
 Volume 3 | Issue 4 | 1

Audiosockets: A Python Socket Package for Real-Time Audio Processing
Research Article

Nicolas Shu* and David V. Anderson

*Corresponding Author
Nicolas Shu, Department of Electrical and Computer Engineering, Georgia
Institute of Technology.

Submitted: 2024, May 13; Accepted: 2024, Jun 12; Published: 2024, Jul 26

J Electrical Electron Eng, 2024

Citation: Shu, N., Anderson, D. V. (2024). Audiosockets: A Python Socket Package for Real-Time Audio Processing. J Electrical
Electron Eng, 3(4), 01-04.

Abstract
There are many packages in Python which allow one to perform real-time processing on audio data. Unfortunately, due
to the synchronous nature of the language, there lacks a framework which allows for distributed parallel processing of
the data without requiring a large programming overhead and in which the data acquisition is not blocked by subsequent
processing operations. This work improves on packages used for audio data collection with a light-weight backend and
a simple interface that allows for distributed processing through a socket-based structure. This is intended for real-time
audio machine learning and data processing in Python with a quick deployment of multiple parallel operations on the same
data, allowing users to spend less time debugging and more time developing. Index Terms: python, audio, speech, socket
programming, real-time processing

Journal of Electrical Electronics Engineering
ISSN: 2834-4928

Department of Electrical and Computer Engineering,
Georgia Institute of Technology

1. Introduction
Machine learning and analysis of audio signals is a rapidly
growing field. Although most of the machine learning research
for audio processing is done offline, practical systems often
require on-line, real-time operation. There are many packages
available in Python for audio loading and a few which allow
one to record audio in real-time [1-5]. However, often it is the
case in a synchronous language like Python, where a process
that is continuously recording audio may only record, and
cannot asynchronously spend its compute time processing
the audio through an algorithm (e.g. a neural network). There
exist solutions such as using Robot Operating System (ROS)
to perform message passing between parallel processes; but,
although easy to use and very useful for multiple tasks, ROS is
a relatively large software which contains multiple features that
may be too heavyweight for a simpler task which only requires
message passing [6]. Currently, there lacks an off-the-shelf
software package for Python which is simple to use and quickly
deployable for real-time processing for Python-related audio
projects. This work introduces audio sockets, a socket-based
package which uses the Sound device package to record audio,
deploys a local server and allows for multiple clients to behave
as processors for the incoming audio [5]. This package handles
all of the socket programming in the backend and is designed to
minimize the user’s efforts on designing the message passing,
and maximize their time developing new algorithms.

1.1 Related Work
While there are packages specifically centered on to do audio
processing such as PySox and Librosa, there are a few options

which one may take to perform real-time inference over audio
data. PyAudio is an example of a package which may be used
for real-time inference. It allows a user to open audio streams
and contains a callback mode, which allows a user to place the
data, which is stored as byte strings, in a queue without blocking
the script, making it a very powerful tool for a programmer.
The one minor downside of PyAudio is that it requires a good
understanding of how microphones operate, and it requires
a significant amount of programming and attention to detail
before getting the code to function properly. Furthermore, the
PyAudio package by itself does not allow one to distribute the
post-processing work across different threads.

PyJack is another package which interfaces with the JACK
(JACK Audio Connection Kit) API, however, the code was
originally written for Python 2.7, and, at the time of this writing,
the latest release was in March 2011, leaving many of the
connections deprecated. PyGame is a solution that has a similar
interface as PyAudio, where it requires one to create an object
which will use a callback function to append chunks of data in
bytes format to a list, but it also suffers from the lack of work
distribution across different threads for post-processing the data.
Sound device is another feasible solution as it is also capable
of using callback functions, allowing one to store the data in a
queue, but it also already converts the output data as numerical
values, ready for other use cases.

2. Method
This package uses socket programming as its backend
communication protocol and the package Sound device to obtain

 Volume 3 | Issue 4 | 2J Electrical Electron Eng, 2024

streams of audio from a microphone as well as NumPy [7].
Therefore, the only packages needed to be installed are sound
device and NumPy, as well as Port Audio for your operating
system. The architecture for this package is shown in Figure 1.

This package deploys a local server on one’s system, which will
bind a socket to an IP address and a pre-defined port, and will
start to listen for new connections from clients. Given that a
local area network exists, this package is capable of sending data
over a network. Clients will have two different types: “recorder”
and “processor”, and the server will know how to handle each
of those two types of clients. The two types of clients are seen
as equal to the server, and through Python’s threading module,
there is a thread which waits for clients to connect to it while
another thread starts to connect a new incoming connection.

