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Abstract
The study aimed to explore the application of machine learning techniques in diagnosing and classifying various types of heart 
diseases. A number of algorithms commonly used in healthcare, such as the naive Bayes model, SVM, k-nearest neighbour (K-
NN), and others, were reviewed. This study highlights the importance of the quality of the data used in the database to obtain 
an accurate and reliable diagnosis. The data were collected from patient records in hospitals and clinics and were analysed 
and compared with those of previous relevant studies. Clinical decision assistance software has been used to help surgeons 
make medical decisions based on patient information. Positive results have been achieved that confirm the effectiveness of 
using machine learning techniques in diagnosing heart disease. These technologies have shown the potential to improve the 
accuracy and efficiency of diagnosis, leading to improved patient outcomes and reduced health burdens. The findings also 
revealed the need to develop effective diagnostic tools and enhance the prevention of heart disease. This study provides an 
important foundation for healthcare professionals and doctors working in the field of cardiology, as the techniques used can 
help them better understand and diagnose conditions and improve patient care.
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1. Introduction
Currently, heart disease is among the most prevalent diseases 
worldwide. It has been estimated that it caused approximately 
17.9 million people to die in 2017—15% of all deaths that occur 
naturally [1]. Heart disease is considered a chronic disease that 
can be detected earlier by measuring various health standards, 
e.g., glucose level, heart rate, cholesterol, and blood pressure [2]. 
Heart disease does not affect human health alone; it affects the 
capabilities of countries and their economies [3]. That is, heart 
disease is a serious disease with an extremely high incidence rate, 
particularly in poorer nations, due to the lack of knowledge of its 
symptoms [4]. Currently, many data mining and deep learning 
algorithms have been developed to identify and predict various 
types of diseases [5]. However, there are classification techniques 
that are widely used in healthcare because they are able to process 
very large amounts of data [6]. The common techniques used in 

healthcare are naive bayes, support vector machine (SVM), the 
k-nearest neighbor algorithm (k-NN), decision tree, fuzzy logic, 
artificial neural network (ANN), and genetic algorithms (GA) [7]. 
Systems for heart disease diagnosis and their applications possess 
both sensitivity and accuracy; however, the latter is dependent 
on how accurately the data are kept in the database [8]. Clinical 
decision aids help clinicians make medical decisions based on 
information provided by patients regarding their symptoms [9]. 
That is, these programs can make decisions using several features 
to analyse the input data and/or to arrive at the ultimate output 
(such as apps that use symptoms to identify diseases). Because 
many doctors lack enough information about the features of 
diseases, computer systems, and interconnected technologies that 
help patients identify symptoms of diseases, in cases where patients 
have many illnesses, they might not be able to accurately diagnose 
conditions quickly [10]. However, there are inspection techniques 
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(e.g., automatic learning, decision trees, neural networks, etc.) that 
help diagnose and predict disease by using a web application that 
simulates a neural network algorithm [11].

There are special programs that can be used to train medical 
students and doctors on new technologies in any field, educate 
patients, and identify disease symptoms [12]. That is, the system 
can simulate the patient's symptoms through graphic web 
applications to diagnose his or her disease. On this basis, this study 
attempts to compare studies related to heart disease and related 
features to gather data on the analysis and classification of heart 
diseases collected from patient documentation in hospitals in Ibb 
city, Yemen [10]. Therefore, the overall objective of this paper is 
to design a system to diagnose and classify heart diseases. This, 
in turn, may lead society to be aware of disease risks, creating 
a medical culture to be aware of preventive techniques to avoid 
heart diseases, which include eight kinds of heart diseases, such as 
artery occlusion, heart-related rheumatism, angina pectoris heart 
disease, heart-related disorders, birth defects, heart arrhythmia and 
cardiomyopathy. The paper's structure is arranged as follows: A 
review of pertinent research in this field is presented in Section 
II. The materials, procedures, and methodology employed are 
covered in Section III. The results and conclusions are given in 
Section IV. In Section V, the study's results are presented, along 
with some recommendations for further research.

