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Abstract

Part of the scientific community has spent considerable time and resources to somehow validate Collatzs conjecture,
countless efforts have achieved considerable progress in this direction, but this conjecture lacked definitive confirmation
that choosing an odd number any xi € N', we will obtain vy = 3% T 1 this being an even number x s divide it if the
same by the number two (successively) until another odd number € N is obtained, the process x = 3x ey A and divisions
by two until the result is a number equal to 1. This work presents deductions, algorithms and equations that corroborate
this proposition, supporting this perception and conclusion that Collatz s conjecture points to the final cycle 4 — 2 — 1.

Keywords: Collatz Conjecture, Chaotic Dynamics, Limit Cycle, Periodic Orbit, Principle of Mathematical Induction, Python and
‘R Language

1. Introduction

The direct approach that seeks proofs of convergence to conjunction has proven undecidable, at least any algorithm based on formal
logic has been only partially successful, that is, there is currently no algorithm that definitively proves such a conclusion, probably
with the advent of and algorithms and quantum computers it is possible to model and prove such a conjecture [1]. The use of
transfinite numbers (X, X, ...) as well as the sets they represent allows a trend analysis when xi — oo being x, € N —| N |[= . The
present approach, based on processes and simulations obtained with the aid of public domain software, aims to conduct part of the
research towards obtaining a proof that Collatz conjecture has a final cycle restricted to the sequence 4—2—1.

In the body of this article, results are presented that, based on the principle of induction, when x, — oo point to the cycle 4—2—1.
Using simple tools and a programming language accessible to the general public, in some cases abusing “brute force” in the solution
of the same algorithms. This work focuses on presenting the conjecture and its behavior in a succinct manner, taking into account the
boundary conditions. Statistical and programmatic approaches that surround the Natural numbers will be explored in a very simple
way. Finally, an ‘alternative* form of the conjecture will be presented in addition to the programs used in this search [2].

It would not be reasonable to omit that the scientific community in a certain way advises to stay away from such a conjecture given
the fact that the mathematical resources for solving such a problem are still unknown (or have not been listed) [3,4].

It is also worth mentioning that the Collatz conjecture has aroused enormous interest, especially among the young community that
usually ventures into this wonderful world of Mathematics, in which sometimes due attention is not given to common and trivial
statements, such as this simple example: x, € N*' = {2, 3,4, 5...}, it can be said that for any x, € N*', x, will always have as a divisor
one or more prime numbers (Fundamental Theorem of Arithmetic — direct consequence of the factorization of integers > 1) [4].

1.1 Background

This article uses algorithms developed in Python and the ‘R’ language. When presented, they will be duly notified, as well as their
relevance [5]. Initially, the environment used for developing the codes in ‘R’ is presented, and later in Python (this language and
environment being preferably used in this work). Remember that the programming interface in ‘R’ also supports programming in
Python. When possible, both solutions, i.e. in ‘R’ and Python, will be presented, thus allowing the reader to choose the environment
that is most suitable for them.
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1.1.1 Installing PyCharm

It is assumed that the reader has previously installed the Python language on his/her machine, if he/she has not done so, the

following link provides the subsidy for this [6]:
https://python.org.br/ (in Portuguese)

https://wiki.python.org/moin/BeginnersGuide/Download (in English)
There you will be directed to the available solutions and platforms. Then install the PyCharm environment (IDE) from the link:

https://www.jetbrains.com/pt-br/pycharm/download/
Select your platform and download the Community version.

1.1.2 Installing Rstudio

A good guide to download and install the ‘R’ environment can be found at:

https://livro.curso-r.com/1-instalacao.html
There, follow the necessary steps for your platform.

1.1.3 Testing the Installations

Starting with the *R’ environment, open RStudio and create a new file (R script) with the following code:

1 # Funcao Collatz presente na biblioteca numbers

N

library (numbers)
3 collatz (7)

Figure 1: Code: collatz_1.R

After saving the file with the name collatz_1.R and ’running’ it,
you should get the following output [1]: 7, 22, 11, 34, 17, 52, 26,
13, 40, 20, 10, 5, 16, 8,4, 2, 1

The first line of code instructs the environment to load (install)
the library (package) numbers which among its various functions
contains: the function Collatz displaying the sequence for: x, =
7171

Testing the PyCharm + Python environment. Open PyCharm
(see appendix C), create a new project called Python Collatz,
in addition to the main.py file, include another Collatz_Files.py,
insert the following code:

1 |# Implementagdo vetorial
2 | def collatz_seq(x):

3 seq = [x]

4 if x < 1:

5 return []

6 while x > 1:

7 if x % 2 =— 0:

8 x=x // 2
9 else:

10 Xx =3 % x + 1
11 seq .append (x)

12 return seq

# Inclui resultado na sequéncia

Figure 2: Code: collatz_seq()

The main program main.py will be seen in due time (appendix
C), activate the Col- latz Files.py tab and run the file using
the Run File in Python Console option (access with the right
mouse button on the function), access the console and activate
the collatz_seq(7) function, you should get the following output:
[7,22,11, 34,17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1]

Z;
21

Tiv1 = f(xz) =

3xx; +1:sex; éimpar

The program collatz 1.R (Figurel) and the function collatz_
seq(x) (Figure 2) are versions of the Collatz sequence defined
by equation (1) [8]. Once the environment is installed and
certified, the next items will consider the development of the
functions related to the Collatz sequence presented in (1) and
later modified in (2).

(la)

(1b)

:se x; € par

(1)
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Note that the exponent of the number 2 (two) being 1 (one) implies a single division per ’step’ or ’cycle’, that is, for successive
iterations when x is even, only one division per cycle, a fact that will be adapted to 27 later, where a single cycle may include more
than one division by 2 (two).

2. Expanding the Collatz Conjecture

Consider the Collatz sequence shown below for x1 = 7:

collatz_ d(7)=[7,22,11,34,17,52, 13, 40, 5, 16, 1] The Python code for the function collatz_d() can be seen in Figure 3, the results
correspond respectively to the values [x,][x,, x,, x,, x,, X, X, X., X, X,, X, , X,,], in other words for this sequence five odd numbers are
identified xi (before the last x11 = 1 and, five even numbers, that is [9]:

x €N,=[7,11,17,13,5] = [x1,x3,x5,x7,x9] | i = {1,3, 5,7, 9}

The values of x, € N, being odd will be multiplied by 3 and added to the unit (3x, + 1), this operation will result in a necessarily even
number that will be divided (when even) by a power of 2, they are:

x, €N =[22,34,52, 40, 16] = [x2, x4, X6, x8, x10] | i = {2, 4, 6, 8, 10}

Often only x, € N" or x, € NUN,, remembering that indexes i odd numbers represent odd numbers, and i even numbers represent
even numbers (for the result obtained by the function collatz_d(7)). Adjusting the equations in (1) with the necessary modifications
we obtain:

x . A *
o :sex épar,ep € N

collatz _d(z) = (2)

3xx+1:sex éimpar

where:
To=3*x;+ 1 being x1 =7, = Ty = 22
T3 = 3*”;7?“1 ou 3, resulting in = x3 = 3—? =11

x11 = 4P, resulting in (this is the last term) =z, =33 =1

Collatz sequence seen in the equation (2) and the following code:

1 |# Implementacgdo impar/par
2 | def collatz_d(x):

3 seq = []

4 while True:

5 seq .append (x)

6 if x = 1:

7 break

8 if x % 2:

9 x =x % 3 4+ 1
10 else:

11 while (x % 2) == 0:
12 x=x // 2
13 return seq

Figure 3: Code: collatz_d()

