecidable, at least any algorithm based on formal 
logic has been only partially successful, that is, there is currently no algorithm that definitively proves such a conclusion, probably 
with the advent of and algorithms and quantum computers it is possible to model and prove such a conjecture [1]. The use of 
transfinite numbers (ℵ0, ℵ1, ...) as well as the sets they represent allows a trend analysis when xi → ∞ being xi ∈ ℕ →| ℕ |= ℵ0. The 
present approach, based on processes and simulations obtained with the aid of public domain software, aims to conduct part of the 
research towards obtaining a proof that Collatz conjecture has a final cycle restricted to the sequence 4→2→1.

In the body of this article, results are presented that, based on the principle of induction, when xi → ∞ point to the cycle 4→2→1. 
Using simple tools and a programming language accessible to the general public, in some cases abusing “brute force” in the solution 
of the same algorithms. This work focuses on presenting the conjecture and its behavior in a succinct manner, taking into account the 
boundary conditions. Statistical and programmatic approaches that surround the Natural numbers will be explored in a very simple 
way. Finally, an ‘alternative‘ form of the conjecture will be presented in addition to the programs used in this search [2].

It would not be reasonable to omit that the scientific community in a certain way advises to stay away from such a conjecture given 
the fact that the mathematical resources for solving such a problem are still unknown (or have not been listed) [3,4].

It is also worth mentioning that the Collatz conjecture has aroused enormous interest, especially among the young community that 
usually ventures into this wonderful world of Mathematics, in which sometimes due attention is not given to common and trivial 
statements, such as this simple example: xi ∈ ℕ>1 = {2, 3, 4, 5...}, it can be said that for any xi ∈ ℕ>1, xi will always have as a divisor 
one or more prime numbers (Fundamental Theorem of Arithmetic → direct consequence of the factorization of integers > 1) [4].

1.1 Background
This article uses algorithms developed in Python and the ‘R’ language. When presented, they will be duly notified, as well as their 
relevance [5]. Initially, the environment used for developing the codes in ‘R’ is presented, and later in Python (this language and 
environment being preferably used in this work). Remember that the programming interface in ‘R’ also supports programming in 
Python. When possible, both solutions, i.e. in ‘R’ and Python, will be presented, thus allowing the reader to choose the environment 
that is most suitable for them.
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1.1.1 Installing PyCharm
It is assumed that the reader  has previously installed the Python language on his/her machine, if he/she has not done so, the 
following link provides the subsidy for this [6]:
https://python.org.br/ (in Portuguese)
https://wiki.python.org/moin/BeginnersGuide/Download (in English)
There you will be directed to the available solutions and platforms. Then install the PyCharm environment (IDE) from the link:
https://www.jetbrains.com/pt-br/pycharm/download/

Select your platform and download the Community version.

1.1.2 Installing Rstudio
A good guide to download and install the ‘R’ environment can be found at:
https://livro.curso-r.com/1-instalacao.html
There, follow the necessary steps for your platform.

1.1.3 Testing the Installations
Starting with the ’R’ environment, open RStudio and create a new file (R script) with the following code:
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Starting with the ’R’ environment, open RStudio and create a new file (R script)
with the following code:
1 # Função C o l l a t z p re s en te na b i b l i o t e c a numbers
2 l i b r a r y ( numbers )
3 c o l l a t z (7 )

Fig. 1 – Code: collatz_1.R

After saving the file with the name collatz_1.R and ’running’ it, you should get
the following output: [1] 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1
5 All programs presented will be made available via email when requested to the author and will be available in

the appropriate repository after publication, where installation and testing data will also be made available.
6 The reader who wishes to test the programs may do so using the Python language, however this condition is

not limiting for reading and analyzing the article.
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Figure 1: Code: collatz_1.R

After saving the file with the name collatz_1.R and ’running’ it, 
you should get the following output [1]: 7, 22, 11, 34, 17, 52, 26, 
13, 40, 20, 10, 5, 16, 8, 4, 2, 1

The first line of code instructs the environment to load (install) 
the library (package) numbers which among its various functions 
contains: the function Collatz displaying the sequence for: xi = 
7 [7].

Testing the PyCharm + Python environment. Open PyCharm 
(see appendix C), create a new project called Python_Collatz, 
in addition to the main.py file, include another Collatz_Files.py, 
insert the following code:

The first line of code instructs the environment to load (install) the library (package)
numbers7 which among its various functions contains: the function Collatz displaying the
sequence for: xi = 7.

Testing the PyCharm + Python environment. Open PyCharm (see appendix C),
create a new project called Python_Collatz, in addition to the main.py file, include another
Collatz_Files.py, insert the following code:
1 # Implementa ção v e t o r i a l
2 de f c o l l a t z _ s e q ( x ) :
3 seq = [ x ]
4 i f x < 1 :
5 re turn [ ]
6 whi l e x > 1 :
7 i f x % 2 == 0 :
8 x = x // 2
9 e l s e :

10 x = 3 ∗ x + 1
11 seq . append ( x ) # I n c l u i r e s u l t a d o na sequ ê nc ia
12 re turn seq

Fig. 2 – Code: collatz_seq()

The main program main.py will be seen in due time (appendix C), activate the Col-
latz_Files.py tab and run the file using the Run File in Python Console option (access with
the right mouse button on the function), access the console and activate the collatz_seq(7)
function, you should get the following output:

[7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1]

The program collatz_1.R (Fig.1) and the function collatz_seq(x) (Fig.2) are versions
of the Collatz sequence defined by equation (1)8. Once the environment is installed and
certified, the next items will consider the development of the functions related to the
Collatz sequence presented in (1) and later modified in (2).

xi+1 = f(xi) =




xi

21 : se xi é par (1a)

3 × xi + 1 : se xi é impar (1b)
(1)

Note that the exponent of the number 2 (two) being 1 (one) implies a single division
per ’step’ or ’cycle’, that is, for successive iterations when x is even, only one division per
cycle, a fact that will be adapted to 2ρ later, where a single cycle may include more than
one division by 2 (two).
7 (https://cran.r-project.org/web/packages/numbers/numbers.pdf)
8 Note that both equations in (1), (1a) and (1b) separately are linear, but the decision about whether xi is even

or odd makes the system non-linear [3], a fact that will be later modified by the equation (9)
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The main program main.py will be seen in due time (appendix 
C), activate the Col- latz_Files.py tab and run the file using 
the Run File in Python Console option (access with the right 
mouse button on the function), access the console and activate 
the collatz_seq(7) function, you should get the following output:
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The program collatz_1.R (Figure1) and the function collatz_
seq(x) (Figure 2) are versions of the Collatz sequence defined 
by equation (1) [8]. Once the environment is installed and 
certified, the next items will consider the development of the 
functions related to the Collatz sequence presented in (1) and 
later modified in (2).
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Note that the exponent of the number 2 (two) being 1 (one) implies a single division per ’step’ or ’cycle’, that is, for successive 
iterations when x is even, only one division per cycle, a fact that will be adapted to 2ρ later, where a single cycle may include more 
than one division by 2 (two).

2. Expanding the Collatz Conjecture
Consider the Collatz sequence shown below for x1 = 7:
collatz_d(7) = [7, 22, 11, 34, 17, 52, 13, 40, 5, 16, 1] The Python code for the function collatz_d() can be seen in Figure 3, the results 
correspond respectively to the values [x1][x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11], in other words for this sequence five odd numbers are 
identified xi (before the last x11 = 1 and, five even numbers, that is [9]:

xi ∈ ℕI = [7, 11, 17, 13, 5] = [x1, x3, x5, x7, x9] | i = {1, 3, 5, 7, 9}

The values of xi ∈ ℕI  being odd will be multiplied by 3 and added to the unit (3xi + 1), this operation will result in a necessarily even 
number that will be divided (when even) by a power of 2, they are:
xi ∈ ℕp  = [22, 34, 52, 40, 16] = [x2, x4, x6, x8, x10] | i = {2, 4, 6, 8, 10}
Often only xi ∈ ℕ* or xi ∈ ℕIUℕP, remembering that indexes i odd numbers represent odd numbers, and i even numbers represent 
even numbers (for the result obtained by the function collatz_d(7)). Adjusting the equations in (1) with the necessary modifications 
we obtain:
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values [x1][x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11], in other words for this sequence five odd
numbers are identified xi (before the last x11 = 1 and, five even numbers, that is:

xi ∈ NI = [7, 11, 17, 13, 5] = [x1, x3, x5, x7, x9] | i = {1, 3, 5, 7, 9}
The values of xi ∈ NI being odd will be multiplied by 3 and added to the unit

(3xi + 1), this operation will result in a necessarily even number that will be divided (when
even) by a power of 2, they are:

xi ∈ NP = [22, 34, 52, 40, 16] = [x2, x4, x6, x8, x10] | i = {2, 4, 6, 8, 10}
Often only xi ∈ N∗ or xi ∈ NI

NP , remembering that indexes i odd numbers
represent odd numbers, and i even numbers represent even numbers (for the result
obtained by the function collatz_d(7)). Adjusting the equations in (1) with the necessary
modifications we obtain:

collatz_d(x) =





x
2ρ : se x é par, e ρ ∈ N∗

3 ∗ x + 1 : se x é impar
(2)

where:
x2 = 3 ∗ x1 + 1 being x1 = 7, =⇒ x2 = 22
x3 = 3∗x1+1

21 ou x2
21 , resulting in =⇒ x3 = 22

21 = 11
· · ·
x11 = x10

24 , resulting in (this is the last term) =⇒ x11 = 16
24 = 1

Collatz sequence seen in the equation (2) and the following code:
1 # Implementa ção impar/ par
2 de f co l l a tz_d ( x ) :
3 seq = [ ]
4 whi l e True :
5 seq . append ( x )
6 i f x == 1 :
7 break
8 i f x % 2 :
9 x = x ∗ 3 + 1

10 e l s e :
11 whi l e ( x % 2) = = 0 :
12 x = x // 2
13 re turn seq

Fig. 3 – Code: collatz_d()

9 The optimized function collatz_d() uses only initial odd numbers, obtaining as an intermediate result an even
number that will be divided by 2ρ, where ρ ∈ N∗ , until it results in an odd number which, if greater than one,
is again multiplied by 3 and added to 1, repeating the process until it ends in the number 1.
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Once the values of xi are known, as per the previous example (collatz_d(7) where x1 = 7) the ratio between the successive xi is 
calculated as follow

Once the values of xi are known, as per the previous example (collatz_d(7) where
x1 = 7) the ratio between the successive xi is calculated as follows:

ρ1 = x3
x2

= 11
22 = 1

21

ρ2 = x5
x4

= 17
34 = 1

21

ρ3 = x7
x6

= 13
52 = 1

22

ρ4 = x9
x8

= 5
40 = 1

23

ρ5 = x11
x10

= 1
16 = 1

24

Generalizing we have: ρi = x(2i+1)
x(2i)

, where: ρi
10= [ 1

21 , 1
21 , 1

22 , 1
23 , 1

24 ] = [1
2 , 1

2 , 1
4 , 1

8 , 1
16 ].

Rewriting the equations in (2):
x3 = (3 ∗ x1 + 1) ∗ ρ1

x5 = (3 ∗ x3 + 1) ∗ ρ2

x7 = (3 ∗ x5 + 1) ∗ ρ3

x9 = (3 ∗ x7 + 1) ∗ ρ4

x11 = (3 ∗ x9 + 1) ∗ ρ5

or with the appropriate substitutions:

x11 = (3 ∗ ((3 ∗ ((3 ∗ ((3 ∗ ((3 ∗ x1 + 1) ∗ ρ1) + 1) ∗ ρ2) + 1) ∗ ρ3) + 1) ∗ ρ4) + 1) ∗ ρ5

The final term (in this case) x11 = 1, with the appropriate operations we will obtain
the following equation:

1 = x1 ∗ 35 ∗
5

i=1
(ρi)

  
(A)

+ 34 ∗
5

i=1
(ρi)

  
(B)

+ 33 ∗
5

i=2
(ρi) + · · ·

  
(C)

+ 30 ∗
5

i=5
(ρi)

  
(D)

(3)

The equation (3) can be rewritten as follows:

x1 ∗ 3I ∗
I

i=1
(ρi)

  
(A)

+ 3I−1 ∗
I

i=1
(ρi)

  
(B)

+
1

j=(I−2)


3j ∗




I

i=(I−j)
(ρi)







  
(C)

+ 30 ∗ (ρI)  
(D)

= xn (4)

10 The vector ρi contains I elements, that is, the same amount of rising elements (3 × xi + 1) and falling elements
( 1

ρi
), the sum of the exponents of the denominators corresponds to the value P of the function r_collatz(7)

shown in Fig. 4 below.

6



   Volume 3 | Issue 10 | 4J Math Techniques Comput Math, 2024

Once the values of xi are known, as per the previous example (collatz_d(7) where
x1 = 7) the ratio between the successive xi is calculated as follows:

ρ1 = x3
x2

= 11
22 = 1

21

ρ2 = x5
x4

= 17
34 = 1

21

ρ3 = x7
x6

= 13
52 = 1

22

ρ4 = x9
x8

= 5
40 = 1

23

ρ5 = x11
x10

= 1
16 = 1

24

Generalizing we have: ρi = x(2i+1)
x(2i)

, where: ρi
10= [ 1

21 , 1
21 , 1

22 , 1
23 , 1

24 ] = [1
2 , 1

2 , 1
4 , 1

8 , 1
16 ].

Rewriting the equations in (2):
x3 = (3 ∗ x1 + 1) ∗ ρ1

x5 = (3 ∗ x3 + 1) ∗ ρ2

x7 = (3 ∗ x5 + 1) ∗ ρ3

x9 = (3 ∗ x7 + 1) ∗ ρ4

x11 = (3 ∗ x9 + 1) ∗ ρ5

or with the appropriate substitutions:

x11 = (3 ∗ ((3 ∗ ((3 ∗ ((3 ∗ ((3 ∗ x1 + 1) ∗ ρ1) + 1) ∗ ρ2) + 1) ∗ ρ3) + 1) ∗ ρ4) + 1) ∗ ρ5

The final term (in this case) x11 = 1, with the appropriate operations we will obtain
the following equation:

1 = x1 ∗ 35 ∗
5

i=1
(ρi)

  
(A)

+ 34 ∗
5

i=1
(ρi)

  
(B)

+ 33 ∗
5

i=2
(ρi) + · · ·

  
(C)

+ 30 ∗
5

i=5
(ρi)

  
(D)

(3)

The equation (3) can be rewritten as follows:

x1 ∗ 3I ∗
I

i=1
(ρi)

  
(A)

+ 3I−1 ∗
I

i=1
(ρi)

  
(B)

+
1

j=(I−2)


3j ∗




I

i=(I−j)
(ρi)







  
(C)

+ 30 ∗ (ρI)  
(D)

= xn (4)

10 The vector ρi contains I elements, that is, the same amount of rising elements (3 × xi + 1) and falling elements
( 1

ρi
), the sum of the exponents of the denominators corresponds to the value P of the function r_collatz(7)

shown in Fig. 4 below.

6

Once the values of xi are known, as per the previous example (collatz_d(7) where
x1 = 7) the ratio between the successive xi is calculated as follows:

ρ1 = x3
x2
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22 = 1

21

ρ2 = x5
x4

= 17
34 = 1

21

ρ3 = x7
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= 13
52 = 1

22

ρ4 = x9
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= 5
40 = 1

23

ρ5 = x11
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= 1
16 = 1

24

Generalizing we have: ρi = x(2i+1)
x(2i)

, where: ρi
10= [ 1
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+ 34 ∗
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i=1
(ρi)
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+ 33 ∗
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3 Considerations on the Collatz Conjecture
The equation presented in (4) will be broken down into its four parts (A), (B), (C)

and (D) for the purpose of study.

