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Abstract
The basic challenges of this work are twofold: demonstrating the dependence between the functional and topological qualities 
of partition networks and finding the simplest—with respect to algorithmic complexity—network elements. The study of these 
problems is based on finding the solution to an appropriate antagonistic vertex game. The results of the numerical simulations 
of antagonistic partition games demonstrate that the winner’s graphs are “almost always” dense and hyperenergetic compared 
to the loser’s graphs. These observations reveal that successful evolutionary mechanisms can be realized, in principle, by the 
simplest objects (such as viruses).
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1. Complex Networks: the Interplay between Design and 
Functions
In recent years, a large volume of research has been dedicated 
to the structural and functional connectivity patterns in complex 
brain networks, and concepts of emergent functions in networks 
that combine network segregation and integration have been 
proposed. These concepts are based on different mathematical 
approaches: network science, graph theory, statistical mechanics 
and dynamical systems theory structure. The structure of 
logical and neural networks is in fact a graph model (nodes and 
connections between nodes), which is a mathematical tool used 
to present some events or processes, including transportation 
systems of roads between towns, chemical bonds between atoms 
and automaton for Boolean function computation. In these cases, 
nodes and the connections between them define the function of the 
network completely. The first mathematical results to shed light 
on the structural and functional connectivity of logical networks 
appeared in computer science more than fifty years ago. In these 
works, it was suggested that there is a connection between the 
optimal complexity of the network (number of logical elements) 
and the network geometry. Roughly speaking, one cannot obtain 
minimally complex networks (e.g., the Shannon function L(n) 
where n is the number of arguments in the logical function) if the 
geometrical network parameters, e.g., the density in 2-dimensional 
Euclidean space, length of connections, and element degree, do 
not grow with n.

For quantifying dynamic functional connectivity (DFC), static 
models are evidently insufficient when studying biological networks. 
The new experimental models, which include both network 
elements and the dynamics of their behavior, must be considered 
and evaluated [1] because a large body of neurophysiological 
studies demonstrates that new, appropriate DFC metrics are vitally 
necessary for studying changes in macroscopic neural activity 
patterns and, consequently, important aspects of cognition and 
behavior. Determining the behavior dynamics of complex networks 
and the exact results used in understanding large-scale network 
activity are the most challenging tasks in computational biology 
and modeling. The main goal of an experimental study of the brain 
is to clarify “the intrinsic properties and functional repertoire of the 
brain” [1]. This is similar to estimating the behavior of automata 
transition graphs, in which the input signals (the “questions”) are 
entered and then the “answers” can be observed. Brain network 
experimental research has focused on similar problems, such as 
deciphering fMRI1  pictures.

The problem of decoding absolute black boxes is algorithmically 
unsolved [2]. For traditional automata model, one can avoid 
insolvability by using a “reset button”, which restores the initial 
state between each pair of states. It is evidently that for living 
entities this method unacceptable. However, since ancient times, 
people have been learning to predict the behavior of living entities 
without exact knowledge of their inner structure. Domestication 
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is the best example of successful behavioral studies. Careful 
observation the behavior (the mammals and invertebrates) 
provides a rich source of behavioral information. The most 
striking discovery of recent times is that complex behavior and 
even the ability to communicate is possible with a relatively 
simple structure of the nervous system, such as in bees or ants [3]. 
Modeling the simplest automaton games could be one method for 
decoding automata structures. In other words, the challenge is to 
clarify how automata behavior could be changed by changing its 
structures.

Here, we study two different approaches of game theory to 
network formations: Nash equilibrium game modelling and 
Neumann equilibrium for antagonistic two-player zero-sum 
games with mixed strategies. Game theory provided a natural 
framework for modeling of the trade-off between efficiency and 
stability for economical systems models (see [4] and references 
herein). However, such approach became very popular later for the 
formation of the architecture that connects the relay stations (RS) 
and their serving base station. Here each RS aims to maximize 
of utility function that include the benefit from cooperative 
transmission due of reduced bit error rate, and decrease of the 
delays. The results (see [5,6] and references in [5]) attest that 
network formation games is a promising line of investigations for 
optimal networks design field including wireless sensor networks, 
cognitive radio and distributed detection.