2. Related Works
Before discussing studies that diagnose and classify heart disease, 
it is important to define heart disease, in which the term “heart 
disease” refers to a variety of symptoms that can be used to diagnose 
disease [13]. Many researchers have studied and analysed several 
techniques for predicting heart disease, including the following:

In [14], the most crucial features from four coronary artery disease 
(CAD) datasets were chosen using a novel heterogeneous hybrid 
feature selection technique. They also unveiled the Nasarian 
CAD dataset, a brand-new CAD dataset designed to evaluate the 
relationship between CAD and work-related characteristics. The 
efficiency of the suggested heterogeneous hybrid feature selection 
strategy is demonstrated by their findings.

In [15], a smart healthcare framework that improves the survival 
prognosis of heart failure patients without considering human 
feature engineering was proposed. Cloud computing and Internet 
of Things (IoT) technologies are used in this framework. The 
recommended method is to investigate whether heart failure 
patients can be classified as alive or dead using deep learning 
algorithms. The framework makes use of Internet of Things (IoT) 
sensors to gather data and transfer it to a cloud-based web server 
for analysis. There were 13 characteristics. The CNN model fared 
better than rival deep learning and machine learning models 
according to the testing data.

In [16], an approach for the detection of heart disease utilizing 
a feature choice optimization algorithm was reported, primarily 

focused on improving feature selection and minimizing the quantity 
of characteristics, and a recursive expansionist competitive method 
was used to choose relevant aspects of heart disease.

In [17], several machine learning and deep learning methods were 
employed to compare the findings of the UCI machine learning 
heart disease dataset, which comprises 14 key features utilized 
for the analysis. combined with a few multimedia tools, including 
portable electronics. An accuracy of 94.2% was attained using the 
deep learning method.

In [18], a new ensemble model called "NE-nu-SVC (Nested 
Ensemble nu-SVC) was introduced for the detection of CAD. 
Z-Alizadeh and Sani, two well-known CAD datasets, were used 
to test the proposed model. In [19], a multifilter approach was 
employed to increase the performance of different decision trees 
(DTs), which were subsequently applied to the CAD dataset. The 
power of DTs for CAD classification has been clearly discussed. 
In [20], a new training method for CAD datasets called the N2 
genetic optimizer, which is based on genetics, was developed. For 
the classification step, three different SVMs (nuSVM, SVC, and 
LinSVM) were employed. The obtained outcomes indicated that 
the new technique outperformed other commonly used methods 
for CAD classification. 

In [21], a study was conducted to increase prediction accuracy 
using different characteristic selection techniques, such as decision 
trees, naive Bayes, and neural network techniques, to predict 
cardiovascular disease or heart disease. It was found that the 
decision tree was accurate, scoring 98.54% in comparison with 
others. In light of this, a hybrid HRFLM method was proposed 
that combines the advantages of random forest (RF) and linear 
methods (LM), yielding an 88.4% prediction accuracy.

In [22], a study was conducted to increase the prediction accuracy 
by using different characteristic selection techniques and other 
techniques, such as decision trees, logistic regression, SVM, 
naive Bayes, and random forest. The results showed that logistic 
regression, with a score of 84.85%, was the best way to predict 
heart disease.

In [23], the authors used prediction models using different 
categories of characteristics, seven classification techniques 
(i.e., K-NN, DT, NB, LR, SVM, NN, and VOTE), and a hybrid 
method (i.e., logistic regression and naive Bayes). The outcomes 
demonstrated that the VOTE, along with the NB and LR methods, 
was the most accurate way to predict heart disease, with a score 
of 87.4%.