3.1 Head of the Collatz Conjecture (A)
The head (A) =⇒ h(xi) stands out from the equation (4) where the initial term xi

= x1 can be seen:

(A) =⇒ h(x1) = x1 ∗ 3I ∗
I∏

i=1
(ρi) (5)

It can be seen that to calculate h(x1) it is necessary to know the values of I and ∏I
i=1(ρi),

the function r_collatz(7) (shown in Fig. 4 below) will provide the necessary subsidies.
When executing the function r_collatz(7) the answer is →[16, 5, 11] which corresponds to
[C,I,P], that is, 16 Cycles (operations) before obtaining 1(one), with 5 being Odd and 11
being Even11

The function r_collatz(7) also informs that [I] = 5 (equation (5) I = 5), however
r_collatz(7) does not provide the values of ρi, but indicates that the total number of pairs
[P] = 11, so we can calculate ∏I

i=1(ρi) = ∏P
i=1(1

2) = 2−P or:

∏I
i=1(ρi) = 2−P −→ ∏5

i=1(ρi) = 2−11

In fact, from the function collatz_d(7) seen in figure 3, we obtained the sequence [7, 22,
11, 34, 17, 52, 13, 40, 5, 16, 1] and from the generic formula ρi = x2i+1

x2i
(presented after

figure 3):

∏5
i=1(ρi) = [ 1

21 ∗ 1
21 ∗ 1

22 ∗ 1
23 ∗ 1

24 ] = 2−11

Which allows us to calculate the head (A) of Collatz(7):

h(x1) = x1 ∗ 3I ∗ ∏I
i=1(ρi) → h(7) = 7 ∗ 35 ∗ 1

211 ≃ 0.83056640625

3.1.1 Head of the Collatz Conjecture: How are the powers of 2.

Consider a number M ∈ N∗ = {1, 2, 3, 4, 5, ...} and the integer 2M when expressed
in binary will have only one of the bits with the value one, being divisible by two “M”
times until the number is obtained one as the final answer (in binary the bit whose value
is one will be shifted to the right “M” times). By reevaluating the equation presented
in (5) and rewriting it taking into account xi = 2M , I = 0 and P = M , we arrive at the
following expression =⇒ h(xi) = 2M ∗ 30 ∗ ρ | ρ = 1

2M , in short h(xi) = 1 in these cases,
confirming the validity of the equation described in (5) for ∀ xi = 2M .
11 The numbers considered even are o times there is division by 2, the function collatz_seq(7) presents the

following (complete) answer:
[7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1], in which the following stand out the even

numbers to be divided by TWO for a total of 11.
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It can be seen that to calculate h(x1) it is necessary to know the values of I and                the function r_collatz(7) (shown in Figure 4 
below) will provide the necessary subsidies. When executing the function r_collatz(7) the answer is →[16,5,11] which corresponds 
to [C,I,P], that is, 16 Cycles (operations) before obtaining 1(one), with 5 being Odd and 11 being Even [11]

The function r_collatz(7) also informs that [I] = 5 (equation (5) I = 5), however r_collatz(7) does not provide the values of ρi, but 
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i=1(ρi),

the function r_collatz(7) (shown in Fig. 4 below) will provide the necessary subsidies.
When executing the function r_collatz(7) the answer is →[16, 5, 11] which corresponds to
[C,I,P], that is, 16 Cycles (operations) before obtaining 1(one), with 5 being Odd and 11
being Even11

The function r_collatz(7) also informs that [I] = 5 (equation (5) I = 5), however
r_collatz(7) does not provide the values of ρi, but indicates that the total number of pairs
[P] = 11, so we can calculate ∏I

i=1(ρi) = ∏P
i=1(1

2) = 2−P or:

∏I
i=1(ρi) = 2−P −→ ∏5

i=1(ρi) = 2−11

In fact, from the function collatz_d(7) seen in figure 3, we obtained the sequence [7, 22,
11, 34, 17, 52, 13, 40, 5, 16, 1] and from the generic formula ρi = x2i+1

x2i
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figure 3):

∏5
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24 ] = 2−11

Which allows us to calculate the head (A) of Collatz(7):

h(x1) = x1 ∗ 3I ∗ ∏I
i=1(ρi) → h(7) = 7 ∗ 35 ∗ 1

211 ≃ 0.83056640625

3.1.1 Head of the Collatz Conjecture: How are the powers of 2.

Consider a number M ∈ N∗ = {1, 2, 3, 4, 5, ...} and the integer 2M when expressed
in binary will have only one of the bits with the value one, being divisible by two “M”
times until the number is obtained one as the final answer (in binary the bit whose value
is one will be shifted to the right “M” times). By reevaluating the equation presented
in (5) and rewriting it taking into account xi = 2M , I = 0 and P = M , we arrive at the
following expression =⇒ h(xi) = 2M ∗ 30 ∗ ρ | ρ = 1

2M , in short h(xi) = 1 in these cases,
confirming the validity of the equation described in (5) for ∀ xi = 2M .
11 The numbers considered even are o times there is division by 2, the function collatz_seq(7) presents the

following (complete) answer:
[7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1], in which the following stand out the even

numbers to be divided by TWO for a total of 11.
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3.2 Neck of the Collatz Conjecture (B)
In a similar way, the term (B) seen in the equation (4) can be calculated:
(B) =⇒ 3I−1 ∗ ∏I

i=1(ρi) → 34 ∗ 1
211 ≃ 0.03955078125

It can be easily verified that 3 ∗ x1 ∗ (B) = (A).

3.3 Tail of the Collatz Conjecture (D)
Continually, the term (D) is calculated according to equation (4), the term (C)

will be calculated later:

(D) =⇒ t(xi) = 30 ∗ ρn → t(7) = 1 ∗ 1
24 ≃ 0.0625

It can be seen that the term (D) is constant (for xi >= 3 and xi ̸= 2M) as it corresponds
to the final sequence 16 → 8 → 4 → 2 → 1 within which the cycle 1 → 4 → 2 → 1 is
included, that is, from 16 to reach 1 it is divided by 24.

3.4 Collatz Conjecture Body (C)
In equation (4), we can see that we need to know the values of x1, I and ρi,

remembering that ρi = 1
γi

, the following program fragment, shown in Fig. 4, presents the
function r_collatz(x1)12 which will provide such values: r_collatz(x1) −→ [C, I, P ].
1 de f r _ c o l l a t z (num) :
2 # funcao re to rna array [ Total de Cic los , Impares , Pares ]
3 P = 0
4 I = 0
5 C = 0
6 resp = np . array ( [ C, I , P ] )
7 # v e r i f i c a se nBIN eh impar se sim continua , caso par RSH
8 nBIN = converte (num)
9 whi l e nBIN [ −1 : ] == ’ 0 ’ : # b i t a d i r e i t a menos s i g .

10 nBIN = nBIN [ : −1 ] # e l imina b i t ze ro a d i r e i t a , RSH
11 P += 1
12 C += 1
13 # criamos nBIN_t somamos 1 a nBIN e RSH,
14 # i s t o enquanto l en (nBIN) > 1
15 whi le l en (nBIN) > 1 : # existem b i t s a serem proces sados
16 i f nBIN [ −1 : ] == ’ 1 ’ : # eh impar
17 nBIN_t = nBIN
18 nBIN = add_binary_nums (nBIN , ’ 1 ’ )
19 nBIN = nBIN [ : −1 ]
20 nBIN = add_binary_nums (nBIN_t , nBIN)
21 I += 1
22 C += 2
23 P += 1 # estou x3 + 1 e d i v i d i n d o por 2
24 e l s e :
25 nBIN = nBIN [ : −1 ]
26 P += 1
27 C += 1
28 resp = [C, I , P ]
29 re turn resp

Fig. 4 – Code: r_collatz()

12 The function r_collatz(x1) and others that follow depend on several other functions and adjustments in the
Python / PyCharm environment, functions that allow working with large integers in binary form, and this is
an extra set that will be better detailed in the appendix C.
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In the item (C) of the equation (4) considering the Collatz sequence relative to the number 7, that is, using the data of r_collatz(7)→[16, 
5, 11] ([C,I,P]), where I = 5 we obtain:

In the item (C) of the equation (4) considering the Collatz sequence relative to the
number 7, that is, using the data of r_collatz(7)→[16, 5, 11] ([C,I,P]), where I = 5 we
obtain:

1

j=(I−2)
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i=2
(ρi)

  
(α)

+ 32 ∗
5

i=3
(ρi)

  
(β)
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5

i=4
(ρi)

  
(δ)

Previously it was shown that ρi = [ 1
21 , 1

21 , 1
22 , 1

23 , 1
24 ]. In this way we calculate (α), (β) and

(δ):

33 ∗ [ 1
21 ∗ 1

22 ∗ 1
23 ∗ 1

24 ]
  

(α)

+ 32 ∗ [ 1
22 ∗ 1

23 ∗ 1
24 ]

  
(β)

+ 31 ∗ [ 1
23 ∗ 1

24 ]
  

(δ)

0.0263671875  
(α)

+ 0.017578125  
(β)

+ 0.0234375  
(δ)

= 0.0673828125  
(C)

3.5 Complete Collatz conjecture
Recovering the previous results we will have:
(A)≃ 0.83056640625, (B) ≃ 0.03955078125, (C) ≃ 0.0673828125, (D) ≃ 0.0625

Adding the terms of the equation (4) we will finally have: (A) + (B) + (C) + (D) = 1 As
can be seen from the function abcd(’7’) presented in the program in Fig. 5:

abcd(’7’) → (’7’, 0.8305664062499994, 0.039550781249999986, 0.0673828125, 0.0625, 0.9999999999999994).

1 de f abcd (num) : #Retorna os v a l o r e s (A)A, (B)B, (C)C e (D)D
2 [ Ci , I , P, gama ] = r _ c o l l a t z 1 (num)
3 gamas = np . array (gama)
4 B = 2 ∗ ∗ ( ( ( I −1)∗math . log2 (3 ) )−P)
5 D = 1/(2∗∗ gamas [ −1])
6 C = 0
7 A = 2 ∗∗ (math . log2 ( i n t (num) ) + math . log2 (3 ) ∗ I − P)
8 f o r J in range ( I −2 ,0 , −1) :
9 sgama = 1

10 f o r i in range ( I−J−1, I ) :
11 sgama = sgama ∗ (1/(2∗∗ gamas [ i ] ) )
12 C = C + (3∗∗ J ) ∗sgama
13 # qq Xi = ((2∗∗ e ) −1) d i v i s i v e l ( i n t ) por 3 somente t e r a um impar , I , o propr io

. . .
14 # sendo assim (A) > 0 , (B) > 0 , (C) = 0 e (D) = 0
15 i f I == 1 :
16 D = 0
17 return (num, A, B, C, D, A+B+C+D)

Fig. 5 – Código: abcd()
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Previously it was shown that                                              In this way we calculate (α), (β) and (δ):

3.5 Complete Collatz Conjecture
Recovering the previous results we will have:
(A)≃ 0.83056640625, (B) ≃ 0.03955078125, (C) ≃ 0.0673828125, (D) ≃ 0.0625
Adding the terms of the equation (4) we will finally have: (A) + (B) + (C) + (D) = 1 As can be seen from the function abcd(’7’) 
presented in the program in Figure 5:

Figure 5: Código: abcd()

Several numbers from table 1 were tested with the function abcd(xi) and returned the sum A + B + C + D ≈ 1
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Several numbers from table 1 were tested with the function abcd(xi) and returned
the sum A + B + C + D ≈ 1

x1 C I P ∼ I/P % ∼ x1 * 3I

2P ∼ A + B + C + D6

9 19 6 13 46.15 0.8009 1
97 118 43 75 57.33 0.8428 1

871 178 65 113 57.52 0.8639 1
6 171 261 96 165 58.18 0.8395 1

77 031 350 129 221 58.37 0.8084 1
837 799 524 195 329 59.27 0.8373 1

8 400 511 685 256 429 59.67 0.8423 1
63 728 127 949 357 592 60.30 0.8450 1

670 617 279 986 370 616 60.06 0.8450 1
9 780 657 630 1132 425 707 60.11 0.8683 1

75 128 138 247 1228 461 767 60.10 0.8683 1
989 345 275 647 1348 506 842 60.09 0.8942 1

Big_num17 10466 3455 7011 49.28 0.8472 1
NN48 36780 12293 24487 50.20 0.8078 1

Table 1 – x1 −→ [C, I, P ]

Note that the column x1 ∗ 3I

2P corresponds to the Collatz function head presented
in the equation (5), being equal to the term ‘A‘ presented in the function abcd(xi), shown
in penultimate column of this table, in several tests it is shown that h(x1) = x1 ∗ 3I

2P tends
to be > 0.7, a fact that will be addressed later. 13

13 The terms A, B, C and D (equation (4)) are calculated by the function abcd(x1), as shown in Fig. 5 which
shows the respective code. Remember that: A = (A), B = (B), C = (C) and D = (D)

7 Big_num1 = 9893944469259455843265553784016321891646523344941338643663923419094808725399074798773286758432575381500
4686473637504803590161782879907300386230346233746806307761944850543497850771948922907995181050099365044832577436
6707104640069268952410537313865440448914646541298135474853050126398939444692594558432655537840163218916465233449
413386436639234190948087253990747987732867584325753815004686473637504803590161782879907300 386230346233746806307
761944850543497850779137 (composto por 462 dígitos).

8 NN4 = 9489229079951810500993650448325774366707104640069268952410537313865440448914646541298135474853050126398939444
69259455843265553784016321891646523344941338643663923419094808725399074798773286758432575381500468647363750480359
01617828799073003862303462337468063077619448505434978507715367581254789632504686473637504803590161787198765579835
46491872345162757959465275481203645578213948922907995181050099365044832577436670710464006926895241053731386544044
89146465412981354748530501263989394446925945584326555378401632189164652334494133864366392341909480872539907479877
32867584325753815004686473637504803590161782879907300386230346233746806307761944850543497850771536758125478963250
46864736375048035901617871987655798354649187234516275795946527548120364557821394892290799518105009936504483257743
66707104640069268952410537313865440448914646541298135474853050126398939444692594558432655537840163218916465233449
41338643663923419094808725399074798773286758432575381500468647363750480359016178287990730038623034623374680630776
19448505434978507715367581254789632504686473637504803590161787198765579835464918723451627579594652754812036455782
13948922907995181050099365044832577436670710464006926895241053731386544044891464654129813547485305012639893944469
25945584326555378401632189164652334494133864366392341909480872539907479877328675843257538150046864736375048035901
61782879907300386230346233746806307761944850543497850771536758125478963250468647363750480359016178719876557983546
49187234516275795946527548120364557821371 (composto por 1506 dígitos).
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Table 1: x1 −→ [C, I, P]

Note that the column x1 ∗     corresponds to the Collatz function head presented in the equation (5), being equal to the term ‘A‘ 
presented in the function abcd(xi), shown in penultimate column of this table, in several tests it is shown that h (x1) = x1 ∗      tends 
to be >0.7, a fact that will be addressed later [13].

4. Exploring Some Sequences
Computers have routinely tested the Collatz Conjecture for increasingly larger numbers (see issue NN4 note 8 above), using powerful 
machines and improved algorithms that indicate that the Collatz Conjecture ‘apparently‘ ends in its cycle 1 → 4 → 2 → 1. In the 
previous item it was shown that for ∀ xi = 2M, M ∈ ℕ the final cycle will always be 1 → 4 → 2 → 1.

This chapter explores a restricted set of data that, after being processed, allowed some graphs to be drawn and some considerations 
to be made about them. Because they are restricted (data and graphs), it is clear that they can and should be improved as the tests to 
be carried out advance.

4.1 Limit Cycle or Orbit
Previously it was considered that the final cycle for the Collatz Conjecture is 1 → 4 → 2 → 1, a brief explanation of the concept of 
limit cycle [7] or Orbit is in order. Consider the following transformation:
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4 Exploring some sequences
Computers have routinely tested the Collatz Conjecture for increasingly larger

numbers (see issue NN4 note 8 above), using powerful machines and improved algorithms
that indicate that the Collatz Conjecture ‘apparently‘ ends in its cycle 1 → 4 → 2 → 1. In
the previous item it was shown that for ∀ xi = 2M , M ∈ N the final cycle will always be
1 → 4 → 2 → 1.

This chapter explores a restricted set of data that, after being processed, allowed
some graphs to be drawn and some considerations to be made about them. Because they
are restricted (data and graphs), it is clear that they can and should be improved as the
tests to be carried out advance.