In this work we discuss the case in which the network “structure” 
is defined by the topological properties of the partition graphs [7] 
of two players, GA(N, E) and GB(N, E), with a special labeling 
of nodes and a prearranged metric space. For Nash equilibrium 
model of network formation from [8] we analyzed by numeric 
modelling the optimal result depends from the players’ skills or 
resources when game is perturbed, i.e. randomizing strategies 
are using. For case of Neumann antagonistic games with zero 
sum we hypothesized that there is a tight connection between the 
suboptimal solution of the associated antagonistic game Ξ(A, B) 
and the topological properties of the graphs GA(N, E) and GB(N, E). 
The results that have been derived from numerical modelling are 
used to verify this hypothesis.

2. Partition Networks Game for Nash Equilibrium Model of 
Network Formation
Game theory is concerned with the decision-making process in 
situations where outcomes depend upon choices made by one 
or more players. To apply game theory, certain assumptions are 
necessary. The first assumption is that each player is rational 
and acting in his or her own self-interest. The players’ choices 
determine the outcome of the game, but each player has only 
partial control over the outcome. Other important assumption is the 
structure of game strategies that can be determined or randomized. 
For example, when the players are intelligent creatures it can be 
hypotheses that strategies are determined but for game with nature 
the strategies are randomized because nature is unpredictable. 
For game with nature, two alternative models can be using: 
nondeterministic and probabilistic. For nondeterministic case, a 

player have no idea what nature will do and for randomized case a 
player decide observing nature and gathering statistics.

Authors of the first works on network formation games (see [8] 
and references herein) consider a game with N players, where each 
player is identified by a graph node, and uses the Nash equilibrium 
model. In this game, each player tries to form links to other players 
unilaterally. Node u may choose to build edges from u to v from 
any subset of nodes. Players (nodes) have two opposite goals: to 
build and pay for as few edges as possible, i.e. to form a network 
that minimizes the distance from their own node u to all other 
nodes. The quality of such a network is the sum of the distances 
to all other nodes. The players aim to minimize a cost function 
that combines both the network building costs and the distances 
to all other players. The set of edges S in the union of all players’ 
strategies forms a network G(S) on the player nodes. Let dist S(u, 
v) be the shortest path (minimum number of edges) between u and 
v; the cost of building an edge is specified by a single parameter, α. 
The social cost of network G(S) is

were u and v are nodes (u ≠ v), the sum of the player’s costs dist(u, 
v) is the shortest path between u and v in G(S) and α is the cost of 
building an edge. |Ed| is the total number of edges. Network G(S) 
is the optimal solution if it minimizes the social cost. The optimal 
solution can be reached for the Nash equilibrium graph. In [8], it 
was proven that if α ≥ 2, then any star is an optimal solution, and 
if α ≤ 2, then the complete graph (clique) is the optimal solution. 
The social cost of a star with N nodes equals α(2N − 1), and for a 
clique, the social cost equals (1 + α)(N − 1)N/2. (Both estimates 
are proportional of total number of edges for according graphs). 
These results attest that the social cost of the Nash equilibrium 
graph is a special case. Such approach doesn’t allow to estimate of 
the network design when
• the goals of the players are opposite (in particular for antagonistic 
games with zero sum);
• the players’ skills or resources are different (it is most common 
situation because inequality is a basic moving force in both human 
games and games in communities of simpler life forms, such as 
virus and microbial communities);
• for cases of randomized player strategies (i.e. the perturbed 
games for example, playing with nature or competition with an 
intelligent adversary).
Therefore, basic assumptions in [8] breaks down in most networks’ 
formation games.
One way around these problems is using of partition graphs model 
[7,9] where each node is labelled. Below we demonstrate (Example 
1) that label value of the nodes (i.e. players) have a drastic effect 
on optimal cost solution.

Example 1. Two graphs for TPF(16, 4) with 5 nodes are depicted 
on Fig. 1: a star and a perfect graph. Fig. 1a shows the partition 
graph which contains the internal node, (7, 5, 3, 1) ≡ α, and four 
leaves, (6, 6, 4, 0), (6, 4, 4, 2), (8, 4, 2, 2), (8, 6, 2, 0). Any star 
have minimized the social cost G(S) when cost of edge equals 3 
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unilaterally. Node u may choose to build edges from u to v from any subset of nodes.
Players (nodes) have two opposite goals: to build and pay for as few edges as possible, i.e.
to form a network that minimizes the distance from their own node u to all other nodes.
The quality of such a network is the sum of the distances to all other nodes. The players
aim to minimize a cost function that combines both the network building costs and the
distances to all other players. The set of edges S in the union of all players’ strategies
forms a network G(S) on the player nodes. Let dist S(u, v) be the shortest path (minimum
number of edges) between u and v; the cost of building an edge is specified by a single
parameter, α. The social cost of network G(S) is