For the case of a recorder, once initialized, the recording node
will create a socket and will attempt to connect to the predefined
address of the server. The node will attempt to connect to the
server at 1Hz, and once it does connect, it will create a queue
object and create a stream object which continuously dumps the
audio data from the microphone in the queue. Periodically, it
will start to send the audio data to the server. To do so, it will
perform two major steps. The first step is to serialize the data and
to determine the number of bytes required to send the message
to the server. Once the number of bytes has been determined, the
node will create a header message of size of 64 bytes, and will
send a message header to the server specifying the number of
bytes for the full audio data that the server is expected to receive.

Figure 1: Mechanism for the audiosockets package. The different colored superblocks represent the different parallel processes which
are operating and communicating with each other. The superblocks containing circular processes (i.e. Recorder and Processors) are
the clients, and the superblock with rectangular processes represents the local server which is to be deployed in a system.

Figure 1: Mechanism for the Audiosockets Package. The Different Colored Superblocks Represent the Different Parallel
Processes Which are Operating and Communicating with Each Other. The Superblocks Containing Circular Processes
(i.e. Recorder and Processors) are the clients, and the Superblock with Rectangular Processes Represents the Local Server
Which Is to Be Deployed in a System.

 Volume 3 | Issue 4 | 3J Electrical Electron Eng, 2024

Once the server receives a new connection from the Recorder
client, and it will wait for a new messages to be received. It
will expect two messages. First, a message of size 64 bytes
which specifies the number of bytes of the actual message to
be received, while the second will be the actual message. Once
the server receives the header, it will send back a message to
the client stating that it has successfully received the header
message, and it’s ready to receive the data. The recorder will
then send a message containing the all the data including: the
audio data, the sampling frequency, the current time that the
message was sent, and a type identifier for the server so that the
server knows how to handle the given client. The server will
then receive the data message, and send back a confirmation
back to the client stating that it has received the data message.
Since the stream of audio from Sound device works in parallel
to the script, it will continue to gather more data, and then the
recorder will repeat the recording steps until it is time to send a
new message to the server.

Unfortunately, in socket programming, just because a
connection expects to receive a specific sized message, let us
say 2048 bytes, it does not mean that it will receive the full
message at once. Therefore, as the server receives the stream
of data, it will continue to check for the rest of the fragments
of the message until it receives the entire message, and only
then will it send the confirmation back to the client that it has
received the data message. At this point, the server first needs to
deserialize the message onto an actual object. Once the object
has been interpreted, the server will check the type of client that
just sent the message. If the client was a recorder, it will follow
a recording protocol. If the client was a processor, then it will
follow a processor protocol. But if it was none of the above, it
will send an error message back to the client and dump the data.

If the server receives a data message from a processor, the first

thing it does is to register the processor to the server by name
on a pointer, and it holds that connection opened. If the server
receives a data message from a recorder, then it sends the data to
all of the registered processor connections.

The processor client behaves in a very simple manner. Once it
is initialized, as described before as a characteristic of it being
a client, it attempts to connect to the server. Once a connection
is established, the processor node sends a header message
specifying the size of the data message that it will send the
server, and once the server has confirmed that it has received the
message, the processor node will send a data message containing
a name identifier and a type identifier. As described before, the
processor node will be registered to the server as a processor,
and then it will block itself waiting for a header message from
the server. Once it receives a header message from the server, it
will send a confirmation back to the server that it has received
the header message, and then will wait to receive a data message,
which will, in turn, be deserialized and interpreted by the object.
The object will then have a method that will process the data in
whichever way the user desires.

To deal with disconnections, all of the clients have methods that
will send disconnecting data messages to the server. If the server
receives a disconnecting message from a client, it will delete
the processor from the registered processors (if the client is a
processor), the server will send a confirmation message back to
the client that it will disconnect the client, and then proceed to
close the connection between the server and the client.

The versatility of this method allows for one to connect to
multiple processors at once and to disconnect any of the clients
(processors or recorder) at any point in time, and reconnect it
again, as shown in Figure 2expected to receive.

Once the server receives a new connection from the
Recorder client, and it will wait for a new messages to be re-
ceived. It will expect two messages. First, a message of size
64 bytes which specifies the number of bytes of the actual mes-
sage to be received, while the second will be the actual message.
Once the server receives the header, it will send back a message
to the client stating that it has successfully received the header
message, and it’s ready to receive the data. The recorder will
then send a message containing the all the data including: the
audio data, the sampling frequency, the current time that the
message was sent, and a type identifier for the server so that the
server knows how to handle the given client. The server will
then receive the data message, and send back a confirmation
back to the client stating that it has received the data message.
Since the stream of audio from Sounddevice works in parallel
to the script, it will continue to gather more data, and then the
recorder will repeat the recording steps until it is time to send a
new message to the server.