4.1 Limit Cycle or Orbit
Previously it was considered that the final cycle for the Collatz Conjecture is

1 → 4 → 2 → 1, a brief explanation of the concept of limit cycle [7] or Orbit is in order.
Consider the following transformation:

fn(xi) = x(i+n) (6)

Since fn(xi) is the process of transforming the variable xi, implying one or more times the
application of the Collatz Conjecture initially on the variable xi ∈ N∗, it is not just the
possibility of applying a singular function, as the stages may involve multiple steps where
the variable xi will increase and subsequently decrease, as seen in the definition of the
code for the function collatz_d(x); the index n in fn(xi) denotes that there are several
steps, with n being the steps that correspond to increases and decreases.

A limit cycle or Orbit is considered9 in mathematical operations systems that
present the occurrence of the fact that fn(xi) = xi being xi ∈ N∗, in this way the
existence of a cycle (may be repetitive) or Orbit (may be periodic) within the sequence is
verified, it is observed that any limit cycle that may exist in the Collatz Sequence where
xi ̸= 1, xi ̸= 2, xi ̸= 4 | xi ∈ N leads to the collapse of the Conjecture, as it will inevitably
not reach the 1 → 4 → 2 → 1 orbit, since it was ‘captured by another orbit‘.

In the case of the Collatz Conjecture, using the definition found in equation (2) and
used in the construction of the collatz_d(x) function, it is possible to verify the existence
of (probably just) a ‘limit‘ cycle where x(i) = fn(xi).

From the equation (2) we can group the ‘growth‘ and ‘decay‘ operation of the
system into a single equation (for the sequence 1 → 4 → 2 → 1), namely:

3 ∗ xi + 1
2γ

= x(i+n) (remembering that xi is odd) (7)

9 A limit cycle is a closed trajectory, as demonstrated by Monterio[7](pg 224), thus we can infer that the points
of this orbit have a minimum, and cycle after cycle “pass” through this value. The terms Limit Cycle or Orbit
are generally linked to dynamic systems that present chaotic behavior, and are synonyms for attractor[1]. An
‘attractor‘ is obtained by applying the Collatz Conjecture to the term xi, remembering that it implies additions
in which the term xi will be multiplied by 3 and increased by one, in the case of xi being odd the result of such
addition as already seen will result in an even number, this result will be continually divided by two until it
returns an odd number, being again subjected to the application of the Conjecture until a number x(i+n) = xi

is obtained.

12

Since f n (xi) is the process of transforming the variable xi, implying one or more times the application of the Collatz Conjecture 
initially on the variable xi ∈ ℕ∗, it is not just the possibility of applying a singular function, as the stages may involve multiple steps 
where the variable xi will increase and subsequently decrease, as seen in the definition of the code for the function collatz_d(x); the 
index n in f n (xi) denotes that there are several steps, with n being the steps that correspond to increases and decreases.

A limit cycle or Orbit is considered in mathematical operations systems that present the occurrence of the fact that f n (xi) = xi being xi 
∈ ℕ∗, in this way the existence of a cycle (may be repetitive) or Orbit (may be periodic) within the sequence is verified, it is observed 
that any limit cycle that may exist in the Collatz Sequence where xi ≠ 1, xi ≠ 2, xi ≠ 4 | xi ∈ ℕ leads to the collapse of the Conjecture, 
as it will inevitably not reach the 1 → 4 → 2 → 1 orbit, since it was ‘captured by another orbit‘ [9].

In the case of the Collatz Conjecture, using the definition found in equation (2) and used in the construction of the collatz_d(x) 
function, it is possible to verify the existence of (probably just) a ‘limit‘ cycle where x(i) = f n (xi).

From the equation (2) we can group the ‘growth‘ and ‘decay‘ operation of the system into a single equation (for the sequence 1 → 
4 → 2 → 1), namely:



   Volume 3 | Issue 10 | 8J Math Techniques Comput Math, 2024

4 Exploring some sequences
Computers have routinely tested the Collatz Conjecture for increasingly larger

numbers (see issue NN4 note 8 above), using powerful machines and improved algorithms
that indicate that the Collatz Conjecture ‘apparently‘ ends in its cycle 1 → 4 → 2 → 1. In
the previous item it was shown that for ∀ xi = 2M , M ∈ N the final cycle will always be
1 → 4 → 2 → 1.
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are restricted (data and graphs), it is clear that they can and should be improved as the
tests to be carried out advance.
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3 ∗ xi + 1
2γ

= x(i+n) (remembering that xi is odd) (7)

9 A limit cycle is a closed trajectory, as demonstrated by Monterio[7](pg 224), thus we can infer that the points
of this orbit have a minimum, and cycle after cycle “pass” through this value. The terms Limit Cycle or Orbit
are generally linked to dynamic systems that present chaotic behavior, and are synonyms for attractor[1]. An
‘attractor‘ is obtained by applying the Collatz Conjecture to the term xi, remembering that it implies additions
in which the term xi will be multiplied by 3 and increased by one, in the case of xi being odd the result of such
addition as already seen will result in an even number, this result will be continually divided by two until it
returns an odd number, being again subjected to the application of the Conjecture until a number x(i+n) = xi
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With the necessary adjustments where xi = x(i+n) is obtained from the equation

With the necessary adjustments where xi = x(i+n) is obtained from the equation
(7):

1
(2γ − 3) = xi (remembering that xi, x(i+n), γ ∈ N∗) (8)

It is easy to see that the only values that solve the equation (8) are γ = 2 and
xi = x(i+n) = 1, thus the expression (22 − 3) = 1 evidencing the existence of a ‘limit‘ cycle
in the Collatz Conjecture, which will be seen later at the end of section 4.1.2.

4.1.1 Periodic orbit

It was previously shown that if there are other limit cycles (orbits) within the
Collatz Conjecture other than the final cycle 1 → 4 → 2 → 1 it is false. Strictly speaking,
the system in (2) cannot be treated as a single procedure function (linear) since there are
two possible approaches (use of the conjecture), one for even numbers and the other for
odd numbers. In this way, an alternative way of considering the two operations in just
one algebraic equation is sought. The candidate equation is presented below, which will
certainly facilitate the study of the orbits:

xi+1 = [(3 ∗ xi + 1) ∗ (1 − cos2(xi ∗ π

2 ))] + [xi

2 ∗ cos2(xi ∗ π

2 )] (9)

The equation coded above 10 in Python as per Fig. 6 below, it operates identically
to the function (or code) collatz_d(xi).
1 # Implementa ção fun ção C o l l a t z
2 de f co l la tz_ang ( x ) :
3 seq = [ x ]
4 i f x < 1 :
5 re turn [ ]
6 whi l e x > 1 :
7 #x = ((3 ∗ x +1)∗(1− i n t ( ( np . cos ( np . p i /2∗x ) ) ∗∗2) ) ) + x ∗ ( ( i n t ( ( np . cos ( np . p i /2∗x )

) ∗∗2) ) /2)
8 x = ((3 ∗ x + 1) ∗ (1 − round ( ( np . cos ( np . p i / 2 ∗ x ) ) ∗∗ 2) ) ) + x ∗ ( ( round ( (

np . cos ( np . p i / 2 ∗ x ) ) ∗∗ 2) ) / 2)
9 seq . append ( x )

10 re turn seq

Fig. 6 – Code: collatz_ang(xi)

Note that for even values of xi the term [(3 ∗ xi + 1) ∗ (1 − cos2(xi ∗ π
2 )] becomes

null and the operation is just division by two, i.e. xi+1 = xi

2 . However, if xi is odd, the
term [xi

2 ∗ cos2(xi ∗ π
2 )] is nullified, leaving only the result xi+1 = (3 ∗ xi + 1). From the

equation (9) it is possible to study the periodic orbit and its respective equilibrium points,
considering the following sequence:

x2 = f(x1)
x3 = f(x2) = f 2(x1)
· · ·
xn = f(xn−1) ou xn = f (n−1)(x1)
xn+1 = f(xn) ou xn+1 = f (n)(x1)

10 The round function was used in the code because the arithmetic precision used can generate residual values
very close to zero, when they should be zero, or if the value of xi is very close to the number ONE, the value
ONE is assumed. The Cosine function was used to determine whether the value xi is even or odd.
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A periodic orbit is established when xi = f (n) (xi), that is, xn+m = xn. According to Monterio[7] to know the characteristics of an orbit it 
is necessary to know its eigenvalue λ, which corresponds to the product of each eigenvalue relative to the fixed points x∗

i in the orbit, 
as follows:

A periodic orbit is established when xi = f (n)(xi), that is, xn+m = xn. According to
Monterio[7] to know the characteristics of an orbit it is necessary to know its eigenvalue
λ, which corresponds to the product of each eigenvalue relative to the fixed points x∗

i in
the orbit, as follows:

λ11 = df (n)(xi)
dx

|x∗
i

= df(x)
dx

|x∗
1

df(x)
dx

|x∗
2

· · · df(x)
dx

|x∗
i

By deriving the equation (9) we obtain:
df(x)

dx
= 1

2[(−5(cos2(xπ

2 ))) + (π(5x + 2)(sen(xπ

2 ))(cos(xπ

2 ))) + 6] (10)

It can be seen that the expression (sen(xπ
2 )cos(xπ

2 )) will always be zero for xi ∈ N∗

consequently cancelling the term that multiplies, in this way for the proposed purposes it
is possible to calculate λj through the following expression: λj = df(xi)

dx
|x∗

i
or according to

equation (10) modified to xi ∈ N∗:

λi
12 = 1

2[(−5(cos2(x∗
i

π

2 ))) + 6] (11)

Considering the known periodic orbit 4 → 2 → 1→ 4 we proceed to calculate the
eigenvalue λ for this orbit:

λ = λ(x∗=4) × λ(x∗=2) × λ(x∗=1) or λ = 1
2 × 1

2 × 3 = 3
4

Also according to Monteiro[7] as λ < 1 the orbit of period 3 (4 → 2 → 1→ 4)
is stable, which allows us to state that such a cycle repeats indefinitely once any of the
points belonging to the orbit is reached.

The sequence produced by the Collatz Conjecture for ∀xi ∈ N∗ being xi < 268[10]
will end upon reaching the fundamental orbit 4 → 2 → 1 since this is stable, we will see in
the next subsections if there are other possible orbits in the Collatz Conjecture.

Here are some observations about the orbit 1 −→ 4 → 2 → 1

1

2

4

3
×

x
+

1

÷2

÷2

grafo 1 - ciclo fundamental

The Collatz conjecture as seen in (1)
is formed by the first three prime numbers
1, 2, 3 ∈ N∗, with the main pole being the
number ONE, this independent term having
the function of making any odd number pre-
viously multiplied by THREE even, the even
result will be continuously divided by TWO
(while even). Note that the number ONE is
the smallest that can be ‘calculated‘ by the
conjecture after several divisions by TWO.
The number FOUR (4 = 3 × 1 + 1), consti-
tutes the other pole of the orbit that when
divided by TWO generates the third element
of the same orbit, this in turn ‘ends‘ in ONE.

11 This definition for λ is identical to that found on page 309 of the book cited in [7]
12 Notar que as derivadas da Conjectura de Collatz conforme sistema (1) são as mesmas obtidas por esta equação.

14

A periodic orbit is established when xi = f (n)(xi), that is, xn+m = xn. According to
Monterio[7] to know the characteristics of an orbit it is necessary to know its eigenvalue
λ, which corresponds to the product of each eigenvalue relative to the fixed points x∗

i in
the orbit, as follows:

λ11 = df (n)(xi)
dx

|x∗
i

= df(x)
dx

|x∗
1

df(x)
dx

|x∗
2

· · · df(x)
dx

|x∗
i

By deriving the equation (9) we obtain:
df(x)

dx
= 1

2[(−5(cos2(xπ

2 ))) + (π(5x + 2)(sen(xπ

2 ))(cos(xπ

2 ))) + 6] (10)

It can be seen that the expression (sen(xπ
2 )cos(xπ

2 )) will always be zero for xi ∈ N∗

consequently cancelling the term that multiplies, in this way for the proposed purposes it
is possible to calculate λj through the following expression: λj = df(xi)

dx
|x∗

i
or according to

equation (10) modified to xi ∈ N∗:

λi
12 = 1

2[(−5(cos2(x∗
i

π

2 ))) + 6] (11)

Considering the known periodic orbit 4 → 2 → 1→ 4 we proceed to calculate the
eigenvalue λ for this orbit:

λ = λ(x∗=4) × λ(x∗=2) × λ(x∗=1) or λ = 1
2 × 1

2 × 3 = 3
4

Also according to Monteiro[7] as λ < 1 the orbit of period 3 (4 → 2 → 1→ 4)
is stable, which allows us to state that such a cycle repeats indefinitely once any of the
points belonging to the orbit is reached.

The sequence produced by the Collatz Conjecture for ∀xi ∈ N∗ being xi < 268[10]
will end upon reaching the fundamental orbit 4 → 2 → 1 since this is stable, we will see in
the next subsections if there are other possible orbits in the Collatz Conjecture.

Here are some observations about the orbit 1 −→ 4 → 2 → 1

1

2

4

3
×

x
+

1

÷2

÷2

grafo 1 - ciclo fundamental

The Collatz conjecture as seen in (1)
is formed by the first three prime numbers
1, 2, 3 ∈ N∗, with the main pole being the
number ONE, this independent term having
the function of making any odd number pre-
viously multiplied by THREE even, the even
result will be continuously divided by TWO
(while even). Note that the number ONE is
the smallest that can be ‘calculated‘ by the
conjecture after several divisions by TWO.
The number FOUR (4 = 3 × 1 + 1), consti-
tutes the other pole of the orbit that when
divided by TWO generates the third element
of the same orbit, this in turn ‘ends‘ in ONE.

11 This definition for λ is identical to that found on page 309 of the book cited in [7]
12 Notar que as derivadas da Conjectura de Collatz conforme sistema (1) são as mesmas obtidas por esta equação.

14

By deriving the equation (9) we obtain:



   Volume 3 | Issue 10 | 9J Math Techniques Comput Math, 2024

It can be seen that the expression                                      will always be zero for xi ∈ ℕ∗ consequently cancelling the term that 
multiplies, in this way for the proposed purposes it is possible to calculate λj through the following expression:                               or 
according to equation (10) modified to xi ∈ ℕ∗: 

A periodic orbit is established when xi = f (n)(xi), that is, xn+m = xn. According to
Monterio[7] to know the characteristics of an orbit it is necessary to know its eigenvalue
λ, which corresponds to the product of each eigenvalue relative to the fixed points x∗

i in
the orbit, as follows:

λ11 = df (n)(xi)
dx

|x∗
i

= df(x)
dx

|x∗
1

df(x)
dx

|x∗
2

· · · df(x)
dx

|x∗
i

By deriving the equation (9) we obtain:
df(x)

dx
= 1

2[(−5(cos2(xπ

2 ))) + (π(5x + 2)(sen(xπ

2 ))(cos(xπ

2 ))) + 6] (10)

It can be seen that the expression (sen(xπ
2 )cos(xπ

2 )) will always be zero for xi ∈ N∗

consequently cancelling the term that multiplies, in this way for the proposed purposes it
is possible to calculate λj through the following expression: λj = df(xi)

dx
|x∗

i
or according to

equation (10) modified to xi ∈ N∗:

λi
12 = 1

2[(−5(cos2(x∗
i

π

2 ))) + 6] (11)

Considering the known periodic orbit 4 → 2 → 1→ 4 we proceed to calculate the
eigenvalue λ for this orbit:

λ = λ(x∗=4) × λ(x∗=2) × λ(x∗=1) or λ = 1
2 × 1

2 × 3 = 3
4

Also according to Monteiro[7] as λ < 1 the orbit of period 3 (4 → 2 → 1→ 4)
is stable, which allows us to state that such a cycle repeats indefinitely once any of the
points belonging to the orbit is reached.

The sequence produced by the Collatz Conjecture for ∀xi ∈ N∗ being xi < 268[10]
will end upon reaching the fundamental orbit 4 → 2 → 1 since this is stable, we will see in
the next subsections if there are other possible orbits in the Collatz Conjecture.