In [24], the multilayer Pi sigma neuron model (MLPSNM), which 
is based on the PI-sigma model, was presented for the aim of 
diagnosing cardiology using a machine learning repository. They 
utilized the cardiology dataset to do this. To minimize the dataset's 
dimensions and facilitate network learning, the BP algorithm 
was employed in conjunction with PCA and LDA preprocessing 
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methods. The grid converges after 50 iterations when using the 
SVM-LDA approach, which selects the features that are closest 
to the farthest level. In classifying patients with heart disease, the 
suggested model had a 94.53% classification accuracy.

In [25], an innovative transformer concept based on self-attention 
was developed to enhance the prediction of heart disease. The 
model attained a high accuracy of 96.51% when evaluated on 
the Cleveland dataset, surpassing the performance of other 
baseline approaches. By combining self-awareness systems and 
transformer networks, the model effectively captured contextual 
information and complex patterns in the data. The self-attention 
layers provided interpretability by assigning attention weights to 
different components of the input sequence, enabling physicians to 
understand the features that enhanced the forecasts of the model. 
The results show the potential of the proposed model for the early 
detection and diagnosis of cardiovascular diseases.

In [26], researchers proposed the CIGT format as a new way to 
integrate clinical, genetic, and patient transcriptome data with CVD 
data into a dataset suitable for artificial intelligence and machine 
learning (AI/ML). They then used for statistical tests to identify 
significant differences between patients and healthy individuals in 
terms of gene expression levels and clinical characteristics. Next, 
five different AI/ML classifiers were applied to predict the CVD 
status of patients based on their vital profiles. This study explored 
the discovery and prediction of biomarkers associated with 
CVD with high accuracy using a new combination of artificial 
intelligence and machine learning methods for precision medicine. 
This study presented a new approach that combines traditional 
statistics with a combination of artificial intelligence and machine 
learning techniques to identify important biomarkers from gene 
expression data of CVD patients and healthy individuals. This 
method revealed 18 tissue-specific biomarkers that can be used 
with up to 96% accuracy in disease prediction. Some of these 
biomarkers were previously known to be associated with CVD, 
while others were discovered for the first time. These biomarkers 
offer a useful foundation for identifying people at risk based on 
their biological profiles and may be useful indicators for the early 
diagnosis of CVD. Finally, they analysed transcriptomic data to 
validate the biomarkers discovered and understand their role in the 
course of the disease.

In [27], researchers aimed to develop accurate and efficient 
predictive models for the early detection of cardiovascular 
diseases using machine learning and deep learning techniques. 
Therefore, they used two different datasets to analyse the risk 
factors and features associated with cardiovascular diseases, 

namely, the cardiac heart disease dataset and the Cleveland heart 
disease dataset. Then, they implemented seven classifiers from 
machine learning and deep learning, namely, K-nearest neighbors 
(KNN), support vector machine (SVM), logistic regression (LR), 
convolutional neural network (CNN), gradient boosting (GB), 
XGBoost, and random forest (RF) classifiers. They evaluated and 
compared their performance using measures such as accuracy, 
sensitivity, specificity, and F1 score. They concluded that the 
XGBoost model is the best at achieving the highest levels of 
accuracy and reliability in predicting cardiovascular diseases, 
with 98.50% accuracy, 99.14% sensitivity, 98.29% specificity, and 
98.71% F1 score.

In [28], the study aimed to create a machine learning model capable 
of predicting early-stage heart disease using different feature 
selection techniques. The UCI Cleveland dataset containing 303 
heart patient records was used, and three feature selection methods 
were applied: ANOVA F value, chi-square test, and exchange of 
information. The random forest model outperformed six other 
machine learning models in predicting early-stage heart disease, 
with an accuracy of 94.51%, sensitivity of 94.87%, specificity of 
94.23%, and AUROC of 94.95.

