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Abstract
In case the separation for the parameters of interest appears below the resolution limit of the estimator, the ambiguity arises 
whether the two parameter estimates relate to one source emitted twice or to two close sources emitted once. The paper 
develops novel Bayes technique aimed to identify one/two closely spaced sources having a pair of Gaussian estimates of 
planar location as parameter. Prior probabilities of the one/two-sources hypotheses are available from the analysis of the 
physical characteristics of the emissions, assuming that they can be equally probable. The technique calculates minimal and 
maximal posterior probabilities of the hypotheses across all the positions at a given distance between them. When the minimal 
probability of one source is bigger than the maximal probability of two sources the decision is adopted in favor of one source 
and vice versa. Identification procedure is applied to distinguish two planar location estimates obtained for the users of basic 
station network by the time difference of arrival algorithm. The application gives an example of how the procedure revises the 
prior probabilities and can change thereby the initial preference with the distance between users.
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1. Introduction
Having two parameter estimates the problem whether one source emits twice or two sources at some separation between parameters 
below resolution limit emit once takes place in applications of the resolution theory. The existing approaches to identification 
parametrically close sources typically invoke probability of number of sources – either from subjective expert experience or Bayes 
inference, where such physical characteristics of a signal as spectrum, power and others are exploited. We come across the closest 
example of Bayes signal classification in radar, seismology and so on, when, having the probabilities of belonging of a signal to each 
class for each emission, it is not difficult to deduce probabilities of all possible numbers of sources for a given number of emissions 
using basic probability theorems [1,2]. In infrared optics, Bayesian logic is applied to obtain probability of number of neighboring 
screen images to overcome the smearing effect [3]. A similar problem arises in localization of blinking objects in microscopy where 
Bayesian framework is used to achieve probability of number of objects for the analysis below the diffraction limit [4-6]. We will refer 
to a solution that is able to provide the required probabilities of one and two sources as the prior solution (PS).

The resolution limit of the estimator is described by the Statistical Resolution Limit (SRL) defined as a minimal separation at which 
estimates are resolved correctly [7]. If the separation is less than SRL, then there will exist ambiguity about one or two sources. 
The concepts of SRL are primarily formulated in the detection theory and the estimation accuracy approach, [7,8-18]. Herein, we 
rely on the estimation accuracy utilizing the Cramer-Rao Bound (CRB) matrix-function of parameter, which under mild conditions 
represents a narrow lower bound on the covariance matrix of any unbiased estimator [19]. The equality to CRB is achieved in the 
class of efficient estimators to which we will address in the paper.
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When resolving to the parameters p1  and p2  with separation ∆p =SRL, ∆p = |p2 - p1| , random separation between their estimates 

2 1p p p′ ′ ′∆ = −    centered at  p p′∆ < ∆  satisfies the inequality  p p′∆ < ∆ , in which the separation estimate is smaller than the separation, with 
some probability. We will call this inequality the resolving inequality (RI) and the probability of RI abbreviate PRI. In scalar resolution 
criteria SRL is offered to be equal to standard deviation  σ of the estimates difference for both decoupled and coupled estimates [15,7]. 

Thus, PRI for Gaussian noise ∆p'  is { }P p σ′∆ <  =0.9544:2=0.4772, i.e. it is close to 1/2. SRL is called to be consistent with PRI if 
PRI for that SRL occurs in the proximity of 1/2 (is equal to 1/2 up to the second decimal place). As we can see, SRLs from [15,7] are 
consistent.

With regard to vector case, separation should be expressed through a metric in parameter space, but SRL and PRI will clearly 
depend on variance of parameter component estimates and their covariance. The problem for multi-parameter estimates is 
considered in [16] by Korso, Boyer, Renaux and Marcos. Therein, SRL=CRB(δ), where separation δ between sets of parameters 

is the  κ-norm distance (Minkowsky distance). Let us represent two scalar parameters  p(1), p(2)  in a vector form, ( ) ( )1 2,
T

p p =  p  

and denote estimates of vector p   obtained from the decoupled emissions 1 and 2 as 1′p  ,  2′p  respectively. Then, the RI is written 

in metric of 1-norm (at κ = 1 ) of a difference vector 
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p pκδ = ′ ′ ′ ′∆ = ∆ = − +p p ( ) ( )2 2
1 2p p SRL′ ′+ − ≤

( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) ( ) ( )( )2 2 2 21 2 1 2 1 2 1 22
1 1 1 1 2 2 2 22cov , 2cov ,SRL p p p pσ σ σ σ′ ′ ′ ′= + − + + − . Variance and covariance are defined via 

underlying CRB functions obtained from applying change of variable formula to the extended measurement model of the estimator. 

This result formally extends scalar SRL on vector case, however PRI, i.e. the probability of  1
SRL′∆ ≤p , could hardly be determined 

here in comparison with the scalar resolution criteria. Clark analyzing the resolution of estimator that produces vector decoupled 
Gaussian estimates offered weighted Euclidian metric of the distance between ellipsoidal confidence regions of probability 0.9 around 
each of the two parameters (really, Clark deals with the multiple vector parameter) [20]. The estimates are resolvable when the 
ellipsoids are disjoint. At the “resolution threshold” metric of the separation to the ellipsoids will be zero, and by this metric they will 
be tangent, but it is also not suitable to reach PRI unlike scalar case.

The paper considers the problem of identifying one/two sources by a pair of Gaussian decoupled estimates of planar location as 
parameter. The identifying is to perform in the domain of closely spaced sources where the covariance matrices of estimates are 
sufficiently approximated by a constant matrix, and thus SRL is also expected to be a constant. Discrimination positional estimates 
on the plane between blinking and close sources is relevant in mobile communication, molecular microscopy, astrometry and many 
other fields.

We construct novel Bayes technique with prior probabilities extracted from PS over two mutually exclusive events of Bayes sample 
space when the distance between sample estimates is either below or over SRL. The technique calculates the minimal and the maximal 
posterior probabilities of one and two sources across all the positions at a given distance between them. If the minimal probability of 
one source will be bigger than the maximal probability of two sources then we decide in favor of one source and vice versa. And thus, 
the probabilistic decision induced by PS can be revised with distance. To the best of our knowledge, no solution aimed to discriminate 
one source emitted twice and two close sources emitted once for a given pair of location estimates, which would be parameterized by 
the distance between hypothesized sources, has been considered previously.

When designing the event space, we need to have appropriate SRL concept for the planar decoupled estimates which would meet the 
following requirements: 1. SRL should be consistent with PRI when reducing to one-dimensional case and 2. the probability that the 
distance between estimates is smaller (bigger) than SRL, conditioned by the one/two-source hypotheses, should be computationally 
feasible. Clark’s idea about the ellipsoidal confidence region is transformed herein to develop new SRL concept based on circular 
one of the high confidence probability to this end. Accordingly, SRL is said to be equal to the sum of the radii of confidence circles 
around each of the two parameters each of which contains parameter estimate with high (near to unity) probability, i.e. the circles 
at the separation=SRL are tangent. As shown in the study, PRI for proposed SRL reaches the proximity of 1/2 as long as the planar 
concentration ellipsoid (CE) (the term is borrowed from [21]) of estimates difference is shrinking along the minor axis and by 
that degenerating towards a scalar case. The computation of the probability required is feasible for a given difference between the 
parameters and the covariance matrices of each estimate. If the circles around location sample estimates intersect the distance between 
them occurs below SRL, otherwise, when they are disjoint – over SRL in Bayes event space.

2 1p p p′ ′ ′∆ = −2 1p p p′ ′ ′∆ = −

,
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The technique’s work is illustrated in the example of distinguishing two positional estimates between one and two close each other 
users of the time difference of arrival (TDOA) basic stations (BS)s network. The signals there are classified to derive the initial 
probabilities of one and two users. The solution must answer the following question: does one user emit twice or do two users at some 
distance between them emit once. The technique implementation is based on the radius of the high confidence circle obtained in the 
paper for the confidence probability 0.99. This radius will subsequently be denoted as R99.

The rest of the paper is organized as follows. The problem is described in Section 2. New concept of SRL is founded in Section 3. 
Section 4 contains the design of Bayesian identification technique. The algorithm for estimation of R99 is presented in Section 5. 
Proposed technique as applied in TDOA BSs network is quantitatively studied in Section 6. Section 7 briefly draws the summary of 
the paper.

2. Statement of the Problem
During two consecutive time intervals T 1 and 
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 ,I IIq q q  gathering physical characteristics of the emissions, and m  dimensional measurement 

parameter  kp φ  which is a known smooth function of a two-dimensional unknown vector of the source 

location,  ,I IIφ φ φ : 
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IIq q  emit once. The probabilities  HP   and  HP   of the 

hypotheses come from a preceding step of data processing where parameter q  can be involved. 
 
We define the circles  1 1 1: R  S φ φ φ  and  2 2 2: R  S φ φ φ ,  denotes Euclidian norm, with 

radii 1R  and 2R  where estimates φ  and φ  fall with high probability SP : 1φ S  for H  and 1φ S , 

2φ S  for H . It is assumed (c) that sample covariance matrices inside 1S  and 2S  coincide with  1Φ φ  

and  2Φ φ  with high accuracy. Due to negligible probability 21 SP  of outliers beyond circles we will treat 

estimates φ  and φ  so that as if φ , 1φ S  or 1φ S , 2φ S . 
 
The identifying is performed in the domain 0S  centered at 1φ  where covariance matrices  2Φ φ  are assumed 
(d) to be sufficiently approximated by a constant matrix. It follows the assumption (d) that the radius 

 2 2 2R R φ  is also approximated in 0S  by a constant. Let us define domain 0S  as 0 S

 2 2 1: S SR R   φ φ φ , 1 2SR R R  , S SR R  , and specify it as the domain of closely spaced sources.  

 
The goal is to find probabilistic decision of the problem whether one source at position 1φ  emits twice or two 

sources at positions 1φ  and 2φ  emit once for a given separation 1 2r  φ φ  with the sample estimates 

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and 

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where υ  and υ  are the measurement errors corresponding to the emissions I and II with  TE    0υ υ , 
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φ  over the emissions I and II:   φφ p ,  , φ φ φ , φ= φ ς ,  ,   ς φ φ , where φ  and φ  

are the corresponding errors, which are also decoupled. 
 
We consider (a) “regular enough” algorithms p  and φ  such that p  and φ  are both normally distributed 

[22] with the covariance matrix Π  of the estimate p  and an unknown one  Φ φ  of the estimate φ . The 

estimators p  and φ  are assumed (b) to be efficient, hence Φ  is calculated as CRB by use of the Fisher 

Information Matrix  FIM φ :      1 Φ CRB FIMφ φ φ . For Gaussian noise,   FIM φ
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i.e. p  and p  are decoupled. Unbiased estimator φ  uses measurements (2) to produce estimates φ  and 

φ  over the emissions I and II:   φφ p ,  , φ φ φ , φ= φ ς ,  ,   ς φ φ , where φ  and φ  

are the corresponding errors, which are also decoupled. 
 
We consider (a) “regular enough” algorithms p  and φ  such that p  and φ  are both normally distributed 

[22] with the covariance matrix Π  of the estimate p  and an unknown one  Φ φ  of the estimate φ . The 

estimators p  and φ  are assumed (b) to be efficient, hence Φ  is calculated as CRB by use of the Fisher 

Information Matrix  FIM φ :      1 Φ CRB FIMφ φ φ . For Gaussian noise,   FIM φ
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The hypotheses H  and H  serve to specify the sources of emissions: the hypothesis H  means that one 

source at 1
I II φ φ φ  with 1

I II q q q  emits twice, the hypothesis H – that each of the two sources at 

1
Iφ φ  and 2

IIφ φ  with 1
Iq q  and 2

IIq q  emit once. The probabilities  HP   and  HP   of the 

hypotheses come from a preceding step of data processing where parameter q  can be involved. 
 
We define the circles  1 1 1: R  S φ φ φ  and  2 2 2: R  S φ φ φ ,  denotes Euclidian norm, with 

radii 1R  and 2R  where estimates φ  and φ  fall with high probability SP : 1φ S  for H  and 1φ S , 

2φ S  for H . It is assumed (c) that sample covariance matrices inside 1S  and 2S  coincide with  1Φ φ  

and  2Φ φ  with high accuracy. Due to negligible probability 21 SP  of outliers beyond circles we will treat 

estimates φ  and φ  so that as if φ , 1φ S  or 1φ S , 2φ S . 
 
The identifying is performed in the domain 0S  centered at 1φ  where covariance matrices  2Φ φ  are assumed 
(d) to be sufficiently approximated by a constant matrix. It follows the assumption (d) that the radius 

 2 2 2R R φ  is also approximated in 0S  by a constant. Let us define domain 0S  as 0 S

 2 2 1: S SR R   φ φ φ , 1 2SR R R  , S SR R  , and specify it as the domain of closely spaced sources.  

 
The goal is to find probabilistic decision of the problem whether one source at position 1φ  emits twice or two 

sources at positions 1φ  and 2φ  emit once for a given separation 1 2r  φ φ  with the sample estimates 

φ  

and 

φ  of the random variables φ  and φ  on the conditions (a), (b), (c) and (d). 
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where υ  and υ  are the measurement errors corresponding to the emissions I and II with  TE    0υ υ , 

i.e. p  and p  are decoupled. Unbiased estimator φ  uses measurements (2) to produce estimates φ  and 

φ  over the emissions I and II:   φφ p ,  , φ φ φ , φ= φ ς ,  ,   ς φ φ , where φ  and φ  

are the corresponding errors, which are also decoupled. 
 
We consider (a) “regular enough” algorithms p  and φ  such that p  and φ  are both normally distributed 

[22] with the covariance matrix Π  of the estimate p  and an unknown one  Φ φ  of the estimate φ . The 

estimators p  and φ  are assumed (b) to be efficient, hence Φ  is calculated as CRB by use of the Fisher 

Information Matrix  FIM φ :      1 Φ CRB FIMφ φ φ . For Gaussian noise,   FIM φ
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The hypotheses H  and H  serve to specify the sources of emissions: the hypothesis H  means that one 

source at 1
I II φ φ φ  with 1

I II q q q  emits twice, the hypothesis H – that each of the two sources at 

1
Iφ φ  and 2

IIφ φ  with 1
Iq q  and 2

IIq q  emit once. The probabilities  HP   and  HP   of the 

hypotheses come from a preceding step of data processing where parameter q  can be involved. 
 