Here are some observations about the orbit 1 −→ 4 → 2 → 1

1

2

4

3
×

x
+

1

÷2

÷2

grafo 1 - ciclo fundamental

The Collatz conjecture as seen in (1)
is formed by the first three prime numbers
1, 2, 3 ∈ N∗, with the main pole being the
number ONE, this independent term having
the function of making any odd number pre-
viously multiplied by THREE even, the even
result will be continuously divided by TWO
(while even). Note that the number ONE is
the smallest that can be ‘calculated‘ by the
conjecture after several divisions by TWO.
The number FOUR (4 = 3 × 1 + 1), consti-
tutes the other pole of the orbit that when
divided by TWO generates the third element
of the same orbit, this in turn ‘ends‘ in ONE.

11 This definition for λ is identical to that found on page 309 of the book cited in [7]
12 Notar que as derivadas da Conjectura de Collatz conforme sistema (1) são as mesmas obtidas por esta equação.

14

A periodic orbit is established when xi = f (n)(xi), that is, xn+m = xn. According to
Monterio[7] to know the characteristics of an orbit it is necessary to know its eigenvalue
λ, which corresponds to the product of each eigenvalue relative to the fixed points x∗

i in
the orbit, as follows:

λ11 = df (n)(xi)
dx

|x∗
i

= df(x)
dx

|x∗
1

df(x)
dx

|x∗
2

· · · df(x)
dx

|x∗
i

By deriving the equation (9) we obtain:
df(x)

dx
= 1

2[(−5(cos2(xπ

2 ))) + (π(5x + 2)(sen(xπ

2 ))(cos(xπ

2 ))) + 6] (10)

It can be seen that the expression (sen(xπ
2 )cos(xπ

2 )) will always be zero for xi ∈ N∗

consequently cancelling the term that multiplies, in this way for the proposed purposes it
is possible to calculate λj through the following expression: λj = df(xi)

dx
|x∗

i
or according to

equation (10) modified to xi ∈ N∗:

λi
12 = 1

2[(−5(cos2(x∗
i

π

2 ))) + 6] (11)

Considering the known periodic orbit 4 → 2 → 1→ 4 we proceed to calculate the
eigenvalue λ for this orbit:

λ = λ(x∗=4) × λ(x∗=2) × λ(x∗=1) or λ = 1
2 × 1

2 × 3 = 3
4

Also according to Monteiro[7] as λ < 1 the orbit of period 3 (4 → 2 → 1→ 4)
is stable, which allows us to state that such a cycle repeats indefinitely once any of the
points belonging to the orbit is reached.

The sequence produced by the Collatz Conjecture for ∀xi ∈ N∗ being xi < 268[10]
will end upon reaching the fundamental orbit 4 → 2 → 1 since this is stable, we will see in
the next subsections if there are other possible orbits in the Collatz Conjecture.

Here are some observations about the orbit 1 −→ 4 → 2 → 1

1

2

4

3
×

x
+

1

÷2

÷2

grafo 1 - ciclo fundamental

The Collatz conjecture as seen in (1)
is formed by the first three prime numbers
1, 2, 3 ∈ N∗, with the main pole being the
number ONE, this independent term having
the function of making any odd number pre-
viously multiplied by THREE even, the even
result will be continuously divided by TWO
(while even). Note that the number ONE is
the smallest that can be ‘calculated‘ by the
conjecture after several divisions by TWO.
The number FOUR (4 = 3 × 1 + 1), consti-
tutes the other pole of the orbit that when
divided by TWO generates the third element
of the same orbit, this in turn ‘ends‘ in ONE.

11 This definition for λ is identical to that found on page 309 of the book cited in [7]
12 Notar que as derivadas da Conjectura de Collatz conforme sistema (1) são as mesmas obtidas por esta equação.

14

A periodic orbit is established when xi = f (n)(xi), that is, xn+m = xn. According to
Monterio[7] to know the characteristics of an orbit it is necessary to know its eigenvalue
λ, which corresponds to the product of each eigenvalue relative to the fixed points x∗

i in
the orbit, as follows:

λ11 = df (n)(xi)
dx

|x∗
i

= df(x)
dx

|x∗
1

df(x)
dx

|x∗
2

· · · df(x)
dx

|x∗
i

By deriving the equation (9) we obtain:
df(x)

dx
= 1

2[(−5(cos2(xπ

2 ))) + (π(5x + 2)(sen(xπ

2 ))(cos(xπ

2 ))) + 6] (10)

It can be seen that the expression (sen(xπ
2 )cos(xπ

2 )) will always be zero for xi ∈ N∗

consequently cancelling the term that multiplies, in this way for the proposed purposes it
is possible to calculate λj through the following expression: λj = df(xi)

dx
|x∗

i
or according to

equation (10) modified to xi ∈ N∗:

λi
12 = 1

2[(−5(cos2(x∗
i

π

2 ))) + 6] (11)

Considering the known periodic orbit 4 → 2 → 1→ 4 we proceed to calculate the
eigenvalue λ for this orbit:

λ = λ(x∗=4) × λ(x∗=2) × λ(x∗=1) or λ = 1
2 × 1

2 × 3 = 3
4

Also according to Monteiro[7] as λ < 1 the orbit of period 3 (4 → 2 → 1→ 4)
is stable, which allows us to state that such a cycle repeats indefinitely once any of the
points belonging to the orbit is reached.

The sequence produced by the Collatz Conjecture for ∀xi ∈ N∗ being xi < 268[10]
will end upon reaching the fundamental orbit 4 → 2 → 1 since this is stable, we will see in
the next subsections if there are other possible orbits in the Collatz Conjecture.

Here are some observations about the orbit 1 −→ 4 → 2 → 1

1

2

4

3
×

x
+

1

÷2

÷2

grafo 1 - ciclo fundamental

The Collatz conjecture as seen in (1)
is formed by the first three prime numbers
1, 2, 3 ∈ N∗, with the main pole being the
number ONE, this independent term having
the function of making any odd number pre-
viously multiplied by THREE even, the even
result will be continuously divided by TWO
(while even). Note that the number ONE is
the smallest that can be ‘calculated‘ by the
conjecture after several divisions by TWO.
The number FOUR (4 = 3 × 1 + 1), consti-
tutes the other pole of the orbit that when
divided by TWO generates the third element
of the same orbit, this in turn ‘ends‘ in ONE.

11 This definition for λ is identical to that found on page 309 of the book cited in [7]
12 Notar que as derivadas da Conjectura de Collatz conforme sistema (1) são as mesmas obtidas por esta equação.

14

A periodic orbit is established when xi = f (n)(xi), that is, xn+m = xn. According to
Monterio[7] to know the characteristics of an orbit it is necessary to know its eigenvalue
λ, which corresponds to the product of each eigenvalue relative to the fixed points x∗

i in
the orbit, as follows:

λ11 = df (n)(xi)
dx

|x∗
i

= df(x)
dx

|x∗
1

df(x)
dx

|x∗
2

· · · df(x)
dx

|x∗
i

By deriving the equation (9) we obtain:
df(x)

dx
= 1

2[(−5(cos2(xπ

2 ))) + (π(5x + 2)(sen(xπ

2 ))(cos(xπ

2 ))) + 6] (10)

It can be seen that the expression (sen(xπ
2 )cos(xπ

2 )) will always be zero for xi ∈ N∗

consequently cancelling the term that multiplies, in this way for the proposed purposes it
is possible to calculate λj through the following expression: λj = df(xi)

dx
|x∗

i
or according to

equation (10) modified to xi ∈ N∗:

λi
12 = 1

2[(−5(cos2(x∗
i

π

2 ))) + 6] (11)

Considering the known periodic orbit 4 → 2 → 1→ 4 we proceed to calculate the
eigenvalue λ for this orbit:

λ = λ(x∗=4) × λ(x∗=2) × λ(x∗=1) or λ = 1
2 × 1

2 × 3 = 3
4

Also according to Monteiro[7] as λ < 1 the orbit of period 3 (4 → 2 → 1→ 4)
is stable, which allows us to state that such a cycle repeats indefinitely once any of the
points belonging to the orbit is reached.

The sequence produced by the Collatz Conjecture for ∀xi ∈ N∗ being xi < 268[10]
will end upon reaching the fundamental orbit 4 → 2 → 1 since this is stable, we will see in
the next subsections if there are other possible orbits in the Collatz Conjecture.

Here are some observations about the orbit 1 −→ 4 → 2 → 1

1

2

4

3×
x

+
1

÷2

÷2

grafo 1 - ciclo fundamental

The Collatz conjecture as seen in (1)
is formed by the first three prime numbers
1, 2, 3 ∈ N∗, with the main pole being the
number ONE, this independent term having
the function of making any odd number pre-
viously multiplied by THREE even, the even
result will be continuously divided by TWO
(while even). Note that the number ONE is
the smallest that can be ‘calculated‘ by the
conjecture after several divisions by TWO.
The number FOUR (4 = 3 × 1 + 1), consti-
tutes the other pole of the orbit that when
divided by TWO generates the third element
of the same orbit, this in turn ‘ends‘ in ONE.

11 This definition for λ is identical to that found on page 309 of the book cited in [7]
12 Notar que as derivadas da Conjectura de Collatz conforme sistema (1) são as mesmas obtidas por esta equação.

14

A periodic orbit is established when xi = f (n)(xi), that is, xn+m = xn. According to
Monterio[7] to know the characteristics of an orbit it is necessary to know its eigenvalue
λ, which corresponds to the product of each eigenvalue relative to the fixed points x∗

i in
the orbit, as follows:

λ11 = df (n)(xi)
dx

|x∗
i

= df(x)
dx

|x∗
1

df(x)
dx

|x∗
2

· · · df(x)
dx

|x∗
i

By deriving the equation (9) we obtain:
df(x)

dx
= 1

2[(−5(cos2(xπ

2 ))) + (π(5x + 2)(sen(xπ

2 ))(cos(xπ

2 ))) + 6] (10)

It can be seen that the expression (sen(xπ
2 )cos(xπ

2 )) will always be zero for xi ∈ N∗

consequently cancelling the term that multiplies, in this way for the proposed purposes it
is possible to calculate λj through the following expression: λj = df(xi)

dx
|x∗

i
or according to

equation (10) modified to xi ∈ N∗:

λi
12 = 1

2[(−5(cos2(x∗
i

π

2 ))) + 6] (11)

Considering the known periodic orbit 4 → 2 → 1→ 4 we proceed to calculate the
eigenvalue λ for this orbit:

λ = λ(x∗=4) × λ(x∗=2) × λ(x∗=1) or λ = 1
2 × 1

2 × 3 = 3
4

Also according to Monteiro[7] as λ < 1 the orbit of period 3 (4 → 2 → 1→ 4)
is stable, which allows us to state that such a cycle repeats indefinitely once any of the
points belonging to the orbit is reached.

The sequence produced by the Collatz Conjecture for ∀xi ∈ N∗ being xi < 268[10]
will end upon reaching the fundamental orbit 4 → 2 → 1 since this is stable, we will see in
the next subsections if there are other possible orbits in the Collatz Conjecture.

Here are some observations about the orbit 1 −→ 4 → 2 → 1

1

2

4

3
×

x
+

1

÷2

÷2

grafo 1 - ciclo fundamental

The Collatz conjecture as seen in (1)
is formed by the first three prime numbers
1, 2, 3 ∈ N∗, with the main pole being the
number ONE, this independent term having
the function of making any odd number pre-
viously multiplied by THREE even, the even
result will be continuously divided by TWO
(while even). Note that the number ONE is
the smallest that can be ‘calculated‘ by the
conjecture after several divisions by TWO.
The number FOUR (4 = 3 × 1 + 1), consti-
tutes the other pole of the orbit that when
divided by TWO generates the third element
of the same orbit, this in turn ‘ends‘ in ONE.

11 This definition for λ is identical to that found on page 309 of the book cited in [7]
12 Notar que as derivadas da Conjectura de Collatz conforme sistema (1) são as mesmas obtidas por esta equação.

14

Considering the known periodic orbit 4 → 2 → 1→ 4 we proceed to calculate the eigenvalue λ for this orbit:

Also according to Monteiro[7] as λ < 1 the orbit of period 3 (4 → 2 → 1→ 4) is stable, which allows us to state that such a cycle 
repeats indefinitely once any of the points belonging to the orbit is reached.

The sequence produced by the Collatz Conjecture for ∀xi ∈ ℕ∗ being xi < 268[10] will end upon reaching the fundamental orbit 4 → 
2 → 1 since this is stable, we will see in the next subsections if there are other possible orbits in the Collatz Conjecture.
Here are some observations about the orbit 1 −→ 4 → 2 → 1

The Collatz conjecture as seen in (1) is formed by the first three prime numbers 1, 2, 3 ∈ ℕ*, with the main pole being the number 
ONE, this independent term having the function of making any odd number pre- viously multiplied by THREE even, the even 
result will be continuously divided by TWO (while even). Note that the number ONE is the smallest that can be ‘calculated‘ by 
the conjecture after several divisions by TWO. The number FOUR (4 = 3 × 1 + 1), constitutes the other pole of the orbit that when 
divided by TWO generates the third element of the same orbit, this in turn ‘ends‘ in ONE.
 
4.1.2 Limiting Case xi → ∞
Considering that xi → ∞, that is, is a very large number13, making x1 = 2(68) + 1 for analysis purposes x1 = 295147905179352825857 
the program r_collatz(x1) provides as answer [562, 191, 371] namely, Cycles = 562, Odd (rising) = 191 and Even (falling) = 371. 
Note that the initial cycle will be 3 × x1 + 1, the independent term ONE is much smaller than the product 3 × x1, (1 <<< (3 × x1)), 
and can be neglected14 for study purposes, in this way the conjecture will be simplified to according to the following sequence:
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x2 ≃ 3
2γ1 × x1

x3 ≃ 3
2γ2 × x2 or x3 = 3

2γ2 × 3
2γ1 × x1 in short: x3 = 32

2(γ2+γ1) × x1

· · ·
xn ≃ 3n−1

2(
n−1

i=1 γi)
× x1 as seen previously in the equation (5):

xn ≃ x1 ∗ 3I ∗ I
i=1(ρi) or even xn ≃ x1∗3I

2P

Starting from x1 = 295147905179352825857 we obtain: xn ≃ x1∗3191

2371

By evolving the previous expression we obtain:
xn ≃ x1 × 2(191∗log2(3)−371)

. . .

xn ≃ (2(68) + 1) × 2(−68.27216236225917) ≃ 0.8280774634724271
The same result can be verified through the function:
abcd(268 + 1) = (x1, A, B, C, A + B + C + D) which presents the following output:

(295147905179352825857, 0.8280774634724271, 9.352118592531982e-22, 0.10942253652757464, 0.0625, 1.0000000000000018)

As previously mentioned, 13 numbers ≦ 268 were experimentally tested for the
Collatz Conjecture and all of them invariably ended in the cycle 4→2→1, empirically
demonstrating the non-existence of another repeating cycle other than the trivial, therefore
if any other cycle exists, it must have as its origin numbers greater than 268 and of course
have its fixed points all greater than 268, (xk > 268, xk ∈ N∗), however it was found that
such a statement (xk = xn ≃ 0.8280774634724271) shows that when xi = 2(68) + 1 is
obtained, xn ≦ 1 is obtained, thus evidencing the decrease of the ‘series‘.

In addition and based on the equation (4) and its alternative form 15 below equation
(12), assuming the existence of xk a fixed point of a repetitive cycle we obtain
the following equation (13):

xk ∗ 3I ∗
I

i=1
(ρi)

  
(A)

+
0

j=(I−1)


3j ∗




I

i=(I−j)
(ρi)







  
(B)+(C)+(D)

= xk (12)

13 “As of 2020, the conjecture has been checked by computer for all starting values up to 268 ≈ 2.95 × 1020. All
initialvalues tested so far eventually end in the repeating cycle (4; 2; 1) of period 3 . [10]
“As of 2020, the conjecture has been checked by computer for all starting values up to 1020“ [2]

14 In Appendix A a comparison is presented in which the previous simplification is observed.
15 The equation thus modified is valid for any internal orbit (that may exist) in the Collatz conjecture, with xk

being a fixed point of the same orbit, this for ∀xi > 268 ∈ N.