Unfortunately, in socket programming, just because a con-
nection expects to receive a specific sized message, let us say
2048 bytes, it does not mean that it will receive the full mes-
sage at once. Therefore, as the server receives the stream of
data, it will continue to check for the rest of the fragments of
the message until it receives the entire message, and only then
will it send the confirmation back to the client that it has re-
ceived the data message. At this point, the server first needs to
deserialize the message onto an actual object. Once the object
has been interpreted, the server will check the type of client that
just sent the message. If the client was a recorder, it will follow
a recording protocol. If the client was a processor, then it will
follow a processor protocol. But if it was none of the above, it
will send an error message back to the client and dump the data.

If the server receives a data message from a processor, the
first thing it does is to register the processor to the server by
name on a pointer, and it holds that connection opened. If the
server receives a data message from a recorder, then it sends the
data to all of the registered processor connections.

The processor client behaves in a very simple manner. Once
it is initialized, as described before as a characteristic of it being
a client, it attempts to connect to the server. Once a connection
is established, the processor node sends a header message spec-
ifying the size of the data message that it will send the server,
and once the server has confirmed that it has received the mes-
sage, the processor node will send a data message containing a
name identifier and a type identifier. As described before, the
processor node will be registered to the server as a processor,
and then it will block itself waiting for a header message from
the server. Once it receives a header message from the server, it
will send a confirmation back to the server that it has received
the header message, and then will wait to receive a data mes-
sage, which will, in turn, be deserialized and interpreted by the
object. The object will then have a method that will process the
data in whichever way the user desires.

To deal with disconnections, all of the clients have meth-
ods that will send disconnecting data messages to the server.
If the server receives a disconnecting message from a client, it
will delete the processor from the registered processors (if the
client is a processor), the server will send a confirmation mes-
sage back to the client that it will disconnect the client, and
then proceed to close the connection between the server and the
client.

The versatility of this method allows for one to connect to
multiple processors at once and to disconnect any of the clients

(processors or recorder) at any point in time, and reconnect it
again, as shown in Figure 2

Figure 2: A simplistic overview diagram of the capabilities of
the package

4. Usage
Here, a baseline is described on how to use this package.

4.1. Network Setup

In order to setup the network, one needs to create a JSON file
which contains a few parameters

• “SERVER”: The string IP address of the machine where
server is deployed to

• “PORT”: The port number in the local computer where
the server will be deployed and the port where the clients
will try to bind to.

• “HEADER”: The number of bytes defined for size of the
header message

• “FORMAT”: The type of which text data will be encoded
or decoded

• “DISCONNECT_MSG”: The disconnecting message
which the clients will send to the server and the mes-
sage that the server will be expecting to disconnect the
client

• “logging_format”: The format for the logging
module to report the logs

• “logging_level”: The level of logging to be dis-
played

Thus an example is as shown below

{
"SERVER": "172.16.12.10",
"PORT": 5050,
"HEADER": 64,
"FORMAT": "utf-8",
"DISCONNECT_MSG": "DISCONNECT",
"logging_format":

"%(asctime)s-%(message)s",
"logging_level": "info"

}

Figure 2: A Simplistic Overview Diagram of the Capabilities of the Package.

3. Usage
Here, a baseline is described on how to use this package.

3.1 Network Setup
In order to setup the network, one needs to create a JSON file
which contains a few parameters
• “SERVER”: The string IP address of the machine where server

is deployed to
• “PORT”: The port number in the local computer where the
server will be deployed and the port where the clients will try to
bind to.
• “HEADER”: The number of bytes defined for size of the header
message
• “FORMAT”: The type of which text data will be encoded or

 Volume 3 | Issue 4 | 4J Electrical Electron Eng, 2024

decoded
• “DISCONNECT_MSG”: The disconnecting message which
the clients will send to the server and the message that the server
will be expecting to disconnect the client
• “logging_format”: The format for the logging module to report
the logs
• “logging_level”: The level of logging to be displayed
Thus an example is as shown below

3.2 Server Deployment
In order to deploy a server, one needs to import the MailmanSocket,
pass the path to the JSON file, and run the start() method. An
example is shown below:

3.3 Recorder Deployment
In order to deploy the recorder, one needs to import the
RecorderSocket, pass the path to the JSON file specified above,
and run the start() method. An example is shown below

3.4 Processors Deployment
The processor is slightly more involved, but that is up to the user
with respect to how complex does he or she wishes to process the
data. First, one needs to import the class BaseProcessorSocket,
and inherit from it. One must pass the arguments to the parent’s
__init__() method, and then one must overwrite the method
process_data(data) method, which takes in a single argument,
with anything the user wishes to do with the data. The example
below shows the usage of a LogMelSpectrogram class that
computes the log Mel spectrogram of a signal given a sampling
frequency. Finally, one must run the method start() so that it binds
to the server and becomes part of the network. [4]