Once the values of xi are known, as per the previous example (collatz_d(7) where x = 7) the ratio between the successive xi is
calculated as follow

m=z=4=3
mez=k=3
ok -4
nez=f=3
meg =k =4
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L(2i+1)
Z(2i)

1111 1

. _ 10 . Lo
Generalizing we have: Pi = » where: pi = [27, 5T 935 535 94| — [57 3510 ] 173]- Rewriting the equations in (2):

3*xx1+1)*p;

3% w3+ 1) * poy
* P3

3xx7r+1)%xpy

€3
Ts
T7 3xxs+ 1
Zg

( )
( )
( )
( )
z11 = (3% 29+ 1) * ps
or with the appropriate substitutions:
w11 = (3% (B ((3# ((3* ((B* a1+ 1) % p1) +1) % pa) +1) % p3) + 1) % pg) +1) % p5

The final term (in this case) x,, = 1, with the appropriate operations we will obtain the following equation

5 5 5 5
1= 3« [[(p) + 3"« [[(pi) +3° =« [J(ps) + - +3"« [ [ () (3)

=1 i=1 =2 =5

(A4) (B) (@) (D)

The equation (3) can be rewritten as follows:

I I 1 I
wx3t [[(o) +37 [T+ 32 (3% | I (e)| | +3°=(pr) =20 (4)
i=1 i=1 i=(1—2) i=(1—j) T
(A) (B) ()

In the equations (3) and (4) it is assumed that the Collatz sequence always ends at the number x = 1 (one)(final cycle 4—2—1),
rigorously we obtain an orbit defined by the numerical sequence 1 —»4—2—1—-4—-2—1—-4—-2—>1—-4-2—>1-4-52—>1—....

3. Considerations on the Collatz Conjecture
The equation presented in (4) will be broken down into its four parts (A), (B), (C) and (D) for the purpose of study.

3.1 Head of the Collatz Conjecture (A)
The head (A) == h (x)) stands out from the equation (4) where the initial term x=x, can be seen:

1
1
(A) = h(x1) = 21 % 3" = [ [(01) (5)
i=1
It can be seen that to calculate A(x,) it is necessary to know the values of / and IT/=1(p:); the function r_collatz(7) (shown in Figure 4

below) will provide the necessary subsidies. When executing the function »_collatz(7) the answer is —[16,5,11] which corresponds
to [C,L,P], that is, 16 Cycles (operations) before obtaining 1(one), with 5 being Odd and 11 being Even [11]

The function _collatz(7) also informs that [/] = 5 (equation (5) /= 5), however r_collatz(7) does not provide the values of p,, but

indicates that the total number of pairs [P] = 11, so we can calculate Hile( pi) = Zl.’; 1(%) = 92-F or
I _p 5 —11
H’i:l(pi) =2 ? i:l(pi) =2

In fact, from the function collatz_d(7) seen in figure 3, we obtained the sequence [7, 22,11, 34, 17, 52, 13, 40, 5, 16, 1] and from the
generic formula p, = % (presented after figure 3):

?:l(pz):[%*%*z%*%*i]ZQ*ll

N
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Which allows us to calculate the head (4) of Collatz(7):

h(zi) =z« 3" [T (p))  —  h(7)=T7%3 3 ~ 0.83056640625

3.1.1 Head of the Collatz Conjecture: How are the Powers of 2

Consider a number M € N* = {1, 2, 3, 4, 5, ...} and the integer 2" when expressed in binary will have only one of the bits with the
value one, being divisible by two “M ” times until the number is obtained one as the final answer (in binary the bit whose value is
one will be shifted to the right “M ” times). By reevaluating the equation presented in (5) and rewriting it taking into account x = 2",
I=0and P= M, we arrive at the following expression == £ (x) =2"* 3% p | p = 2LM ,inshort /2 (x,) = 1 in these cases, confirming
the validity of the equation described in (5) for V x, = 2",

3.2 Neck of the Collatz Conjecture (B)
In a similar way, the term (B) seen in the equation (4) can be calculated:

(B) = 31"'« T (p)) — 3% 5 ~0.03955078125
It can be easily verified that 3 * x, * (B) = (4).

3.3 Tail of the Collatz Conjecture (D)
Continually, the term (D) is calculated according to equation (4), the term (C) will be calculated later:

(D) = t(x;) =3"*p, — t(7)=1%5 ~0.0625
It can be seen that the term (D) is constant (for x, >= 3 and x, # 2" ) as it corresponds
to the final sequence 16 — 8 — 4 — 2 — 1 within which the cycle | — 4 — 2 — 1 is included, that is, from 16 to reach 1 it is
divided by 24.

3.4 Collatz Conjecture Body (C)

In equation (4), we can see that we need to know the values of x|, / and p, remembering that p, = % , the following program

fragment, shown in Figure 4, presents the function »_collatz(x,) which will provide such values: r_collatz (x,) —[C, I, P].

1 |def r_ collatz (num):

2 # funcao retorna array [Total de Ciclos ,Impares, Pares]
3 P=0

4 I =0

5 C=0

6 resp = np.array ([C, I, P])

7 # verifica se nBIN eh impar se sim continua, caso par RSH
8 nBIN = converte (num)

9 while nBIN[—1:] = '0’: # bit a direita menos sig.

10 nBIN = nBIN[: —1] # elimina bit zero a direita , RSH
11 P+=1

12 C+=1

13 # criamos nBIN_t somamos 1 a nBIN e RSH,

14 # isto enquanto len (nBIN) > 1

15 while len (nBIN) > 1: # existem bits a serem processados
16 if nBIN[—1:] = '1’: # eh impar

17 nBIN_t = nBIN

18 nBIN = add_ binary nums(nBIN, '17)

19 nBIN = nBIN[: —1]

20 nBIN = add_binary nums(nBIN_t, nBIN)

21 I =1

22 C+= 2

23 P 4= 1 +# estou x3 4+ 1 e dividindo por 2

24 else:

25 nBIN = nBIN[: —1]

26 Pi+=1

27 C+H+=1

28 resp = [C, I, P]

29 return resp

Figure 4: Code: r_collatz()
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In the item (C) of the equation (4) considering the Collatz sequence relative to the number 7, that is, using the data of »_collatz(7)—[16,
5, 11] (C,L,P]), where [ = 5 we obtain:

1 I
oo II (n)
j=(1-2) i=(I—j)
©)
5 5 5
3% [[(pi) + 3%+ [[(pi) +3" HL(M)
=2 =3 i=

() () (9)

Previously it was shown that 0; = [2%, 2%, 2%, 2%, 2%1] In this way we calculate (o), (f) and (9):

, 1 1 1 1, , .1 1 1. ., 1 1
(o) )] (6)

0.0263671875 4 0.017578125 + 0.0234375 = 0.0673828125
() (8) (9) (©)

3.5 Complete Collatz Conjecture

Recovering the previous results we will have:

(4)= 0.83056640625, (B) = 0.03955078125, (C) =~ 0.0673828125, (D) =~ 0.0625

Adding the terms of the equation (4) we will finally have: (4) + (B) + (C) + (D) = 1 As can be seen from the function abcd(’7’)
presented in the program in Figure 5:

abed("7’) — (7, 0.8305664062499994, 0.039550781249999986, 0.0673828125, 0.0625, 0.9999999999999994).