In [29], a general, hybrid framework for diagnosing heart 
problems using machine learning and data modelling techniques 
was presented. The framework used multiple feature selection and 
classification techniques, and the best result was determined using 
a new voting technique that considers classification probabilities. 
The framework is based on five feature selection techniques: 
Pearson correlation, analysis of variance, iterative elimination, 
soft regularization, and decision tree. It also uses six classification 
techniques: artificial neural networks, convolutional neural 
networks, random forests, logistic regression, and robust gradient 
boosting. Logistic regression is used as a second layer to vote on 
the results of the first layer. The framework uses a public dataset 
from the CAGL platform called the UC Irvine Heart Problems 
Dataset. This collection contains information on clinical cases of 
heart problems with 75 features and 76 columns plus nomenclature. 
The collection included four datasets provided by four healthcare 
facilities. The group used 13 basic features common to previous 
research. The study achieved an accuracy of up to 96.3% in 
diagnosing heart problems using the dataset used.

There are many studies related to the classification and prediction 
of heart disease. Several recent studies have used multiple 
algorithms and different data and machine learning algorithms, 
such as random forests, some of which are shown in Tables 1.
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N-0 Study algorithms              Result Accuracy 
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Predict heart disease using 
self-attention mechanisms 

and transformers 
96.51% 

[27] Seven deep learning and machine 
learning classifiers 

Identify heart problems 
 98.50% 

[30] 
Comparing the performance of three 

AutoML programs: AutoKeras, 
AutoGluon, and PyCaret 

Predict heart disease using 
machine learning methods 86.89% 

[31] 
An automatic model capable of 

predicting heart disease with high 
accuracy 

Predict heart disease 87.28% 

[51] Random forest ensemble classifier 
Analyse how accurate the 

early coronary heart disease 
prognosis was. 

89% 

[52] A random forest-based machine 
learning model 

Enhancement and assess the 
effectiveness of the classifier 96% 

[53] Random forests 
Increasing the precision with 
which coronary heart disease 

is classified 
58%  
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and calculates the cost and error rate by utilizing the following 
equation to estimate the similarity and difference between two 
inputs:

b. Id3 algorithm
The id3 algorithm has the divide and conquer principle; it is based 
on the idea of dividing the problem into parts. Every party solved 
the problem several times, and then the solutions were gathered. 
It is the optimal way for choosing the best feature or property [37]
[38].

c. Logistic Regression
separates the data of a set of items into many sections based on 
comparable features. The error rate is computed based on the input 
and is determined using the logistic regression technique [40] [41]
[54].

The error rate calculation function is:

d. Neural Network
It is a technique that analyses data that closely fit data with many 
attributes to obtain certain outcomes. There are many algorithms 
that work in this relation, such as the following:

• Kohenin network algorithm:
The algorithm follows these steps:
Activate the network, assume that the weight values are Wij (t) in 
the range 0 <= i <= n-1). These weights should be from element i 
to element j at time t as follows:
- Few random numbers for several inputs (n) are input for each 
arithmetic element.
The vicinity area around element j is set to include a large area, and 
this primary vicinity is denoted by Nj (0).
-The input values are set as shown in this equation:

-where j(t) is the entry value of the input element (i) at time t.
-The distance dj between the input and each output element j is 

calculated as follows:

The minimum distance is set, and the output element located at this 
distance is set to be j *
-The element j* weights as well as all the elements in the vicinity 
containing this winning element, which is symbolized by the 
symbol Nj* (t), are set to obtain new weights, as follows:

-For element j in the vicinity of Nj* (t), with (0= i = <= n-1), where 
ŋ (t) is a gain factor. Its value is between (zero) and (one), and its 
value decreases with every adjustment circle of weights. Notably, 
the vicinity circle area decreases to include the least number of 
elements that are similar to and match the data and features of a 
particular input so that it is possible to create similar and active 
vicinity [42, 43].

e. Forest Random
It is a powerful and flexible algorithm in the field of machine 
learning that provides good results even without adjusting its 
parameters. It is one of the most widely used algorithms due to 
its ease and ability to be applied to regression and classification 
problems. This algorithm, as its label "Random Forest" suggests, 
creates a random forest. One of the most important advantages 
of RF is that it can be used for the classification and regression 
problems that make up most of today's machine learning problems 
[44]. Fig2 shows how RF could be applied to three trees whose 
results can be useful for the final output.