4. Conclusion
Before this work, there lacked an off-the-shelf open-source
framework that would allow one to quickly deploy real-
time audio processing in Python. For some solutions, a lot of
understanding with regards to lower-level analog-to-digital
processing was required. Other solutions would hit a roadblock
due to the synchronous behavior of Python, where, for a real-
time application, if an algorithm takes longer to process the data
than the audio collection itself, it then becomes the bottleneck to
the pipeline, and data may potentially be lost. Furthermore, they
would all require additional work to get a distributed computing
framework where different nodes would contain different
algorithms, and would not bottleneck the node collecting the data.
This work fills all of the gaps previously mentioned. It allows one
to quickly deploy a real-time audio processing solution, where a
node is responsible for only collecting data and sending it to a
local server, and the local server’s role is to simply receive any
data the first node first sent it and sends it to other nodes which
each may contain an algorithm which likely does not require to be
re-initialized. As an example, neural networks require, relatively
speaking, a long time to be initialized and prepared for inference.
Depending on the capabilities of the machine, this framework
allows the user to deploy several different neural networks on
their GPU, each of which may be specialized for a different task,
and the local server sends the data to each of them. At no point is
there a loss of data, and with a minimal amount of work, a fully
functional real-time processor can be deployed.

Acknowledgements
We like to thank Mouhyemen Khan for the fruitful discussions
over ideas which could be used in order to implement and achieve
the goal of this work.

References
1. “Pham, H. (2023). PyAudio: Cross-platform audio I/O for

Python, with PortAudio.”
2. Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,

Reddy, T., Cournapeau, D., .& Van Mulbregt, P. (2020).
SciPy 1.0: fundamental algorithms for scientific computing
in Python. Nature methods, 17(3), 261-272.

3. McFee, B., Raffel, C., Liang, D., Ellis, D. P., McVicar, M.,
Battenberg, E., & Nieto, O. (2015). librosa: Audio and music
signal analysis in python. In SciPy (pp. 18-24).

4. Bastian Bechtold, “Pysoundfile.”
5. M. Geier. (2020). “Sounddevice.”
6. Stanford Artificial Intelligence Laboratory et al., “Robotic

operating system.”
7. Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers,

R., Virtanen, P., Cournapeau, D., ... & Oliphant, T. E. (2020).
Array programming with NumPy. Nature, 585(7825), 357-
362.

expected to receive.
Once the server receives a new connection from the

Recorder client, and it will wait for a new messages to be re-
ceived. It will expect two messages. First, a message of size
64 bytes which specifies the number of bytes of the actual mes-
sage to be received, while the second will be the actual message.
Once the server receives the header, it will send back a message
to the client stating that it has successfully received the header
message, and it’s ready to receive the data. The recorder will
then send a message containing the all the data including: the
audio data, the sampling frequency, the current time that the
message was sent, and a type identifier for the server so that the
server knows how to handle the given client. The server will
then receive the data message, and send back a confirmation
back to the client stating that it has received the data message.
Since the stream of audio from Sounddevice works in parallel
to the script, it will continue to gather more data, and then the
recorder will repeat the recording steps until it is time to send a
new message to the server.

Unfortunately, in socket programming, just because a con-
nection expects to receive a specific sized message, let us say
2048 bytes, it does not mean that it will receive the full mes-
sage at once. Therefore, as the server receives the stream of
data, it will continue to check for the rest of the fragments of
the message until it receives the entire message, and only then
will it send the confirmation back to the client that it has re-
ceived the data message. At this point, the server first needs to
deserialize the message onto an actual object. Once the object
has been interpreted, the server will check the type of client that
just sent the message. If the client was a recorder, it will follow
a recording protocol. If the client was a processor, then it will
follow a processor protocol. But if it was none of the above, it
will send an error message back to the client and dump the data.

If the server receives a data message from a processor, the
first thing it does is to register the processor to the server by
name on a pointer, and it holds that connection opened. If the
server receives a data message from a recorder, then it sends the
data to all of the registered processor connections.

The processor client behaves in a very simple manner. Once
it is initialized, as described before as a characteristic of it being
a client, it attempts to connect to the server. Once a connection
is established, the processor node sends a header message spec-
ifying the size of the data message that it will send the server,
and once the server has confirmed that it has received the mes-
sage, the processor node will send a data message containing a
name identifier and a type identifier. As described before, the
processor node will be registered to the server as a processor,
and then it will block itself waiting for a header message from
the server. Once it receives a header message from the server, it
will send a confirmation back to the server that it has received
the header message, and then will wait to receive a data mes-
sage, which will, in turn, be deserialized and interpreted by the
object. The object will then have a method that will process the
data in whichever way the user desires.