1 | def abed(num): #Retorna os valores (A)A,(B)B,(C)C e (D)D
2 [Ci, I, P, gama] = r_collatzl (num)

3 gamas = np.array (gama)

4 B = 2xx(((I—1)*math.log2 (3))—P)

5 D = 1/(2+«+*gamas[—1])

6 C=0

7 A =2 xx (math.log2(int(num)) + math.log2(3) * I — P)
8 for J in range(I—2,0,—1):

9 sgama = 1

10 for i in range(I-J—1, I):

11 sgama = sgama * (1/(2*x*xgamas[i]))

12 C = C + (3xxJ)xsgama

13 # qq Xi = ((2%%e)—1) divisivel (int) por 3 somente tera um impar,I, o proprio
14 # sendo assim (A) > 0, (B) > 0, (C) =0e (D) =0
15 if T = 1:

16 D=20

17 return (num, A, B, C, D, A+B+CHD)

Figure 5: Codigo: abcd()

Several numbers from table 1 were tested with the function abcd(x)) and returned the sum 4 + B+ C+ D= 1
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T C I P ~ I/P% le*g’—; ~A+B+C+ DS

9 19 6 13 46.15 0.8009 1
97 | 118 43 75 57.33 0.8428
871 178 65 113 57.52 0.8639
6171 261 96 165 58.18 0.8395
77 031 350 129 221 58.37 0.8084
837 799 | 524 195 329 59.27 0.8373
8 400 511 685 256 429 59.67 0.8423
63 728 127 | 949 357 592 60.30 0.8450
670 617 279 | 986 370 616 60.06 0.8450
9 780 657 630 | 1132 425 707 60.11 0.8683
75 128 138 247 | 1228 461 767 60.10 0.8683
989 345 275 647 | 1348 506 842 60.09 0.8942
Biginuml7 10466 3455 7011  49.28 0.8472
NN48 | 36780 12293 24487 50.20 0.8078

Table 1: x, — [G, 1, P]

UM G T VU G N VA O GG N AT WU

Note that the column x, *  corresponds to the Collatz function head presented in the equation (5), being equal to the term ‘A°
presented in the function abcd(x,), shown in penultimate column of this table, in several tests it is shown that / (x) = x, * j—; tends
to be >0.7, a fact that will be addressed later [13].

4. Exploring Some Sequences

Computers have routinely tested the Collatz Conjecture for increasingly larger numbers (see issue NN4 note 8 above), using powerful
machines and improved algorithms that indicate that the Collatz Conjecture ‘apparently ends in its cycle 1 — 4 — 2 — 1. In the
previous item it was shown that for V x, = 2", M € N the final cycle will alwaysbe 1 — 4 — 2 — 1.

This chapter explores a restricted set of data that, after being processed, allowed some graphs to be drawn and some considerations
to be made about them. Because they are restricted (data and graphs), it is clear that they can and should be improved as the tests to
be carried out advance.

4.1 Limit Cycle or Orbit
Previously it was considered that the final cycle for the Collatz Conjecture is 1 — 4 — 2 — 1, a brief explanation of the concept of
limit cycle [7] or Orbit is in order. Consider the following transformation:

() = L (i+n) (6)

Since f (x,) is the process of transforming the variable x, implying one or more times the application of the Collatz Conjecture
initially on the variable x, € N, it is not just the possibility of applying a singular function, as the stages may involve multiple steps
where the variable x, will increase and subsequently decrease, as seen in the definition of the code for the function collatz_d(x); the
index 7 in f” (x,) denotes that there are several steps, with n being the steps that correspond to increases and decreases.

Alimit cycle or Orbit is considered in mathematical operations systems that present the occurrence of the fact that f” (x)) = x, being x,
€ N, in this way the existence of a cycle (may be repetitive) or Orbit (may be periodic) within the sequence is verified, it is observed
that any limit cycle that may exist in the Collatz Sequence where x, # 1, x, # 2, x, # 4 | x, € N leads to the collapse of the Conjecture,
as it will inevitably not reach the 1 — 4 — 2 — 1 orbit, since it was ‘captured by another orbit* [9].

In the case of the Collatz Conjecture, using the definition found in equation (2) and used in the construction of the collatz d(x)
function, it is possible to verify the existence of (probably just) a ‘limit‘ cycle where x(i) = f" (x)).

From the equation (2) we can group the ‘growth‘ and ‘decay‘ operation of the system into a single equation (for the sequence 1 —
4 — 2 — 1), namely:
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5 = L) (remembering that z; is odd) (7)

With the necessary adjustments where x, = x,, = is obtained from the equation

(i+n)
1

@3 =x; (remembering that z;, 2(i4n), 7 € N¥) (8)
It is easy to see that the only values that solve the equation (8) are y =2 and x, = x v = L thus the expression (22 — 3) = 1 evidencing
the existence of a ‘limit‘ cycle in the Collatz Conjecture, which will be seen later at the end of section 4.1.2.

4.1.1 Periodic Orbit

It was previously shown that if there are other limit cycles (orbits) within the Collatz Conjecture other than the final cycle 1 — 4
— 2 — 1 it is false. Strictly speaking, the system in (2) cannot be treated as a single procedure function (linear) since there are two
possible approaches (use of the conjecture), one for even numbers and the other for odd numbers. In this way, an alternative way
of considering the two operations in just one algebraic equation is sought. The candidate equation is presented below, which will
certainly facilitate the study of the orbits:

" SLg "
Tipr = [(3 %z + 1) * (1 — cos®(x; * 5))] + [EZ * cos®(z; * 5)] 9)
The equation coded above 10 in Python as per Figure 6 below, it operates identically to the function (or code) collatz_d(x).

1 |# Implementacao funcao Collatz

2 | def collatz_ang(x):

3 seq = [x]

4 if x < 1:

5 return []

6 while x > 1:

7 #x = ((3 * x +1)*(1—int ((np.cos(np.pi/2xx))*%2))) + x*((int ((np.cos(np.pi/2xx)
)xx2)) /2)

8 x=((3 * x+ 1) * (1 — round((np.cos(np.pi / 2 x x)) **x 2))) + x * ((round((
np.cos(np.pi / 2 % x)) *x 2)) / 2)

9 seq .append (x)

10 return seq

Figure 6: Code: collatz_ang(x)

Note that for even values of x; the term [(3 * x, + 1) * (1 — cos’(x, * m/2 )] becomes null and the operation is just division by two,

iex, = % . However, if x, is odd the term [? * cos®(w; * 2)] is nullified, leaving only the result x,, = (3 * x, + 1). From the

equation (9) it is possible to study the periodic orbit and its respective equilibrium points, considering the following sequence:

Ty = f(z1)
r3 = f(12) = f2(331)

Tp = f(Tao1) ou  xy = fOD(zy)
Tn1 = f(xn> ou  Tpt1 = f(n) (ml)

A periodic orbit is established when x, =/ (x), that is, x . = x,. According to Monterio[7] to know the characteristics of an orbit it
is necessary to know its eigenvalue A, which corresponds to the product of each eigenvalue relative to the fixed points x*, in the orbit,
as follows:

AT — df<(;x(55i) o= df |w1 df(x PR d];(;)h;
By deriving the equation (9) we obtain:
TE) _ L 5(cost@ D)) + (n(5w + 2(sen(a D) cos@ D) +6] (10
dx 2 2 2 2
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It can be seen that the expression (sen(x%)cos(x5))  will always be zero for x, € N* consequently cancelling the term that
multiplies, in this way for the proposed purposes it is possible to calculate /lj through the following expression: ), = (i) or

d. xZ;
according to equation (10) modified to x, € N*: !

i

1 m
A = S[(=5(cos*(xi 2))) + 6 (1)
Considering the known periodic orbit 4 — 2 — 1— 4 we proceed to calculate the eigenvalue A for this orbit:
A= )\(x*:4) X )\(x*zg) X )\(m*zl) or A= % X % X 3= %

Also according to Monteiro[7] as A < 1 the orbit of period 3 (4 — 2 — 1— 4) is stable, which allows us to state that such a cycle
repeats indefinitely once any of the points belonging to the orbit is reached.