SC(G) = ∑ dist(u, v) + α|Ed| (1)

were u and v are nodes (u ̸= v), the sum of the player’s costs dist(u, v) is the shortest path
between u and v in G(S) and α is the cost of building an edge. |Ed| is the total number
of edges. Network G(S) is the optimal solution if it minimizes the social cost. The optimal
solution can be reached for the Nash equilibrium graph. In [8], it was proven that if α ≥ 2,
then any star is an optimal solution, and if α ≤ 2, then the complete graph (clique) is
the optimal solution. The social cost of a star with N nodes equals α(2N − 1), and for a
clique, the social cost equals (1 + α)(N − 1)N/2. (Both estimates are proportional of total
number of edges for according graphs). These results attest that the social cost of the Nash
equilibrium graph is a special case. Such approach doesn’t allow to estimate of the network
design when

• the goals of the players are opposite (in particular for antagonistic games with zero
sum);

• the players’ skills or resources are different (it is most common situation because
inequality is a basic moving force in both human games and games in communities of
simpler life forms, such as virus and microbial communities);

• for cases of randomized player strategies (i.e. the perturbed games for example,
playing with nature or competition with an intelligent adversary).

Therefore, basic assumptions in [8] breaks down in most networks formation games.
One way around these problems is using of partition graphs model [7,9]. where each

node is labelled. Below we demonstrate (Example 1) that label value of the nodes (i.e.
players) have a drastic effect on optimal cost solution.

Example 1. Two graphs for TPF(16, 4) with 5 nodes are depicted on Fig. 1: a star and a perfect
graph. Fig. 1a shows the partition graph which contains the internal node, (7, 5, 3, 1) ≡ α, and
four leaves, (6, 6, 4, 0), (6, 4, 4, 2), (8, 4, 2, 2), (8, 6, 2, 0). Any star have minimizes the social cost
G(S) when cost of edge equals 3 [8]. Suppose that for some reasons the label of the internal node is
changed to (6, 6, 2, 2) ≡ β. Note that ρ(α, β) = 1 and total resource of these nodes doesn’t change,
i.e. it makes sense to consider this change insignificant. However, the star in Fig. 1a turns into four
isolated nodes (for formation game it can be treated as if the players preferred not to cooperate)2.
If partitions at all leaves of the star could be change in a different, but also insignificant way (see
Fig. 1b), the star graph would be transformed into a complete graph, i.e. another optimal social cost
decision although cost of edge doesn’t change. This example demonstrates that labels of graph nodes
define the topological structure of a network graph in first place.

To demonstrate the influence of randomized strategies of a player in a network forma-
tion game, it is necessary to define the distance between network partition nodes in a more
general way than in [7]. Firstly, let’s remind some definitions from [7].

2 In theory of communication systems, the problems of myopic fashion of network nodes, i.e. without anticipat-
ing others’ potential reaction (it is malicious or selfish nodes), are being studying [10].
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[8]. Suppose that for some reasons the label of the internal node is 
changed to (6, 6, 2, 2) ≡ β. Note that ρ(α, β) = 1 and total resource 
of these nodes doesn’t change, i.e. it makes sense to consider this 
change insignificant. However, the star in Fig. 1a turns into four 
isolated nodes (for formation game it can be treated as if the 
players preferred not to cooperate)2. If partitions at all leaves of 
the star could be change in a different, but also insignificant way 
(see Fig. 1b), the star graph would be transformed into a complete 
graph, i.e. another optimal social cost decision although cost of 
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Figure 1. The optimal social solution (the star) can be transformed into the opposite optimal social
solution (the clique) by changing strategies (nodes labels) of the players, i.e. different behaviors of
the players. The star graph (a) has a diameter of 2, density of 0.4, characteristic path length of 1.6, and
graph energy of 4.0. The complete graph (b) has a diameter of 1, density of 1.0, characteristic path
length of 1.0 and graph energy of 8.0.

Table 1. Topological metrics for the 5-clique and the 5-star in the case of randomized strategies of
a player. Total number of random experiments is 20. Denote the share of the ”ideal“ results (i.e.
without randomization) as True; AD is an average diameter of networks and ADen is an average
density of networks for all random experiments. Red color for the 5-star is the share of disconnected
networks.