To deal with disconnections, all of the clients have meth-
ods that will send disconnecting data messages to the server.
If the server receives a disconnecting message from a client, it
will delete the processor from the registered processors (if the
client is a processor), the server will send a confirmation mes-
sage back to the client that it will disconnect the client, and
then proceed to close the connection between the server and the
client.

The versatility of this method allows for one to connect to
multiple processors at once and to disconnect any of the clients

(processors or recorder) at any point in time, and reconnect it
again, as shown in Figure 2

Figure 2: A simplistic overview diagram of the capabilities of
the package

4. Usage
Here, a baseline is described on how to use this package.

4.1. Network Setup

In order to setup the network, one needs to create a JSON file
which contains a few parameters

• “SERVER”: The string IP address of the machine where
server is deployed to

• “PORT”: The port number in the local computer where
the server will be deployed and the port where the clients
will try to bind to.

• “HEADER”: The number of bytes defined for size of the
header message

• “FORMAT”: The type of which text data will be encoded
or decoded

• “DISCONNECT_MSG”: The disconnecting message
which the clients will send to the server and the mes-
sage that the server will be expecting to disconnect the
client

• “logging_format”: The format for the logging
module to report the logs

• “logging_level”: The level of logging to be dis-
played

Thus an example is as shown below

{
"SERVER": "172.16.12.10",
"PORT": 5050,
"HEADER": 64,
"FORMAT": "utf-8",
"DISCONNECT_MSG": "DISCONNECT",
"logging_format":

"%(asctime)s-%(message)s",
"logging_level": "info"

}

4.2. Server Deployment

In order to deploy a server, one needs to import the
MailmanSocket, pass the path to the JSON file, and run the
start() method. An example is shown below:

from audiosockets import MailmanSocket
if __name__ == "__main__":

mailman = MailmanSocket(
"server_info.json")

mailman.start()

4.3. Recorder Deployment

In order to deploy the recorder, one needs to import the
RecorderSocket, pass the path to the JSON file specified
above, and run the start() method. An example is shown
below

from audiosockets import RecorderSocket
if __name__ == "__main__":

recorder = RecorderSocket(
"server_info.json")

recorder.start()

4.4. Processors Deployment

The processor is slightly more involved, but that is up to
the user with respect to how complex does he or she wishes
to process the data. First, one needs to import the class
BaseProcessorSocket, and inherit from it. One must
pass the arguments to the parent’s __init__() method, and
then one must overwrite the method process_data(data)
method, which takes in a single argument, with anything the
user wishes to do with the data. The example below shows the
usage of a LogMelSpectrogram class that computes the log Mel
spectrogram of a signal given a sampling frequency. Finally,
one must run the method start() so that it binds to the server
and becomes part of the network. [4]

from audiosockets import BaseProcessorSocket
from audiosockets.utils import \

LogMelSpectrogram as LMSProcessor
class LMSProcessor(BaseProcessorSocket):

def __init__(self,*args, **kwargs):
super().__init__(*args, **kwargs)

def process_data(self,data):
fs = data["fs"]
audio = data["data"]
lms = LogMelSpectrogram(fs)(audio)
print(lms.shape)

if __name__ == "__main__":
processor = LMSProcessor(

"VAD",
"server_info.json")

processor.start()

5. Conclusion
Before this work, there lacked an off-the-shelf open-source
framework that would allow one to quickly deploy real-time
audio processing in Python. For some solutions, a lot of under-
standing with regards to lower-level analog-to-digital process-
ing was required. Other solutions would hit a roadblock due to
the synchronous behavior of Python, where, for a real-time ap-
plication, if an algorithm takes longer to process the data than
the audio collection itself, it then becomes the bottleneck to the

pipeline, and data may potentially be lost. Furthermore, they
would all require additional work to get a distributed comput-
ing framework where different nodes would contain different
algorithms, and would not bottleneck the node collecting the
data. This work fills all of the gaps previously mentioned. It
allows one to quickly deploy a real-time audio processing so-
lution, where a node is responsible for only collecting data and
sending it to a local server, and the local server’s role is to sim-
ply receive any data the first node first sent it and sends it to
other nodes which each may contain an algorithm which likely
does not require to be re-initialized. As an example, neural net-
works require, relatively speaking, a long time to be initialized
and prepared for inference. Depending on the capabilities of
the machine, this framework allows the user to deploy several
different neural networks on their GPU, each of which may be
specialized for a different task, and the local server sends the
data to each of them. At no point is there a loss of data, and
with a minimal amount of work, a fully functional real-time
processor can be deployed.