The sequence produced by the Collatz Conjecture for Vx, € N* being xi < 268[10] will end upon reaching the fundamental orbit 4 —
2 — 1 since this is stable, we will see in the next subsections if there are other possible orbits in the Collatz Conjecture.
Here are some observations about the orbit 1 —4 —2 — 1

T/

/
N

3xzx+1
\ﬁiﬁ\)@z
N

f\/\
N

grafo 1 - ciclo fundamental

The Collatz conjecture as seen in (1) is formed by the first three prime numbers 1, 2, 3 € N*, with the main pole being the number
ONE, this independent term having the function of making any odd number pre- viously multiplied by THREE even, the even
result will be continuously divided by TWO (while even). Note that the number ONE is the smallest that can be ‘calculated® by
the conjecture after several divisions by TWO. The number FOUR (4 =3 x 1 + 1), constitutes the other pole of the orbit that when
divided by TWO generates the third element of the same orbit, this in turn ‘ends‘ in ONE.

4.1.2 Limiting Case x, —

Considering that x, — o, that is, is a very large number13, making x, =2(68) + 1 for analysis purposes x1 =295147905179352825857
the program r_collatz(x,) provides as answer [562, 191, 371] namely, Cycles = 562, Odd (rising) = 191 and Even (falling) = 371.
Note that the initial cycle will be 3 x x1 + 1, the independent term ONE is much smaller than the product 3 x x , (1 <<< (3 x x,)),
and can be neglected14 for study purposes, in this way the conjecture will be simplified to according to the following sequence:

3

Tog = 557 X T

3 _ 3 3 : . _ 3
$32272X$20r$3—272XﬁxxllnShOI‘t.ﬂfg—mxxl

n—1 . . N

T, ~ ——— X x1 as seen previously in the equation (5):

9Q iy )

I I z1x37

T, ~ 21 % 3" % [[;_(pi) or even x,, ~ *Lp-
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Starting from z; = 295147905179352825857 we obtain: x,, o 237

By evolving the previous expression we obtain:

Ty ™~ T X 2(191*10g2(3)7371)

Ty o (2008) 4 1) x 2(68:27216236225917) ~ () 828(774634724271

The same result can be verified through the function:
abcd(268 + 1) = (x1, A, B, C, A+ B + C + D) which presents the following output:
(295147905179352825857,0.8280774634724271,9.352118592531982¢-22,0.10942253652757464,0.0625,1.0000000000000018)

As previously mentioned, 13 numbers = 268 were experimentally tested for the Collatz Conjecture and all of them invariably ended
in the cycle 4—2—1, empirically demonstrating the non-existence of another repeating cycle other than the trivial, therefore if
any other cycle exists, it must have as its origin numbers greater than 268 and of course have its fixed points all greater than 268,
(xk > 268, x,_ € N*), however it was found that such a statement (x, = x = 0.8280774634724271) shows that when x, = 2(68) + 1 is
obtained, x, = 1 is obtained, thus evidencing the decrease of the ‘series‘.

In addition and based on the equation (4) and its alternative form 15 below equation (12), assuming the existence of xk a fixed point
of a repetitive cycle we obtain the following equation (13):

I 0 I
Ty * 37 % H(pz) + Z 37 % H (Pz) = (12)
i=1 j=(I-1) i=(I—j)
(4) (B)+(C)+(D)

(A) =Tz, B)+CO)+(D)=Q VY, +Q=ux
Multiplying both terms by x, results in: z3(¥ — 1) 4+ Qzy, = 0.
Therefore, in addition to the trivial root x, = 0 the other root will be (this valid one):

x = Q (—ﬁ), remembering that — 3 = =5 we obtain:

Q
W, + Q= ay, ou Tp = —— (13)
1-w
Which can also be obtained from ¥x,+ = x,, it is also observed that in accordance with what was seen previously 16 0 <¥ <1, and
Q = 0, consequently the terms (A), (B), (C) and (D) are all positive.
ol

From the equation (12) we obtain that y = 3’ IT'_ (p,) or even Y= STD, seen previously, we know that 0 < < 1, in this way we
can write that:0 < g’—; < 1,adopting the base two we rewrite it in the following way 0 < 2 ¢*e237) < | (where P represents simple
divisions by 2), for it to be true (that is: valid for Vx, € Nx) we have that (/ * log,(3) — 1}’ ) <0 oreven, [ x log,(3) <P 17. This limit
can also be seen in table 1, also verifying that according to x* — oo we have that ¥ = ST’ — (0 (without ever being zero).
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grafo 2 - any closed cycle

Consider the figure to the side (graph 2) which represents any closed (repetitive) cy- cle, as suggested previously if such a cycle
exists it must have as fixed points x*, numbers greater than 2% ( x*, > 2°,x* € N*) can be seen that in this cycle there ‘exists*
amaximum value x*, = x*,_being the result of the transformations f*(x*,), which take x* in an increasing way up to the maximum
value of the cycle. Similarly, the transformations /*“(x )=x | and finally /" (x ) =x’,, lead to a decrease in the maximum value
x* . Itis clear that the ’largest divisions by two’ are obtained by such transformations /**/ and /" from the values 2;_ , where each
value of p is part of the vector p.

Still according to equation (12) the term Q tends towards ‘small* finite values when compared to x, (> 2%), it can be seen that the
series of values for Q = (B) + (C) + (D) does not include the initial term x, depending only on the values of I and P.

For demonstration purposes, consider the Sequence formed by 10 ascents and 10 descents presented below for the number 57,
remembering as observed for Lagarias [6] the cycles of ascents (3x, + 1) are the same number as those of descents (division by 27):
r collatz1(57) =32, 10, 22],[2,1,2,2,4,1,1,2,3,4] 18
collatz_d(57)=[57, 172, 43, 130, 65, 196, 49, 148, 37, 112, 7, 22, 11, 34, 17, 52, 13, 40, 5, 16, 1]
Expanding the equation (12) using the previous values we have:
zpx30 32 3% 3T 36 3 3t g3 32 3t 30
t+ st ottt et s st 5 =2

922 922 7 920 " 919 T 917 T 915 T o911 " 910 " 99 T 97 T o4
—_— =~ ~~
(A) (B) (©) (D)

Using the function abed(57) (z; = 57) we obtain:

0.8024675846099856 + 0.004692792892456051 + 0.1303396224975586 + 0.0625
(4) (B) (©) (D)

where 2 =0.19753241539001465, as is evident Q <<x..

Taking into account the complexity of the vector pi = [277 215925225 24) 215 215 225 23 27]7 which are the divisors responsible
for the *descents’, it is impossible to construct a generic formula for Collatz sequences without completely knowing the vector p,,
therefore the study is carried out based on the average value between ascents and descents which, according to Lagarias [6], points
to a value lower than the unit (— 2).

Previously it was shown that the minimum limit between I and P is log (3) or P > I % log (3), rewriting the equation (12) taking into
account ‘as an average value‘p, = log,(3) we obtain the following equation (14):
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zp * 31 N 20: 9 % f[ 9—(I+logy(3) | — (14)
o(Ixlogy(3) | Ry = Tk
— =1 i=(1—j)
A
w (B)+(C)+(D)
evolving it we have:
xy * 310 39 38 3! 30 B
D(10m0g;(3) | 9(1070g;(3) | 3(0vogy3) T T 5o, @) T olixlom @) | Uk
(4) (B) (©) (D)
or:
ity it +i<1)
xr — — .. — — Or even. x — =T
LT3 73 3 3 AT &\3 "
@ N T YT @ =
(B) (©) (D)
(B)+(C)+(D)

in short: z, =z, + (%), which expresses an incoherent relationship, unless I were equal to zero, but as previously mentioned / =
10 [19].