15
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obtained, xn ≦ 1 is obtained, thus evidencing the decrease of the ‘series‘.

In addition and based on the equation (4) and its alternative form 15 below equation (12), assuming the existence of xk a fixed point 
of a repetitive cycle we obtain the following equation (13):

(A) = Ψxk, (B) + (C) + (D) = Ω Ψxk + Ω = xk

Multiplying both terms by xk results in: x2
k(Ψ − 1) + Ωxk = 0.

Therefore, in addition to the trivial root xk = 0 the other root will be (this valid
one):

xk = Ω
(
− 1

Ψ−1

)
, remembering that − 1

Ψ−1 = 1
1−Ψ we obtain:

Ψxk + Ω = xk ou xk = Ω
1 − Ψ (13)

Which can also be obtained from Ψxk+Ω = xk, it is also observed that in accordance
with what was seen previously 16 0 < Ψ < 1, and Ω ≧ 0, consequently the terms (A), (B),
(C) and (D) are all positive.

From the equation (12) we obtain that ψ = 3I ∗ ∏I
i=1(ρi) or even ψ = 3I

2P , seen
previously, we know that 0 < Ψ < 1, in this way we can write that: 0 < 3I

2P < 1,
adopting the base two we rewrite it in the following way 0 < 2(I∗log2(3)−P ) < 1 (where P
represents simple divisions by 2), for it to be true (that is: valid for ∀xi ∈ N∗) we have that
(I ∗ log2(3) − P ) < 0 or even, I ∗ log2(3) < P 17. This limit can also be seen in table 1, also
verifying that according to x∗ → ∞ we have that Ψ = 3I

2P → 0 (without ever being zero).

x∗
i

x∗
n−1

x∗
max

fk(x∗
i )

fk+j

fn

grafo 2 - any closed cycle

Consider the figure to the side (graph 2)
which represents any closed (repetitive) cy-
cle, as suggested previously if such a cycle
exists it must have as fixed points x∗

i num-
bers greater than 268, (x∗

i > 268, x∗
i ∈ N∗), it

can be seen that in this cycle there ‘exists‘ a
maximum value x∗

i = x∗
max being the result of

the transformations fk(x∗
i ), which take x∗

i in
an increasing way up to the maximum value
of the cycle. Similarly, the transformations
fk+j(xmax) = xn−1 and finally fn(xn−1) = x∗

i ,
lead to a decrease in the maximum value x∗

max.
It is clear that the ’largest divisions by two’
are obtained by such transformations fk+j

and fn from the values 1
2ρi

, where each value
of ρ is part of the vector ρi.

Still according to equation (12) the term Ω tends towards ‘small‘ finite values when
compared to xi(> 268), it can be seen that the series of values for Ω = (B) + (C) + (D)
does not include the initial term xi, depending only on the values of I and P.

16 In the equation (13) Ψxk + Ω = xk it is observed that both Ψ and Ω must be positive, being Ψ < 1 and Ω ⩾ 0,
a necessary condition for the existence of a limit cycle where xk or x∗ appear as a fixed point.

17 In this way, the maximum limit in the relation I x P is verified, where I < P
log2(3)
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represents simple divisions by 2), for it to be true (that is: valid for ∀xi ∈ N∗) we have that
(I ∗ log2(3) − P ) < 0 or even, I ∗ log2(3) < P 17. This limit can also be seen in table 1, also
verifying that according to x∗ → ∞ we have that Ψ = 3I

2P → 0 (without ever being zero).

x∗
i

x∗
n−1

x∗
max

fk(x∗
i )

fk+j

fn

grafo 2 - any closed cycle

Consider the figure to the side (graph 2)
which represents any closed (repetitive) cy-
cle, as suggested previously if such a cycle
exists it must have as fixed points x∗

i num-
bers greater than 268, (x∗

i > 268, x∗
i ∈ N∗), it

can be seen that in this cycle there ‘exists‘ a
maximum value x∗

i = x∗
max being the result of

the transformations fk(x∗
i ), which take x∗

i in
an increasing way up to the maximum value
of the cycle. Similarly, the transformations
fk+j(xmax) = xn−1 and finally fn(xn−1) = x∗

i ,
lead to a decrease in the maximum value x∗

max.
It is clear that the ’largest divisions by two’
are obtained by such transformations fk+j

and fn from the values 1
2ρi

, where each value
of ρ is part of the vector ρi.

Still according to equation (12) the term Ω tends towards ‘small‘ finite values when
compared to xi(> 268), it can be seen that the series of values for Ω = (B) + (C) + (D)
does not include the initial term xi, depending only on the values of I and P.

16 In the equation (13) Ψxk + Ω = xk it is observed that both Ψ and Ω must be positive, being Ψ < 1 and Ω ⩾ 0,
a necessary condition for the existence of a limit cycle where xk or x∗ appear as a fixed point.

17 In this way, the maximum limit in the relation I x P is verified, where I < P
log2(3)
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For demonstration purposes, consider the Sequence formed by 10 ascents and 10
descents presented below for the number 57, remembering as observed for Lagarias [6]
the cycles of ascents (3xi + 1) are the same number as those of descents (division by 2ρ):

r_collatz1(57) = [32, 10, 22], [2, 1, 2, 2, 4, 1, 1, 2, 3, 4] 18

collatz_d(57) = [57, 172, 43, 130, 65, 196, 49, 148, 37, 112, 7, 22, 11, 34, 17, 52, 13, 40, 5, 16, 1]
Expanding the equation (12) using the previous values we have:
xk ∗ 310

222  
(A)

+ 39

222
(B)

+ 38

220 + 37

219 + 36

217 + 35

215 + 34

211 + 33

210 + 32

29 + 31

27  
(C)

+ 30

24
(D)

Using the function abcd(57) (xi = 57) we obtain:
0.8024675846099856  

(A)

+ 0.004692792892456051  
(B)

+ 0.1303396224975586  
(C)

+ 0.0625  
(D)

where Ω = 0.19753241539001465, as is evident Ω << xi.
Taking into account the complexity of the vector ρi = [ 1

22 , 1
21 , 1

22 , 1
22 , 1

24 , 1
21 , 1

21 , 1
22 , 1

23 , 1
24 ],

which are the divisors responsible for the ’descents’, it is impossible to construct a generic
formula for Collatz sequences without completely knowing the vector ρi, therefore the
study is carried out based on the average value between ascents and descents which,
according to Lagarias [6], points to a value lower than the unit (−→ 3

4).
Previously it was shown that the minimum limit between I and P is log2(3) or

P ⩾ I × log2(3), rewriting the equation (12) taking into account ‘as an average value‘
ρi = log2(3) we obtain the following equation (14):

xk ∗ 3I

2(I∗log2(3))  
(A)

+
0

j=(I−1)


3j ∗

I

i=(I−j)
2−(I∗log2(3))




  
(B)+(C)+(D)

= xk (14)

evolving it we have:
xk ∗ 310

2(10∗log2(3))  
(A)

+ 39

2(10∗log2(3))  
(B)

+ 38

2(9∗log2(3)) + ... + 31

2(2∗log2(3))  
(C)

+ 30

2(1∗log2(3))  
(D)

= xk

or:

xk
(A)

+ 1
3

(B)

+ 1
3 + ... + 1

3  
(C)

+ 1
3

(D)

or even: xk
(A)

+
I

j=1

1
3



  
(B)+(C)+(D)

= xk

in short: xk = xk +


I
3


, which expresses an incoherent relationship, unless I were

equal to zero19, but as previously mentioned I = 10.
The function equation_12(x_i, type)= (xi, ψ, A, Ω, Ω

xi
, xn) (coded in Python) re-

turns the following where (tipo = 3 =⇒ ρ = j × log2(3)):
(57, 1.0000000000000007, 57.000000000000036, 3.333333333333335, 0.058479532163742715, 60.333333333333337)

compatible with such a statement as Ω << xi or x∗.
18 The vector [2, 1, 2, 2, 4, 1, 1, 2, 3, 4] corresponds to the exponents of the base two of the vector ρi.
19 In these cases xi will always be of the type: xi = 2ρ, ρ ∈ N>1
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where Ω = 0.19753241539001465, as is evident Ω << xi.

Taking into account the complexity of the vector ρi =                                                               which are the divisors responsible 
for the ’descents’, it is impossible to construct a generic formula for Collatz sequences without completely knowing the vector ρi, 
therefore the study is carried out based on the average value between ascents and descents which, according to Lagarias [6], points 
to a value lower than the unit

Previously it was shown that the minimum limit between I and P is log2(3) or P ⩾ I × log2(3), rewriting the equation (12) taking into 
account ‘as an average value‘ρi = log2(3) we obtain the following equation (14):

For demonstration purposes, consider the Sequence formed by 10 ascents and 10
descents presented below for the number 57, remembering as observed for Lagarias [6]
the cycles of ascents (3xi + 1) are the same number as those of descents (division by 2ρ):

r_collatz1(57) = [32, 10, 22], [2, 1, 2, 2, 4, 1, 1, 2, 3, 4] 18

collatz_d(57) = [57, 172, 43, 130, 65, 196, 49, 148, 37, 112, 7, 22, 11, 34, 17, 52, 13, 40, 5, 16, 1]
Expanding the equation (12) using the previous values we have:
xk ∗ 310
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+ 39

222
(B)

+ 38

220 + 37

219 + 36

217 + 35

215 + 34

211 + 33

210 + 32

29 + 31

27  
(C)

+ 30

24
(D)

Using the function abcd(57) (xi = 57) we obtain:
0.8024675846099856  

(A)

+ 0.004692792892456051  
(B)

+ 0.1303396224975586  
(C)

+ 0.0625  
(D)

where Ω = 0.19753241539001465, as is evident Ω << xi.
Taking into account the complexity of the vector ρi = [ 1

22 , 1
21 , 1

22 , 1
22 , 1

24 , 1
21 , 1

21 , 1
22 , 1

23 , 1
24 ],

which are the divisors responsible for the ’descents’, it is impossible to construct a generic
formula for Collatz sequences without completely knowing the vector ρi, therefore the
study is carried out based on the average value between ascents and descents which,
according to Lagarias [6], points to a value lower than the unit (−→ 3

4).
Previously it was shown that the minimum limit between I and P is log2(3) or

P ⩾ I × log2(3), rewriting the equation (12) taking into account ‘as an average value‘
ρi = log2(3) we obtain the following equation (14):

xk ∗ 3I

2(I∗log2(3))  
(A)

+
0

j=(I−1)


3j ∗

I

i=(I−j)
2−(I∗log2(3))




  
(B)+(C)+(D)

= xk (14)

evolving it we have:
xk ∗ 310

2(10∗log2(3))  
(A)

+ 39

2(10∗log2(3))  
(B)

+ 38

2(9∗log2(3)) + ... + 31

2(2∗log2(3))  
(C)

+ 30

2(1∗log2(3))  
(D)

= xk

or:

xk
(A)

+ 1
3

(B)

+ 1
3 + ... + 1

3  
(C)

+ 1
3

(D)

or even: xk
(A)

+
I

j=1

1
3



  
(B)+(C)+(D)

= xk

in short: xk = xk +


I
3


, which expresses an incoherent relationship, unless I were

equal to zero19, but as previously mentioned I = 10.
The function equation_12(x_i, type)= (xi, ψ, A, Ω, Ω

xi
, xn) (coded in Python) re-

turns the following where (tipo = 3 =⇒ ρ = j × log2(3)):
(57, 1.0000000000000007, 57.000000000000036, 3.333333333333335, 0.058479532163742715, 60.333333333333337)

compatible with such a statement as Ω << xi or x∗.
18 The vector [2, 1, 2, 2, 4, 1, 1, 2, 3, 4] corresponds to the exponents of the base two of the vector ρi.
19 In these cases xi will always be of the type: xi = 2ρ, ρ ∈ N>1
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For demonstration purposes, consider the Sequence formed by 10 ascents and 10
descents presented below for the number 57, remembering as observed for Lagarias [6]
the cycles of ascents (3xi + 1) are the same number as those of descents (division by 2ρ):

r_collatz1(57) = [32, 10, 22], [2, 1, 2, 2, 4, 1, 1, 2, 3, 4] 18

collatz_d(57) = [57, 172, 43, 130, 65, 196, 49, 148, 37, 112, 7, 22, 11, 34, 17, 52, 13, 40, 5, 16, 1]
Expanding the equation (12) using the previous values we have:
xk ∗ 310

222  
(A)

+ 39

222
(B)

+ 38

220 + 37

219 + 36

217 + 35

215 + 34

211 + 33

210 + 32

29 + 31

27  
(C)

+ 30

24
(D)

Using the function abcd(57) (xi = 57) we obtain:
0.8024675846099856  

(A)

+ 0.004692792892456051  
(B)

+ 0.1303396224975586  
(C)

+ 0.0625  
(D)

where Ω = 0.19753241539001465, as is evident Ω << xi.
Taking into account the complexity of the vector ρi = [ 1

22 , 1
21 , 1

22 , 1
22 , 1

24 , 1
21 , 1

21 , 1
22 , 1

23 , 1
24 ],

which are the divisors responsible for the ’descents’, it is impossible to construct a generic
formula for Collatz sequences without completely knowing the vector ρi, therefore the
study is carried out based on the average value between ascents and descents which,
according to Lagarias [6], points to a value lower than the unit (−→ 3

4).
Previously it was shown that the minimum limit between I and P is log2(3) or

P ⩾ I × log2(3), rewriting the equation (12) taking into account ‘as an average value‘
ρi = log2(3) we obtain the following equation (14):

xk ∗ 3I

2(I∗log2(3))  
(A)

+
0

j=(I−1)


3j ∗

I

i=(I−j)
2−(I∗log2(3))




  
(B)+(C)+(D)

= xk (14)

evolving it we have:
xk ∗ 310

2(10∗log2(3))  
(A)

+ 39

2(10∗log2(3))  
(B)

+ 38

2(9∗log2(3)) + ... + 31

2(2∗log2(3))  
(C)

+ 30

2(1∗log2(3))  
(D)

= xk

or:

xk
(A)

+ 1
3

(B)

+ 1
3 + ... + 1

3  
(C)

+ 1
3

(D)

or even: xk
(A)

+
I

j=1

1
3



  
(B)+(C)+(D)

= xk

in short: xk = xk +


I
3


, which expresses an incoherent relationship, unless I were

equal to zero19, but as previously mentioned I = 10.
The function equation_12(x_i, type)= (xi, ψ, A, Ω, Ω

xi
, xn) (coded in Python) re-

turns the following where (tipo = 3 =⇒ ρ = j × log2(3)):
(57, 1.0000000000000007, 57.000000000000036, 3.333333333333335, 0.058479532163742715, 60.333333333333337)

compatible with such a statement as Ω << xi or x∗.
18 The vector [2, 1, 2, 2, 4, 1, 1, 2, 3, 4] corresponds to the exponents of the base two of the vector ρi.
19 In these cases xi will always be of the type: xi = 2ρ, ρ ∈ N>1

17



   Volume 3 | Issue 10 | 12J Math Techniques Comput Math, 2024

For demonstration purposes, consider the Sequence formed by 10 ascents and 10
descents presented below for the number 57, remembering as observed for Lagarias [6]
the cycles of ascents (3xi + 1) are the same number as those of descents (division by 2ρ):

r_collatz1(57) = [32, 10, 22], [2, 1, 2, 2, 4, 1, 1, 2, 3, 4] 18

collatz_d(57) = [57, 172, 43, 130, 65, 196, 49, 148, 37, 112, 7, 22, 11, 34, 17, 52, 13, 40, 5, 16, 1]
Expanding the equation (12) using the previous values we have:
xk ∗ 310

222  
(A)

+ 39

222
(B)

+ 38

220 + 37

219 + 36

217 + 35

215 + 34

211 + 33

210 + 32

29 + 31

27  
(C)

+ 30

24
(D)

Using the function abcd(57) (xi = 57) we obtain:
0.8024675846099856  

(A)

+ 0.004692792892456051  
(B)

+ 0.1303396224975586  
(C)