6. Acknowledgements
We like to thank Mouhyemen Khan for the fruitful discussions
over ideas which could be used in order to implement and
achieve the goal of this work.

7. References
[1] “Pyaudio: Cross-platform audio i/o for python, with portaudio.”

[Online]. Available: https://people.csail.mit.edu/hubert/pyaudio/

[2] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright,
S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. May-
orov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey,
İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perk-
told, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M.
Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy
1.0 Contributors, “SciPy 1.0: Fundamental Algorithms for Scien-
tific Computing in Python,” Nature Methods, vol. 17, pp. 261–272,
2020.

[3] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Batten-
berg, and O. Nieto, “librosa: Audio and music signal analysis in
python,” in Proceedings of the 14th python in science conference,
vol. 8, 2015.

[4] Bastian Bechtold, “Pysoundfile.”

[5] M. Geier et al., “Sounddevice,” 2020. [Online]. Available:
https://python-sounddevice.readthedocs.io/en/0.3.15/index.html

[6] Stanford Artificial Intelligence Laboratory et al., “Robotic
operating system.” [Online]. Available: https://www.ros.org

[7] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers,
P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J.
Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk,
M. Brett, A. Haldane, J. F. del R’ıo, M. Wiebe, P. Peterson,
P. G’erard-Marchant, K. Sheppard, T. Reddy, W. Weckesser,
H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming
with NumPy,” Nature, vol. 585, no. 7825, pp. 357–362, Sep. 2020.
[Online]. Available: https://doi.org/10.1038/s41586-020-2649-2

4.2. Server Deployment

In order to deploy a server, one needs to import the
MailmanSocket, pass the path to the JSON file, and run the
start() method. An example is shown below:

from audiosockets import MailmanSocket
if __name__ == "__main__":

mailman = MailmanSocket(
"server_info.json")

mailman.start()

4.3. Recorder Deployment

In order to deploy the recorder, one needs to import the
RecorderSocket, pass the path to the JSON file specified
above, and run the start() method. An example is shown
below

from audiosockets import RecorderSocket
if __name__ == "__main__":

recorder = RecorderSocket(
"server_info.json")

recorder.start()

4.4. Processors Deployment

The processor is slightly more involved, but that is up to
the user with respect to how complex does he or she wishes
to process the data. First, one needs to import the class
BaseProcessorSocket, and inherit from it. One must
pass the arguments to the parent’s __init__() method, and
then one must overwrite the method process_data(data)
method, which takes in a single argument, with anything the
user wishes to do with the data. The example below shows the
usage of a LogMelSpectrogram class that computes the log Mel
spectrogram of a signal given a sampling frequency. Finally,
one must run the method start() so that it binds to the server
and becomes part of the network. [4]

from audiosockets import BaseProcessorSocket
from audiosockets.utils import \

LogMelSpectrogram as LMSProcessor
class LMSProcessor(BaseProcessorSocket):

def __init__(self,*args, **kwargs):
super().__init__(*args, **kwargs)

def process_data(self,data):
fs = data["fs"]
audio = data["data"]
lms = LogMelSpectrogram(fs)(audio)
print(lms.shape)

if __name__ == "__main__":
processor = LMSProcessor(

"VAD",
"server_info.json")

processor.start()

5. Conclusion
Before this work, there lacked an off-the-shelf open-source
framework that would allow one to quickly deploy real-time
audio processing in Python. For some solutions, a lot of under-
standing with regards to lower-level analog-to-digital process-
ing was required. Other solutions would hit a roadblock due to
the synchronous behavior of Python, where, for a real-time ap-
plication, if an algorithm takes longer to process the data than
the audio collection itself, it then becomes the bottleneck to the

pipeline, and data may potentially be lost. Furthermore, they
would all require additional work to get a distributed comput-
ing framework where different nodes would contain different
algorithms, and would not bottleneck the node collecting the
data. This work fills all of the gaps previously mentioned. It
allows one to quickly deploy a real-time audio processing so-
lution, where a node is responsible for only collecting data and
sending it to a local server, and the local server’s role is to sim-
ply receive any data the first node first sent it and sends it to
other nodes which each may contain an algorithm which likely
does not require to be re-initialized. As an example, neural net-
works require, relatively speaking, a long time to be initialized
and prepared for inference. Depending on the capabilities of
the machine, this framework allows the user to deploy several
different neural networks on their GPU, each of which may be
specialized for a different task, and the local server sends the
data to each of them. At no point is there a loss of data, and
with a minimal amount of work, a fully functional real-time
processor can be deployed.