Figure 2: Random Forest Model with Three Trees

The random forest parameters are similar to those of the decision 
tree and bagging methods. However, the random forest method 
takes only a subspace of attributes into account when splitting a 
node. Trees can be more random when looking for the importance 
of the attribute randomly [45]. 

f. Decision Tree Rules
The path of a decision tree, which begins at any symptomatic node, 
continues via another symptomatic node, and finishes at the node 
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The random forest parameters are similar to those of the decision tree and bagging methods. However, 
the random forest method takes only a subspace of attributes into account when splitting a node. 
Trees can be more random when looking for the importance of the attribute randomly [45].  
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and(cough(with phlegm)). 
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(Pain in chest (as pang  location ((made of chest)). 
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3 suffer from  
(Pain in chest (how pain (as pang move pain with effort)). 
or (factors of dangerous (smoking or old years or family history or 
bacterial infection)). 
and(dyspnea(simple effort)) .   
and (tired and exhausted). 
and(heart throbbing(tachycardia)). 
and(cough(with blood) ). 
or(swelling (parties or legs)). 

Valvular 
disease. 

4 Suffer from: - 
(Pain in chest (as stress the chest , increasing by move and decrease by 
rest) and time (from 2 to 15 minutes)and location(left side or back of 
chest's bone)). 
and (Factors of the dangerous (smoking or fatness or old years or 
imbalance of blood pressure)). 
or (Dyspnea (at simple efforts)).  
or (tired and exhausted). 
or (Heart throbbing (as acceleration)). 
and (Vital wreaking (memory weak or  seeing weak   or move week)).  

Arteriosclerosis  

g. User InterfaceforDiagnosis 
To categorize and forecast heart disease, the research data were applied using the classification 
algorithms used by Weka software. Following the procedure of classification, the dataset was applied 
to a web application created in the ASPX language, allowing us to replicate the proper method in this 
research by inputting data on the symptoms of the illness selected by the patient and forecasting his 
medical status. The method of the proposed system is shown inFig.3, which shows the working 
diagram of the diagnostic system. 
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4. Results and Discussion 
These techniques were tested using the Weka program to select 
a technique to simulate heart disease via the web application to 
predict and diagnose heart disease and obtain the best method for 
diagnosis. The data were subjected to different techniques in three 
ways: the first method involved entropy calculations and decision 
tree construction; the second technique required the use of the 
Weka program; and the third method used a web application to 
simulate the technology selected for the purpose of diagnosing 
heart disease. Most factors, techniques and methods were used to 
provide the correct result.

4.1 Entropy Calculation
 Data distortion in the training set occurs when using the entropy 
equation, which is a method used to determine the root node 
and subsequent nodes using decision trees [46]. The entropy is 
calculated through the following equation:

Next, the gain is computed; finding the greatest benefit and dividing 
it by the overall entropy is the aim. The following formula is used 
to compute it:

4.2 Performance Metrics
The following generic equations reflect the general computations 
required to display the classifier's accuracy scores for the chosen 
method [47][48]:

• The entropy of the instances when the characteristic (chest pain) 
appears, disease classification and number of pathological cases 
are calculated. We start with the first attribute in the Table.3, 
namely, chest pain. Four patients suffered from arteriosclerosis.
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Cardiomyopathy 4 
Arrhythmia 4 