We define the circles  1 1 1: R  S φ φ φ  and  2 2 2: R  S φ φ φ ,  denotes Euclidian norm, with 

radii 1R  and 2R  where estimates φ  and φ  fall with high probability SP : 1φ S  for H  and 1φ S , 

2φ S  for H . It is assumed (c) that sample covariance matrices inside 1S  and 2S  coincide with  1Φ φ  

and  2Φ φ  with high accuracy. Due to negligible probability 21 SP  of outliers beyond circles we will treat 

estimates φ  and φ  so that as if φ , 1φ S  or 1φ S , 2φ S . 
 
The identifying is performed in the domain 0S  centered at 1φ  where covariance matrices  2Φ φ  are assumed 
(d) to be sufficiently approximated by a constant matrix. It follows the assumption (d) that the radius 

 2 2 2R R φ  is also approximated in 0S  by a constant. Let us define domain 0S  as 0 S

 2 2 1: S SR R   φ φ φ , 1 2SR R R  , S SR R  , and specify it as the domain of closely spaced sources.  

 
The goal is to find probabilistic decision of the problem whether one source at position 1φ  emits twice or two 

sources at positions 1φ  and 2φ  emit once for a given separation 1 2r  φ φ  with the sample estimates 

φ  

and 

φ  of the random variables φ  and φ  on the conditions (a), (b), (c) and (d). 
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where υ  and υ  are the measurement errors corresponding to the emissions I and II with  TE    0υ υ , 

i.e. p  and p  are decoupled. Unbiased estimator φ  uses measurements (2) to produce estimates φ  and 

φ  over the emissions I and II:   φφ p ,  , φ φ φ , φ= φ ς ,  ,   ς φ φ , where φ  and φ  

are the corresponding errors, which are also decoupled. 
 
We consider (a) “regular enough” algorithms p  and φ  such that p  and φ  are both normally distributed 

[22] with the covariance matrix Π  of the estimate p  and an unknown one  Φ φ  of the estimate φ . The 

estimators p  and φ  are assumed (b) to be efficient, hence Φ  is calculated as CRB by use of the Fisher 

Information Matrix  FIM φ :      1 Φ CRB FIMφ φ φ . For Gaussian noise,   FIM φ
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The hypotheses H  and H  serve to specify the sources of emissions: the hypothesis H  means that one 

source at 1
I II φ φ φ  with 1

I II q q q  emits twice, the hypothesis H – that each of the two sources at 

1
Iφ φ  and 2

IIφ φ  with 1
Iq q  and 2

IIq q  emit once. The probabilities  HP   and  HP   of the 

hypotheses come from a preceding step of data processing where parameter q  can be involved. 
 
We define the circles  1 1 1: R  S φ φ φ  and  2 2 2: R  S φ φ φ ,  denotes Euclidian norm, with 

radii 1R  and 2R  where estimates φ  and φ  fall with high probability SP : 1φ S  for H  and 1φ S , 

2φ S  for H . It is assumed (c) that sample covariance matrices inside 1S  and 2S  coincide with  1Φ φ  

and  2Φ φ  with high accuracy. Due to negligible probability 21 SP  of outliers beyond circles we will treat 

estimates φ  and φ  so that as if φ , 1φ S  or 1φ S , 2φ S . 
 
The identifying is performed in the domain 0S  centered at 1φ  where covariance matrices  2Φ φ  are assumed 
(d) to be sufficiently approximated by a constant matrix. It follows the assumption (d) that the radius 

 2 2 2R R φ  is also approximated in 0S  by a constant. Let us define domain 0S  as 0 S

 2 2 1: S SR R   φ φ φ , 1 2SR R R  , S SR R  , and specify it as the domain of closely spaced sources.  

 
The goal is to find probabilistic decision of the problem whether one source at position 1φ  emits twice or two 

sources at positions 1φ  and 2φ  emit once for a given separation 1 2r  φ φ  with the sample estimates 

φ  

and 

φ  of the random variables φ  and φ  on the conditions (a), (b), (c) and (d). 
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where υ  and υ  are the measurement errors corresponding to the emissions I and II with  TE    0υ υ , 

i.e. p  and p  are decoupled. Unbiased estimator φ  uses measurements (2) to produce estimates φ  and 

φ  over the emissions I and II:   φφ p ,  , φ φ φ , φ= φ ς ,  ,   ς φ φ , where φ  and φ  

are the corresponding errors, which are also decoupled. 
 
We consider (a) “regular enough” algorithms p  and φ  such that p  and φ  are both normally distributed 

[22] with the covariance matrix Π  of the estimate p  and an unknown one  Φ φ  of the estimate φ . The 

estimators p  and φ  are assumed (b) to be efficient, hence Φ  is calculated as CRB by use of the Fisher 

Information Matrix  FIM φ :      1 Φ CRB FIMφ φ φ . For Gaussian noise,   FIM φ
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The hypotheses H  and H  serve to specify the sources of emissions: the hypothesis H  means that one 

source at 1
I II φ φ φ  with 1

I II q q q  emits twice, the hypothesis H – that each of the two sources at 

1
Iφ φ  and 2

IIφ φ  with 1
Iq q  and 2

IIq q  emit once. The probabilities  HP   and  HP   of the 

hypotheses come from a preceding step of data processing where parameter q  can be involved. 
 
We define the circles  1 1 1: R  S φ φ φ  and  2 2 2: R  S φ φ φ ,  denotes Euclidian norm, with 

radii 1R  and 2R  where estimates φ  and φ  fall with high probability SP : 1φ S  for H  and 1φ S , 

2φ S  for H . It is assumed (c) that sample covariance matrices inside 1S  and 2S  coincide with  1Φ φ  

and  2Φ φ  with high accuracy. Due to negligible probability 21 SP  of outliers beyond circles we will treat 

estimates φ  and φ  so that as if φ , 1φ S  or 1φ S , 2φ S . 
 
The identifying is performed in the domain 0S  centered at 1φ  where covariance matrices  2Φ φ  are assumed 
(d) to be sufficiently approximated by a constant matrix. It follows the assumption (d) that the radius 

 2 2 2R R φ  is also approximated in 0S  by a constant. Let us define domain 0S  as 0 S

 2 2 1: S SR R   φ φ φ , 1 2SR R R  , S SR R  , and specify it as the domain of closely spaced sources.  

 
The goal is to find probabilistic decision of the problem whether one source at position 1φ  emits twice or two 

sources at positions 1φ  and 2φ  emit once for a given separation 1 2r  φ φ  with the sample estimates 

φ  

and 

φ  of the random variables φ  and φ  on the conditions (a), (b), (c) and (d). 
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where υ  and υ  are the measurement errors corresponding to the emissions I and II with  TE    0υ υ , 

i.e. p  and p  are decoupled. Unbiased estimator φ  uses measurements (2) to produce estimates φ  and 

φ  over the emissions I and II:   φφ p ,  , φ φ φ , φ= φ ς ,  ,   ς φ φ , where φ  and φ  

are the corresponding errors, which are also decoupled. 
 
We consider (a) “regular enough” algorithms p  and φ  such that p  and φ  are both normally distributed 

[22] with the covariance matrix Π  of the estimate p  and an unknown one  Φ φ  of the estimate φ . The 

estimators p  and φ  are assumed (b) to be efficient, hence Φ  is calculated as CRB by use of the Fisher 

Information Matrix  FIM φ :      1 Φ CRB FIMφ φ φ . For Gaussian noise,   FIM φ
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The hypotheses H  and H  serve to specify the sources of emissions: the hypothesis H  means that one 

source at 1
I II φ φ φ  with 1

I II q q q  emits twice, the hypothesis H – that each of the two sources at 

1
Iφ φ  and 2

IIφ φ  with 1
Iq q  and 2

IIq q  emit once. The probabilities  HP   and  HP   of the 

hypotheses come from a preceding step of data processing where parameter q  can be involved. 
 
We define the circles  1 1 1: R  S φ φ φ  and  2 2 2: R  S φ φ φ ,  denotes Euclidian norm, with 

radii 1R  and 2R  where estimates φ  and φ  fall with high probability SP : 1φ S  for H  and 1φ S , 

2φ S  for H . It is assumed (c) that sample covariance matrices inside 1S  and 2S  coincide with  1Φ φ  

and  2Φ φ  with high accuracy. Due to negligible probability 21 SP  of outliers beyond circles we will treat 

estimates φ  and φ  so that as if φ , 1φ S  or 1φ S , 2φ S . 
 
The identifying is performed in the domain 0S  centered at 1φ  where covariance matrices  2Φ φ  are assumed 
(d) to be sufficiently approximated by a constant matrix. It follows the assumption (d) that the radius 

 2 2 2R R φ  is also approximated in 0S  by a constant. Let us define domain 0S  as 0 S

 2 2 1: S SR R   φ φ φ , 1 2SR R R  , S SR R  , and specify it as the domain of closely spaced sources.  

 
The goal is to find probabilistic decision of the problem whether one source at position 1φ  emits twice or two 

sources at positions 1φ  and 2φ  emit once for a given separation 1 2r  φ φ  with the sample estimates 

φ  

and 

φ  of the random variables φ  and φ  on the conditions (a), (b), (c) and (d). 
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where υ  and υ  are the measurement errors corresponding to the emissions I and II with  TE    0υ υ , 

i.e. p  and p  are decoupled. Unbiased estimator φ  uses measurements (2) to produce estimates φ  and 
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are the corresponding errors, which are also decoupled. 
 
We consider (a) “regular enough” algorithms p  and φ  such that p  and φ  are both normally distributed 

[22] with the covariance matrix Π  of the estimate p  and an unknown one  Φ φ  of the estimate φ . The 

estimators p  and φ  are assumed (b) to be efficient, hence Φ  is calculated as CRB by use of the Fisher 
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The hypotheses H  and H  serve to specify the sources of emissions: the hypothesis H  means that one 
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Proof of Theorem.  

1. The region Σ  encompassing ψ , where ψ  falls with probability 2
SP  (we treat estimates of interest as 1φ S , 2φ S , see 
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1 2R R . Consequently, Σ  is a circle centered at ψ  with radius SR  

bounded by the circumference СΣ  including the origin. 

 

2. The region Ξ  of desired probability is formed by the intersection of the circles Σ  and  : SR Λ ψ ψ  (due to realizations 

of ψ  is considered to belong to Σ ), see Fig. 1a. Straight line L  connecting the intersection points of circumferences СΣ  

and СΛ  is collinear in virtue of symmetry to the tangent T  to СΛ  at the point ψ . It divides the line from origin to ψ  on two 

identical segments, hence the angle   is equal to / 6 , see Fig. 1a again. We successively move ψ  to the origin and rotate 

coordinates to write probability integral over Ξ  in terms of spectrum of Wψ . Changing to polar coordinates ( s , ) one gets 
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Gaussian with a mean 2 1 ψ φ φ  and covariance matrix    1 2 W Φ Φψ φ φ  with eigenvalues 1 2 0l l  . We propose the 

concept of SRL based on the circles 1S and 2S  being tangent. This happens at the separation 1 2 SR φ φ , which is accepted 

to be SRL. PRI of that resolution criterion,   S S SPRI P R R  ψ ψ , is defined by the following Theorem. 
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Proof of Theorem.  

1. The region Σ  encompassing ψ , where ψ  falls with probability 2
SP  (we treat estimates of interest as 1φ S , 2φ S , see 
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is achieved at 2r R  , 1r R  ,       and is equal to  2
1 2R R . Consequently, Σ  is a circle centered at ψ  with radius SR  

bounded by the circumference СΣ  including the origin. 

 

2. The region Ξ  of desired probability is formed by the intersection of the circles Σ  and  : SR Λ ψ ψ  (due to realizations 

of ψ  is considered to belong to Σ ), see Fig. 1a. Straight line L  connecting the intersection points of circumferences СΣ  

and СΛ  is collinear in virtue of symmetry to the tangent T  to СΛ  at the point ψ . It divides the line from origin to ψ  on two 

identical segments, hence the angle   is equal to / 6 , see Fig. 1a again. We successively move ψ  to the origin and rotate 

coordinates to write probability integral over Ξ  in terms of spectrum of Wψ . Changing to polar coordinates ( s , ) one gets 
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central Gaussian vector with a mean ψ  and covariance matrix Wψ , A  is a symmetric and nonnegative definite matrix. We 

obtain the desired distribution by equating A  to the identity matrix. Although its mathematical structure is complicated, 
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Gaussian with a mean 2 1 ψ φ φ  and covariance matrix    1 2 W Φ Φψ φ φ  with eigenvalues 1 2 0l l  . We propose the 

concept of SRL based on the circles 1S and 2S  being tangent. This happens at the separation 1 2 SR φ φ , which is accepted 

to be SRL. PRI of that resolution criterion,   S S SPRI P R R  ψ ψ , is defined by the following Theorem. 
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Proof of Theorem.  

1. The region Σ  encompassing ψ , where ψ  falls with probability 2
SP  (we treat estimates of interest as 1φ S , 2φ S , see 
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bounded by the circumference СΣ  including the origin. 

 

2. The region Ξ  of desired probability is formed by the intersection of the circles Σ  and  : SR Λ ψ ψ  (due to realizations 

of ψ  is considered to belong to Σ ), see Fig. 1a. Straight line L  connecting the intersection points of circumferences СΣ  

and СΛ  is collinear in virtue of symmetry to the tangent T  to СΛ  at the point ψ . It divides the line from origin to ψ  on two 

identical segments, hence the angle   is equal to / 6 , see Fig. 1a again. We successively move ψ  to the origin and rotate 

coordinates to write probability integral over Ξ  in terms of spectrum of Wψ . Changing to polar coordinates ( s , ) one gets 
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Figure 1: The Region Ξ  of Desired Probability: (a) In Initial Coordinates, (b) In Transformed Coordinates. 