σ2 5-star 5-clique
th.dist. = 1.5 True AD ADen True AD ADen

0.05 100% 2 0.4 100% 1 1
0.1 100% 2 0.4 60% 2 0.95
0.15 85% 0.15 ∞ 70% 0.96 0.965
0.2 40% 0.6 ∞ 40% 1.65 0.9
0.25 15% 0.85 ∞ 15% 2 0.77

An (n, m)-partition of n into no more than m parts is defined as a sequence of non-
negative integers a1 ≥ a2 ≥ · · · ≥ ak ≥ 0, such that n = a1 + a2 + · · ·+ am. The set of all
feasible (n, m)-partitions is denoted by P(n, m).

Let for any partition α = (a1, . . . , am), a random partition α∗(n, m, s2) =
(
a1(s2), . . . ,

am(s2)
)
, be given where ai(s2) is normally distributed variable with mean ai and variance

s2. The distance between partitions a∗(n, m, s2) and b∗(n, m, s2) will be defined as P(n, m),
i.e. as the maximum of modules of coordinate differences a∗(n, m, s2) and b∗(n, m, s2).
Let value η be the threshold distance. The nodes are labelling as random partitions be
connected iff distance between these nodes is less or equal η.

We will illustrate the influence of randomized strategies of a player on topological met-
ric for the star and the perfect graphs shown on Fig. 1 using the collection of programs [11].

There are two intriguing experimental observations related to behavior of partition
graphs when using randomizing strategies.

1. The reliability of the 5-clique decreases monotonically with perturbations, whereas
the structure of 5-star is left without changing as long as σ2 is small enough (0.05, 0.1).
However, when noise is increasing, the isolated nodes in network are appearing, i.e.
the structure of such network is broken down.

2. Provisional results of numerical modelling showed that for trinomial partition family
TPF(m) [9] the reliability of the networks G(TPF(m)) under perturbations is distinctly
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Let value η be the threshold distance. The nodes are labelling as random partitions be
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We will illustrate the influence of randomized strategies of a player on topological met-
ric for the star and the perfect graphs shown on Fig. 1 using the collection of programs [11].

There are two intriguing experimental observations related to behavior of partition
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Figure 1: The optimal social solution (the star) can be transformed into the opposite optimal social solution (the clique) by changing 
strategies (nodes labels) of the players, i.e. different behaviors of the players. The star graph (a) has a diameter of 2, density of 0.4, 
characteristic path length of 1.6, and graph energy of 4.0. The complete graph (b) has a diameter of 1, density of 1.0, characteristic path 
length of 1.0 and graph energy of 8.0.

Table 1: Topological metrics for the 5-clique and the 5-star in the case of randomized strategies of a player. Total number of random 
experiments is 20. Denote the share of the ”ideal“ results (i.e. without randomization) as True; AD is an average diameter of networks 
and ADen is an average density of networks for all random experiments. Red color for the 5-star is the share of disconnected networks.

An (n, m)-partition of n into no more than m parts is defined as a 
sequence of nonnegative integers a1 ≥ a2 ≥ ... ≥ ak ≥ 0, such that n = 
a1 + a2 + ... + am. The set of all feasible (n, m)-partitions is denoted 
by P(n, m).
Let for any partition α = (a1, . . . , am), a random partition 
α∗(n, m, s2) = (a1(s

2), . . . , am(s2)), be given where ai(s
2) is normally 

distributed variable with mean ai and variance s2. The distance 
between partitions a∗(n, m, s2) and b∗(n, m, s2) will be defined as 
P(n, m), i.e. as the maximum of modules of coordinate differences 
a∗(n, m, s2) and b∗(n, m, s2). Let value η be the threshold distance. 
The nodes are labelling as random partitions be connected iff 
distance between these nodes is less or equal η.

We will illustrate the influence of randomized strategies of a player 

on topological metric for the star and the perfect graphs shown on 
Fig. 1 using the collection of programs [11].

There are two intriguing experimental observations related to 
behavior of partition graphs when using randomizing strategies.
1. The reliability of the 5-clique decreases monotonically with 
perturbations, whereas the structure of 5-star is left without 
changing as long as σ2 is small enough (0.05, 0.1). However, when 
noise is increasing, the isolated nodes in network are appearing, 
i.e. the structure of such network is broken down.
2. Provisional results of numerical modelling showed that 
for trinomial partition family TPF(m) [9] the reliability of the 
networks G(TPF(m)) under perturbations is distinctly increased 
as m increases. In particular, for TPF(5), where the number of 
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network nodes equals to 18, the share of the ”ideal“ results, when 
σ2 = 0.25, are about 70%. It is much higher than modelling results 
for 5-clique (see Table 1). It seems plausible that the reason is in the 
connectivity strength (network density) and small K-complexity of 
the networks for G(TPF(m)).