+ 0.0625  
(D)

where Ω = 0.19753241539001465, as is evident Ω << xi.
Taking into account the complexity of the vector ρi = [ 1

22 , 1
21 , 1

22 , 1
22 , 1

24 , 1
21 , 1

21 , 1
22 , 1

23 , 1
24 ],

which are the divisors responsible for the ’descents’, it is impossible to construct a generic
formula for Collatz sequences without completely knowing the vector ρi, therefore the
study is carried out based on the average value between ascents and descents which,
according to Lagarias [6], points to a value lower than the unit (−→ 3

4).
Previously it was shown that the minimum limit between I and P is log2(3) or

P ⩾ I × log2(3), rewriting the equation (12) taking into account ‘as an average value‘
ρi = log2(3) we obtain the following equation (14):

xk ∗ 3I

2(I∗log2(3))  
(A)

+
0

j=(I−1)


3j ∗

I

i=(I−j)
2−(I∗log2(3))




  
(B)+(C)+(D)

= xk (14)

evolving it we have:
xk ∗ 310

2(10∗log2(3))  
(A)

+ 39

2(10∗log2(3))  
(B)

+ 38

2(9∗log2(3)) + ... + 31

2(2∗log2(3))  
(C)

+ 30

2(1∗log2(3))  
(D)

= xk

or:

xk
(A)

+ 1
3

(B)

+ 1
3 + ... + 1

3  
(C)

+ 1
3

(D)

or even: xk
(A)

+
I

j=1

1
3



  
(B)+(C)+(D)

= xk

in short: xk = xk +


I
3


, which expresses an incoherent relationship, unless I were

equal to zero19, but as previously mentioned I = 10.
The function equation_12(x_i, type)= (xi, ψ, A, Ω, Ω

xi
, xn) (coded in Python) re-

turns the following where (tipo = 3 =⇒ ρ = j × log2(3)):
(57, 1.0000000000000007, 57.000000000000036, 3.333333333333335, 0.058479532163742715, 60.333333333333337)

compatible with such a statement as Ω << xi or x∗.
18 The vector [2, 1, 2, 2, 4, 1, 1, 2, 3, 4] corresponds to the exponents of the base two of the vector ρi.
19 In these cases xi will always be of the type: xi = 2ρ, ρ ∈ N>1
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For demonstration purposes, consider the Sequence formed by 10 ascents and 10
descents presented below for the number 57, remembering as observed for Lagarias [6]
the cycles of ascents (3xi + 1) are the same number as those of descents (division by 2ρ):

r_collatz1(57) = [32, 10, 22], [2, 1, 2, 2, 4, 1, 1, 2, 3, 4] 18

collatz_d(57) = [57, 172, 43, 130, 65, 196, 49, 148, 37, 112, 7, 22, 11, 34, 17, 52, 13, 40, 5, 16, 1]
Expanding the equation (12) using the previous values we have:
xk ∗ 310

222  
(A)

+ 39

222
(B)

+ 38

220 + 37

219 + 36

217 + 35

215 + 34

211 + 33

210 + 32

29 + 31

27  
(C)

+ 30

24
(D)

Using the function abcd(57) (xi = 57) we obtain:
0.8024675846099856  

(A)

+ 0.004692792892456051  
(B)

+ 0.1303396224975586  
(C)

+ 0.0625  
(D)

where Ω = 0.19753241539001465, as is evident Ω << xi.
Taking into account the complexity of the vector ρi = [ 1

22 , 1
21 , 1

22 , 1
22 , 1

24 , 1
21 , 1

21 , 1
22 , 1

23 , 1
24 ],

which are the divisors responsible for the ’descents’, it is impossible to construct a generic
formula for Collatz sequences without completely knowing the vector ρi, therefore the
study is carried out based on the average value between ascents and descents which,
according to Lagarias [6], points to a value lower than the unit (−→ 3

4).
Previously it was shown that the minimum limit between I and P is log2(3) or

P ⩾ I × log2(3), rewriting the equation (12) taking into account ‘as an average value‘
ρi = log2(3) we obtain the following equation (14):

xk ∗ 3I

2(I∗log2(3))  
(A)

+
0

j=(I−1)


3j ∗

I

i=(I−j)
2−(I∗log2(3))




  
(B)+(C)+(D)

= xk (14)

evolving it we have:
xk ∗ 310

2(10∗log2(3))  
(A)

+ 39

2(10∗log2(3))  
(B)

+ 38

2(9∗log2(3)) + ... + 31

2(2∗log2(3))  
(C)

+ 30

2(1∗log2(3))  
(D)

= xk

or:

xk
(A)

+ 1
3

(B)

+ 1
3 + ... + 1

3  
(C)

+ 1
3

(D)

or even: xk
(A)

+
I

j=1

1
3



  
(B)+(C)+(D)

= xk

in short: xk = xk +


I
3


, which expresses an incoherent relationship, unless I were

equal to zero19, but as previously mentioned I = 10.
The function equation_12(x_i, type)= (xi, ψ, A, Ω, Ω

xi
, xn) (coded in Python) re-

turns the following where (tipo = 3 =⇒ ρ = j × log2(3)):
(57, 1.0000000000000007, 57.000000000000036, 3.333333333333335, 0.058479532163742715, 60.333333333333337)

compatible with such a statement as Ω << xi or x∗.
18 The vector [2, 1, 2, 2, 4, 1, 1, 2, 3, 4] corresponds to the exponents of the base two of the vector ρi.
19 In these cases xi will always be of the type: xi = 2ρ, ρ ∈ N>1
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evolving it we have:

in short:                           which expresses an incoherent relationship, unless I were equal to zero, but as previously mentioned I = 
10 [19].

The function equation_12(x_i, type)=                                       (coded in Python) returns the following where (tipo = 3 =⇒ ρ = j × 
log2(3)):
(57, 1.0000000000000007, 57.000000000000036, 3.333333333333335, 0.058479532163742715, 60.333333333333337)
compatible with such a statement as Ω << xi or x∗.

Suppose that ∃ is an orbit in the Collatz conjecture such that xk = x∗ is a fixed
point of the orbit, we have:                        assuming                                                              (without reaching zero), it results from 
the equation (13) that:

For demonstration purposes, consider the Sequence formed by 10 ascents and 10
descents presented below for the number 57, remembering as observed for Lagarias [6]
the cycles of ascents (3xi + 1) are the same number as those of descents (division by 2ρ):

r_collatz1(57) = [32, 10, 22], [2, 1, 2, 2, 4, 1, 1, 2, 3, 4] 18

collatz_d(57) = [57, 172, 43, 130, 65, 196, 49, 148, 37, 112, 7, 22, 11, 34, 17, 52, 13, 40, 5, 16, 1]
Expanding the equation (12) using the previous values we have:
xk ∗ 310
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+ 39

222
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+ 38

220 + 37

219 + 36

217 + 35

215 + 34
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210 + 32

29 + 31
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+ 30

24
(D)

Using the function abcd(57) (xi = 57) we obtain:
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+ 0.1303396224975586  
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where Ω = 0.19753241539001465, as is evident Ω << xi.
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22 , 1
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22 , 1

24 , 1
21 , 1

21 , 1
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23 , 1
24 ],

which are the divisors responsible for the ’descents’, it is impossible to construct a generic
formula for Collatz sequences without completely knowing the vector ρi, therefore the
study is carried out based on the average value between ascents and descents which,
according to Lagarias [6], points to a value lower than the unit (−→ 3

4).
Previously it was shown that the minimum limit between I and P is log2(3) or

P ⩾ I × log2(3), rewriting the equation (12) taking into account ‘as an average value‘
ρi = log2(3) we obtain the following equation (14):
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or:
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3  
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3
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or even: xk
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+
I

j=1

1
3



  
(B)+(C)+(D)

= xk

in short: xk = xk +


I
3


, which expresses an incoherent relationship, unless I were

equal to zero19, but as previously mentioned I = 10.
The function equation_12(x_i, type)= (xi, ψ, A, Ω, Ω

xi
, xn) (coded in Python) re-

turns the following where (tipo = 3 =⇒ ρ = j × log2(3)):
(57, 1.0000000000000007, 57.000000000000036, 3.333333333333335, 0.058479532163742715, 60.333333333333337)

compatible with such a statement as Ω << xi or x∗.
18 The vector [2, 1, 2, 2, 4, 1, 1, 2, 3, 4] corresponds to the exponents of the base two of the vector ρi.
19 In these cases xi will always be of the type: xi = 2ρ, ρ ∈ N>1
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For demonstration purposes, consider the Sequence formed by 10 ascents and 10
descents presented below for the number 57, remembering as observed for Lagarias [6]
the cycles of ascents (3xi + 1) are the same number as those of descents (division by 2ρ):

r_collatz1(57) = [32, 10, 22], [2, 1, 2, 2, 4, 1, 1, 2, 3, 4] 18

collatz_d(57) = [57, 172, 43, 130, 65, 196, 49, 148, 37, 112, 7, 22, 11, 34, 17, 52, 13, 40, 5, 16, 1]
Expanding the equation (12) using the previous values we have:
xk ∗ 310

222  
(A)

+ 39

222
(B)

+ 38

220 + 37

219 + 36

217 + 35

215 + 34

211 + 33

210 + 32

29 + 31
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+ 30

24
(D)

Using the function abcd(57) (xi = 57) we obtain:
0.8024675846099856  

(A)

+ 0.004692792892456051  
(B)

+ 0.1303396224975586  
(C)

+ 0.0625  
(D)

where Ω = 0.19753241539001465, as is evident Ω << xi.
Taking into account the complexity of the vector ρi = [ 1

22 , 1
21 , 1

22 , 1
22 , 1

24 , 1
21 , 1

21 , 1
22 , 1

23 , 1
24 ],

which are the divisors responsible for the ’descents’, it is impossible to construct a generic
formula for Collatz sequences without completely knowing the vector ρi, therefore the
study is carried out based on the average value between ascents and descents which,
according to Lagarias [6], points to a value lower than the unit (−→ 3

4).
Previously it was shown that the minimum limit between I and P is log2(3) or

P ⩾ I × log2(3), rewriting the equation (12) taking into account ‘as an average value‘
ρi = log2(3) we obtain the following equation (14):

xk ∗ 3I

2(I∗log2(3))  
(A)

+
0

j=(I−1)


3j ∗

I

i=(I−j)
2−(I∗log2(3))




  
(B)+(C)+(D)

= xk (14)

evolving it we have:
xk ∗ 310

2(10∗log2(3))  
(A)

+ 39

2(10∗log2(3))  
(B)

+ 38

2(9∗log2(3)) + ... + 31

2(2∗log2(3))  
(C)

+ 30

2(1∗log2(3))  
(D)

= xk

or:

xk
(A)

+ 1
3

(B)

+ 1
3 + ... + 1

3  
(C)

+ 1
3

(D)

or even: xk
(A)

+
I

j=1

1
3



  
(B)+(C)+(D)

= xk

in short: xk = xk +


I
3


, which expresses an incoherent relationship, unless I were

equal to zero19, but as previously mentioned I = 10.
The function equation_12(x_i, type)= (xi, ψ, A, Ω, Ω

xi
, xn) (coded in Python) re-

turns the following where (tipo = 3 =⇒ ρ = j × log2(3)):
(57, 1.0000000000000007, 57.000000000000036, 3.333333333333335, 0.058479532163742715, 60.333333333333337)

compatible with such a statement as Ω << xi or x∗.
18 The vector [2, 1, 2, 2, 4, 1, 1, 2, 3, 4] corresponds to the exponents of the base two of the vector ρi.
19 In these cases xi will always be of the type: xi = 2ρ, ρ ∈ N>1
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Suppose that ∃ is an orbit in the Collatz conjecture such that xk = x∗ is a fixed
point of the orbit, we have: x∗ = Ω

1−Ψ , assuming x∗ → ∞ ∴ Ψ20 = 3I

2P → 0 (without
reaching zero), it results from the equation (13) that:

lim
(x∗,Ψ)→(∞,0)

( Ω
1 − Ψ) = Ω

lim
x∗→∞

(x∗) = Ω

However as seen previously x∗ → ∞ consequently 0 < Ω << x∗ it is again evident
that ∄ any value of x∗ ̸= 1, x∗ ̸= 2, x∗ ̸= 4 | x∗21 ∈ N that satisfies the equation (13), thus
we conclude that:

In the Collatz Conjecture there is only one limit cycle formed by the stable
points: 1→4→2→122.

20 Next in 4.2 the arguments regarding the relationship between I and P are presented (for the studied database),
namely: log2(3) × I < P ≲ C. Note also that I and P ∈ N, when I = 0 certainly ψ = 1

2P and xi = 2z

where z ∈ N, that is xi in these cases is a power of 2. It can still be stated that as P > I × log2(3) (for the
series to be convergent) in fact when x∗ → ∞, 1 > Ψ → 0 (without ever being ZERO).

21 When x∗ = 1 you have ψ = 31

22 , Ω = 1
22 ; x∗ = 2 and x∗ = 4 are operations of division by two that end in the

number one.
22 The equation [13] has as solutions the values: x∗ = xk = 1, Ω = 0.25 and Ψ = 0.75, with I = 1 and P = 2

values relative to the repetitive cycle 1→4→2→1
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However as seen previously x∗ → ∞ consequently 0 < Ω << x∗ it is again evident that ∄ any value of x∗≠ 1, x*≠  2, x* ≠  4 | x∗21 ∈ 
N that satisfies the equation (13), thus
we conclude that:

In the Collatz Conjecture there is only one limit cycle formed by the stable points: 1→4→2→122.

5. Stochastic Models, Deterministic Process!
The Collatz sequence has been described in several texts under different names, one of which is: Hailstone Numbers [5], just as 
hailstones in clouds before being precipitated go through several ’ascents’ and ’descents’, the numbers jump from one place to 
another before reaching the final cycle 4→2→123.
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4.2 Stochastic Models, Deterministic Process!
The Collatz sequence has been described in several texts under different names, one

of which is: Hailstone Numbers[5], just as hailstones in clouds before being precipitated
go through several ’ascents’ and ’descents’, the numbers jump from one place to another
before reaching the final cycle 4→2→123.

Fig. 7 – Collatz sequence for x1 = 753257

Several attempts to understand the Collatz sequence through computer simulations
point to the previously seen final cycle 4→2→1, Fig. 724 presents an example when
x1 = 753257, you can see the Natural sequence, upper right graph, and next to it the log10
of the same sequence, below we see the sequence in a spider web graph 25 and in detail
the cycle 4→2→1.

23 https://www.bbc.com/portuguese/geral-36702054
24 Fig. 7 was obtained from the functions: serie_collatz_log(x1, log base (=10), independent term (=1)) the

sequence spider web is obtained using the function cob_web(x1, independent term (= 1), repeat final cycle (=
20), limit complete cycles (= 10000), multiplicative factor (= 3) )

25 Monteiro [7] presents on page 306, chapter 9.1.1 of the cited work how to construct a spider web diagram, here
differently from what was exposed we use two limit lines (in red) the upper one being the function 3 × xi + 1
and the lower one xi

2 , in the center we find the identity line where ‘x = y‘, the procedure for creating the graph
is identical.
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Figure 7: Collatz sequence for x1 = 753257

Several attempts to understand the Collatz sequence through computer simulations point to the previously seen final cycle 4→2→1, 
Figure 7 presents an example when x1 = 753257, you can see the Natural sequence, upper right graph, and next to it the log10 of the 
same sequence, below we see the sequence in a spider web graph and in detail the cycle 4→2→1 [24,25].

It can be seen that when the cycles approach the end (in this case 110 iterations) the response tends towards the final cycle 4→2→1, 
the negative coefficient (-0.0523) of the approximated line stands out in the logarithmic graph, which causes the successive values 
of xi to decrease, the same normalized coefficient 10−0.0523 = 0.8865... shows that being less than ONE in the successive iterations 
the value of xi should decrease. In fact, the ‘progression‘ factor of this ‘apparent‘ series is on average less than unity, according to 
predictions made by Lagarias [6] thus converging in successive iterations to the final cycle 1 → 4 → 2 → 1.