 

 

Performing the integral in (4) over variable s  leads to the integral over   in equality (4): 
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bounded by the circumference СΣ  including the origin. 
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of ψ  is considered to belong to Σ ), see Fig. 1a. Straight line L  connecting the intersection points of circumferences СΣ  

and СΛ  is collinear in virtue of symmetry to the tangent T  to СΛ  at the point ψ . It divides the line from origin to ψ  on two 

identical segments, hence the angle   is equal to / 6 , see Fig. 1a again. We successively move ψ  to the origin and rotate 

coordinates to write probability integral over Ξ  in terms of spectrum of Wψ . Changing to polar coordinates ( s , ) one gets 
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Figure 1: The Region Ξ  of Desired Probability: (a) In Initial Coordinates, (b) In Transformed Coordinates. 

 

 

Performing the integral in (4) over variable s  leads to the integral over   in equality (4): 

 

Gaussian with a mean 2 1 ψ φ φ  and covariance matrix    1 2 W Φ Φψ φ φ  with eigenvalues 1 2 0l l  . We propose the 

concept of SRL based on the circles 1S and 2S  being tangent. This happens at the separation 1 2 SR φ φ , which is accepted 
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of ψ  is considered to belong to Σ ), see Fig. 1a. Straight line L  connecting the intersection points of circumferences СΣ  

and СΛ  is collinear in virtue of symmetry to the tangent T  to СΛ  at the point ψ . It divides the line from origin to ψ  on two 

identical segments, hence the angle   is equal to / 6 , see Fig. 1a again. We successively move ψ  to the origin and rotate 
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Figure 1: The Region Ξ  of Desired Probability: (a) In Initial Coordinates, (b) In Transformed Coordinates. 
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J Sen Net Data Comm, 2025 Volume 5 | Issue 1 | 6

 
  
 

2 22 /3
1 22

1 2/21 2

1 exp 2 ; , cos d10.5
; ,

S
S

R g l l
P P

g l ll l





  



      ψ Ξ . 
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It can be easily verified that the derivative of the exponential function from (5) is non-positive, thus required maximum is 
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after that come to inequality [23]: 

 

 
2

222 1 20.5 1 e
2 3

SR
l

SP P arctg etg 


                 
ψ Ξ , 

 

where 1 2/e l l . Factor 
2

221 e
SR
l

 
 
 
 
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semi-minor axis SR  and semi-major axis SeR  [21]. Region Σ  which contains ψ  with probability 2
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Figure 1: The region Ξ  of desired probability: (a) in initial coordinates, (b) in transformed coordinates. 
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The sample analogues   
 

Φ φ  and   
 

Φ φ  of one or two true covariance matrices are employed to achieve the 

approximation SR  of SR  as S S SR R R    where estimates SR , SR  approximate 1R  twice or 1R , 2R  once. The sample 

covariance matrix of random variable ψ  is           
   

W Φ Φψ φ φ . The event space C  is defined to consist of two events, 

when the confidence circles encompassing sample estimates 

φ  and 


φ  intersect: SR

 
  φ φ  at 1C C  or do not intersect: 

SR
 
  φ φ  at 2C C . Conditioned by the hypotheses H and H  probabilities of the events 1C  and 2C  are 

    2 2
1C H SP P R   0ψ ψ  and     2 2
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2C H SP P R   0ψ ψ . 

 

The probability  1C HP   is near to unity hence    2 1C H 1 C HP P    is near to zero. The probability  1C HP   decreases 

asymptotically with the rise of ψ  consequently the probability  2C HP     11 C HP    asymptotically increases.  1C HP   is 

smaller than  1C HP   approaching it from below at 0ψ , while  2C HP   is bigger than  2C HP   approaching it from above 

at 0ψ .  C HP   depends on covariance matrix 


Wψ  and an unknown mean ψ ;  C HP   depends only on 


Wψ . 

 

We develop Bayesian scheme with the minimal and maximal posterior probabilities of hypotheses H  and H  to be 

determined on the circumference  :r r ψ ψ  where equidistant from 1φ  positions 2φ  run, both at Sr R  and at Sr R , see 

Fig. 2. 

 

 

Figure 2: The Workspace of the Bayesian Technique: (a) Below and (b) Over Resolution Limit SR . The Circles are 

to Depict the Region Σ  where Estimates Fall for the Each rψ . 
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0ψ , while  2C HP   is bigger than  2C HP   approaching it from above at 0ψ .  C HP   depends 

on covariance matrix 


Wψ  and an unknown mean ψ ;  C HP   depends only on 


Wψ . 

 
We develop Bayesian scheme with the minimal and maximal posterior probabilities of hypotheses H  and 

H  to be determined on the circumference  :r r ψ ψ  where equidistant from 1φ  positions 2φ  run, both 

at Sr R  and at Sr R , see Fig. 2. 
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Figure 2: The workspace of the Bayesian technique: (a) below and (b) over resolution limit SR . The circles 
are to depict the region Σ  where estimates fall for the each rψ . 
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Extreme probabilities (6–9) are the monotonic functions along r  due to  
1CP r  and  

1CP r  decrease monotonically with the 

rise of r , accordingly functions    
2 1C C1P r P r    and    

2 1C C1P r P r    monotonically increase. This stems from the following 

Lemma.  

 

Lemma.    
1 1C CP r P r   ,    

1 1C CP r P r    at r r . 

 

Proof of Lemma. For some pair of vectors 1r rψ ψ  and 1r r ψ ψ , 1 1ψ  one has variables rψ  and r ψ  with means r rψ  and 

r r ψ . Then, 2 22
12 T

r r r    ψ ψ ψ ψ , 2 22
12 T

r r r      ψ ψ ψ ψ . Variances of 12 Tr ψ ψ  and 12 Tr ψ ψ  are variance of 12 Tψ ψ  

multiplied by the factors 2r  and 2r  correspondently, and from the properties of normal distribution 

     2 2 2 2
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S SP r r R P r r R       ψ ψ ψ ψ . So,  2 2
r SP R ψ   2 2

r SP R ψ  that completes the Proof. 

 

Corollary.  min 1C ;P r ,  max 1C ;P r ,  min 2C ;P r ,  max 2C ;P r  decrease with r  monotonically;  min 2C ;P r ,  max 2C ;P r ,  min 1C ;P r , 

 max 1C ;P r  – monotonically increase. 

 

The preference of a hypothesis is achievable when    min maxC; C;P r P r   or    min maxC; C;P r P r  . At small r , it depends on 

which probability,  HP   or  HP   is bigger: if a)    H HP P   then    min 1 max 1C ; C ;P r P r  , otherwise b)    min 1 max 1C ; C ;P r P r  . 

The probabilities  max 1C ;P r  and  min 1C ;P r  decrease as r  goes up while  min 1C ;P r  and  max 1C ;P r  grow. Hence, hypothesis H  

becomes more and more probable but hypothesis H  is less probable. Starting with a certain r , we get for the case a) 

   min 1 max 1C ; C ;P r P r   but still    max 1 min 1C ; C ;P r P r  , at which preference is ambiguous, however with a further increase in r  

hypothesis H  begins to prevail:    min 1 max 1C ; C ;P r P r  . As for the case b) H  prevails at all r . When 2C = C  for the case a) 

hypothesis H  prevails at all distances:    min 2 max 2C ; C ;P r P r  ; for the case b) we get    min 2 max 2C ; C ;P r P r   at small r , but 

beginning from some distance the inequalities    min 2 max 2C ; C ;P r P r   and    max 2 min 2C ; C ;P r P r   are fulfilled, at which 

preference is not achievable, however in further growth of r  we come to    min 2 max 2C ; C ;P r P r  . 

 

We define identification probabilities (IPs) of one    C min C;P r P r   and of two sources    C max C;P r P r   if 
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It is compared with a threshold 0Ht  : at  ;CH Hr t   preference is ambiguous; if  ;CH Hr t   then we select H , if 

 ;CH Hr t    H  is preferred. 

 

To summarize the results of Section 4 we present the core pseudocode of the identification procedure: 
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4. Bayesian Identification Technique 

The sample analogues   
 

Φ φ  and   
 

Φ φ  of one or two true covariance matrices are employed to achieve the 

approximation SR  of SR  as S S SR R R    where estimates SR , SR  approximate 1R  twice or 1R , 2R  once. The sample 

covariance matrix of random variable ψ  is           
   

W Φ Φψ φ φ . The event space C  is defined to consist of two events, 

when the confidence circles encompassing sample estimates 

φ  and 


φ  intersect: SR

 
  φ φ  at 1C C  or do not intersect: 

SR
 
  φ φ  at 2C C . Conditioned by the hypotheses H and H  probabilities of the events 1C  and 2C  are 

    2 2
1C H SP P R   0ψ ψ  and     2 2

1C H SP P R   0ψ ψ ,     2 2
2C H SP P R   0ψ ψ  and     2 2

2C H SP P R   0ψ ψ . 

 

The probability  1C HP   is near to unity hence    2 1C H 1 C HP P    is near to zero. The probability  1C HP   decreases 

asymptotically with the rise of ψ  consequently the probability  2C HP     11 C HP    asymptotically increases.  1C HP   is 
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Extreme probabilities (6–9) are the monotonic functions along r  due to  
1CP r  and  

1CP r  decrease monotonically with the 

rise of r , accordingly functions    
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2 1C C1P r P r    monotonically increase. This stems from the following 

Lemma.  
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multiplied by the factors 2r  and 2r  correspondently, and from the properties of normal distribution 
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S SP r r R P r r R       ψ ψ ψ ψ . So,  2 2
r SP R ψ   2 2

r SP R ψ  that completes the Proof. 

 

Corollary.  min 1C ;P r ,  max 1C ;P r ,  min 2C ;P r ,  max 2C ;P r  decrease with r  monotonically;  min 2C ;P r ,  max 2C ;P r ,  min 1C ;P r , 
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It is compared with a threshold 0Ht  : at  ;CH Hr t   preference is ambiguous; if  ;CH Hr t   then we select H , if 

 ;CH Hr t    H  is preferred. 

 

To summarize the results of Section 4 we present the core pseudocode of the identification procedure: 
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becomes more and more probable but hypothesis H  is less probable. Starting with a certain r , we get for the case a) 

   min 1 max 1C ; C ;P r P r   but still    max 1 min 1C ; C ;P r P r  , at which preference is ambiguous, however with a further increase in r  

hypothesis H  begins to prevail:    min 1 max 1C ; C ;P r P r  . As for the case b) H  prevails at all r . When 2C = C  for the case a) 

hypothesis H  prevails at all distances:    min 2 max 2C ; C ;P r P r  ; for the case b) we get    min 2 max 2C ; C ;P r P r   at small r , but 

beginning from some distance the inequalities    min 2 max 2C ; C ;P r P r   and    max 2 min 2C ; C ;P r P r   are fulfilled, at which 

preference is not achievable, however in further growth of r  we come to    min 2 max 2C ; C ;P r P r  . 

 

We define identification probabilities (IPs) of one    C min C;P r P r   and of two sources    C max C;P r P r   if 

       CH H C HP P r P P  
  , and    C max C;P r P r  ,    C min C;P r P r   if        CH H C HP P r P P  

  . IPs are not defined if 

         C CC H H HP r P P P P r  
   . To select a hypothesis when one IP marginally differs from another threshold function 

 ;CH r  of relative difference between IPs is compiled: 
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It is compared with a threshold 0Ht  : at  ;CH Hr t   preference is ambiguous; if  ;CH Hr t   then we select H , if 

 ;CH Hr t    H  is preferred. 

 

To summarize the results of Section 4 we present the core pseudocode of the identification procedure: 

 

if          C CC H H HP r P P P P r  
    

ℂ ℂ

 

Extreme probabilities (6–9) are the monotonic functions along r  due to  
1CP r  and  

1CP r  decrease monotonically with the 

rise of r , accordingly functions    
2 1C C1P r P r    and    

2 1C C1P r P r    monotonically increase. This stems from the following 

Lemma.  

 

Lemma.    
1 1C CP r P r   ,    

1 1C CP r P r    at r r . 

 

Proof of Lemma. For some pair of vectors 1r rψ ψ  and 1r r ψ ψ , 1 1ψ  one has variables rψ  and r ψ  with means r rψ  and 

r r ψ . Then, 2 22
12 T

r r r    ψ ψ ψ ψ , 2 22
12 T

r r r      ψ ψ ψ ψ . Variances of 12 Tr ψ ψ  and 12 Tr ψ ψ  are variance of 12 Tψ ψ  

multiplied by the factors 2r  and 2r  correspondently, and from the properties of normal distribution 

     2 2 2 2
1 12 2T T

S SP r r R P r r R       ψ ψ ψ ψ . So,  2 2
r SP R ψ   2 2

r SP R ψ  that completes the Proof. 

 

Corollary.  min 1C ;P r ,  max 1C ;P r ,  min 2C ;P r ,  max 2C ;P r  decrease with r  monotonically;  min 2C ;P r ,  max 2C ;P r ,  min 1C ;P r , 

 max 1C ;P r  – monotonically increase. 

 

The preference of a hypothesis is achievable when    min maxC; C;P r P r   or    min maxC; C;P r P r  . At small r , it depends on 

which probability,  HP   or  HP   is bigger: if a)    H HP P   then    min 1 max 1C ; C ;P r P r  , otherwise b)    min 1 max 1C ; C ;P r P r  . 

The probabilities  max 1C ;P r  and  min 1C ;P r  decrease as r  goes up while  min 1C ;P r  and  max 1C ;P r  grow. Hence, hypothesis H  

becomes more and more probable but hypothesis H  is less probable. Starting with a certain r , we get for the case a) 

   min 1 max 1C ; C ;P r P r   but still    max 1 min 1C ; C ;P r P r  , at which preference is ambiguous, however with a further increase in r  

hypothesis H  begins to prevail:    min 1 max 1C ; C ;P r P r  . As for the case b) H  prevails at all r . When 2C = C  for the case a) 

hypothesis H  prevails at all distances:    min 2 max 2C ; C ;P r P r  ; for the case b) we get    min 2 max 2C ; C ;P r P r   at small r , but 

beginning from some distance the inequalities    min 2 max 2C ; C ;P r P r   and    max 2 min 2C ; C ;P r P r   are fulfilled, at which 

preference is not achievable, however in further growth of r  we come to    min 2 max 2C ; C ;P r P r  . 