Congenital defects 1 

Congenital defects 3 0.411 

Heart Rheumatism 3 

Arrhythmia 1 

 
Then, the gain (chest pain) attribute was calculated with Equation 7: 
Gain(pi,i) = (4/46 * 0 + 4/46 * 0 + 5/46 * 0 + 4/46 * 0 + 5/46 * 0 + 6/46 * 0 + 13/46 * 0.556 + 5/46 * 
0.411) = 0.785 
The same method of calculating entropy is used for every characteristic. After that, each attribute is 
sorted, and the attribute with the highest entropy value located in the tree root is chosen. In the 
decision tree, ID3 was selected for the Weka system, and the decision tree was constructed as follows: 

 ID3 Decision Tree 
Acroanaesthesia = None 

|  Vital_weakness_on_the_bodys_parts = Yes 
|  |  Palpitation = Yes 
|  |  | Amnesia = no: arteriosclerosis 
|  |  | Amnesia = Yes: Cardiomyopathy 
|  |    Palpitation = No: Cardiomyopathy 
|  Vital_weakness_on_the_bodys_parts = No 
|  | Danger Factors = Yes 
|  |  |  Sickliness = No 
|  |  |  |  Eruption = No 
|  |  |  |  |  Tumefaction = No 
|  |  |  |  |  |  Dizziness = No 
|  |  |  |  |  |  |  Flatulence = No 
|  |  |  |  |  |  |  |  Cough = No: Angina_pectoris 
|  |  |  |  |  |  |  |  Cough = Yes: Valvular_disease 
|  |  |  |  |  |  |  Flatulence = Yes: Heart_contaminations 
|  |  |  |  |  |  Dizziness = Yes 
|  |  |  |  |  |  |  Asthenia = No: Cardiomyopathy 
|  |  |  |  |  |  |  Asthenia = Yes: Myocardial_infraction 
|  |  |  |  |  Tumefaction = Yes 
|  |  |  |  |  |  Headache = No 
|  |  |  |  |  |  |  Dyspnea = No: Congestive_heart_failure 
|  |  |  |  |  |  |  Dyspnea = Yes 
|  |  |  |  |  |  |  |  Flatulence = No 
|  |  |  |  |  |  |  |  |  Cough = No: Congestive_heart_failure 
|  |  |  |  |  |  |  |  |  Cough = Yes 
|  |  |  |  |  |  |  |  |  |  Asthenia = No: Valvular_disease 
|  |  |  |  |  |  |  |  |  |  Asthenia = Yes: Congestive_heart_failure 
|  |  |  |  |  |  |  |  Flatulence = Yes: Congestive_heart_failure 
|  |  |  |  |  |  Headache = Yes 
|  |  |  |  |  |  |  Dyspnea = No: Valvular_disease 
|  |  |  |  |  |  |  Dyspnea = Yes: Heart Contaminations 
|  |  |  |  Eruption = Yes  
|  |  |  |  |  Asthenia = No 
 |  |  |  |  |  Dyspnea = No: Rheumatism_in_heart 
|  |  |  |  |  |  Dyspnea = Yes 
|  |  |  |  |  |  |  Palpitation = Yes: Heart Rheumatism 
|  |  |  |  |  |  |  Palpitation = No: Congestive_heart_failure 
|  |  |  |  |  Asthenia = Yes: Heart Contaminations 
|  |  |  |  Rash = z: Valvular_disease 

Table 3: Calculation of the Entropy of Chest Pain

Then, the gain (chest pain) attribute was calculated with Equation 
7:
Gain(pi,i) = (4/46 * 0 + 4/46 * 0 + 5/46 * 0 + 4/46 * 0 + 5/46 * 0 + 
6/46 * 0 + 13/46 * 0.556 + 5/46 * 0.411) = 0.785