6. Acknowledgements
We like to thank Mouhyemen Khan for the fruitful discussions
over ideas which could be used in order to implement and
achieve the goal of this work.

7. References
[1] “Pyaudio: Cross-platform audio i/o for python, with portaudio.”

[Online]. Available: https://people.csail.mit.edu/hubert/pyaudio/

[2] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright,
S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. May-
orov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey,
İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perk-
told, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M.
Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy
1.0 Contributors, “SciPy 1.0: Fundamental Algorithms for Scien-
tific Computing in Python,” Nature Methods, vol. 17, pp. 261–272,
2020.

[3] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Batten-
berg, and O. Nieto, “librosa: Audio and music signal analysis in
python,” in Proceedings of the 14th python in science conference,
vol. 8, 2015.

[4] Bastian Bechtold, “Pysoundfile.”

[5] M. Geier et al., “Sounddevice,” 2020. [Online]. Available:
https://python-sounddevice.readthedocs.io/en/0.3.15/index.html

[6] Stanford Artificial Intelligence Laboratory et al., “Robotic
operating system.” [Online]. Available: https://www.ros.org

[7] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers,
P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J.
Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk,
M. Brett, A. Haldane, J. F. del R’ıo, M. Wiebe, P. Peterson,
P. G’erard-Marchant, K. Sheppard, T. Reddy, W. Weckesser,
H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming
with NumPy,” Nature, vol. 585, no. 7825, pp. 357–362, Sep. 2020.
[Online]. Available: https://doi.org/10.1038/s41586-020-2649-2

4.2. Server Deployment

In order to deploy a server, one needs to import the
MailmanSocket, pass the path to the JSON file, and run the
start() method. An example is shown below:

from audiosockets import MailmanSocket
if __name__ == "__main__":

mailman = MailmanSocket(
"server_info.json")

mailman.start()

4.3. Recorder Deployment

In order to deploy the recorder, one needs to import the
RecorderSocket, pass the path to the JSON file specified
above, and run the start() method. An example is shown
below

from audiosockets import RecorderSocket
if __name__ == "__main__":

recorder = RecorderSocket(
"server_info.json")

recorder.start()

4.4. Processors Deployment

The processor is slightly more involved, but that is up to
the user with respect to how complex does he or she wishes
to process the data. First, one needs to import the class
BaseProcessorSocket, and inherit from it. One must
pass the arguments to the parent’s __init__() method, and
then one must overwrite the method process_data(data)
method, which takes in a single argument, with anything the
user wishes to do with the data. The example below shows the
usage of a LogMelSpectrogram class that computes the log Mel
spectrogram of a signal given a sampling frequency. Finally,
one must run the method start() so that it binds to the server
and becomes part of the network. [4]

from audiosockets import BaseProcessorSocket
from audiosockets.utils import \

LogMelSpectrogram as LMSProcessor
class LMSProcessor(BaseProcessorSocket):

def __init__(self,*args, **kwargs):
super().__init__(*args, **kwargs)

def process_data(self,data):
fs = data["fs"]
audio = data["data"]
lms = LogMelSpectrogram(fs)(audio)
print(lms.shape)

if __name__ == "__main__":
processor = LMSProcessor(

"VAD",
"server_info.json")

processor.start()

5. Conclusion
Before this work, there lacked an off-the-shelf open-source
framework that would allow one to quickly deploy real-time
audio processing in Python. For some solutions, a lot of under-
standing with regards to lower-level analog-to-digital process-
ing was required. Other solutions would hit a roadblock due to
the synchronous behavior of Python, where, for a real-time ap-
plication, if an algorithm takes longer to process the data than
the audio collection itself, it then becomes the bottleneck to the

pipeline, and data may potentially be lost. Furthermore, they
would all require additional work to get a distributed comput-
ing framework where different nodes would contain different
algorithms, and would not bottleneck the node collecting the
data. This work fills all of the gaps previously mentioned. It
allows one to quickly deploy a real-time audio processing so-
lution, where a node is responsible for only collecting data and
sending it to a local server, and the local server’s role is to sim-
ply receive any data the first node first sent it and sends it to
other nodes which each may contain an algorithm which likely
does not require to be re-initialized. As an example, neural net-
works require, relatively speaking, a long time to be initialized
and prepared for inference. Depending on the capabilities of
the machine, this framework allows the user to deploy several
different neural networks on their GPU, each of which may be
specialized for a different task, and the local server sends the
data to each of them. At no point is there a loss of data, and
with a minimal amount of work, a fully functional real-time
processor can be deployed.

6. Acknowledgements
We like to thank Mouhyemen Khan for the fruitful discussions
over ideas which could be used in order to implement and
achieve the goal of this work.

