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Abstract
We explored an extension of the Cauchy-Riemann equations to the algebra of treons, recently described by Alejandro 
Bermejo, whose elements are ordered 3-tuples. We leveraged the isomorphism between the algebra of treons and algebra 
B, and deduced the Cauchy-Riemann equations for the algebra of treons, establishing the necessary conditions for 
analyticity in this algebraic structure. This work significantly broadened our horizons in complex analysis and introduced 
new possibilities for applications across various fields of advanced mathematics.
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1. Introduction
The algebra B is a recently described algebraic structure by Alejandro Bermejo, whose elements are ordered 3-tuples (x1, x2, x3) [1]. 
This algebra is isomorphic to another algebra whose elements, termed treons by Bermejo, are represented in the form x1 + x2i + x3j, 
where i2 = j2 = −id, with id denoting the identity element of the algebra where treons are defined [1,2]. The structure of these treons 
allows for an extension of the concept of complex numbers to a system with new possibilities in the study of complex analysis.

The Cauchy-Riemann equations are a set of necessary conditions that functions of a complex variable must satisfy to be holomorphic 
(analytic) in a domain [3,4]. These equations are fundamental in complex analysis because the differentiability of complex functions 
is strictly related to the fulfillment of these equations [3-5].

We extend the framework of the Cauchy-Riemann equations to the algebra of treons. Utilizing the isomorphism between algebra 
B and the algebra of treons, we propose a derivation of the Cauchy- Riemann equations adapted to this new algebraic structure [2]. 
This development not only broadens the boundaries of complex analysis but also establishes a foundation for future research in 
advanced algebras and their applications. The derivation of these equations in the context of treons is crucial for understanding and 
leveraging the analytic properties in this algebraic structure.

2. Derivation
Due to the isomorphism between the algebra B and the algebra of treons, X [2], we can establish the equivalence:
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where (x1, x2, x3) ∈ B and x1 + x2i+ x3j ∈ X. For simplicity, we assume id ≡ 1.
Let an arbitrary treon be x ≡ x1 + x2i+ x3j and let f(x) be a mapping, we have:

f((x1, x2, x3)) = f(x1 + x2i+ x3j).

Let u((x1, x2, x3)), v((x1, x2, x3)), and w((x1, x2, x3)) be three mappings such that:

f(x1 + x2i+ x3j) = u(x1, x2, x3) + iv(x1, x2, x3) + jw(x1, x2, x3).

where we simplify the notation of two parentheses as follows: Φ((x1, x2, x3)) ≡ Φ(x1, x2, x3).
Let a fixed point x0 ≡ (x10 , x20 , x30) = x10 + x20i+ x30j.
With all this, we evaluate each of the limits for the corresponding directions of the three components

of the treon x.

1.1 Variation in the first component of a treon

Let there be an arbitrary increment in the direction of the first component, ∆x1, with respect to the
fixed point x0. Then, the limit of f(x) as ∆x1 → 0:

lim
∆x1→0

f(x0 +∆x1)− f(x0)

∆x1
=

∂

∂x1
f(x0),

where x = x0 +∆x1, thus ∆x1 = x− x0. Then:

∂

∂x1
f(x0) = lim

∆x1→0

f(x10 +∆x1, x20 , x30)− f(x10 , x20 , x30)

∆x1
,

which can be rewritten as:
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2.2 Variation in the First Imaginary Component of a Treon
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∂

∂x1
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∆x1→0

[
u(x10 +∆x1, x20 , x30) + iv(x10 +∆x1, x20 , x30) + jw(x10 +∆x1, x20 , x30)

∆x1

−u(x10 , x20 , x30) + iv(x10 , x20 , x30) + jw(x10 , x20 , x30)

∆x1
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∆x1

)

+ i lim
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∆x1

)
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∆x1

)
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]

x0
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which is the corresponding Cauchy-Riemann equations for the algebra of treons.
Therefore, these are the required conditions for an arbitrary function with a treon domain to be” holomorphic” in some subspace of 
the treon space.

3. Conclusions
We derived the Cauchy-Riemann equations for the algebra of treons, extending the concept of holo- morphism to this algebra. 
Utilizing the isomorphism between the algebra B and the algebra of treons, we demonstrated that treonic functions defined in this 
context must satisfy equations analogous to the classical Cauchy-Riemann equations.

Our resulting equations represent a natural extension of the Cauchy-Riemann equations to the realm of treons. This result not only 
expands the tools available in complex analysis but also introduces a new paradigm for research in advanced algebra.

Our Cauchy-Riemann equations for treons represent a significant advancement in the field of algebraic analysis, establishing a solid 
foundation for the study and application of algebraic structures in various areas of modern mathematics.
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