The function equation 12(x_i, type)= (xq;, P, A, €, x%, xn) (coded in Python) returns the following where (tipo =3 == p = x
log,(3)):

(57, 1.0000000000000007, 57.000000000000036, 3.333333333333335, 0.058479532163742715, 60.333333333333337)
compatible with such a statement as Q <<x, or x".

Suppose that 3 is an orbit in the Collatz conjecture such that x, = x* is a fixed ,
point of the orbit, we have: r* = %7 assuming ¥ — oo . U = g’—P — (0 (without reaching zero), it results from
the equation (13) that:

Q
lim  (——)=Q
(x*,\I!)H—n>(oo,0)(1 — \I/)
A () =4

However as seen previously x* — oo consequently 0 < Q << x* it is again evident that A any value of x*#£ 1, x'# 2,x"# 4 |x*21 €
N that satisfies the equation (13), thus
we conclude that:

In the Collatz Conjecture there is only one limit cycle formed by the stable points: 1 —»4—2—1%.

5. Stochastic Models, Deterministic Process!

The Collatz sequence has been described in several texts under different names, one of which is: Hailstone Numbers [5], just as
hailstones in clouds before being precipitated go through several ’ascents’ and ’descents’, the numbers jump from one place to
another before reaching the final cycle 4—2—1%.
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Série de Collatz: serie_collatz_log(753257,10,1)

-0.0523 x + 6.8689 (R2=0.8785) 1e7
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Figure 7: Collatz sequence for x, = 753257

Several attempts to understand the Collatz sequence through computer simulations point to the previously seen final cycle 4—2—1,
Figure 7 presents an example when x, = 753257, you can see the Natural sequence, upper right graph, and next to it the log, of the
same sequence, below we see the sequence in a spider web graph and in detail the cycle 4—2—1 [24,25].

It can be seen that when the cycles approach the end (in this case 110 iterations) the response tends towards the final cycle 4—2—1,
the negative coefficient (-0.0523) of the approximated line stands out in the logarithmic graph, which causes the successive values
of x, to decrease, the same normalized coefficient 107°%% = 0.8865... shows that being less than ONE in the successive iterations
the value of xi should decrease. In fact, the ‘progression‘ factor of this ‘apparent® series is on average less than unity, according to
predictions made by Lagarias [6] thus converging in successive iterations to the final cycle ] -4 — 2 — 1.

In item 4.1 it has been demonstrated that the sequence contains only one cycle 4—2—1, which is sufficient proof as such for all

numbers; however, numbers xi € N | x, — oo allow for a complementary approach using probabilistic models, presenting significant
results that point to this conclusion:

“.. a basic probabilistic model of iterations of the function 3x + 1 proposes that most trajectories for iterations 3x + 1 have equal
numbers of even and odd iterations” [6](translated by the author).

In the items 2 and 3.1 we saw that the number of ascents is identical to the number of descents, that is, the number of odd numbers
is the same as the number of even numbers (equations (2) and (5)), Lagarias also presents this fact [26].

The following items present in a simplified manner some subsidies linked to statis- tical processes that infer a similar conclusion.

6. Relationship between Even and Odd cycles
The following image contains four graphs generated from the function nucleol() and nucleo2() present in the main code (main.py)
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detailed in appendix A.
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Figure 8: Graphs P x I

The fourth graph shows all the points (P xI) that are part of the studied database?, the first three detail excerpts from the fourth graph.
It can be seen that the points (in blue) represent the total number of P even cycles and the respective number of 7 odd cycles for a
given x, to reach ONE, while the internal lines (in red) are obtained as the best (linear) approximation to the cited points; the two
external lines (in green) limit the values within a specific region that includes all the points in blue of the studied base, that is, the
confidence index in this region is 100%. The approximation lines (in red) have their components presented at the top of each graph.
In the last graph, we can see a strong convergence between the values P x /, showing a relationship between them.

7. Limit Region
The two straight line segments in green represent the limit region where all the even points (blue) P x I meet (referring to the study
base). The straight lines have the following components:

— 0.500000 * P + 189.304

Rg(reta superior) (15)

R;(reta inferior) — 0.500000 * P — 210.500 (16)
It can be seen that they are in fact parallel (same angular coefficients) and the width (spacing) between them is = 400 points, which
means that for a certain number of cycles P we will obtain within the range presented the value of ~ [+ 200 points.

From the presented adjustment equation (last of the four graphs) we have a correlation coefficient of R?> = 0.999607, very close to
ONE indicating adherence of the Linear model to the presented distribution:

Ciclosrmpares = 0.500000 - C'iclos pares + 0.194725 (17)
It can be seen that the correlation between the number of P even cycles and 7 odd cycles (/ = 0.5 x P ) is in accordance with the
Normal distribution of the numbers € N* as will be seen later. It should be noted that although the precision is not absolute, as the

equations work with Real numbers subject to rounding, the cycles P, I are still positive natural numbers, and the Collatz sequence
is deterministic, despite the lack of knowledge about the evolution of the same sequence in relation to all possible numbers € N,
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these approximations and the use of statistical methods are used. The equation (9) does not assertively indicate that ¥V number xi
will end in um after the Total Cycles (=P+I) however the terms A,B,C and D shown in the code in Figure 5 or the equivalent terms
(A), (B), (C) and (D) present in the equation (4) provide resources for an approximation based on the initial number xi and possible
points IxP , (C=1+P).

It is also noted that the limit lines can be better defined by adopting smaller segments for the values x..

In the following graphs (Figure 9) it is possible to see for the studied database the Histograms [8] relating to term A of the equation
(4), the relationship between odd and even cycles (even cycles include all cycles in which there is a simple division by two) and it
is also observed that the number of odd cycles is smaller than the number of even cycles (total), and in the last graph that any cycle

(in the studied database) has more than 60% of even cycles.

It is important to note that the value 4, _is obtained for x, = 87381, /= 1, P =18, this combination also generates the smallest relation
I/P present in the studied base, on the other hand it represents the largest relation P/C as can be seen in the last graph of Figure 9.

It is also observed that the value of A which depends on x, accounts for more than 79% of the value of x,.

Série de Collatz: A, ciclos I/P, e ciclos P/C

3000 4 - [ ———— Méximo = 0.6030 o
Média = 0.859673 Média = 0.4761 Maximo= 09474
Minimo = 0.797994 Minimo = 0.0556 ﬂ‘?d’a = O'(fggée
= : 4 5TD = 0.0707 inimo = 0.
STD = 0.047156 3000 | STD = 0.0346

N(max) = 87381
ClLP=[19 118] 2500 4

2500

N(max)= 87381
ClLP=[19 118]

- N(max).= 63728127
N(min) = 993 C1,P = [949 357 592]
C,P = [93 32 61] At

N(min)= 63728127
C,I,P = [949 357 592]

2000 4

N(min)= 87381
— CiLP=[19 118]

=
7]
(=}
=1

1500 2000 4

Contagem

1000

1000 +

1000

500 - 500 4

0.1 0.2 0.3 0.4 0.5 0.6 X E 075 0.80 : 3 0.95
Impares Pares
Pares Ciclos
Figure 9: Distribution graphs of A, %, g

8. Maximum value for x,

It is assumed that in the Collatz Sequence there is a maximum value where x, = x  from which any subsequent (or previous) value
will be less than this maximum x , it can be concluded that the maximum value is even, and it will be divided by a number 2'.
Previously, it was seen that collatz_d(7) produces the following output:

collatz_d(7)=17,22, 11, 34,17, 52, 13, 40, 5, 16, 1]

The number 52 corresponds to the maximum (in this sequence), which will later be divided by 2* =22 =4 becoming the odd number
13. Once a maximum is reached, the subsequent numbers will necessarily be smaller, evidencing a decrease in the series. If the same
series were only of increases, it would not be limited in a final cycle, that is, it would tend to infinity beyond what is observed that
according to Lagarias [6] heuristic predictions made using tested probabilistic models indicate that this factor is on average lower
than ONE, thus converging in successive iterations to the final cycle | -4 —2 — 1.