The same method of calculating entropy is used for every 
characteristic. After that, each attribute is sorted, and the attribute 
with the highest entropy value located in the tree root is chosen. In 
the decision tree, ID3 was selected for the Weka system, and the 
decision tree was constructed as follows:
• ID3 Decision Tree
Acroanaesthesia = None
|  Vital_weakness_on_the_bodys_parts = Yes
|  |  Palpitation = Yes
|  |  | Amnesia = no: arteriosclerosis
|  |  | Amnesia = Yes: Cardiomyopathy
|  |    Palpitation = No: Cardiomyopathy
|  Vital_weakness_on_the_bodys_parts = No
|  | Danger Factors = Yes
|  |  |  Sickliness = No
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|  |  |  |  |  Tumefaction = No
|  |  |  |  |  |  Dizziness = No
|  |  |  |  |  |  |  Flatulence = No
|  |  |  |  |  |  |  |  Cough = No: Angina_pectoris
|  |  |  |  |  |  |  |  Cough = Yes: Valvular_disease
|  |  |  |  |  |  |  Flatulence = Yes: Heart_contaminations
|  |  |  |  |  |  Dizziness = Yes

|  |  |  |  |  |  |  Asthenia = No: Cardiomyopathy
|  |  |  |  |  |  |  Asthenia = Yes: Myocardial_infraction
|  |  |  |  |  Tumefaction = Yes
|  |  |  |  |  |  Headache = No
|  |  |  |  |  |  |  Dyspnea = No: Congestive_heart_failure
|  |  |  |  |  |  |  Dyspnea = Yes
|  |  |  |  |  |  |  |  Flatulence = No
|  |  |  |  |  |  |  |  |  Cough = No: Congestive_heart_failure
|  |  |  |  |  |  |  |  |  Cough = Yes
|  |  |  |  |  |  |  |  |  |  Asthenia = No: Valvular_disease
|  |  |  |  |  |  |  |  |  |  Asthenia = Yes: Congestive_heart_failure
|  |  |  |  |  |  |  |  Flatulence = Yes: Congestive_heart_failure
|  |  |  |  |  |  Headache = Yes
|  |  |  |  |  |  |  Dyspnea = No: Valvular_disease
|  |  |  |  |  |  |  Dyspnea = Yes: Heart Contaminations
|  |  |  |  Eruption = Yes 
|  |  |  |  |  Asthenia = No
 |  |  |  |  |  Dyspnea = No: Rheumatism_in_heart
|  |  |  |  |  |  Dyspnea = Yes
|  |  |  |  |  |  |  Palpitation = Yes: Heart Rheumatism
|  |  |  |  |  |  |  Palpitation = No: Congestive_heart_failure
|  |  |  |  |  Asthenia = Yes: Heart Contaminations
|  |  |  |  Rash = z: Valvular_disease
|  |  |  Sickliness = Yes: Myocardial_infraction
|  |Danger Factors = No
|  |  |  Rhagades = No
|  |  |  |  Fever = No: Cardiomyopathy
|  |  |  |  Fever = Yes: Heart Rheumatism



      Volume 3 | Issue 5 | 9Int J Clin Med Edu Res, 2024

|  |  |  Rhagades = Yes: Congenital_defect
Acroanaesthesia = Yes: arrhythmia.
WEKA software was used to classify the research data using a 
variety of methods. Finally, GUIs were created to mimic random 
forest techniques so that users could efficiently identify heart 
illnesses using graphical user interfaces, which can also be used to 
diagnose other diseases.

4.3 Findings
The following findings were revealed from the results:
- The obtained data were used to design a diagnostic system for 
diagnosing common heart conditions.
- Various heart diseases can be classified as shown in Table (2).
- The classification using random forest was better than the other 
classifications, as shown in Table.4 below:
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|  |  |  Sickliness = Yes: Myocardial_infraction 
|  |Danger Factors = No 
|  |  |  Rhagades = No 
|  |  |  |  Fever = No: Cardiomyopathy 
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WEKA software was used to classify the research data using a variety of methods. Finally, GUIs were 
created to mimic random forest techniques so that users could efficiently identify heart illnesses using 
graphical user interfaces, which can also be used to diagnose other diseases. 

 Findings 
The following findings were revealed from the results: 

- The obtained data were used to design a diagnostic system for diagnosing common heart 
conditions. 