3. Zero-Sum Games with Mixed Strategies
The model of partitioned network games is based on the specific 
models of two-player zero-sum antagonistic games with mixed 
strategies. Let Ξ be a two-player game. Each player has a set of 
N strategies in addition to SA and SB, and M = N × N is the game 
playoff matrix. Let players A and B be represented by partitions of 
graphs GA(N, E) and GB(N, E), where each node of GA and GB is 
labeled by one of the strategies from sets SA and SB, respectively. A 
zero-sum game is one in which no wealth is created or destroyed. 
Therefore, in a two-player zero-sum game, whatever one player 
wins, the other loses, and the players share no common interests. 
The concept of a mixed strategy and the minimax solution for two-
player games were developed originally by Emile Borel with an 
example of a game in which the players strategically distribute a 
fixed amount of resources n over a finite number of m battlefields. 
Minimax is a strategy that minimizes the maximum possible loss, 
which can result from a choice that a player makes. If the game has 
no saddle point, the players have to choose their strategies with a 
degree of randomness. In this case, the game is called a “game with 
mixed strategies”. Next, we will discuss the antagonistic zero-sum 
games on the Borel model using the names “Blotto game” and 
“Lotto game” [12-14]. The player who assigns more resources to a 
battlefield will win. The objective of the players is to maximize the 
number of battlefields won. The application of the games approach 
is possible if players have a tractable (with polynomial computation 
complexity) optimal (or “almost optimal”) algorithm to obtain the 
game solution, i.e., can obtain the set of profitable game strategies. 
The more possible strategies players have, the more difficult 
it is to find the optimal game solution. This scenario is clearest 
in Blotto (Lotto) games, where the strategies are m nonnegative 
integers ai, and ∑ ai = n, where n is the total number of resources 
(number of warriors) and m is the number of battlefields. In [13], 
it was shown that a Blotto game has a mixed-strategy equilibrium 
in which the marginal distributions are uniform on [0, 2n/m] 
along all battlefields. For Blotto game (120, 6), the support set3  
should contain more than 108 strategies with equal probabilities. 
From the theorem of Caratheodory, games such as Blotto (Lotto) 
allow mixed equilibrium strategies involving no more than 
(n + 1)m + 1 pure strategies [15]. However, the Caratheodory 
theorem is an existence theorem. In the past, it was common to 
believe that solving a minimax problem for antagonistic matrix 
games with constant sum is intractable because the number of 
pure strategies grows exponentially with the game parameters. 
Therefore, it is not surprising that traditional optimization 
techniques fail to find optimal solutions for Colonel Blotto games. 
Recently, in [16], in, LMO-based decomposition techniques were 
proposed. These techniques allow a large but well-organized 
matrix game to be reduced to a small saddle point optimization 
problem. In Blotto (Lotto) games, the matrices for each player are 
well organized. Specifically, in the game “attacker vs defender”, 

which is a general version of the Blotto game, was considered 
[16]. The method in [16] was applied to the “attacker vs defender” 
game and allows the game to be solved in polynomial time. In fact, 
the method is capable of obtaining, in a reasonable amount of time, 
near-optimal solutions to rather large (e.g., m = 10 and n = 100) 
games with accurate payoff values, such as 0.02. in [16] addition, 
this method provides a support set with few pure strategies 
(significantly below the Caratheodory bound). The results in 
allowed for essential progress in general optimization theory and 
minimax games specifically. However, we have concentrated on 
finding the simplest procedure by choosing effective strategies that 
are easily accessible for living entities. There are some different 
artificial methods used to organize the process of choosing 
strategies for the support set (in addition to minimax solution 
algorithms). The first is based on modeling the contest between 
different classes of partitions [17]. The second method, which is 
discussed below, analyzes topology graphs with node labeling by 
applying different strategies.

4. Efficiency of the Selection Mechanisms: Numerical Modeling
As shown computing experiments the key features to define of 
partitions “strength” as game strategies (i.e. support set members) 
are diversity and permutation balance.