Considering the set of natural numbers N = {0, 1, 2, 3, ...} and the set of non- negative even numbers P = {0, 2, 4, 6, ...}, it can be
seen that both have the same Car- dinality 28 | N |=| P |= X [9], the same occurs with the set of numbers that are powers of 2E, =
{0,2,4,8, 16, ...}, the set of odd numbers I also has the same cardinality of N. In short, when dealing with infinite (countable) sets
that have the same cardinality (| N [=| P |=| E, |=| I |= X)), it follows that the probability distribution for ¥ and the number xi present
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in these sets are equivalent, since the same sets are equipotent, making any prediction difficult to make or that it presents objective
trends (taking into account infinite countable sets). In the previous item, it was seen that every Collatz series has a final cycle | —
4 — 2 — 1 and consequently a maximum establishing for each series a particular set of finite numbers, having the same amount of
odd and even numbers [6] (before reaching the number 1).

Consider also the set D, =[7, 22, 11, 34, 17, 52, 13, 40, 5, 16]29 whose cardinality is:
|D, |= 10, it is clear that the amount of even numbers is identical to the amount of odd numbers present inD,, both subsets (even
D, and odd D) have the same finite cardinality, in item 2 previously seen and adapted here we have:

z; € Dy = [7, 11,17, 13,5] = [1’1,1‘3,1‘5,1‘7,%’9] | 1= {1,3,5,7, 9}
x; € Drp = [22,34,52,40,16] = [22, x4, xs, T3, T10] | # = {2,4,6,8,10}

A fact that allows us to assume that any x, € D has the same probability of occurrence, that is, there is the same number of increases
and decreases in the series, however, it is observed that in the decreases or decrements made by divisions by even numbers there are
compound divisions, dividing more than once by two, which is in accordance with the observations seen in the same item 2, that is:

T(2i+41 : . _ _rr 11 1 1
Pi = ﬁ, being: p; = [277 915 525 339 2*4] = [5; PEVERE 76]-
Therefore, due to the various cumulative divisions, an even number present in the Collatz sequence will be divided more than once
by the number two. The function r_collatz(x) (Figure 4) already presented the composition of the sequence in terms of [C, I, P]30,
thatis, C., , 1 and P, , where we can see that: C=/1+P,and P> I.

iclos® = mpares

The result of the function _collatz(7) is [16,5,11], the terms C,, , L s and P correspond exactly to the cardinality of the subsets
of the series collatz_seq(7), thatis | C, [=| I, |+ | P, |= 16 where | I |= 5 and | P, |= 11 for the respective sets:
C,=17,22,11, 34,17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2],

I,=1[7,11,17,13,5] and P, = [22, 34, 52, 26, 40, 20, 10, 16, 8, 4, 2].

Table 2 shows the distribution of numbers that are powers of 2 (less than 5000) as a function of the exponent y, remembering that
any even number within the series (result of 3 x x, + 1) will necessarily be divided by an even number of the type 27, highlighting
the non-zero probability that it (result of 3 x x, + 1) will be divided more than once by 2.

The function nPares(x) (Figurel0) provides the values from table 2 for x = 5000, in the console of the Python: divisores =
np.array(nPares(5000))[: 2] which will give the following answer:

divisores[0] = array([2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096])

and

divisores[1] = array([1250, 625, 313, 156, 78, 39, 20, 10, 5, 2, 1, 1]])

v | divisor occurrence occurrence (%)
1 2 1250 50
2 4 625 25
3 8 313 12.52
4 16 156 6.24
) 32 78 3.12
6 64 39 1.56
7 128 20 0.80
8 256 10 0.40
9 512 ) 0.20
10 | 1024 2 0.08
11 | 2048 1 0.04
12 | 4096 1 0.04

Table 2: Even divisors where: 2 <= 5000

Whose sum (sum(divisors[1])) is 2500, that is, there are 2500 available divisors, these being powers of 2, the function nPaires(numero)
[2:] indicates the original number and, if necessary, the immediately higher pair (to be used if the number informed be odd).
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1 | def nPares(num):

2 import numpy as np

3 conta = int (num)

4 #valores=[["n","C","I1","P" "nucleo "]]
5 valores =[]

6 while (conta > 1):

7 c_num = str(conta)

8 resp = divByPot2(c_num)

9 valores .append(resp[1])

10 conta —= 2

11 if conta <= 1:

12 break

13 matrizV = np.array(valores)

14 expoente, ocorrencia = np.unique(matrizV, return_counts=True)
15 return expoente, ocorrencia

Figure 10: Code: nPares()

Previously in table 1 we presented some results of the relationship between I and P, that is: between the number of Odd cycles in
relation to the number of Even cycles [31].
where ’apparently’ we have:

I
lim r_collatz(x,) — o~ 0.50

1 —00
Table 3 shows the distribution for number NN8, where: )
(C, I, P], Ey =r_collatz1(NN8) — [74671,25016,49655|, E.

The matrix Ey (for the number NN8) is composed of 25016 elements, which correspond to 27, y in the first column of the table. 3
[32,33].

v | divisor occurrence ~ +2 occurrence (%) Heuristic[6]
1 2 12536 12536 50.11 1.2253
2 4 6350 12700 25.38 1.1390
3 8 3137 9411 12.54 1.0072
4 16 1485 5940 5.94 0.9119
) 32 754 3770 3.01 0.8491
6 64 379 2274 1.52 0.8107
7 128 185 1295 0.74 0.7885
8 512 62 258 0.25  0.7675 0.7596
13 | 8192 4 o2 0.02 0.7587
14 | 16384 3 42 0.01 0.7579
totals 25016 49655 100 —

Table 3: Even divisors: r_collatz(NN8)

A number x, (even) will be divided by 27, it can be seen that the number of divisions by 2y is exactly equal to the number of odd
operations, which is in agreement with the function collatz_d(x)), that is, 50% of the operations occur on odd numbers and 50% of
the operations occur on even numbers, however the distribution of division operations follows an exponential distribution, column
occurrence (%) and Figure 11. The last column of Table 3 refers to the heuristic argument presented by Lagarias[6], in which the
multiplicative factor (MF) between two consecutive odd integers should be ~ 3/4 < 1, it can be seen in Table 3 that MF = 0.7579:
“this heuristic argument suggests that, on average, iterations in a trajectory tend to decrease in size, so that there should be no
divergent trajectories “(translated by the author).
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Figure 11: Occurrence of Pairs (r_collatzl(NNS))

The graph in (Figure 11) illustrates the exponential distribution of even numbers according to occurrence (%) in Table 3 (NN8) and
approximated equation. It can be seen from Table 3 that the probability of an even number subsequent to the operation 3 x x, + 1
being divided by TWO is 100%*, and in this process being divided again by a power of TWO, that is, being divided again by 27,
where y** € N* between 22 and 2 is given by:

14
P(1.51 < v < 14) = / e(~06909x7) 5007
1.51
Table 3 also shows that X(occurrences) when y > 1 is ¥ = 50%, which also implies that for 25016 increases there will be 49655

divisions by 2, which on average corresponds to: 2( 35016) = 3.9584, and this average value in turn approaches the heuristic argument

presented and proposed by Lagarias, that is: % ~ 9358 1~ 0.75 [36].