 

We define identification probabilities (IPs) of one    C min C;P r P r   and of two sources    C max C;P r P r   if 

       CH H C HP P r P P  
  , and    C max C;P r P r  ,    C min C;P r P r   if        CH H C HP P r P P  

  . IPs are not defined if 

         C CC H H HP r P P P P r  
   . To select a hypothesis when one IP marginally differs from another threshold function 

 ;CH r  of relative difference between IPs is compiled: 
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It is compared with a threshold 0Ht  : at  ;CH Hr t   preference is ambiguous; if  ;CH Hr t   then we select H , if 

 ;CH Hr t    H  is preferred. 

 

To summarize the results of Section 4 we present the core pseudocode of the identification procedure: 

 

if          C CC H H HP r P P P P r  
    

 

Extreme probabilities (6–9) are the monotonic functions along r  due to  
1CP r  and  

1CP r  decrease monotonically with the 

rise of r , accordingly functions    
2 1C C1P r P r    and    

2 1C C1P r P r    monotonically increase. This stems from the following 

Lemma.  

 

Lemma.    
1 1C CP r P r   ,    

1 1C CP r P r    at r r . 

 

Proof of Lemma. For some pair of vectors 1r rψ ψ  and 1r r ψ ψ , 1 1ψ  one has variables rψ  and r ψ  with means r rψ  and 

r r ψ . Then, 2 22
12 T

r r r    ψ ψ ψ ψ , 2 22
12 T

r r r      ψ ψ ψ ψ . Variances of 12 Tr ψ ψ  and 12 Tr ψ ψ  are variance of 12 Tψ ψ  

multiplied by the factors 2r  and 2r  correspondently, and from the properties of normal distribution 

     2 2 2 2
1 12 2T T

S SP r r R P r r R       ψ ψ ψ ψ . So,  2 2
r SP R ψ   2 2

r SP R ψ  that completes the Proof. 

 

Corollary.  min 1C ;P r ,  max 1C ;P r ,  min 2C ;P r ,  max 2C ;P r  decrease with r  monotonically;  min 2C ;P r ,  max 2C ;P r ,  min 1C ;P r , 

 max 1C ;P r  – monotonically increase. 

 

The preference of a hypothesis is achievable when    min maxC; C;P r P r   or    min maxC; C;P r P r  . At small r , it depends on 

which probability,  HP   or  HP   is bigger: if a)    H HP P   then    min 1 max 1C ; C ;P r P r  , otherwise b)    min 1 max 1C ; C ;P r P r  . 

The probabilities  max 1C ;P r  and  min 1C ;P r  decrease as r  goes up while  min 1C ;P r  and  max 1C ;P r  grow. Hence, hypothesis H  

becomes more and more probable but hypothesis H  is less probable. Starting with a certain r , we get for the case a) 

   min 1 max 1C ; C ;P r P r   but still    max 1 min 1C ; C ;P r P r  , at which preference is ambiguous, however with a further increase in r  

hypothesis H  begins to prevail:    min 1 max 1C ; C ;P r P r  . As for the case b) H  prevails at all r . When 2C = C  for the case a) 

hypothesis H  prevails at all distances:    min 2 max 2C ; C ;P r P r  ; for the case b) we get    min 2 max 2C ; C ;P r P r   at small r , but 

beginning from some distance the inequalities    min 2 max 2C ; C ;P r P r   and    max 2 min 2C ; C ;P r P r   are fulfilled, at which 

preference is not achievable, however in further growth of r  we come to    min 2 max 2C ; C ;P r P r  . 

 

We define identification probabilities (IPs) of one    C min C;P r P r   and of two sources    C max C;P r P r   if 

       CH H C HP P r P P  
  , and    C max C;P r P r  ,    C min C;P r P r   if        CH H C HP P r P P  

  . IPs are not defined if 

         C CC H H HP r P P P P r  
   . To select a hypothesis when one IP marginally differs from another threshold function 

 ;CH r  of relative difference between IPs is compiled: 

 

 

   
           

   
           

C
C

C
C

H C H
1, H H C H

H
;C

H
1 , H H C H

H C H

H

P P
P P r P P

P P r
r

P P r
P P r P P

P P

 
  




  

 










 


 

 



. 

 

It is compared with a threshold 0Ht  : at  ;CH Hr t   preference is ambiguous; if  ;CH Hr t   then we select H , if 

 ;CH Hr t    H  is preferred. 

 

To summarize the results of Section 4 we present the core pseudocode of the identification procedure: 

 

if          C CC H H HP r P P P P r  
    

ℂ . Then,and

 

Extreme probabilities (6–9) are the monotonic functions along r  due to  
1CP r  and  

1CP r  decrease monotonically with the 

rise of r , accordingly functions    
2 1C C1P r P r    and    

2 1C C1P r P r    monotonically increase. This stems from the following 

Lemma.  

 

Lemma.    
1 1C CP r P r   ,    

1 1C CP r P r    at r r . 

 

Proof of Lemma. For some pair of vectors 1r rψ ψ  and 1r r ψ ψ , 1 1ψ  one has variables rψ  and r ψ  with means r rψ  and 

r r ψ . Then, 2 22
12 T

r r r    ψ ψ ψ ψ , 2 22
12 T

r r r      ψ ψ ψ ψ . Variances of 12 Tr ψ ψ  and 12 Tr ψ ψ  are variance of 12 Tψ ψ  

multiplied by the factors 2r  and 2r  correspondently, and from the properties of normal distribution 
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1 12 2T T

S SP r r R P r r R       ψ ψ ψ ψ . So,  2 2
r SP R ψ   2 2

r SP R ψ  that completes the Proof. 

 

Corollary.  min 1C ;P r ,  max 1C ;P r ,  min 2C ;P r ,  max 2C ;P r  decrease with r  monotonically;  min 2C ;P r ,  max 2C ;P r ,  min 1C ;P r , 

 max 1C ;P r  – monotonically increase. 

 

The preference of a hypothesis is achievable when    min maxC; C;P r P r   or    min maxC; C;P r P r  . At small r , it depends on 

which probability,  HP   or  HP   is bigger: if a)    H HP P   then    min 1 max 1C ; C ;P r P r  , otherwise b)    min 1 max 1C ; C ;P r P r  . 

The probabilities  max 1C ;P r  and  min 1C ;P r  decrease as r  goes up while  min 1C ;P r  and  max 1C ;P r  grow. Hence, hypothesis H  

becomes more and more probable but hypothesis H  is less probable. Starting with a certain r , we get for the case a) 

   min 1 max 1C ; C ;P r P r   but still    max 1 min 1C ; C ;P r P r  , at which preference is ambiguous, however with a further increase in r  

hypothesis H  begins to prevail:    min 1 max 1C ; C ;P r P r  . As for the case b) H  prevails at all r . When 2C = C  for the case a) 

hypothesis H  prevails at all distances:    min 2 max 2C ; C ;P r P r  ; for the case b) we get    min 2 max 2C ; C ;P r P r   at small r , but 

beginning from some distance the inequalities    min 2 max 2C ; C ;P r P r   and    max 2 min 2C ; C ;P r P r   are fulfilled, at which 

preference is not achievable, however in further growth of r  we come to    min 2 max 2C ; C ;P r P r  . 

 

We define identification probabilities (IPs) of one    C min C;P r P r   and of two sources    C max C;P r P r   if 

       CH H C HP P r P P  
  , and    C max C;P r P r  ,    C min C;P r P r   if        CH H C HP P r P P  

  . IPs are not defined if 

         C CC H H HP r P P P P r  
   . To select a hypothesis when one IP marginally differs from another threshold function 

 ;CH r  of relative difference between IPs is compiled: 
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It is compared with a threshold 0Ht  : at  ;CH Hr t   preference is ambiguous; if  ;CH Hr t   then we select H , if 

 ;CH Hr t    H  is preferred. 

 

To summarize the results of Section 4 we present the core pseudocode of the identification procedure: 

 

if          C CC H H HP r P P P P r  
    

 

Extreme probabilities (6–9) are the monotonic functions along r  due to  
1CP r  and  

1CP r  decrease monotonically with the 

rise of r , accordingly functions    
2 1C C1P r P r    and    

2 1C C1P r P r    monotonically increase. This stems from the following 

Lemma.  

 

Lemma.    
1 1C CP r P r   ,    

1 1C CP r P r    at r r . 

 

Proof of Lemma. For some pair of vectors 1r rψ ψ  and 1r r ψ ψ , 1 1ψ  one has variables rψ  and r ψ  with means r rψ  and 

r r ψ . Then, 2 22
12 T

r r r    ψ ψ ψ ψ , 2 22
12 T

r r r      ψ ψ ψ ψ . Variances of 12 Tr ψ ψ  and 12 Tr ψ ψ  are variance of 12 Tψ ψ  

multiplied by the factors 2r  and 2r  correspondently, and from the properties of normal distribution 

     2 2 2 2
1 12 2T T

S SP r r R P r r R       ψ ψ ψ ψ . So,  2 2
r SP R ψ   2 2

r SP R ψ  that completes the Proof. 

 

Corollary.  min 1C ;P r ,  max 1C ;P r ,  min 2C ;P r ,  max 2C ;P r  decrease with r  monotonically;  min 2C ;P r ,  max 2C ;P r ,  min 1C ;P r , 

 max 1C ;P r  – monotonically increase. 

 

The preference of a hypothesis is achievable when    min maxC; C;P r P r   or    min maxC; C;P r P r  . At small r , it depends on 

which probability,  HP   or  HP   is bigger: if a)    H HP P   then    min 1 max 1C ; C ;P r P r  , otherwise b)    min 1 max 1C ; C ;P r P r  . 

The probabilities  max 1C ;P r  and  min 1C ;P r  decrease as r  goes up while  min 1C ;P r  and  max 1C ;P r  grow. Hence, hypothesis H  

becomes more and more probable but hypothesis H  is less probable. Starting with a certain r , we get for the case a) 

   min 1 max 1C ; C ;P r P r   but still    max 1 min 1C ; C ;P r P r  , at which preference is ambiguous, however with a further increase in r  

hypothesis H  begins to prevail:    min 1 max 1C ; C ;P r P r  . As for the case b) H  prevails at all r . When 2C = C  for the case a) 

hypothesis H  prevails at all distances:    min 2 max 2C ; C ;P r P r  ; for the case b) we get    min 2 max 2C ; C ;P r P r   at small r , but 

beginning from some distance the inequalities    min 2 max 2C ; C ;P r P r   and    max 2 min 2C ; C ;P r P r   are fulfilled, at which 

preference is not achievable, however in further growth of r  we come to    min 2 max 2C ; C ;P r P r  . 

 

We define identification probabilities (IPs) of one    C min C;P r P r   and of two sources    C max C;P r P r   if 

       CH H C HP P r P P  
  , and    C max C;P r P r  ,    C min C;P r P r   if        CH H C HP P r P P  

  . IPs are not defined if 

         C CC H H HP r P P P P r  
   . To select a hypothesis when one IP marginally differs from another threshold function 

 ;CH r  of relative difference between IPs is compiled: 
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It is compared with a threshold 0Ht  : at  ;CH Hr t   preference is ambiguous; if  ;CH Hr t   then we select H , if 

 ;CH Hr t    H  is preferred. 

 

To summarize the results of Section 4 we present the core pseudocode of the identification procedure: 

 

if          C CC H H HP r P P P P r  
    

 

Extreme probabilities (6–9) are the monotonic functions along r  due to  
1CP r  and  

1CP r  decrease monotonically with the 

rise of r , accordingly functions    
2 1C C1P r P r    and    

2 1C C1P r P r    monotonically increase. This stems from the following 

Lemma.  

 

Lemma.    
1 1C CP r P r   ,    

1 1C CP r P r    at r r . 

 

Proof of Lemma. For some pair of vectors 1r rψ ψ  and 1r r ψ ψ , 1 1ψ  one has variables rψ  and r ψ  with means r rψ  and 

r r ψ . Then, 2 22
12 T

r r r    ψ ψ ψ ψ , 2 22
12 T

r r r      ψ ψ ψ ψ . Variances of 12 Tr ψ ψ  and 12 Tr ψ ψ  are variance of 12 Tψ ψ  

multiplied by the factors 2r  and 2r  correspondently, and from the properties of normal distribution 

     2 2 2 2
1 12 2T T

S SP r r R P r r R       ψ ψ ψ ψ . So,  2 2
r SP R ψ   2 2

r SP R ψ  that completes the Proof. 

 

Corollary.  min 1C ;P r ,  max 1C ;P r ,  min 2C ;P r ,  max 2C ;P r  decrease with r  monotonically;  min 2C ;P r ,  max 2C ;P r ,  min 1C ;P r , 

 max 1C ;P r  – monotonically increase. 

 

The preference of a hypothesis is achievable when    min maxC; C;P r P r   or    min maxC; C;P r P r  . At small r , it depends on 

which probability,  HP   or  HP   is bigger: if a)    H HP P   then    min 1 max 1C ; C ;P r P r  , otherwise b)    min 1 max 1C ; C ;P r P r  . 

The probabilities  max 1C ;P r  and  min 1C ;P r  decrease as r  goes up while  min 1C ;P r  and  max 1C ;P r  grow. Hence, hypothesis H  

becomes more and more probable but hypothesis H  is less probable. Starting with a certain r , we get for the case a) 

   min 1 max 1C ; C ;P r P r   but still    max 1 min 1C ; C ;P r P r  , at which preference is ambiguous, however with a further increase in r  

hypothesis H  begins to prevail:    min 1 max 1C ; C ;P r P r  . As for the case b) H  prevails at all r . When 2C = C  for the case a) 

hypothesis H  prevails at all distances:    min 2 max 2C ; C ;P r P r  ; for the case b) we get    min 2 max 2C ; C ;P r P r   at small r , but 

beginning from some distance the inequalities    min 2 max 2C ; C ;P r P r   and    max 2 min 2C ; C ;P r P r   are fulfilled, at which 

preference is not achievable, however in further growth of r  we come to    min 2 max 2C ; C ;P r P r  . 