- Various heart diseases can be classified as shown in Table (2). 
- The classification using random forest was better than the other classifications, as shown in 

Table.4 below: 
 

Table.4 The results of classification 
Algorithm Name Accuracy 

Bagging 80.7339% 
LBR 76.1468% 

RBFNetwork  87.156  % 
RandomForest 92.6606% 

RandomTree 88.9908% 
SVM 72% 

LinearSVC 86.3% 
Logistic Regression  63.6% 

Decision Table 68.8073% 
J48 77.0642% 

CART 77.981% 
ID3 90.8257% 

Naive Bayes 78.8991% 
 

- All the classification algorithms provided relatively correct answers. 
- The random forest algorithm ranked the most highly at 92.66%, followed by ID3, as 

shown in Fig 4. 
- Tables 1 shows that machine learning methods were used to classify and predict heart 

diseases for one type of heart disease, and the accuracy rate differed among the 
studies. For example, in [27][51][52][53], the random forest classifier was used, and 
the highest accuracy for classification was 98%. In the proposed study, the 
percentage was 92.66% for eight types of diseases. 

 

Table 4: The Results of Classification

- All the classification algorithms provided relatively correct 
answers.
- The random forest algorithm ranked the most highly at 92.66%, 
followed by ID3, as shown in Fig 4.
- Tables 1 shows that machine learning methods were used to 

classify and predict heart diseases for one type of heart disease, 
and the accuracy rate differed among the studies. For example, in 
[27][51][52][53], the random forest classifier was used, and the 
highest accuracy for classification was 98%. In the proposed study, 
the percentage was 92.66% for eight types of diseases.
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been investigated, and an automated system for identifying heart conditions to support physicians in 
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classification of heart disease. The necessary tests were performed to determine how well the 
classification methods classified cardiac disorders. The results demonstrated that all the classification 
methods are predictive and capable of providing a reasonably accurate response. However, among 
all grading scales in the dataset, random forest was the most common, followed by the ID3 algorithm. 
The algorithm selected throughout the classification phase was simulated using a graphical user 
interface created in the ASPX language. 
To improve healthcare and save expenses, more studies are needed to create a categorization 
system for methods and algorithms that will help identify the most suitable and efficient technology for 
a variety of ailments. Therefore, the usefulness of the existing search might be significantly increased 
by such a study. For instance, research may be performed on conditions that share biological traits 
with heart disease. It is also feasible to link the categorization system to additional systems that take 
into account the primary signs and symptoms of the illness, such as an ECG system and temperature 
and heart rate monitoring. These systems may be combined to provide a full working environment. 
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4.4 Conclusion and Future Work 
Several machine learning approaches for categorizing various 
symptoms and heart conditions have been investigated, and an 
automated system for identifying heart conditions to support 
physicians in diagnostic clinics has been developed. The Weka 
tool was specifically used to apply 14 classifiers to imitate the 
proper decision-making process and achieve high accuracy in the 
diagnosis and classification of heart disease. The necessary tests 
were performed to determine how well the classification methods 
classified cardiac disorders. The results demonstrated that all the 
classification methods are predictive and capable of providing a 
reasonably accurate response. However, among all grading scales 
in the dataset, random forest was the most common, followed 
by the ID3 algorithm. The algorithm selected throughout the 
classification phase was simulated using a graphical user interface 
created in the ASPX language.

To improve healthcare and save expenses, more studies are needed 
to create a categorization system for methods and algorithms that 
will help identify the most suitable and efficient technology for a 
variety of ailments. Therefore, the usefulness of the existing search 
might be significantly increased by such a study. For instance, 
research may be performed on conditions that share biological 
traits with heart disease. It is also feasible to link the categorization 
system to additional systems that consider the primary signs and 
symptoms of the illness, such as an ECG system and temperature 
and heart rate monitoring. These systems may be combined to 
provide a full working environment.
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