It is worth noting that the occurrence of divisions by two, that is, divisions by 27, is in accordance with the exponential distribution
of numbers € N, as also seen in Table 2.

The following graph in Figure... shows the average of the exponential factor e™*®**? for 2% + 1 < x, < 2°° + 10001 (only the odd
numbers).

9. Conclusion

The Big Question

Do all natural numbers when subjected to the Collatz sequence always end in the cycle 4—2—1?

Statistical evidence and some auxiliary programs point in this direction, but they are not emphatic in admitting such a conclusion.
This is expected since the operation is on a set of infinite numbers € N*, and the tools used are limited in relation to the internal
representation of the numbers supported by the machines used. However, with the help of binary operations on numbers expressed
in text form (string), huge numbers such as NN8 were worked on. The operation 3 x x, + 1 and even division by TWO are relatively
simple to perform with binary operations and are a great help in overcoming the representation barrier. numerical intrinnsect to
current computers. Such results operating on ’large’ numbers of the order of 103000 were in accordance with the expected and
proclaimed results.

It is worth highlighting based on what was previously presented in item 4.1.2 and appendix A:
In the Collatz Conjecture there is only one limit cycle formed by the stable points: 1 ->4—2—1.

The non-existence of other internal limit cycles in the Collatz Conjecture, and also in accordance with the equation (12) transcribed
here: ¥ + Q = I, remembering that 0 <¥ < 1 and 0 <Q <1 result in:

Any and all numbers x, € N* (even xi — o) when subjected to the Collatz Conjecture will invariably end in the limit cycle formed
by the stable points: 1 >4—2—1.
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The Collatz Conjecture is definitely not only a challenge, it is also a fertile field for using the tools available in mathematics. At each
stage, new tools and/or observations (sometimes previously neglected) are present. In one of these surprises, we can say:
Any number x,=2°—1,|c € {0, 2, 4, 6, 8, ...} will always be divisible by three.

The function divide 3(expl, expF) helps in the verification, but the demonstration of such a statement is beyond the scope of this
work, and will be left for a possible future work!
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Appendix A

Comparison Between () Calculated and Approximated

The text in this appendix was highlighted and treated as complementary, serving to
support the observations seen in the item 4.1.2, in which when x, — oo it is observed
that ¥ = g—; — 0 and due to this fact the value 1 present in the formula 3 x x;4+ 1
was disregarded, since this is much smaller than the product 3 x z7, (1 <<< (3 x x1)).
Therefore, the value of Q2 was calculated using both methods (I) and (II), namely:

0 I
> (Fx | II )] | =0 (1)
j=("1) i=(7-j)

(B)+H(O)+H(D)=

(2= . (oo =9 ()

lim
(z*,¥)—(00,0)

The following graphs using the function omega_ 1e2(x;, x,, salto) show the modulus
of the difference between the values obteined in (I) and (II), i.e. |Q2(1) — Q(I1)|:

0.05 4 0.05

Ajuste por: a* np.exp(-b*x;) +c Ajuste por: a*np.exp(-b*x) +c
0.04 4 0.04

onde: a=0.1630, b=0.3786, c=0.0046 onde: a=0.1291, b=0.3009, c=0.0027

0.03 X€{ 3, 5 7., 49F 0.03 XNEL{ 3, 5 7. 99}

abs(Q;— Q)
abs(Q;— Q)

0.02 4 0.02

0.05 4 0.05

Ajuste por: a* np.exp(-b*xi) + ¢ Ajuste por: @ *np.exp(b*xi) + ¢
0.04 1 0.04
onde: a=0.1065, b=0.2391, ¢=0.0008 onde: a=0.0996, b=0.2186, ¢=0.0001

. XE{ 3, 5 7,.. 499} 003 XE{ 3, 5 7...4999}

abs(Q; - Q)
abs(Q, — Q)

0.02 4 0.02

0.01 4 0.01

0.00 4 0.00

0 100 200 300 400 500 0 1000 2000 3000 4000 5000
Xi Xi

Figure 12: Graphs: abs(Q(1) — Q(ID)) x x,

In Fig. 12, the sequences in blue are the calculated values of the modulus of the
differences, while in red the approximated exponential trend line according to values
of a, b and c in each graph, note that the residual value ¢ when z; — inf, we have
lim ¢ — 0, demonstrating that equations (I) and (II) lead to similar results, and that

T;—00
such an approximation (when z; — inf) is acceptable as well as the limits:

i —) =1 li * Q
(r*,‘If)lin>(O0,0)( 1— \I/) ’ w*gnoo(a: ) —
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The following graphs (Fig. 13) present both methods for calculating ¥, (I) and
(II), note that when x; — inf the value of ¥ also tends to zero (¥ — 0).

0.20 0.20

=A
015 Yun =%
0.10 [€,1,P] = r_collatz(x) 0.10

0.05 0.05

=2
015 Yo = 27

Y
Yun

[%, A B, C, D, (A+B+C+D)] = abcd(x;)

0 200 400 600 800 1000 0 200 400 600 800 1000
Figure 13: Graphics: ¥ x x,

Thus, with what has been exposed in this appendix and seen previously, it is
evident that 7 is any value of 2* # 1,2* # 2,2* # 4 | * € N that satisfies the equation
(12), which leads to the conclusion that 3 is just and exclusively a limit cycle in the Collatz
Conjecture.

In addition, hypothetically consider the equation (12) assuming that ¥ — 1 (which
is in disagreement with the graphs in Fig. 13), as seen previously Way, + Q = x;, we will
necessarily have that 2 — 0, we obtain that: Yz, + 0 = z, or YV, = x;,

Given that U = ;’—II,, it follows that =, ~ x), x 2U*°€()=P) for the expression
2(Iog2(3)=P) — 1 0 be true we have: I * log,(3) = P, remembering Q = B 4+ C + D where
B = %, it follows that (when ¥ — 1,Q — 0) @ = ¥ + C + D .. we have that Q > & which
contradicts the hypothesis previously formulated. The following graphs (Fig. 14) illustrate
that: Q > 0 and ¥ # 1, reinforcing that the hypothesis ¥ — 1, — 0°7 is not valid.

P = int(math.log2(3) * 1) + 1
P = int(math.log2(3) * 1)

18 0.6
80

60

40

Fig. 14 — Graphs: P x I, W x I, QxI

Figure 14: Graphs: Px LW x [, Q x [
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Appendix B
Relationship between I and P
1. Equation (4) Possibilities as a Function of I, P

The term (C) of the equation (4) presents a certain complexity in the formation
of the sets that contain the values of ;, having a distribution of the elements ~; in
arrangements (AR(v;) = (I — 1)!) different®®, the function r_ collatz1("7") displays as the
answer:

[C,I,P,Ey] =r_collatz1("T") — ([16,5,11],[1,1,2,3,4])
(E)
2

The original set Ey = [1,1,2,3,4], which are the exponents to be applied to 277

resulting in the set p; = [3r, 3r, 35, 355 31) = |30 5+ 3» &> 15)- Lhe set E7 can be rewritten in

several ways, i.e. in (I — 1)! arrangements, without changing the result of TT/; (p;).