 

We define identification probabilities (IPs) of one    C min C;P r P r   and of two sources    C max C;P r P r   if 

       CH H C HP P r P P  
  , and    C max C;P r P r  ,    C min C;P r P r   if        CH H C HP P r P P  

  . IPs are not defined if 

         C CC H H HP r P P P P r  
   . To select a hypothesis when one IP marginally differs from another threshold function 

 ;CH r  of relative difference between IPs is compiled: 
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It is compared with a threshold 0Ht  : at  ;CH Hr t   preference is ambiguous; if  ;CH Hr t   then we select H , if 

 ;CH Hr t    H  is preferred. 

 

To summarize the results of Section 4 we present the core pseudocode of the identification procedure: 

 

if          C CC H H HP r P P P P r  
    

 

Extreme probabilities (6–9) are the monotonic functions along r  due to  
1CP r  and  

1CP r  decrease monotonically with the 

rise of r , accordingly functions    
2 1C C1P r P r    and    

2 1C C1P r P r    monotonically increase. This stems from the following 

Lemma.  

 

Lemma.    
1 1C CP r P r   ,    

1 1C CP r P r    at r r . 

 

Proof of Lemma. For some pair of vectors 1r rψ ψ  and 1r r ψ ψ , 1 1ψ  one has variables rψ  and r ψ  with means r rψ  and 

r r ψ . Then, 2 22
12 T

r r r    ψ ψ ψ ψ , 2 22
12 T

r r r      ψ ψ ψ ψ . Variances of 12 Tr ψ ψ  and 12 Tr ψ ψ  are variance of 12 Tψ ψ  

multiplied by the factors 2r  and 2r  correspondently, and from the properties of normal distribution 

     2 2 2 2
1 12 2T T

S SP r r R P r r R       ψ ψ ψ ψ . So,  2 2
r SP R ψ   2 2

r SP R ψ  that completes the Proof. 

 

Corollary.  min 1C ;P r ,  max 1C ;P r ,  min 2C ;P r ,  max 2C ;P r  decrease with r  monotonically;  min 2C ;P r ,  max 2C ;P r ,  min 1C ;P r , 

 max 1C ;P r  – monotonically increase. 

 

The preference of a hypothesis is achievable when    min maxC; C;P r P r   or    min maxC; C;P r P r  . At small r , it depends on 

which probability,  HP   or  HP   is bigger: if a)    H HP P   then    min 1 max 1C ; C ;P r P r  , otherwise b)    min 1 max 1C ; C ;P r P r  . 

The probabilities  max 1C ;P r  and  min 1C ;P r  decrease as r  goes up while  min 1C ;P r  and  max 1C ;P r  grow. Hence, hypothesis H  

becomes more and more probable but hypothesis H  is less probable. Starting with a certain r , we get for the case a) 

   min 1 max 1C ; C ;P r P r   but still    max 1 min 1C ; C ;P r P r  , at which preference is ambiguous, however with a further increase in r  

hypothesis H  begins to prevail:    min 1 max 1C ; C ;P r P r  . As for the case b) H  prevails at all r . When 2C = C  for the case a) 

hypothesis H  prevails at all distances:    min 2 max 2C ; C ;P r P r  ; for the case b) we get    min 2 max 2C ; C ;P r P r   at small r , but 

beginning from some distance the inequalities    min 2 max 2C ; C ;P r P r   and    max 2 min 2C ; C ;P r P r   are fulfilled, at which 

preference is not achievable, however in further growth of r  we come to    min 2 max 2C ; C ;P r P r  . 

 

We define identification probabilities (IPs) of one    C min C;P r P r   and of two sources    C max C;P r P r   if 

       CH H C HP P r P P  
  , and    C max C;P r P r  ,    C min C;P r P r   if        CH H C HP P r P P  

  . IPs are not defined if 

         C CC H H HP r P P P P r  
   . To select a hypothesis when one IP marginally differs from another threshold function 

 ;CH r  of relative difference between IPs is compiled: 
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It is compared with a threshold 0Ht  : at  ;CH Hr t   preference is ambiguous; if  ;CH Hr t   then we select H , if 

 ;CH Hr t    H  is preferred. 

 

To summarize the results of Section 4 we present the core pseudocode of the identification procedure: 

 

if          C CC H H HP r P P P P r  
    

 

Extreme probabilities (6–9) are the monotonic functions along r  due to  
1CP r  and  

1CP r  decrease monotonically with the 

rise of r , accordingly functions    
2 1C C1P r P r    and    

2 1C C1P r P r    monotonically increase. This stems from the following 

Lemma.  

 

Lemma.    
1 1C CP r P r   ,    

1 1C CP r P r    at r r . 

 

Proof of Lemma. For some pair of vectors 1r rψ ψ  and 1r r ψ ψ , 1 1ψ  one has variables rψ  and r ψ  with means r rψ  and 

r r ψ . Then, 2 22
12 T

r r r    ψ ψ ψ ψ , 2 22
12 T

r r r      ψ ψ ψ ψ . Variances of 12 Tr ψ ψ  and 12 Tr ψ ψ  are variance of 12 Tψ ψ  

multiplied by the factors 2r  and 2r  correspondently, and from the properties of normal distribution 
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S SP r r R P r r R       ψ ψ ψ ψ . So,  2 2
r SP R ψ   2 2

r SP R ψ  that completes the Proof. 
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hypothesis H  begins to prevail:    min 1 max 1C ; C ;P r P r  . As for the case b) H  prevails at all r . When 2C = C  for the case a) 

hypothesis H  prevails at all distances:    min 2 max 2C ; C ;P r P r  ; for the case b) we get    min 2 max 2C ; C ;P r P r   at small r , but 

beginning from some distance the inequalities    min 2 max 2C ; C ;P r P r   and    max 2 min 2C ; C ;P r P r   are fulfilled, at which 
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         C CC H H HP r P P P P r  
   . To select a hypothesis when one IP marginally differs from another threshold function 

 ;CH r  of relative difference between IPs is compiled: 
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It is compared with a threshold 0Ht  : at  ;CH Hr t   preference is ambiguous; if  ;CH Hr t   then we select H , if 

 ;CH Hr t    H  is preferred. 

 

To summarize the results of Section 4 we present the core pseudocode of the identification procedure: 

 

if          C CC H H HP r P P P P r  
    

 ℂ

ℂ

 

 

4. Bayesian Identification Technique 

The sample analogues   
 

Φ φ  and   
 

Φ φ  of one or two true covariance matrices are employed to achieve the 

approximation SR  of SR  as S S SR R R    where estimates SR , SR  approximate 1R  twice or 1R , 2R  once. The sample 

covariance matrix of random variable ψ  is           
   

W Φ Φψ φ φ . The event space C  is defined to consist of two events, 

when the confidence circles encompassing sample estimates 

φ  and 


φ  intersect: SR

 
  φ φ  at 1C C  or do not intersect: 

SR
 
  φ φ  at 2C C . Conditioned by the hypotheses H and H  probabilities of the events 1C  and 2C  are 

    2 2
1C H SP P R   0ψ ψ  and     2 2

1C H SP P R   0ψ ψ ,     2 2
2C H SP P R   0ψ ψ  and     2 2

2C H SP P R   0ψ ψ . 

 

The probability  1C HP   is near to unity hence    2 1C H 1 C HP P    is near to zero. The probability  1C HP   decreases 

asymptotically with the rise of ψ  consequently the probability  2C HP     11 C HP    asymptotically increases.  1C HP   is 

smaller than  1C HP   approaching it from below at 0ψ , while  2C HP   is bigger than  2C HP   approaching it from above 

at 0ψ .  C HP   depends on covariance matrix 


Wψ  and an unknown mean ψ ;  C HP   depends only on 


Wψ . 

 

We develop Bayesian scheme with the minimal and maximal posterior probabilities of hypotheses H  and H  to be 

determined on the circumference  :r r ψ ψ  where equidistant from 1φ  positions 2φ  run, both at Sr R  and at Sr R , see 

Fig. 2. 

 

 

Figure 2: The Workspace of the Bayesian Technique: (a) Below and (b) Over Resolution Limit SR . The Circles are 

to Depict the Region Σ  where Estimates Fall for the Each rψ . 

 

 

Prior probabilities of the scheme come from PS. Let us denote minimal and maximal on r  posterior probabilities of H  as 

    min C; min H C , rP r P
 ψ  and     max C; max H C , rP r P

 ψ . By the binary Bayesian theorem, 
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where     C min C H , rP r P 
  ψ  and     C max C H , rP r P 

  ψ  are conditioned by H  extreme probabilities. Minimal  min C;P r  
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aposterior

Corollary.
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Extreme probabilities (6–9) are the monotonic functions along r  due to  
1CP r  and  

1CP r  decrease monotonically with the 

rise of r , accordingly functions    
2 1C C1P r P r    and    

2 1C C1P r P r    monotonically increase. This stems from the following 

Lemma.  

 

Lemma.    
1 1C CP r P r   ,    

1 1C CP r P r    at r r . 

 

Proof of Lemma. For some pair of vectors 1r rψ ψ  and 1r r ψ ψ , 1 1ψ  one has variables rψ  and r ψ  with means r rψ  and 

r r ψ . Then, 2 22
12 T

r r r    ψ ψ ψ ψ , 2 22
12 T

r r r      ψ ψ ψ ψ . Variances of 12 Tr ψ ψ  and 12 Tr ψ ψ  are variance of 12 Tψ ψ  

multiplied by the factors 2r  and 2r  correspondently, and from the properties of normal distribution 

     2 2 2 2
1 12 2T T

S SP r r R P r r R       ψ ψ ψ ψ . So,  2 2
r SP R ψ   2 2

r SP R ψ  that completes the Proof. 
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r r r    ψ ψ ψ ψ , 2 22
12 T

r r r      ψ ψ ψ ψ . Variances of 12 Tr ψ ψ  and 12 Tr ψ ψ  are variance of 12 Tψ ψ  

multiplied by the factors 2r  and 2r  correspondently, and from the properties of normal distribution 

     2 2 2 2
1 12 2T T

S SP r r R P r r R       ψ ψ ψ ψ . So,  2 2
r SP R ψ   2 2

r SP R ψ  that completes the Proof. 

 

Corollary.  min 1C ;P r ,  max 1C ;P r ,  min 2C ;P r ,  max 2C ;P r  decrease with r  monotonically;  min 2C ;P r ,  max 2C ;P r ,  min 1C ;P r , 

 max 1C ;P r  – monotonically increase. 

 

The preference of a hypothesis is achievable when    min maxC; C;P r P r   or    min maxC; C;P r P r  . At small r , it depends on 

which probability,  HP   or  HP   is bigger: if a)    H HP P   then    min 1 max 1C ; C ;P r P r  , otherwise b)    min 1 max 1C ; C ;P r P r  . 

The probabilities  max 1C ;P r  and  min 1C ;P r  decrease as r  goes up while  min 1C ;P r  and  max 1C ;P r  grow. Hence, hypothesis H  

becomes more and more probable but hypothesis H  is less probable. Starting with a certain r , we get for the case a) 

   min 1 max 1C ; C ;P r P r   but still    max 1 min 1C ; C ;P r P r  , at which preference is ambiguous, however with a further increase in r  

hypothesis H  begins to prevail:    min 1 max 1C ; C ;P r P r  . As for the case b) H  prevails at all r . When 2C = C  for the case a) 

hypothesis H  prevails at all distances:    min 2 max 2C ; C ;P r P r  ; for the case b) we get    min 2 max 2C ; C ;P r P r   at small r , but 

beginning from some distance the inequalities    min 2 max 2C ; C ;P r P r   and    max 2 min 2C ; C ;P r P r   are fulfilled, at which 

preference is not achievable, however in further growth of r  we come to    min 2 max 2C ; C ;P r P r  . 

 

We define identification probabilities (IPs) of one    C min C;P r P r   and of two sources    C max C;P r P r   if 

       CH H C HP P r P P  
  , and    C max C;P r P r  ,    C min C;P r P r   if        CH H C HP P r P P  

  . IPs are not defined if 

         C CC H H HP r P P P P r  
   . To select a hypothesis when one IP marginally differs from another threshold function 

 ;CH r  of relative difference between IPs is compiled: 
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It is compared with a threshold 0Ht  : at  ;CH Hr t   preference is ambiguous; if  ;CH Hr t   then we select H , if 

 ;CH Hr t    H  is preferred. 

 

To summarize the results of Section 4 we present the core pseudocode of the identification procedure: 

 

if          C CC H H HP r P P P P r  
    

 

Extreme probabilities (6–9) are the monotonic functions along r  due to  
1CP r  and  

1CP r  decrease monotonically with the 

rise of r , accordingly functions    
2 1C C1P r P r    and    

2 1C C1P r P r    monotonically increase. This stems from the following 

Lemma.  

 

Lemma.    
1 1C CP r P r   ,    

1 1C CP r P r    at r r . 

 

Proof of Lemma. For some pair of vectors 1r rψ ψ  and 1r r ψ ψ , 1 1ψ  one has variables rψ  and r ψ  with means r rψ  and 

r r ψ . Then, 2 22
12 T

r r r    ψ ψ ψ ψ , 2 22
12 T

r r r      ψ ψ ψ ψ . Variances of 12 Tr ψ ψ  and 12 Tr ψ ψ  are variance of 12 Tψ ψ  

multiplied by the factors 2r  and 2r  correspondently, and from the properties of normal distribution 

     2 2 2 2
1 12 2T T

S SP r r R P r r R       ψ ψ ψ ψ . So,  2 2
r SP R ψ   2 2

r SP R ψ  that completes the Proof. 

 

Corollary.  min 1C ;P r ,  max 1C ;P r ,  min 2C ;P r ,  max 2C ;P r  decrease with r  monotonically;  min 2C ;P r ,  max 2C ;P r ,  min 1C ;P r , 

 max 1C ;P r  – monotonically increase. 

 

The preference of a hypothesis is achievable when    min maxC; C;P r P r   or    min maxC; C;P r P r  . At small r , it depends on 

which probability,  HP   or  HP   is bigger: if a)    H HP P   then    min 1 max 1C ; C ;P r P r  , otherwise b)    min 1 max 1C ; C ;P r P r  . 