In item 4.1 it has been demonstrated that the sequence contains only one cycle 4→2→1, which is sufficient proof as such for all 
numbers; however, numbers xi ∈ ℕ | xi → ∞ allow for a complementary approach using probabilistic models, presenting significant 
results that point to this conclusion:

“.. a basic probabilistic model of iterations of the function 3x + 1 proposes that most trajectories for iterations 3x + 1 have equal 
numbers of even and odd iterations” [6](translated by the author).

In the items 2 and 3.1 we saw that the number of ascents is identical to the number of descents, that is, the number of odd numbers 
is the same as the number of even numbers (equations (2) and (5)), Lagarias also presents this fact [26].

The following items present in a simplified manner some subsidies linked to statis- tical processes that infer a similar conclusion.

6. Relationship between Even and Odd cycles
The following image contains four graphs generated from the function nucleo1() and nucleo2() present in the main code (main.py) 
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detailed in appendix A.

4.2.1 Relationship between Even and Odd cycles.

The following image contains four graphs generated from the function nucleo1()
and nucleo2() present in the main code (main.py) detailed in appendix A.

Fig. 8 – Graphs P x I

The fourth graph shows all the points (PxI) that are part of the studied database27,
the first three detail excerpts from the fourth graph. It can be seen that the points (in
blue) represent the total number of P even cycles and the respective number of I odd
cycles for a given x1 to reach ONE, while the internal lines (in red) are obtained as the
best (linear) approximation to the cited points; the two external lines (in green) limit the
values within a specific region that includes all the points in blue of the studied base, that
is, the confidence index in this region is 100%. The approximation lines (in red) have their
components presented at the top of each graph. In the last graph, we can see a strong
convergence between the values P x I, showing a relationship between them.

27 file: main.py (lines 32 to 62) which contains 50094 values for x1.
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Figure 8: Graphs P x I

The fourth graph shows all the points (P xI) that are part of the studied database27, the first three detail excerpts from the fourth graph. 
It can be seen that the points (in blue) represent the total number of P even cycles and the respective number of I odd cycles for a 
given x1 to reach ONE, while the internal lines (in red) are obtained as the best (linear) approximation to the cited points; the two 
external lines (in green) limit the values within a specific region that includes all the points in blue of the studied base, that is, the 
confidence index in this region is 100%. The approximation lines (in red) have their components presented at the top of each graph. 
In the last graph, we can see a strong convergence between the values P x I, showing a relationship between them.

7. Limit Region
The two straight line segments in green represent the limit region where all the even points (blue) P x I meet (referring to the study 
base). The straight lines have the following components:

4.2.1.1 Limit region

The two straight line segments in green represent the limit region where all the
even points (blue) PxI meet (referring to the study base).

The straight lines have the following components:

Rs(reta superior) −→ 0.500000 ∗ P + 189.304 (15)

Ri(reta inferior) −→ 0.500000 ∗ P − 210.500 (16)

It can be seen that they are in fact parallel (same angular coefficients) and the width
(spacing) between them is ≃ 400 points, which means that for a certain number of cycles
P we will obtain within the range presented the value of ∼ I ± 200 points.

From the presented adjustment equation (last of the four graphs) we have a
correlation coefficient of R2 = 0.999607, very close to ONE indicating adherence of the
Linear model to the presented distribution:

CiclosImpares = 0.500000 · CiclosP ares + 0.194725 (17)

It can be seen that the correlation between the number of P even cycles and I odd
cycles (I ≃ 0.5 × P ) is in accordance with the Normal distribution of the numbers ∈ N∗

as will be seen later. It should be noted that although the precision is not absolute, as the
equations work with Real numbers subject to rounding, the cycles P, I are still positive
natural numbers, and the Collatz sequence is deterministic, despite the lack of knowledge
about the evolution of the same sequence in relation to all possible numbers ∈ N∗, these
approximations and the use of statistical methods are used. The equation (9) does not
assertively indicate that ∀ number xi will end in um after the Total Cycles (=P+I) however
the terms A,B,C and D shown in the code in Fig. 5 or the equivalent terms (A), (B), (C)
and (D) present in the equation (4) provide resources for an approximation based on the
initial number xi and possible points IxP , (C = I + P ).

It is also noted that the limit lines can be better defined by adopting smaller
segments for the values xi.

In the following graphs (Fig. 9) it is possible to see for the studied database the
Histograms [8] relating to term A of the equation (4), the relationship between odd and
even cycles (even cycles include all cycles in which there is a simple division by two) and it
is also observed that the number of odd cycles is smaller than the number of even cycles
(total), and in the last graph that any cycle (in the studied database) has more than 60%
of even cycles.
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It can be seen that they are in fact parallel (same angular coefficients) and the width (spacing) between them is ≃ 400 points, which 
means that for a certain number of cycles P we will obtain within the range presented the value of ∼ I ± 200 points.

From the presented adjustment equation (last of the four graphs) we have a correlation coefficient of R2 = 0.999607, very close to 
ONE indicating adherence of the Linear model to the presented distribution:

It can be seen that the correlation between the number of P even cycles and I odd cycles (I ≃ 0.5 × P ) is in accordance with the 
Normal distribution of the numbers ∈ ℕ∗ as will be seen later. It should be noted that although the precision is not absolute, as the 
equations work with Real numbers subject to rounding, the cycles P, I are still positive natural numbers, and the Collatz sequence 
is deterministic, despite the lack of knowledge about the evolution of the same sequence in relation to all possible numbers ∈ ℕ*, 
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these approximations and the use of statistical methods are used. The equation (9) does not assertively indicate that ∀ number xi 
will end in um after the Total Cycles (=P+I) however the terms A,B,C and D shown in the code in Figure 5 or the equivalent terms 
(A), (B), (C) and (D) present in the equation (4) provide resources for an approximation based on the initial number xi and possible 
points IxP , (C = I + P ).

It is also noted that the limit lines can be better defined by adopting smaller segments for the values xi. 

In the following graphs (Figure 9) it is possible to see for the studied database the Histograms [8] relating to term A of the equation 
(4), the relationship between odd and even cycles (even cycles include all cycles in which there is a simple division by two) and it 
is also observed that the number of odd cycles is smaller than the number of even cycles (total), and in the last graph that any cycle 
(in the studied database) has more than 60% of even cycles.
 
It is important to note that the value Amax is obtained for xi = 87381, I = 1, P = 18, this combination also generates the smallest relation 
I/P present in the studied base, on the other hand it represents the largest relation P/C as can be seen in the last graph of Figure 9.

It is also observed that the value of A which depends on x1 accounts for more than 79% of the value of xn.

It is important to note that the value Amax is obtained for xi = 87381, I = 1, P = 18,
this combination also generates the smallest relation I

P
present in the studied base, on the

other hand it represents the largest relation P
C

as can be seen in the last graph of Fig. 9.
It is also observed that the value of A which depends on x1 accounts for more than 79%
of the value of xn.

Fig. 9 – Distribution graphs of A, I
P

, P
C

4.2.2 Maximum value for xi

It is assumed that in the Collatz Sequence there is a maximum value where xi = xm

from which any subsequent (or previous) value will be less than this maximum xm, it can
be concluded that the maximum value is even, and it will be divided by a number 2γ.
Previously, it was seen that collatz_d(7) produces the following output:

collatz_d(7) = [7, 22, 11, 34, 17, 52, 13, 40, 5, 16, 1]
The number 52 corresponds to the maximum (in this sequence), which will later

be divided by 2γ = 22 = 4 becoming the odd number 13. Once a maximum is reached,
the subsequent numbers will necessarily be smaller, evidencing a decrease in the series. If
the same series were only of increases, it would not be limited in a final cycle, that is, it
would tend to infinity beyond what is observed that according to Lagarias [6] heuristic
predictions made using tested probabilistic models indicate that this factor is on average
lower than ONE, thus converging in successive iterations to the final cycle 1 → 4 → 2 → 1.

Considering the set of natural numbers N = {0, 1, 2, 3, ...} and the set of non-
negative even numbers P = {0, 2, 4, 6, ...}, it can be seen that both have the same Car-
dinality 28 | N |=| P |= ℵ0 [9], the same occurs with the set of numbers that are powers
of 2 E2 = {0, 2, 4, 8, 16, ...}, the set of odd numbers I also has the same cardinality of
N. In short, when dealing with infinite (countable) sets that have the same cardinality
28 There is f(xi) = 2 × xi a bijection of xi ∈ N → P
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It is assumed that in the Collatz Sequence there is a maximum value where xi = xm from which any subsequent (or previous) value 
will be less than this maximum xm, it can be concluded that the maximum value is even, and it will be divided by a number 2γ. 
Previously, it was seen that collatz_d(7) produces the following output:
collatz_d(7) = [7, 22, 11, 34, 17, 52, 13, 40, 5, 16, 1]

The number 52 corresponds to the maximum (in this sequence), which will later be divided by 2γ = 22 = 4 becoming the odd number 
13. Once a maximum is reached, the subsequent numbers will necessarily be smaller, evidencing a decrease in the series. If the same 
series were only of increases, it would not be limited in a final cycle, that is, it would tend to infinity beyond what is observed that 
according to Lagarias [6] heuristic predictions made using tested probabilistic models indicate that this factor is on average lower 
than ONE, thus converging in successive iterations to the final cycle 1 → 4 → 2 → 1.

Considering the set of natural numbers ℕ = {0, 1, 2, 3, ...} and the set of non- negative even numbers ℙ = {0, 2, 4, 6, ...}, it can be 
seen that both have the same Car- dinality 28 | ℕ |=| ℙ |= ℵ0 [9], the same occurs with the set of numbers that are powers of 2  2 = 
{0, 2, 4, 8, 16, ...}, the set of odd numbers I also has the same cardinality of ℕ. In short, when dealing with infinite (countable) sets 
that have the same cardinality (| ℕ |=| ℙ |=|     2 |=|    |= ℵ0), it follows that the probability distribution for ∀ and the number xi present (| N |=| P |=| E2 |=| I |= ℵ0), it follows that the probability distribution for ∀ and the

number xi present in these sets are equivalent, since the same sets are equipotent, making
any prediction difficult to make or that it presents objective trends (taking into account
infinite countable sets). In the previous item, it was seen that every Collatz series has a
final cycle 1 → 4 → 2 → 1 and consequently a maximum establishing for each series a
particular set of finite numbers, having the same amount of odd and even numbers [6]
(before reaching the number 1).

Consider also the set D7 = [7, 22, 11, 34, 17, 52, 13, 40, 5, 16]29 whose cardinality is:
| D7 |= 10, it is clear that the amount of even numbers is identical to the amount of
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Table 2 shows the distribution of numbers that are powers of 2 (less than 5000) as
a function of the exponent γ, remembering that any even number within the series (result
of 3 × xi + 1) will necessarily be divided by an even number of the type 2γ, highlighting
the non-zero probability that it (result of 3 × xi + 1) will be divided more than once by 2.

The function nPares(x) (Fig.10) provides the values from table 2 for x = 5000, in
the console of the Python: divisores = np.array(nPares(5000))[: 2] which will give
the following answer:

divisores[0] = array([2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096])
and
divisores[1] = array([1250, 625, 313, 156, 78, 39, 20, 10, 5, 2, 1, 1]])

γ divisor occurrence occurrence (%)
1 2 1250 50
2 4 625 25
3 8 313 12.52
4 16 156 6.24
5 32 78 3.12
6 64 39 1.56
7 128 20 0.80
8 256 10 0.40
9 512 5 0.20

10 1024 2 0.08
11 2048 1 0.04
12 4096 1 0.04

Table 2 – Even divisors where: 2γ <= 5000

Whose sum (sum(divisors[1])) is 2500, that is, there are 2500 available divisors, these
being powers of 2, the function nPaires(numero)[2:] indicates the original number and, if
necessary, the immediately higher pair (to be used if the number informed be odd).

1 de f nPares (num) :
2 import numpy as np
3 conta = i n t (num)
4 #v a l o r e s = [ [ " n " , "C" , " I " , "P" , " nuc leo " ] ]
5 v a l o r e s =[ ]
6 whi l e ( conta > 1) :
7 c_num = s t r ( conta )
8 resp = divByPot2 (c_num)
9 v a l o r e s . append ( resp [ 1 ] )

10 conta −= 2
11 i f conta <= 1 :
12 break
13 matrizV = np . array ( v a l o r e s )
14 expoente , o c o r r e n c i a = np . unique ( matrizV , return_counts=True )
15 re turn expoente , o c o r r e n c i a

Fig. 10 – Code: nPares()

Previously in table 1 we presented some results of the relationship between I and
P, that is: between the number of Odd cycles in relation to the number of Even cycles 31

31 The Even cycles correspond to simple divisions by two in each cycle, so that
∏I

i=1(ρi) = 2−P .
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Figure 10: Code: nPares()

Previously in table 1 we presented some results of the relationship between I and P, that is: between the number of Odd cycles in 
relation to the number of Even cycles [31].
where ’apparently’ we have:where ’apparently’ we have:

lim
x1→∞

r_collatz(x1) −→ I

P
≈ 0.50

Table 3 shows the distribution for number NN8, where:
[C, I, P ], Eγ = r_collatz1(NN8) −→ [74671, 25016, 49655], Eγ.
The matrix Eγ (for the number NN832) is composed of 2501633 elements, which

correspond to 2γ, γ in the first column of the table. 3.

γ divisor occurrence ∼ ÷2 occurrence (%) Heuristic[6]
1 2 12536 12536 50.11 1.2253
2 4 6350 12700 25.38 1.1390
3 8 3137 9411 12.54 1.0072
4 16 1485 5940 5.94 0.9119
5 32 754 3770 3.01 0.8491
6 64 379 2274 1.52 0.8107
7 128 185 1295 0.74 0.7885

8 512 62 558 0.25 0.7675 0.7596
13 8192 4 52 0.02 0.7587
14 16384 3 42 0.01 0.7579

totals 25016 49655 100 —

Table 3 – Even divisors: r_collatz(NN8)

A number xi (even) will be divided by 2γ, it can be seen that the number of
divisions by 2γ is exactly equal to the number of odd operations, which is in agreement
with the function collatz_d(x1), that is, 50% of the operations occur on odd numbers
and 50% of the operations occur on even numbers, however the distribution of division
operations follows an exponential distribution, column occurrence (%) and Fig. 11. The
last column of Table 3 refers to the heuristic argument presented by Lagarias[6], in which
the multiplicative factor (MF) between two consecutive odd integers should be ∼ 3

4 < 1,
it can be seen in Table 3 that MF ∼= 0.7579: “this heuristic argument suggests that,
on average, iterations in a trajectory tend to decrease in size, so that there should be no
divergent trajectories“(translated by the author)..

32 The number NN8 has its representation in the form of String, aiming to preserve all digits without rounding.
The number NN8 is the concatenation of the number NN4 + NN4, having 3012 significant digits

33 Occurrence corresponds to the number of times there is division, they are simple division operations (by 2)
and compound (by 2γ), resulting in the same amount of operations 3 ∗ x + 1 (ascents, cycles I).
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Table 3 shows the distribution for number NN8, where:

The matrix Eγ (for the number NN8) is composed of 25016 elements, which correspond to 2γ , γ in the first column of the table. 3 
[32,33].

Table 3: Even divisors: r_collatz(NN8)

A number xi (even) will be divided by 2γ , it can be seen that the number of divisions by 2γ is exactly equal to the number of odd 
operations, which is in agreement with the function collatz_d(x1), that is, 50% of the operations occur on odd numbers and 50% of 
the operations occur on even numbers, however the distribution of division operations follows an exponential distribution, column 
occurrence (%) and Figure 11. The last column of Table 3 refers to the heuristic argument presented by Lagarias[6], in which the 
multiplicative factor (MF) between two consecutive odd integers should be ∼ 3/4 < 1, it can be seen in Table 3 that MF = 0.7579:
“this heuristic argument suggests that, on average, iterations in a trajectory tend to decrease in size, so that there should be no 
divergent trajectories“(translated by the author).