Definition 1. Diversity S∗(α) of (n, m)-compositions α = (a1, . . . , 
am) is

and 0 ≤ S∗(α) ≤ m(m − 1)/2. The (n,m)-compositions has a maximal 
diversity then and only then when a1 > a2 > . . . > am.

Definition 2. Permutation balance PB(α) of (n,m)-compositions α 
= (a1, . . . , am) is

where maximum is taken on the set of all m! permutations of α and

The value PB is used to estimate the maximal deviation of the 
composition’s center mass from the middle. The algorithmic 
complexity of PB computation does not exceed Θ(m2 log n).

Importantly, the partition’s features used in the selection mechanism 
should be easily computed (the time complexity should be no 
more than quadratic in the resource value). Attempts to estimate 
the efficiency of the selection mechanisms in Blotto (Lotto) games 
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different artificial methods used to organize the process of choosing strategies for the
support set (in addition to minimax solution algorithms). The first is based on modeling the
contest between different classes of partitions [17]. The second method, which is discussed
below, analyzes topology graphs with node labeling by applying different strategies.

4. Efficiency of the selection mechanisms: numerical modeling

As shown computing experiments the key features to define of partitions “strength”
as game strategies (i.e. support set members) are diversity and permutation balance.

Definition 1. Diversity S∗(α) of (n, m)-compositions α = (a1, . . . , am) is

S∗(α) =
m

∑
i=1

m

∑
j=1

sign+(ai − aj), (2)

sign+(x) =


1 if x > 0,

0 if x ≤ 0,

and 0 ≤ S∗(α) ≤ m(m − 1)/2. The (n, m)-compositions has a maximal diversity then and only
then when a1 > a2 > . . . > am.

Definition 2. Permutation balance PB(α) of (n, m)-compositions α = (a1, . . . , am) is
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were made in and [17, 18]. In [17] the strategy efficiency is defined 
as the result of some kind of evolutionary game. The numerical 
simulation demonstrated that the class with strategies containing 
a large diversity and a large permutation balance is certain to be 
an “absolute evolution winner”, i.e., the strategies from this class 
are winners in all evolutionary experiments. Now, we will study 
the topological structure graphs that are used in the Blotto game. 
Let P∗(n, m) ∈ P(n, m) be the set of suboptimal strategies in Blotto 
(n, m)-partition games [18], and Prand(n, m) ∈ P(n, m) be a set of 
random strategies with |Prand(n, m)| = |P∗(n, m)|. It is found that 
the topological properties of the graphs with nodes labeled with 
P∗(n, m) and Prand(n, m) are essentially different. Almost all graphs 
that are designed from random strategies have small densities and 
energy values. As a result, a graph with small energy (density) 
essentially does not have a chance to win against a graph with 
more energy (density). Therefore, game equilibrium assumes that 
the graphs of the playing strategies of both players are strongly 
connected. This is circumstantial (but encouraging) evidence that 
within the network design and its behavior (functionalities) are 
deep and insufficiently studied relationships. Although this fact 
may seem selfevident from a commonsense point of view, to the 
best of our knowledge, this study is the first to provide a set of 
detailed experimental results.

5. Experimental observations
For numerical modeling, the program tool [11] was used. For 
the sake of simplicity, Appendix displays the data from only one 
numerical experiment. Here, two players, A and B, are playing a 
Blotto game (100, 10). Each player has 50 strategies, i.e. partitions 
from partition set P(100, 10). Strategies for A were taken from set 
P∗

0 (100, 10), which was obtained by the selection mechanisms 
described above, or from set P∗

1 (100, 10)  as suboptimal decisions 
in attacker-defender games [18]. Fifty strategies for B were taken 
(randomly and evenly) from the set of all possible partitions, 
P(100, 10). The graphs GA(N, EA) and GB(N, EB) are graphs whose 
nodes are labeled of the strategies from P∗(100, 10) and P(100, 
10), respectively, and given a distance value of ρ. The results (see 
Appendix) provide a convincing demonstration of the advantage of 
player A in the game. To confirm the empirical observation results, 
which show that player A is “stronger” than player B, we calculate 
the game price and support sets for players A and B (see Table A1 
in Appendix) with the help of the computer tool CVX [19].