The probabilities  max 1C ;P r  and  min 1C ;P r  decrease as r  goes up while  min 1C ;P r  and  max 1C ;P r  grow. Hence, hypothesis H  

becomes more and more probable but hypothesis H  is less probable. Starting with a certain r , we get for the case a) 

   min 1 max 1C ; C ;P r P r   but still    max 1 min 1C ; C ;P r P r  , at which preference is ambiguous, however with a further increase in r  

hypothesis H  begins to prevail:    min 1 max 1C ; C ;P r P r  . As for the case b) H  prevails at all r . When 2C = C  for the case a) 

hypothesis H  prevails at all distances:    min 2 max 2C ; C ;P r P r  ; for the case b) we get    min 2 max 2C ; C ;P r P r   at small r , but 

beginning from some distance the inequalities    min 2 max 2C ; C ;P r P r   and    max 2 min 2C ; C ;P r P r   are fulfilled, at which 

preference is not achievable, however in further growth of r  we come to    min 2 max 2C ; C ;P r P r  . 

 

We define identification probabilities (IPs) of one    C min C;P r P r   and of two sources    C max C;P r P r   if 

       CH H C HP P r P P  
  , and    C max C;P r P r  ,    C min C;P r P r   if        CH H C HP P r P P  

  . IPs are not defined if 

         C CC H H HP r P P P P r  
   . To select a hypothesis when one IP marginally differs from another threshold function 

 ;CH r  of relative difference between IPs is compiled: 
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It is compared with a threshold 0Ht  : at  ;CH Hr t   preference is ambiguous; if  ;CH Hr t   then we select H , if 

 ;CH Hr t    H  is preferred. 

 

To summarize the results of Section 4 we present the core pseudocode of the identification procedure: 

 

if          C CC H H HP r P P P P r  
    

Extreme probabilities (6–9) are the monotonic functions along r  due to  
1CP r  and  

1CP r  decrease 

monotonically with the rise of r , accordingly functions    
2 1C C1P r P r    and    

2 1C C1P r P r    
monotonically increase. This stems from the following Lemma.  
 
Lemma.    

1 1C CP r P r   ,    
1 1C CP r P r    at r r . 

Proof of Lemma. For some pair of vectors 1r rψ ψ  and 1r r ψ ψ , 1 1ψ  one has variables rψ  and rψ  with 

means r rψ  and r r ψ . Then, 2 22
12 T

r r r    ψ ψ ψ ψ , 2 22
12 T

r r r      ψ ψ ψ ψ . Variances of 

12 Tr ψ ψ  and 12 Tr ψ ψ  are variance of 12 Tψ ψ  multiplied by the factors 2r  and 2r  correspondently, and from 

the properties of normal distribution      2 2 2 2
1 12 2T T

S SP r r R P r r R       ψ ψ ψ ψ . So,  2 2
r SP R ψ  

 2 2
r SP R ψ  that completes the Proof. 

 
Corollary.  min 1C ;P r ,  max 1C ;P r ,  min 2C ;P r ,  max 2C ;P r  decrease with r  monotonically;  min 2C ;P r , 

 max 2C ;P r ,  min 1C ;P r ,  max 1C ;P r  – monotonically increase. 

 
The preference of a hypothesis is achievable when    min maxC; C;P r P r   or    min maxC; C;P r P r  . At small 

r , it depends on which probability,  HP   or  HP   is bigger: if a)    H HP P   then 

   min 1 max 1C ; C ;P r P r  , otherwise b)    min 1 max 1C ; C ;P r P r  . The probabilities  max 1C ;P r  and  min 1C ;P r  

decrease as r  goes up while  min 1C ;P r  and  max 1C ;P r  grow. Hence, hypothesis H  becomes more and 

more probable but hypothesis H  is less probable. Starting with a certain r , we get for the case a) 

   min 1 max 1C ; C ;P r P r   but still    max 1 min 1C ; C ;P r P r  , at which preference is ambiguous, however with a 

further increase in r  hypothesis H  begins to prevail:    min 1 max 1C ; C ;P r P r  . As for the case b) H  prevails 

at all r . When 2C = C  for the case a) hypothesis H  prevails at all distances:    min 2 max 2C ; C ;P r P r  ; for the 

case b) we get    min 2 max 2C ; C ;P r P r   at small r , but beginning from some distance the inequalities 

   min 2 max 2C ; C ;P r P r   and    max 2 min 2C ; C ;P r P r   are fulfilled, at which preference is not achievable, 

however in further growth of r  we come to    min 2 max 2C ; C ;P r P r  . 

 
We define identification probabilities (IPs) of one    C min C;P r P r   and of two sources    C max C;P r P r   if 

       CH H C HP P r P P  
  , and    C max C;P r P r  ,    C min C;P r P r   if        CH H C HP P r P P  

  . 

IPs are not defined if          C CC H H HP r P P P P r  
   . To select a hypothesis when one IP 

marginally differs from another threshold function  ;CH r  of relative difference between IPs is compiled: 
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. 

 

then No preference of a hypothesis else  

if  ;CH Hr t   then Prefer H  

else if  ;CH Hr t    then Prefer H  

else No preference of a hypothesis 

end if end if end if 

 

5. Estimation of R99 

The topic of a confidence circle has been addressed in a number of publications regarding circular error probability 

(CEP) integral, occurring in navigation and surveillance systems [25-29]. CEP is the radius of a confidence circle which 

contains a random variable with probability 0.5 . 

 

The probability density for zero mean bivariate Gaussian variable  Tx yz  with covariance matrix Κ  is defined as 

 

  11 1, exp
22 det
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
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Κ ,                                   (10) 

 

where x , y  and cv  are standard deviations and covariance of components x  and y . Function (10) is rewritten as 
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2 222
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,                                   (11) 

 

where  cv x y     is a correlation coefficient. 

 

Among others, Krempasky CEP estimator is the most attractive both owing to its numerical simplicity (it is closed-form) 

and accuracy (the deviation of CEP estimate from exact value is less than 2 percent) [29]. He first rotates coordinates x , 

y  in CEP integral with integrand (11) by the angle  : 

 

   1 22 2 2 2 2tg 2 4y x cv cv y x      
         

, 

 

such that 2 2 2 2 2 2 2cos sin sin2x y x y cv               ,    2 2 20.5 sin2 cos2y x cv              in transformed coordinates. With 

polar coordinates it is written with angular coordinate   after the integral is performed over radial coordinate: 
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.                                   (12) 

 

The integral (12) is expanded to the fourth order in the correlation coefficient  , and after much manipulation the final 

CEP estimate is found to be 

 

 2 2 4
00 2 4 21 0.5 0.5 0.25CEP CEP C C C        , 00 2ln2CEP  , 2 0.5 0.25ln2C   , 

 2 2 2 3
4 2 2ln2 0.25ln 2 0.5 0.5 ln 2 0.5625ln 2 0.1875ln 2 0.015625ln 2 0.375C C C        .                    (13) 

 

5. Estimation of R99
The topic of a confidence circle has been addressed in a number of publications regarding circular error probability (CEP) integral, 
occurring in navigation and surveillance systems [25-29]. CEP is the radius of a confidence circle which contains a random variable 
with probability 0.5.

The probability density for zero mean bivariate Gaussian variable [ ]Tx y=z  with covariance matrix K is defined as
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The integral (12) is expanded to the fourth order in the correlation coefficient  , and after much manipulation the final 
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We substitute 0.5  with 0.99  in (12) to rework CEP estimator to estimate R99. Repeating the same 
manipulation as in [29], one can make sure that R99 estimate is deduced from (13) by substitution ln 2  with 
2ln10 . Final expression for 99KR  will be 
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The integral (12) is expanded to the fourth order in the correlation coefficient  , and after much 
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is recognized, otherwise– case (ii) for which representation from (15) at s R  is used instead of  2
0I s  in 

integral 99R
RJ


 to achieve approximation 99AR
RJ


. By doing this, we come to the approximation of the right part 

of (14): 
 

99
0

99
0

( ) : 0
0.99

( ) : 0

A

A

R

R R
R

J i
J J ii






    
, 

 
where 99

0
ARJ  is the same approximation as 0

RJ   with 99AR  instead of R . The integration techniques 
detailed in Appendixes lead to the following analytical expressions: 
 

    
0 02 2

1 2 2 2 2 1 22
0 3 1 3 1

1 11 2

2
1 4 4 2 ...4 2 4 ... 4 4 2 ...4 2 1

!2 !2

M Mk k
B k k k k

k kJ k k e k k k
k k


      

 




 

                   
  , 

 1 2 1 22      , 2B  ,  , 99AB R R , 

 
see Appendix A, and 
 

   

   

2

99 11

11 2 1 1
1

1

2 2 1
99 1
2 2 16 ! 2 1

k
k

M
R sA
R k

kk

s

s
RRJ erf erf

k k s



    








 
                                   





 

 

 
 

 
   

2 2
2

1
1 11

2 1 2 1
1 11

1
1 1

99exp exp2 1 2 2 22
16 ! 992 1

2 2

k
A

M k
s

k k k
k

A
s

R R
s

k R Rk s





 

 

 





   

 



 
                  

                     


 



, 

 

where   2

0

2 d
R

serf R e s
 

, see Appendix B; 0M , M  are the orders of approximation. As 99AR R  the 

member   
   

2
1

2 1

1

exp 99 2

99 2

A
k

A

R

R




 


 in 99AR

RJ


 is small as compared to   
   

2
1

2 1

1

exp 2

2
k

R

R








 

  and further will be ignored. 

 
We assign 0 2M   in 0

BJ  after that case (i) is reduced to the following equation for 99AR : 
 

    
2 22 2

2 2 1 2 22 1 2
3 1 3 1

1 1 1 2

4 ... 4 4 2 ...4 2 1 1 4 4 2 ...4 2 0.99
!2 !2 2

k k
k k k k

k ke k k k k k
k k


      

 




 

  
           

 
  , 

 
where 1/299AR  . As it can be observed, the derivative along   of the function from the left side of this 
equation is negative, supplying the solution uniqueness. 
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larger standard deviation) in the intervals (-1,1) and (0,1) respectively. The performance index is the 
probability integral (14) performed numerically with estimates 99KR  and 99AR . Table 1 contains the 
extraction from the simulation results. 
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Table 1: Simulation results on performance of 99KR  versus 99AR . 
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The performance of estimate 99KR  versus 99AR  is studied by simulation in the full range of   from -0.0098 to 0.9888, 

which corresponds to varying of the correlation coefficient and sigma ratio (ratio of smaller to larger standard deviation) 

in the intervals (-1,1) and (0,1) respectively. The performance index is the probability integral (14) performed 

numerically with estimates 99KR  and 99AR . Table 1 contains the extraction from the simulation results. 

 

 

Table 1: Simulation Results on Performance of 99KR  versus 99AR . 

 

 

As we can see from the Table 1, at 0   estimates 99KR  and 99AR  are both of excellent accuracy and close to each other. As 

  approaches zero from below, 99KR  keeps excellent accuracy while 99AR  degrades. The bigger   after zero is, the better 

99AR  becomes, while 99KR  degrades gradually. It is safe to conclude, that 99AR  begins to outperform 99KR  visibly from the 

0.8   onwards. As a result, radius R99 is estimated as follows:  

 

R99= 99 , 0.8
99 , 0.8

K

A

R
R





 
. 

   

   

2

99 11

11 2 1 1
1

1

2 2 1
99 1
2 2 16 ! 2 1

k
k

M
R sA
R k

kk

s

s
RRJ erf erf

k k s



    








 
                                   





 

 

 
 

 
   

2 2
2

1
1 11

2 1 2 1
1 11

1
1 1

99exp exp2 1 2 2 22
16 ! 992 1

2 2

k
A

M k
s

k k k
k

A
s

R R
s

k R Rk s





 

 

 





   

 



 
                  

                     


 



, 

 

where   2

0

2 d
R

serf R e s
 

, see Appendix B; 0M , M   are the orders of approximation. As 99AR R  the member 

  
   

2
1

2 1

1

exp 99 2

99 2

A
k

A

R

R




 

  in 99AR
RJ


 is small as compared to   
   

2
1

2 1

1

exp 2

2
k

R

R








 

  and further will be ignored. 

 

We assign 0 2M   in 0
BJ  after that case (i) is reduced to the following equation for 99AR : 

 

    
2 22 2

2 2 1 2 22 1 2
3 1 3 1

1 1 1 2

4 ... 4 4 2 ...4 2 1 1 4 4 2 ...4 2 0.99
!2 !2 2

k k
k k k k

k ke k k k k k
k k


      

 




 

  
           

 
  , 

 

where 1/299AR  . As it can be observed, the derivative along   of the function from the left side of this equation is 

negative, supplying the solution uniqueness. 

 

For the case (ii) we set 2M   in 99AR
RJ


 and obtain the closed-form solution:  

 

 

 
 

 

 

   

   

2

1

2
12 2

11 2
2 1

1 11 1

11

21 1
2

1

1
1

1

2 1 22e
16 !

2 1
299

2 2 2 2 1
1

16 ! 2 1

k
R

k
s

k k
k

sA
k

k

s
k

kk

s

s

k R k s
RRerf erf

s

k k s








 
  



 



 


 

 













  

                  
     


   


 








. 
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6. The Distinguishing Two Location Estimates between One or Two close users of the TDOA BSs Network

 

 

6. The Distinguishing Two Location Estimates between One or Two close users of the TDOA BSs Network 

The technique is applied to distinguish two planar positional estimates of the user(s) of TDOA BSs network. The received 

signals are classified by parameter q  with the probabilities  
1

j QI
j j

P



 and  

1

j QII
j j

P



 over the emissions I and II, where Q  is the 

number of different users. Proceeding from these probabilities, one can easily derive  
1

H
Q

I II
j j

j
P P P



  and 

   H 1 HP P   . 