However, such arrangements will impact the term (C) of equation (4) as can be
seen below for two specific sets 3%

sz:[l 1 1 1 1]’ M_[l 1 1 1 1]

215 915 925 93 94

Rremembering the item (C') of the equation (4), where I = n = 5:

i)
j=(n—2) i=(n—j)

(@)

Adopting pZ, pM seen previously, it is possible to calculate the dyadic fractions (), (3)
and (9) for the two series of p:

1 1 1 1 1 1 1 1 1
3 2 1
3 *[ﬁ*?*ﬁ*g]—“& *[272*?*?]4_3 *[ﬁ*?]
(o) (B*) (6%)

0.0263671875 4 0.017578125 + 0.0234375 = 0.0673828125

(a®) (BF) (6%) (CF)
1 1 1 1 1 1 1 1 1
3 2 1
3 *[?*5*5*?]4—3 *[5*5*?]—1—3 *[ﬁ*?]
(a?) (BM) (62)

0.10546875 + 0.140625 + 0.09375 = 0.33984375
— —_—
(M) (BM) (6M) (CM)

It becomes clear from previous considerations that a large part of the complexity in
solving the equation (4) consists in solving the term (C) of the same, since the possible
arrangements with the coefficients ; are of the order of (I — 1)!.
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2. The Conjecture Considering Real Numbers

Certainly considering even and odd numbers in the case of x; >= 0|z; € R* makes
little sense since these numbers, as they can be fractional or irrational, do not present
parity. The conjecture must be adapted, and in this case only:

collatz_reais(z;)*’ = x, = 22+

The factor % is in agreement with Lagarias’ heuristic argument[6], in which the
multiplicative factor (MF) between two subsequent numbers must be ~ % < 1, in the
graph in Fig. 14 the cycle is observed limit defined by the circle with radius UM to
which all sequences converge!'. Remembering that according to Monterio[7] "to know
the characteristics of an orbit it is necessary to know its eigenvalue A, which corresponds
to the product of each eigenvalue relative to the fixed points x; in the orbit“, as follows:

A= %@

s = 2
de 1%; 4

As A < 1 the orbit is stable, which allows us to state that such a cycle repeats
indefinitely once the value UM is reached.

Cada linha colonda é uma trajetoria.
Trajetorias finalizam no circulo de raio 1,
iniciam o mais distante do circulo de raio 1

0 <= x5 <= =, Xp R, (neste grafico x;<=3)

_—

As trajetérias (segmentos de reta) sdo representadas como curvas
pois o grafico & polar e o0 angulo de deslocamento é ficticio (visual).
O tamanho da trajetéria indica a distancia inicial (do alvo 1),

a linha tracejada (vermelha) indica os valores de xj; iniciais.

Figure 15: Polar Graph: %ﬁ”

3 A Practical Example (Brute Force)

Consider the number 753257 whose graphs were seen in Fig. 7 item 4.2, from the
equation (5) doing: [T} (pi) = [T, (3) = 3»

we will have:

(A) = h(753257) = 753257 ;’—; (= 0.8098463884774229)

Remembering that this value “generally“ is > 0.78 (data in table 1), we must
look for the values of I and P that meet the above, also observing the equation (11), the
function acha_ABD(n,m,c) available in the file Collatz Files constructed in accordance
with the limit range (two lines in green) seeks to find the values that satisfy the condition
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above, it is important to note that up to 400 possible answers of I x P can be presented,
since a region was delimited where the confidence index for the study base is 100%. *2

Executing the function acha_ABD(n,m,c) (n=753257, m=0.5, ¢=0.194725, m and
¢ according to equation 16) we obtain the answers (only 14 are presented) **, in the
following list the correct one is highlighted:

[tem A Pares Impares A+B+D 1/P(%)
110.886717 72 33 0.949217 0.458333
2 1 0.841688 80 38 0.904189 0.475000
310798946 88 43 0.861447 0.488636
410.898814 91 45 0.961315 0.494505
510853172 99 50 0.915672  0.505051
6 | 0.809846 107 55 0.872347 0.514019
710911077 110 o7 0.973578 0.518182
8 10.864812 118 62 0.927312 0.525424
91 0.820895 126 67 0.883396 0.531746

10 | 0.923507 129 69 0.986008 0.534884
11 | 0.876610 137 74 0.939111 0.540146
12 1 0.832095 145 79 0.894595 0.544828
13 | 0.936107 148 81 0.998607 0.547297
14 | 0.789840 153 84 0.852341 0.549020

Table 4: acha_ABD(753257, 0.5, 0.194725)

Among the possibilities that the function acha_ABD(n,m,c) presented, the cor-
rect one corresponds to item 6, that is P = 107, = 55 (r_ collatz(str(753257)) —-
[162,55,107]). This method (via brute force) presents many candidate values, and only
serves to show the most appropriate one among these results without having to calculate
the complete Collatz Conjecture as presented in the equation (2).

Appendix C
Setting up the Python / PyCharm environment
Creating the project

Once the Python environment is set up, the version currently used is: Python
3.11.6 in a Linux environment 6.5.12-200.fc38.x86_ 64 and the IDE interface PyCharm
2022.1.3 (Community Edition), let’s create the initial project (those who have already
done so can skip this step). Start the PyCharm program and create a new project the
so-called Python_ Collatz as shown in the following figure:
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When creating the project, the initial screen with the main.py file (initial) is
displayed (Fig.16). Note that the print_hi(name) function is automatically created and

Create Project
Location: | /homeJaudemir/PycharmProjects/Collatz

|

| = Python Interpreter: New Virtualenv environment

© New environmentusing @, Virtualenv -

Location: ir/PycharmProjects/C
| Base interpreter: | Jusr/bin/python3.11
Inherit global site-packages

Make available toall projects
Previously configured interpreter

nterprete

Create a main.py welcome script
Create a Python script that provides

Figure 16: Creating the Project

triggered internally in the main code.

By making the changes to the code (example), our main.py file (initial) will look like this:

0O~ Ut WN -

- Python,Collats - main py
Blo Edk View Navigate Code Befacor Run ook VCS Window DB Navigator Help
Python Cotatz

proect ~ © I & - dmnpy
*  python Collatz

& monpy

> 10 Externa b aris

% scrstches and Consoles

D OB brome | I Projet

det print_hi(nane)

Drent(£'Hs, {nome}')

2 bockmaras 1, Swuawre

P VersonControl  ZTODO O Provioms  BiTermind % PythonPodages @ Pyton Consoke 0 Servies

L. Tndexing completedin 2 min, 31 sec_ Shared indexes were appled to 42% of fles (5,987 of 21.307) (25 minutes 290) 4 spaces W _@GIN/A_Python 3.10 (Python_Colatr) =
e —

Figure 17: Main.py file (initial)

import matplotlib.pyplot as plt
import pandas as pd

import numpy as np

import math

import sys

import os

import csv

from Collatz_Files import x*

# Press the green button in the gutter to run the script.
if _ name — '  main_ :

n = math.log (int (£ {0b101010000011001:40} "))

print(n)

Figure 18: Code: main.py

Lines 13 and 14 shown in the code in Figure 17 were included only so that it is possible to test the environment beforehand.

1.1 Including Files
Before running the main.py program we must include other files:
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~init .py*,

BaseDados.py,
funcoes.py,
Collatz_ Files.py

The following list refers to the _init__.py file and adjusts the environment to import local functions developed in files separate from
main.py within the working directory.

# todo comentidrio em Python inicia com o caracter #

# este arquivo tem o objetivo de indicar para o programa
# main.py a localizacao

# das func¢des auxiliares

from BaseDados import x*
from funcoes import funcoes
from Collatz_Files import Collatz_ Files

0O Ui WN -

Figure 19: Code: __ init __.py

The files cited: main.py, funcoes.py, Collatz_ Files.py, BaseDados.py and conjec-
turas.py present almost two thousand lines of code, the probability of incorrect typing is
very high, due to this the files will be made available in electronic form when requested by
email to the author, after publication they will be available in the directory indicated here.
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