6. Conclusion
For all modern complex technological networks, indeterminism of 
real world is the primary source of trouble. The cost of solutions to 
reach necessary robustness level can be extremely high. However 
during evolution process Nature found not only robust solutions 
but the methods in harnessing the random events for facilitate of 
survival living entities from as mammals till the simplest creatures. 
So main challenge is to clarify how the simplest natural or artificial 
creatures could make decisions in survival problems. In studying 
model, each vertex has an individual label that determines its 
connections with other vertices, i.e., vertex “abilities”. During 
dynamic partition games, the vertex resource can vary. As a result, 
the game price and equilibrium level are also changed. In this way, 

partition games have the ability to react not only to the behavior 
of other players but also to outside forces (e.g., temperature, 
pressure and energy). Indeed, the appearance of H2O molecules is 
not the result of optimal strategies for chemical element behavior 
(hydrogen and oxygen atoms) but is a consequence of quantum 
mechanical laws and the availability of outside physical conditions. 
Aspects of mutual perception and joint problem solving might be 
more important than individual optimization [4]. Partition games 
may be the model best suited to focus on the “physical” aspects of 
network design [20] and the interplay between the functional and 
structural properties of living or artificial. It worth noting that In 
our model we studying the version of the classical zero-sum matrix 
game with unknown payoff matrix , where the players only observe 
each other’s actions and a noisy payoff. Such generalizations of 
the usual matrix game, where the payoff matrix is known to the 
players became very popular in recent years in particular for deep 
learning algorithms. See for example [21,22].

In the last years, experimental researches appeared in the 
computational neuroscience field with intriguing results about 
the topology and functionality of human brain networks. Roughly 
speaking, it was experimentally found that the structure of a network 
(more specifically, the connections between specially selected 
areas of a brain) clearly depends on the reward or punishment of 
players during gambling. What is more, were found key regions 
that convey loss and win information across the network [23].
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Appendix A. Experimental Results
The results of the game between graph A (where nodes are labeled with the suboptimal strategies) and graph B (where nodes are labeled 
with random strategies) and the graph metric measure distance ρ = 3 are depicted here. The number of iterations in the experiment is 10. 
In addition to the topological parameters in Fig. A1, we obtain the diameter, efficiency, and average degree of the graph.

Through our research, we establish that a sample size of 10 (the number of iterations in the experiment) is sufficient to obtain statistically 
stable results for the A vs B graph game.
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Figure A1. Behaviour of the topological properties of the partition graphs for players A and B when
the distance between connections is 3. The graph energy En(G), depicted in a), is defined in [24] as
En(G) = ∑N

j=1 λj, where λj is the eigenvalue of graph G(N, E).
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Table A1. First lines of support set for players A and B. Game price values show that player A is
”much stronger“ than player B in the given antagonistic game.

Game Price (A vs B) = 0.2660
Support Set for A Prob.
(20, 17, 16, 14, 12, 8, 6, 5, 2, 0) 0.187
(19, 18, 16, 13, 12, 10, 6, 4, 2, 0) 0.183
(20, 16, 15, 12, 11, 10, 9, 5, 2, 0) 0.138
(18, 17, 15, 13, 12, 10, 9, 4, 2, 0) 0.138
(18, 16, 15, 14, 12, 10, 7, 6, 2, 0) 0.125
(20, 18, 17, 11, 10, 9, 7, 6, 2, 0) 0.119
(19, 18, 17, 14, 10, 8, 7, 5, 2, 0) 0.110

Game Price (B vs A) = -0.2660
Support Set for B Prob.
(18, 17, 16, 15, 9, 9, 9, 3, 2, 2) 0.294
(20, 18, 16, 13, 12, 9, 5, 5, 1, 1) 0.257
(21, 19, 14, 12, 10, 7, 6, 5, 4, 2) 0.165
(22, 18, 15, 14, 11, 7, 7, 3, 2, 1) 0.147
(19, 15, 13, 12, 12, 11, 8, 6, 2, 2) 0.083
(19, 15, 13, 12, 11, 10, 10, 5, 4, 1) 0.055

Appendix A. Experimental results

The results of the game between graph A (where nodes are labeled with the suboptimal
strategies) and graph B (where nodes are labeled with random strategies) and the graph
metric measure distance ρ = 3 are depicted here. The number of iterations in the experiment
is 10. In addition to the topological parameters in Fig. A1, we obtain the diameter, efficiency,
and average degree of the graph.

Through our research, we establish that a sample size of 10 (the number of iterations
in the experiment) is sufficient to obtain statistically stable results for the A vs B graph
game.
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