∼
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Fig. 11 - Occurrence of Pairs (r_collatz1(NN8))

The graph in (Fig. 11) illustrates the exponential distribution of even numbers according
to occurrence (%) in Table 3 (NN8) and approximated equation. It can be seen from Table
3 that the probability of an even number subsequent to the operation 3 × xi + 1 being
divided by TWO is 100%34, and in this process being divided again by a power of TWO,
that is, being divided again by 2γ, where γ35 ∈ N∗ between 22 and 2∞ is given by:

P(1.51 ≦ γ ≦ 14) =
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The Collatz Conjecture is definitely not only a challenge, it is also a fertile field for using the tools available in mathematics. At each 
stage, new tools and/or observations (sometimes previously neglected) are present. In one of these surprises, we can say:
Any number xi = 2σ − 1, | σ ∈ {0, 2, 4, 6, 8, ...} will always be divisible by three.

The function divide_3(expI, expF) helps in the verification, but the demonstration of such a statement is beyond the scope of this 
work, and will be left for a possible future work!
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Appendix A

APPENDIX A – Comparison between Ω calculated and
approximated.

The text in this appendix was highlighted and treated as complementary, serving to
support the observations seen in the item 4.1.2, in which when xk → ∞ it is observed
that Ψ = 3I

2P → 0 and due to this fact the value 1 present in the formula 3 × xi+ 1
was disregarded, since this is much smaller than the product 3 × x1, (1 <<< (3 × x1)).
Therefore, the value of Ω was calculated using both methods (I) and (II), namely:

0

j=(I−1)


3j ∗




I

i=(I−j)
(ρi)







  
(B)+(C)+(D)=Ω

= Ω (I)

lim
(x∗,Ψ)→(∞,0)

( Ω
1 − Ψ) = Ω ∴ ( Ω

1 − Ψ) = Ω (II)

The following graphs using the function omega_1e2(xi, xn, salto) show the modulus
of the difference between the values obteined in (I) and (II), i.e. |Ω(I) − Ω(II)|:

Fig. 12 – Graphs: abs(Ω(I) − Ω(II)) × xi

In Fig. 12, the sequences in blue are the calculated values of the modulus of the
differences, while in red the approximated exponential trend line according to values
of a, b and c in each graph, note that the residual value c when xi → inf, we have
lim

xi→∞
c → 0, demonstrating that equations (I) and (II) lead to similar results, and that

such an approximation (when xi → inf) is acceptable as well as the limits:

lim
(x∗,Ψ)→(∞,0)

( Ω
1 − Ψ) = Ω, lim

x∗→∞
(x∗) −→ Ω
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The following graphs (Fig. 13) present both methods for calculating Ψ, (I) and
(II), note that when xi → inf the value of Ψ also tends to zero (Ψ → 0).

Fig. 13 – Graphics: Ψ × xi

Thus, with what has been exposed in this appendix and seen previously, it is
evident that ∄ is any value of x∗ ̸= 1, x∗ ̸= 2, x∗ ̸= 4 | x∗ ∈ N that satisfies the equation
(12), which leads to the conclusion that ∃ is just and exclusively a limit cycle in the Collatz
Conjecture.

In addition, hypothetically consider the equation (12) assuming that Ψ → 1 (which
is in disagreement with the graphs in Fig. 13), as seen previously Ψxk + Ω = xk we will
necessarily have that Ω → 0, we obtain that: Ψxk + 0 = xk or Ψxk = xk

Given that Ψ = 3I

2P , it follows that xk ≃ xk × 2(I∗log2(3)−P ), for the expression
2(I∗log2(3)−P ) = 1 to be true we have: I ∗ log2(3) = P , remembering Ω = B + C + D where
B = Ψ

3 , it follows that (when Ψ → 1, Ω → 0) Ω = Ψ
3 + C + D ∴ we have that Ω > 1

3 which
contradicts the hypothesis previously formulated. The following graphs (Fig. 14) illustrate
that: Ω > 0 and Ψ ̸= 1, reinforcing that the hypothesis Ψ → 1, Ω → 037 is not valid.

Fig. 14 – Graphs: P × I, Ψ × I, Ω × I

37 In the graph in Fig. 14 the point closest to 1 for Ψ, corresponds to I = 53 and P = 84 when Ψ ≃ 1.00209031... > 1
is obtained.
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1 Equation (4) possibilities as a function of I, P.
The term (C) of the equation (4) presents a certain complexity in the formation

of the sets that contain the values of γi, having a distribution of the elements γi in
arrangements (AR(γi) = (I − 1)!) different38, the function r_collatz1(′7′) displays as the
answer:

[C, I, P, Eγ] = r_collatz1(′7′) −→ ([16, 5, 11], [1, 1, 2, 3, 4])  
(Eγ)

The original set Eγ = [1, 1, 2, 3, 4], which are the exponents to be applied to 2−Eγ ,
resulting in the set ρi = [ 1

21 , 1
21 , 1

22 , 1
23 , 1

24 ] = [1
2 , 1

2 , 1
4 , 1

8 , 1
16 ]. The set Eγ can be rewritten in

several ways, i.e. in (I − 1)! arrangements, without changing the result of n
i=1(ρi).

However, such arrangements will impact the term (C) of equation (4) as can be
seen below for two specific sets 39:

ρE
i = [ 1

21 , 1
21 , 1

22 , 1
23 , 1

24 ], ρM
i = [ 1

23 , 1
22 , 1

21 , 1
21 , 1

24 ]

Rremembering the item (C) of the equation (4), where I = n = 5:

1

j=(n−2)


3j ∗




n

i=(n−j)
(ρi)







  
(C)

Adopting ρE
i , ρM

i seen previously, it is possible to calculate the dyadic fractions (α), (β)
and (δ) for the two series of ρ:

33 ∗ [ 1
21 ∗ 1

22 ∗ 1
23 ∗ 1

24 ]
  

(αE)

+ 32 ∗ [ 1
22 ∗ 1

23 ∗ 1
24 ]

  
(βE)

+ 31 ∗ [ 1
23 ∗ 1

24 ]
  

(δE)

0.0263671875  
(αE)

+ 0.017578125  
(βE)

+ 0.0234375  
(δE)

= 0.0673828125  
(CE)

33 ∗ [ 1
22 ∗ 1

21 ∗ 1
21 ∗ 1

24 ]
  

(αM )

+ 32 ∗ [ 1
21 ∗ 1

21 ∗ 1
24 ]

  
(βM )

+ 31 ∗ [ 1
21 ∗ 1

24 ]
  

(δM )

0.10546875  
(αM )

+ 0.140625  
(βM )

+ 0.09375  
(δM )

= 0.33984375  
(CM )

38 ”From the viewpoint of this heuristic argument, the central difficulty of the problem lies in understanding in
detail the “mixing” properties of iterates of the function for all powers of 2“[6]

39 In this example we will use ρE
i to highlight normal values, and ρM

i which maximizes item (C) of the equation
(4) since it is less than 1.
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It becomes clear from previous considerations that a large part of the complexity in
solving the equation (4) consists in solving the term (C) of the same, since the possible
arrangements with the coefficients γi are of the order of (I − 1)!.

2 The conjecture considering Real numbers.
Certainly considering even and odd numbers in the case of xi >= 0|xi ∈ R∗ makes

little sense since these numbers, as they can be fractional or irrational, do not present
parity. The conjecture must be adapted, and in this case only:

collatz_reais(xi)40 =⇒ xn = 3×xi+1
4

The factor 3
4 is in agreement with Lagarias’ heuristic argument[6], in which the

multiplicative factor (MF) between two subsequent numbers must be ∼ 3
4 < 1, in the

graph in Fig. 14 the cycle is observed limit defined by the circle with radius UM to
which all sequences converge41. Remembering that according to Monterio[7] ”to know
the characteristics of an orbit it is necessary to know its eigenvalue λ, which corresponds
to the product of each eigenvalue relative to the fixed points x∗

i in the orbit“, as follows:

λ = df(x)
dx

|x∗
i

= 3
4

As λ < 1 the orbit is stable, which allows us to state that such a cycle repeats
indefinitely once the value UM is reached.

Fig. 15 – Polar Graph: (3×xi+1)
4

40 The function collatz_reais() without any parameter generates the graph in Fig. 14, the parameters are
optional,
num= xi(or none for 0 ⩽ xi ⩽ 3), steps= 50 (cycles in the trajectory), jLIM= 90 (number of trajectories)

41 The graph for the purpose of visualizing several trajectories was plotted in a polar manner, where the beginning
of each trajectory (sequential) is displaced by a progressive angle and is located on the red dashed line, the end
of each trajectory occurs on the circle with radius UM
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Figure 15: Polar Graph: 

3 A Practical Example (Brute Force)3 A practical example (brute force)
Consider the number 753257 whose graphs were seen in Fig. 7 item 4.2, from the

equation (5) doing: ∏n
i=1(ρi) = ∏P

i=1(1
2) = 1

2P

we will have:
(A) =⇒ h(753257) = 753257 ∗ 3I

2P (= 0.8098463884774229)
Remembering that this value ”generally“ is ≥ 0.78 (data in table 1), we must

look for the values of I and P that meet the above, also observing the equation (11), the
function acha_ABD(n,m,c) available in the file Collatz_Files constructed in accordance
with the limit range (two lines in green) seeks to find the values that satisfy the condition
above, it is important to note that up to 400 possible answers of I × P can be presented,
since a region was delimited where the confidence index for the study base is 100%. 42

Executing the function acha_ABD(n,m,c) (n=753257, m=0.5, c=0.194725, m and
c according to equation 16) we obtain the answers (only 14 are presented) 43, in the
following list the correct one is highlighted:

Item A Pares Impares A+B+D I/P(%)
1 0.886717 72 33 0.949217 0.458333
2 0.841688 80 38 0.904189 0.475000
3 0.798946 88 43 0.861447 0.488636
4 0.898814 91 45 0.961315 0.494505
5 0.853172 99 50 0.915672 0.505051
6 0.809846 107 55 0.872347 0.514019
7 0.911077 110 57 0.973578 0.518182
8 0.864812 118 62 0.927312 0.525424
9 0.820895 126 67 0.883396 0.531746

10 0.923507 129 69 0.986008 0.534884
11 0.876610 137 74 0.939111 0.540146
12 0.832095 145 79 0.894595 0.544828
13 0.936107 148 81 0.998607 0.547297
14 0.789840 153 84 0.852341 0.549020
... ... ... ... ... ...

Table 4 – acha_ABD(753257, 0.5, 0.194725)

Among the possibilities that the function acha_ABD(n,m,c) presented, the cor-
rect one corresponds to item 6, that is P = 107, I = 55 (r_collatz(str(753257)) =⇒
[162, 55, 107]). This method (via brute force) presents many candidate values, and only
serves to show the most appropriate one among these results without having to calculate
the complete Collatz Conjecture as presented in the equation (2).

42 Note that the confidence index in this case study is 100% since all points of the Study Base are included within
the limit lines.

43 The following criteria were taken into account for accepting the answers: A >= 0.78 and A <= (1 - B - D)
and I > 0 and (I/P) >= (m*0.9) and (I/P) <= (m*1.1), a variation of ±10% in the angular coefficient of the
modeled line is accepted.
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Table 4: acha_ABD(753257, 0.5, 0.194725)

Appendix C
Setting up the Python / PyCharm environment
Creating the project

APPENDIX C – Setting up the Python / PyCharm environment

1 Creating the project
Once the Python environment is set up, the version currently used is: Python

3.11.6 in a Linux environment 6.5.12-200.fc38.x86_64 and the IDE interface PyCharm
2022.1.3 (Community Edition), let’s create the initial project (those who have already
done so can skip this step). Start the PyCharm program and create a new project the
so-called Python_Collatz as shown in the following figure:

Fig. 16 – Creating the Project

When creating the project, the initial screen with the main.py file (initial) is
displayed (Fig.16). Note that the print_hi(name) function is automatically created and
triggered internally in the main code.

Fig. 17 – Main.py file (initial)
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Figure 17: Main.py file (initial)

By making the changes to the code (example), our main.py file (initial) will look like this:By making the changes to the code (example), our main.py file (initial) will look like this:
1 import ma tp lo t l i b . pyplot as p l t
2 import pandas as pd
3 import numpy as np
4 import math
5 import sys
6 import os
7 import csv
8
9 from C o l l a t z _ F i l e s import ∗

10
11 # Press the green button in the g u t t e r to run the s c r i p t .
12 i f __name__ == ’__main__ ’ :
13 n = math . l og ( i n t ( f ’ {0 b101010000011001 :#0} ’ ) )
14 p r i n t (n)

Fig. 18 – Code: main.py

Lines 13 and 14 shown in the code in Fig. 17 were included only so that it is possible to
test the environment beforehand.

1.1 Including files
Before running the main.py program we must include other files:

__init__.py44,
BaseDados.py,

funcoes.py,
Collatz_Files.py

The following list refers to the __init__.py file and adjusts the environment
to import local functions developed in files separate from main.py within the working
directory.
1 # todo comentá r i o em Python i n i c i a com o c a r a c t e r #
2 # e s t e arquivo tem o o b j e t i v o de i n d i c a r para o programa
3 # main . py a l o c a l i z a ção
4 # das fun çõ es a u x i l i a r e s
5
6 from BaseDados import ∗
7 from funcoes import funcoes
8 from C o l l a t z _ F i l e s import C o l l a t z _ F i l e s

Fig. 19 – Code: __init__.py

The files cited: main.py, funcoes.py, Collatz_Files.py, BaseDados.py and conjec-
turas.py present almost two thousand lines of code, the probability of incorrect typing is
very high, due to this the files will be made available in electronic form when requested by
email to the author, after publication they will be available in the directory indicated here.

44 Note that before and after the word init there are two underscore characters _
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to import local functions developed in files separate from main.py within the working
directory.
1 # todo comentá r i o em Python i n i c i a com o c a r a c t e r #
2 # e s t e arquivo tem o o b j e t i v o de i n d i c a r para o programa
3 # main . py a l o c a l i z a ção
4 # das fun çõ es a u x i l i a r e s
5
6 from BaseDados import ∗
7 from funcoes import funcoes
8 from C o l l a t z _ F i l e s import C o l l a t z _ F i l e s

Fig. 19 – Code: __init__.py

The files cited: main.py, funcoes.py, Collatz_Files.py, BaseDados.py and conjec-
turas.py present almost two thousand lines of code, the probability of incorrect typing is
very high, due to this the files will be made available in electronic form when requested by
email to the author, after publication they will be available in the directory indicated here.

44 Note that before and after the word init there are two underscore characters _
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By making the changes to the code (example), our main.py file (initial) will look like this:
1 import ma tp lo t l i b . pyplot as p l t
2 import pandas as pd
3 import numpy as np
4 import math
5 import sys
6 import os
7 import csv
8
9 from C o l l a t z _ F i l e s import ∗

10
11 # Press the green button in the g u t t e r to run the s c r i p t .
12 i f __name__ == ’__main__ ’ :
13 n = math . l og ( i n t ( f ’ {0 b101010000011001 :#0} ’ ) )
14 p r i n t (n)

Fig. 18 – Code: main.py

Lines 13 and 14 shown in the code in Fig. 17 were included only so that it is possible to
test the environment beforehand.

1.1 Including files
Before running the main.py program we must include other files:

__init__.py44,
BaseDados.py,

funcoes.py,
Collatz_Files.py

The following list refers to the __init__.py file and adjusts the environment
to import local functions developed in files separate from main.py within the working
directory.
1 # todo comentá r i o em Python i n i c i a com o c a r a c t e r #
2 # e s t e arquivo tem o o b j e t i v o de i n d i c a r para o programa
3 # main . py a l o c a l i z a ção
4 # das fun çõ es a u x i l i a r e s
5
6 from BaseDados import ∗
7 from funcoes import funcoes
8 from C o l l a t z _ F i l e s import C o l l a t z _ F i l e s

Fig. 19 – Code: __init__.py

The files cited: main.py, funcoes.py, Collatz_Files.py, BaseDados.py and conjec-
turas.py present almost two thousand lines of code, the probability of incorrect typing is
very high, due to this the files will be made available in electronic form when requested by
email to the author, after publication they will be available in the directory indicated here.

44 Note that before and after the word init there are two underscore characters _
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The following list refers to the __init__.py file and adjusts the environment to import local functions developed in files separate from 
main.py within the working directory.

Figure 19: Code: ___init___.py
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