 

In TDOA scheme, output signal at k -th BS is with parameter k  of time difference of emission arrival on that BS and 

reference one, placed in (0, 0), from a user located at φ :    k k kp c   φ φ φ φ φ , 1,k L p , 1L L p , where c  is the speed 

of light. The model (1) is here reduced to the following one: 

 

       1; , ;I I I I I I I
k k kt p g t c p n t   q φ φ q ,  

       1; , ;II II II II II II II
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     ; ;I I I I I
Lt g t n t  q q ,      ; ;II II II II II

Lt g t n t  q q  

 

with scalar signals, waveforms and noises instead of vector ones as in (1). Scalar processes  ;t q ,  Ln t  and function 

 ;g t q  with 0Lp   are given at reference BS. 

 

Maximum likelihood estimator  p  is efficient asymptotically if a signal at each of L p  BSs is uncorrelated with the signal 

at reference BS:      0k LE n t n t   [31]. As far as φ  is concerned, the constrained weighted least square estimator, which 

combine core pillars of quadratic and linear correction techniques, is efficient for uncorrelated measurement errors k  of 

parameters k , 1, ,
T

L     p
υ [32-34]. Despite the fact that they nevertheless correlate through signal at reference BS, we 

presume that matrix  TE υυ  is to be near to a diagonal one. Reasoning from the aforementioned, the covariance matrix in 

TDOA BSs network is calculated as 
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There are five BSs, including the reference BS. Four BSs in conjunction with the reference one, produce the range 

differences of arrival kc , corrupted by the noises with standard deviation 1 = 2 = 3 = 4 = 0.04m (m hereinafter refers to 

meters). They are situated at (1000, -700)m, (-1000, 2000)m, (4000, 3000)m and (-4000, 1000)m. The technique is being 

tested in the close users domain (CUD), which encompasses the position 1φ  placed at (14000, 12600)m, with the using of 

approximations of function  2SRL φ  and matrix-function  2Wψ φ  in CUD by the constant values. 

 

Since the exact solution for the distribution of 2ψ  is very expensive, the simpler closed-form approximation is utilized in 

the study [24,35]. 
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The performance of estimate 99KR  versus 99AR  is studied by simulation in the full range of   from -0.0098 to 0.9888, 
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6. The Distinguishing Two Location Estimates between One or Two close users of the TDOA BSs Network 

The technique is applied to distinguish two planar positional estimates of the user(s) of TDOA BSs network. The received 

signals are classified by parameter q  with the probabilities  
1

j QI
j j
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


 and  
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j QII
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
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 over the emissions I and II, where Q  is the 

number of different users. Proceeding from these probabilities, one can easily derive  
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I II
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j
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  and 

   H 1 HP P   . 

 

In TDOA scheme, output signal at k -th BS is with parameter k  of time difference of emission arrival on that BS and 

reference one, placed in (0, 0), from a user located at φ :    k k kp c   φ φ φ φ φ , 1,k L p , 1L L p , where c  is the speed 

of light. The model (1) is here reduced to the following one: 
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with scalar signals, waveforms and noises instead of vector ones as in (1). Scalar processes  ;t q ,  Ln t  and function 

 ;g t q  with 0Lp   are given at reference BS. 

 

Maximum likelihood estimator  p  is efficient asymptotically if a signal at each of L p  BSs is uncorrelated with the signal 

at reference BS:      0k LE n t n t   [31]. As far as φ  is concerned, the constrained weighted least square estimator, which 

combine core pillars of quadratic and linear correction techniques, is efficient for uncorrelated measurement errors k  of 

parameters k , 1, ,
T

L     p
υ [32-34]. Despite the fact that they nevertheless correlate through signal at reference BS, we 

presume that matrix  TE υυ  is to be near to a diagonal one. Reasoning from the aforementioned, the covariance matrix in 

TDOA BSs network is calculated as 
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There are five BSs, including the reference BS. Four BSs in conjunction with the reference one, produce the range 

differences of arrival kc , corrupted by the noises with standard deviation 1 = 2 = 3 = 4 = 0.04m (m hereinafter refers to 

meters). They are situated at (1000, -700)m, (-1000, 2000)m, (4000, 3000)m and (-4000, 1000)m. The technique is being 

tested in the close users domain (CUD), which encompasses the position 1φ  placed at (14000, 12600)m, with the using of 

approximations of function  2SRL φ  and matrix-function  2Wψ φ  in CUD by the constant values. 

 

Since the exact solution for the distribution of 2ψ  is very expensive, the simpler closed-form approximation is utilized in 

the study [24,35]. 
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points evenly spaced along the circumference of radius  4r ,    4
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φ , and   21 W Φ Φφ  are computed. To 

reveal the scattering of  2Wψ φ  towards W  we additionally determine the matrices    min 1 2min W Φ Φφ φ , max W

   1 2max Φ Φφ φ , where 2minφ , 2maxφ  correspond to the minimum and maximum of  299R φ  on the same circumference: 
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Following the logic in characterization on SRL, we approximate  2Wψ φ  by the matrix W= 38.51 30.56
30.56 24.37
 
 
 

 with the accuracy 

0.30 0.19
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 
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. Spectral characteristic e  of W is equal to 29.3636, hence 0.4842 0.4905SPRI  . 
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6.2. Identifying in the CUD 

We set distance r  varying it throughout the CUD and simulate desired IPs for the each event  1 2C C ,C  

with SRL and W obtained in Subsection 6.1. The simulation is conducted for prior probabilities  HP  =0.2, 

0.48, 0.5, 0.52, 0.8 and related  HP  =0.8, 0.52, 0.5, 0.48, 0.2. The results are shown in Table 3, where α, β and 

δ denote the rows for IPs  CP r ,  CP r  and the function  ;CH r  respectively; abbreviation “undef” 

denotes undefined IPs and  ;CH r . The numerical values are rounded to the third and if necessary to the 

fourth decimal place. To test a hypothesis threshold Ht =0.05 is chosen. The fragments of rows δ that are 
colored blue conform to the one user identification, those colored brown conform to the two user 
identification, and the uncolored ones do not conform to any identification. Green column is to highlight the 
neighborhood of SRL. 
 
Remark 2. The distance r  is varying in Table 3 from 2m till 34.6m. It does not contain the results of 
computation with  HP  =0.52 at negligible distance for 2C = C : one user is identified at 0.5r   with 

 
2C 0.5P =0.510,  

2C 0.5P =0.490 and  20.5;CH =0.051; in the range from 0.5 till 0.8 identification is rejected 

with  
2C 0.8P =0.503,  

2C 0.8P =0.497 and  20.8;CH =0.012; from 0.9 till 2 and further up to 2.6m 
identification probabilities are not defined. 
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Table 3. Identification Results in the CUD. 
 
Figure 3 visualizes identification probabilities  

1CP r  and  
2CP r  from Table 3 and in the light of Remark 2. 

 

 1С  β 0.800 0.800 0.800 0.800 0.800 0.800 0.799 0.797 0.794 0.777 0.732 0.717 0.709 0.692 0.671  undef undef 0.486 
0.2  δ -0.750 -0.750 -0.750 -0.750 -0.750 -0.750 -0.749 -0.746 -0.741 -0.713 -0.633 -0.606 -0.590 -0.554 -0.510  undef undef 0.054 

  α 0.195 0.191 0.184 0.179 0.164 0.143 0.099 0.058 0.037 0.008 0.001 0.001 0.0005 0.0003 0.0002  0.0001 0.0001 0.0001 
 2С  β 0.805 0.809 0.816 0.821 0.836 0.857 0.901 0.942 0.963 0.992 0.999 0.999 0.9995 0.9997 0.9998  0.9999 0.9999 0.9999 
  δ -0.758 -0.763 -0.774 -0.782 -0.803 -0.833 -0.890 -0.938 -0.962 -0.992 -0.999 -0.999 -0.999 -0.999 -0.999  -0.999 -0.999 -0.999 
  α 0.480 0.480 0.480 0.480 0.480 0.480 0.481 0.484 0.489 undef undef 0.505 0.514 0.543 0.607  0.667 0.729 0.796 

 1С  β 0.520 0.520 0.520 0.520 0.520 0.520 0.519 0.516 0.511 undef undef 0.495 0.486 0.457 0.393 
 

0.333 0.271 0.204 
0.48  δ -0.077 -0.077 -0.077 -0.077 -0.076 -0.075 -0.072 -0.061 -0.045 undef undef 0.021 0.053 0.160 0.354  0.501 0.629 0.744 

  α 0.472 0.466 0.455 0.446 0.421 0.382 0.288 0.185 0.124 0.030 0.004 0.002 0.002 0.001 0.001  0.0004 0.0004 0.0003 
 2С  β 0.528 0.534 0.545 0.554 0.579 0.618 0.712 0.815 0.876 0.970 0.996 0.998 0.998 0.999 0.999  0.9996 0.9996 0.9997 
  δ -0.107 -0.127 -0.165 -0.196 -0.273 -0.383 -0.595 -0.773 -0.858 -0.969 -0.996 -0.998 -0.998 -0.999 -0.999  -0.999 -0.999 -0.999 
  α 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.502 0.515 0.525 0.534 0.563 0.626  0.685 0.745 0.809 

 1С  β 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.498 0.485 0.475 0.466 0.437 0.374 
 

0.315 0.255 0.191 
0.5  δ 0.000 0.000 0.000 0.000 0.000 0.0001 0.0003 0.0007 0.001 0.007 0.058 0.096 0.126 0.225 0.403  0.539 0.657 0.764 

  α 0.492 0.486 0.475 0.466 0.440 0.401 0.305 0.198 0.133 0.033 0.004 0.003 0.002 0.001 0.001  0.0005 0.0004 0.0003 
 2С  β 0.508 0.514 0.525 0.534 0.560 0.599 0.695 0.802 0.867 0.967 0.996 0.997 0.998 0.999 0.999  0.9995 0.9996 0.9997 
  δ -0.032 -0.054 -0.095 -0.129 -0.213 -0.331 -0.562 -0.754 -0.846 -0.966 -0.996 -0.997 -0.998 -0.999 -0.999  -0.999 -0.999 -0.999 
  α 0.520 0.520 0.520 0.520 0.520 0.520 0.520 0.520 0.520 0.522 0.535 0.545 0.553 0.583 0.645  0.702 0.760 0.821 
 1С  β 0.480 0.480 0.480 0.480 0.480 0.480 0.480 0.480 0.480 0.478 0.465 0.455 0.447 0.417 0.355  0.298 0.240 0.179 

0.52  δ 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.078 0.078 0.084 0.131 0.166 0.193 0.284 0.449  0.575 0.684 0.782 
  α undef undef 0.495 0.486 0.460 0.420 0.322 0.211 0.143 0.035 0.005 0.003 0.002 0.001 0.0007  0.0005 0.0004 0.0004 
 2С  β undef undef 0.505 0.514 0.540 0.580 0.678 0.789 0.857 0.965 0.995 0.997 0.998 0.999 0.9993  0.9995 0.9996 0.9996 
  δ undef undef -0.020 -0.056 -0.147 -0.276 -0.525 -0.733 -0.834 -0.963 -0.995 -0.997 -0.998 -0.999 -0.999  -0.999 -0.999 -0.999 
  α 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.801 0.809 0.816 0.821 0.838 0.870  0.897 0.921 0.944 
 1С  β 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.199 0.191 0.184 0.179 0.162 0.130  0.103 0.079 0.056 

0.8  δ 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.752 0.765 0.774 0.782 0.806 0.851  0.885 0.914 0.941 
  α 0.741 0.709 0.654 0.611 0.504 undef undef 0.496 0.381 0.119 0.017 0.010 0.008 0.004 0.002  0.0019 0.0015 0.0013 
 2С  β 0.259 0.291 0.346 0.389 0.496 undef undef 0.504 0.619 0.881 0.983 0.990 0.992 0.996 0.998  0.9981 0.9985 0.9987 
  δ 0.651 0.590 0.471 0.364 0.015 undef undef -0.014 -0.386 -0.865 -0.983 -0.990 -0.992 -0.996 -0.998  -0.998 -0.998 -0.999 

Remark 2.
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Table 3. Identification Results in the CUD. 
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1CP r  and  
2CP r  from Table 3 and in the light of Remark 2. 

 

 1С  β 0.800 0.800 0.800 0.800 0.800 0.800 0.799 0.797 0.794 0.777 0.732 0.717 0.709 0.692 0.671  undef undef 0.486 
0.2  δ -0.750 -0.750 -0.750 -0.750 -0.750 -0.750 -0.749 -0.746 -0.741 -0.713 -0.633 -0.606 -0.590 -0.554 -0.510  undef undef 0.054 

  α 0.195 0.191 0.184 0.179 0.164 0.143 0.099 0.058 0.037 0.008 0.001 0.001 0.0005 0.0003 0.0002  0.0001 0.0001 0.0001 
 2С  β 0.805 0.809 0.816 0.821 0.836 0.857 0.901 0.942 0.963 0.992 0.999 0.999 0.9995 0.9997 0.9998  0.9999 0.9999 0.9999 
  δ -0.758 -0.763 -0.774 -0.782 -0.803 -0.833 -0.890 -0.938 -0.962 -0.992 -0.999 -0.999 -0.999 -0.999 -0.999  -0.999 -0.999 -0.999 
  α 0.480 0.480 0.480 0.480 0.480 0.480 0.481 0.484 0.489 undef undef 0.505 0.514 0.543 0.607  0.667 0.729 0.796 

 1С  β 0.520 0.520 0.520 0.520 0.520 0.520 0.519 0.516 0.511 undef undef 0.495 0.486 0.457 0.393 
 

0.333 0.271 0.204 
0.48  δ -0.077 -0.077 -0.077 -0.077 -0.076 -0.075 -0.072 -0.061 -0.045 undef undef 0.021 0.053 0.160 0.354  0.501 0.629 0.744 

  α 0.472 0.466 0.455 0.446 0.421 0.382 0.288 0.185 0.124 0.030 0.004 0.002 0.002 0.001 0.001  0.0004 0.0004 0.0003 
 2С  β 0.528 0.534 0.545 0.554 0.579 0.618 0.712 0.815 0.876 0.970 0.996 0.998 0.998 0.999 0.999  0.9996 0.9996 0.9997 
  δ -0.107 -0.127 -0.165 -0.196 -0.273 -0.383 -0.595 -0.773 -0.858 -0.969 -0.996 -0.998 -0.998 -0.999 -0.999  -0.999 -0.999 -0.999 
  α 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.502 0.515 0.525 0.534 0.563 0.626  0.685 0.745 0.809 

 1С  β 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.498 0.485 0.475 0.466 0.437 0.374 
 

0.315 0.255 0.191 
0.5  δ 0.000 0.000 0.000 0.000 0.000 0.0001 0.0003 0.0007 0.001 0.007 0.058 0.096 0.126 0.225 0.403  0.539 0.657 0.764 

  α 0.492 0.486 0.475 0.466 0.440 0.401 0.305 0.198 0.133 0.033 0.004 0.003 0.002 0.001 0.001  0.0005 0.0004 0.0003 
 2С  β 0.508 0.514 0.525 0.534 0.560 0.599 0.695 0.802 0.867 0.967 0.996 0.997 0.998 0.999 0.999  0.9995 0.9996 0.9997 
  δ -0.032 -0.054 -0.095 -0.129 -0.213 -0.331 -0.562 -0.754 -0.846 -0.966 -0.996 -0.997 -0.998 -0.999 -0.999  -0.999 -0.999 -0.999 
  α 0.520 0.520 0.520 0.520 0.520 0.520 0.520 0.520 0.520 0.522 0.535 0.545 0.553 0.583 0.645  0.702 0.760 0.821 
 1С  β 0.480 0.480 0.480 0.480 0.480 0.480 0.480 0.480 0.480 0.478 0.465 0.455 0.447 0.417 0.355  0.298 0.240 0.179 

0.52  δ 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.078 0.078 0.084 0.131 0.166 0.193 0.284 0.449  0.575 0.684 0.782 
  α undef undef 0.495 0.486 0.460 0.420 0.322 0.211 0.143 0.035 0.005 0.003 0.002 0.001 0.0007  0.0005 0.0004 0.0004 
 2С  β undef undef 0.505 0.514 0.540 0.580 0.678 0.789 0.857 0.965 0.995 0.997 0.998 0.999 0.9993  0.9995 0.9996 0.9996 
  δ undef undef -0.020 -0.056 -0.147 -0.276 -0.525 -0.733 -0.834 -0.963 -0.995 -0.997 -0.998 -0.999 -0.999  -0.999 -0.999 -0.999 
  α 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.801 0.809 0.816 0.821 0.838 0.870  0.897 0.921 0.944 
 1С  β 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.199 0.191 0.184 0.179 0.162 0.130  0.103 0.079 0.056 

0.8  δ 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.752 0.765 0.774 0.782 0.806 0.851  0.885 0.914 0.941 
  α 0.741 0.709 0.654 0.611 0.504 undef undef 0.496 0.381 0.119 0.017 0.010 0.008 0.004 0.002  0.0019 0.0015 0.0013 
 2С  β 0.259 0.291 0.346 0.389 0.496 undef undef 0.504 0.619 0.881 0.983 0.990 0.992 0.996 0.998  0.9981 0.9985 0.9987 
  δ 0.651 0.590 0.471 0.364 0.015 undef undef -0.014 -0.386 -0.865 -0.983 -0.990 -0.992 -0.996 -0.998  -0.998 -0.998 -0.999 

Table 3. Identification Results in the CUD.

We set distance r  varying it throughout the CUD and simulate desired IPs for each event  1 2C C ,C  with SRL and W 

obtained in Subsection 6.1. The simulation is conducted for prior probabilities  HP  =0.2, 0.48, 0.5, 0.52, 0.8 and related 

 HP  =0.8, 0.52, 0.5, 0.48, 0.2. The results are shown in Table 3, where α, β and δ denote the rows for IPs  CP r ,  CP r  

and the function  ;CH r  respectively; abbreviation “undef” denotes undefined IPs and  ;CH r . The numerical values are 

rounded to the third and if necessary to the fourth decimal place. To test a hypothesis threshold Ht =0.05 is chosen. The 

fragments of rows δ that are colored blue conform to the one user identification, those colored brown conform to the two 

user identification, and the uncolored ones do not conform to any identification. Green column is to highlight the 

neighborhood of SRL. 

 

Remark 2. The distance r  is varying in Table 3 from 2m till 34.6m. It does not contain the results of computation with 

 HP  =0.52 at negligible distance for 2C = C : one user is identified at 0.5r   with  
2C 0.5P =0.510,  

2C 0.5P =0.490 and 

 20.5;CH =0.051; in the range from 0.5 till 0.8 identification is rejected with  
2C 0.8P =0.503,  

2C 0.8P =0.497 and  20.8;CH

=0.012; from 0.9 till 2 and further up to 2.6m identification probabilities are not defined. 
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of initial probability up to some distance below SRL, but with some greater distance also below SRL PS-decision is 

changed in favor of two users in the rest of the CUD; between that distances identification does not work. 

 

If the two-user hypothesis is slightly more probable than the one-user one then at 1C C  PS-decision is unchanged with a 
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We set distance r  varying it throughout the CUD and simulate desired IPs for each event  1 2C C ,C  with SRL and W 
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Remark 2. The distance r  is varying in Table 3 from 2m till 34.6m. It does not contain the results of computation with 

 HP  =0.52 at negligible distance for 2C = C : one user is identified at 0.5r   with  
2C 0.5P =0.510,  

2C 0.5P =0.490 and 

 20.5;CH =0.051; in the range from 0.5 till 0.8 identification is rejected with  
2C 0.8P =0.503,  

2C 0.8P =0.497 and  20.8;CH

=0.012; from 0.9 till 2 and further up to 2.6m identification probabilities are not defined. 

 

 

Table 3. Identification Results in the CUD. 

 

 

Figure 3 visualizes identification probabilities  
1CP r  and  

2CP r  from Table 3 and in the light of Remark 2. 

 

 

Figure 3: Identification probabilities (a)  
1CP r  and (b)  

2CP r . 

 

 

6.3. Discussion of the Simulation Results 

The behavior of IPs as function of separation r  depends on the prior probability as parameter and cardinally on what 

event from Bayes event space happens. 

 

When the prior probability of two-user hypothesis is large enough then at 1C C  identification procedure only recalculates 

the initial probability in the direction of decrease up to a distance around SRL leaving PS-decision unchanged, PS-

decision is changed by procedure in favor of one user with some distance over SRL; identification does not work between 

that distances. At 2C C  PS-decision remains unchanged everywhere in CUD with recalculation of initial probability in 

the direction of increase. If, on the other hand, prior probability of one-user hypothesis is large enough then at 1C C  PS-

decision is unchanged in the CUD with a growth of initial probability. At 2C C  PS-decision is unchanged with a descent 

of initial probability up to some distance below SRL, but with some greater distance also below SRL PS-decision is 

changed in favor of two users in the rest of the CUD; between that distances identification does not work. 

 

If the two-user hypothesis is slightly more probable than the one-user one then at 1C C  PS-decision is unchanged with a 

descent of initial probability up to some distance below SRL, but with some greater distance also below SRL and further 

PS-decision is changed in favor of one user; between that distances we may not select a hypothesis. At 2C C  PS-decision 

is unchanged in the CUD with a growth of initial probability. If the one-user hypothesis is slightly more probable than the 

two-user one then at 1C C  PS-decision is unchanged in the CUD with a growth of initial probability. At 2C C  initial 

We set distance r  varying it throughout the CUD and simulate desired IPs for each event  1 2C C ,C  with SRL and W 

obtained in Subsection 6.1. The simulation is conducted for prior probabilities  HP  =0.2, 0.48, 0.5, 0.52, 0.8 and related 

 HP  =0.8, 0.52, 0.5, 0.48, 0.2. The results are shown in Table 3, where α, β and δ denote the rows for IPs  CP r ,  CP r  

and the function  ;CH r  respectively; abbreviation “undef” denotes undefined IPs and  ;CH r . The numerical values are 

rounded to the third and if necessary to the fourth decimal place. To test a hypothesis threshold Ht =0.05 is chosen. The 

fragments of rows δ that are colored blue conform to the one user identification, those colored brown conform to the two 

user identification, and the uncolored ones do not conform to any identification. Green column is to highlight the 

neighborhood of SRL. 

 

Remark 2. The distance r  is varying in Table 3 from 2m till 34.6m. It does not contain the results of computation with 

 HP  =0.52 at negligible distance for 2C = C : one user is identified at 0.5r   with  
2C 0.5P =0.510,  

2C 0.5P =0.490 and 

 20.5;CH =0.051; in the range from 0.5 till 0.8 identification is rejected with  
2C 0.8P =0.503,  

2C 0.8P =0.497 and  20.8;CH

=0.012; from 0.9 till 2 and further up to 2.6m identification probabilities are not defined. 

 

 

Table 3. Identification Results in the CUD. 

 

 

Figure 3 visualizes identification probabilities  
1CP r  and  

2CP r  from Table 3 and in the light of Remark 2. 

 

 

Figure 3: Identification probabilities (a)  
1CP r  and (b)  

2CP r . 

 

 

6.3. Discussion of the Simulation Results 

The behavior of IPs as function of separation r  depends on the prior probability as parameter and cardinally on what 

event from Bayes event space happens. 

 

When the prior probability of two-user hypothesis is large enough then at 1C C  identification procedure only recalculates 

the initial probability in the direction of decrease up to a distance around SRL leaving PS-decision unchanged, PS-

decision is changed by procedure in favor of one user with some distance over SRL; identification does not work between 

that distances. At 2C C  PS-decision remains unchanged everywhere in CUD with recalculation of initial probability in 

the direction of increase. If, on the other hand, prior probability of one-user hypothesis is large enough then at 1C C  PS-

decision is unchanged in the CUD with a growth of initial probability. At 2C C  PS-decision is unchanged with a descent 

of initial probability up to some distance below SRL, but with some greater distance also below SRL PS-decision is 

changed in favor of two users in the rest of the CUD; between that distances identification does not work. 

 

If the two-user hypothesis is slightly more probable than the one-user one then at 1C C  PS-decision is unchanged with a 

descent of initial probability up to some distance below SRL, but with some greater distance also below SRL and further 

PS-decision is changed in favor of one user; between that distances we may not select a hypothesis. At 2C C  PS-decision 

is unchanged in the CUD with a growth of initial probability. If the one-user hypothesis is slightly more probable than the 

two-user one then at 1C C  PS-decision is unchanged in the CUD with a growth of initial probability. At 2C C  initial 
probability decreases remaining PS-decision to be unchanged only at negligibly small distances, but starting from some 

short distance it is changed in favor of two users; we may not select a hypothesis between that distances. 

 

For equally probable hypotheses initial probabilities both are equal to 0.5. The probability of one user at 1C C  increases 

with distance while of two users – decreases. Beginning from big enough distance below SRL PS-decision (which is no 

preference herein) is changed in favor of one user; at smaller distances preference is impossible. The probability of two 

users at 2C C  increases with distance while of one user – decreases. Beginning from small enough distance PS-decision 

is changed in favor of two users; before that distance preference is impossible. 

 

We can observe that  
2CP r  changes faster than  

1CP r  in the region of not too much separation. Let us  
1CP r  is either  

1CP r  

or  
1CP r . Taking into account that    

2 1C C1P r P r   ,    
2 1C C1P r P r    it is easy to show that 
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where  1C HP  =0.999749 in our CUD. With a decrease in r  factors  1 r  and  2 r  approach correspondently to 

 11/ C HP  =1/0.999749=1.00025 and to   11/ 1 C HP  =1/0.000251=3984, so  2 r  is to be much more than  1 r  at short r

. In particular, this manifests itself in  
2CP r  changes initial preference    H HP P  =0.5 at much smaller separation as 

compared to how  
1CP r  does it. With an increase in r  factor  1 r  rises, while factor  2 r  decreases. We can see from 

Fig. 3 how the derivative of  
1CP r  increases visibly around the neighborhood of SRL yet the derivative of  

2CP r  decreases 

as  
2CP r  approaches to its asymptote equal to 1. 

 

7. Concluding Remarks 

The novel Bayesian technique aimed to identify one or two closely spaced sources under double emission through the use 

of location estimates with the approximately equal covariance matrices, which is parameterized by the sources separation, 
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7. Concluding Remarks 
The novel Bayesian technique aimed to identify one or two closely spaced sources under double emission 
through the use of location estimates with the approximately equal covariance matrices, which is 
parameterized by the sources separation, is designed. Prior probabilities of the one/two-sources hypotheses 
are determined via physical characteristics of the emissions and extracted from the prior solution 
(abbreviated as PS in the paper), assuming that they can be equally probable. 
 
Functioning of the technique below and over the resolution limit of the estimator is provided by the new 
resolution criterion emphasizing the probability of the resolving of the planar parameter decoupled estimates 
(abbreviated as PRI in the paper). The resolution limit in this criterion is so called Statistical Resolution Limit 
(abbreviated as SRL in the paper), which is consistent in PRI with conventional scalar resolution criteria. It is 
equal to the sum of the radii of the confidence circles around each parameter in charge of probability 0.99.  
 
Bayes event space consists of two mutually exclusive events: when confidence circles around sample 
estimates intersect or do not intersect, accordingly when the distance between them is below or over SRL. 
The extreme probabilities of the events conditioned by one/two-sources hypotheses depend on the distance 
between locations of hypothesized sources which may be taken both below and over SRL. 
 
Identification procedure is studied as applied for the distinguishing positional estimates between one and 
two close users of time difference of arrival basic stations network. The results of the simulation illustrate the 
mechanism of how it revises PS-decision with distance between users subject to Byes event. 
 
In the future we plan to extend proposed technique on a more general problem of identifying the number of 
sources, each of which can emit one or several times by a given set of location estimates. 
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Identification procedure is studied as applied for the distinguishing positional estimates between one and two close users of time 
difference of arrival basic stations network. The results of the simulation illustrate the mechanism of how it revises PS-decision with 
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In the future we plan to extend proposed technique on a more general problem of identifying the number of sources, each of which can 
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Page 13 Correction: 

R99= 99 , 0.8
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Page 19 Correction: 
 
 
Appendix B. On Integration of 99AR
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Page 20 Correction: 
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