7. References
[1] “Pyaudio: Cross-platform audio i/o for python, with portaudio.”

[Online]. Available: https://people.csail.mit.edu/hubert/pyaudio/

[2] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright,
S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. May-
orov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey,
İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perk-
told, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M.
Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy
1.0 Contributors, “SciPy 1.0: Fundamental Algorithms for Scien-
tific Computing in Python,” Nature Methods, vol. 17, pp. 261–272,
2020.

[3] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Batten-
berg, and O. Nieto, “librosa: Audio and music signal analysis in
python,” in Proceedings of the 14th python in science conference,
vol. 8, 2015.

[4] Bastian Bechtold, “Pysoundfile.”

[5] M. Geier et al., “Sounddevice,” 2020. [Online]. Available:
https://python-sounddevice.readthedocs.io/en/0.3.15/index.html

[6] Stanford Artificial Intelligence Laboratory et al., “Robotic
operating system.” [Online]. Available: https://www.ros.org

[7] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers,
P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J.
Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk,
M. Brett, A. Haldane, J. F. del R’ıo, M. Wiebe, P. Peterson,
P. G’erard-Marchant, K. Sheppard, T. Reddy, W. Weckesser,
H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming
with NumPy,” Nature, vol. 585, no. 7825, pp. 357–362, Sep. 2020.
[Online]. Available: https://doi.org/10.1038/s41586-020-2649-2

4.2. Server Deployment

In order to deploy a server, one needs to import the
MailmanSocket, pass the path to the JSON file, and run the
start() method. An example is shown below:

from audiosockets import MailmanSocket
if __name__ == "__main__":

mailman = MailmanSocket(
"server_info.json")

mailman.start()

4.3. Recorder Deployment

In order to deploy the recorder, one needs to import the
RecorderSocket, pass the path to the JSON file specified
above, and run the start() method. An example is shown
below

from audiosockets import RecorderSocket
if __name__ == "__main__":

recorder = RecorderSocket(
"server_info.json")

recorder.start()

4.4. Processors Deployment

The processor is slightly more involved, but that is up to
the user with respect to how complex does he or she wishes
to process the data. First, one needs to import the class
BaseProcessorSocket, and inherit from it. One must
pass the arguments to the parent’s __init__() method, and
then one must overwrite the method process_data(data)
method, which takes in a single argument, with anything the
user wishes to do with the data. The example below shows the
usage of a LogMelSpectrogram class that computes the log Mel
spectrogram of a signal given a sampling frequency. Finally,
one must run the method start() so that it binds to the server
and becomes part of the network. [4]

from audiosockets import BaseProcessorSocket
from audiosockets.utils import \

LogMelSpectrogram as LMSProcessor
class LMSProcessor(BaseProcessorSocket):

def __init__(self,*args, **kwargs):
super().__init__(*args, **kwargs)

def process_data(self,data):
fs = data["fs"]
audio = data["data"]
lms = LogMelSpectrogram(fs)(audio)
print(lms.shape)

if __name__ == "__main__":
processor = LMSProcessor(

"VAD",
"server_info.json")

processor.start()

5. Conclusion
Before this work, there lacked an off-the-shelf open-source
framework that would allow one to quickly deploy real-time
audio processing in Python. For some solutions, a lot of under-
standing with regards to lower-level analog-to-digital process-
ing was required. Other solutions would hit a roadblock due to
the synchronous behavior of Python, where, for a real-time ap-
plication, if an algorithm takes longer to process the data than
the audio collection itself, it then becomes the bottleneck to the

pipeline, and data may potentially be lost. Furthermore, they
would all require additional work to get a distributed comput-
ing framework where different nodes would contain different
algorithms, and would not bottleneck the node collecting the
data. This work fills all of the gaps previously mentioned. It
allows one to quickly deploy a real-time audio processing so-
lution, where a node is responsible for only collecting data and
sending it to a local server, and the local server’s role is to sim-
ply receive any data the first node first sent it and sends it to
other nodes which each may contain an algorithm which likely
does not require to be re-initialized. As an example, neural net-
works require, relatively speaking, a long time to be initialized
and prepared for inference. Depending on the capabilities of
the machine, this framework allows the user to deploy several
different neural networks on their GPU, each of which may be
specialized for a different task, and the local server sends the
data to each of them. At no point is there a loss of data, and
with a minimal amount of work, a fully functional real-time
processor can be deployed.

6. Acknowledgements
We like to thank Mouhyemen Khan for the fruitful discussions
over ideas which could be used in order to implement and
achieve the goal of this work.

7. References
[1] “Pyaudio: Cross-platform audio i/o for python, with portaudio.”

[Online]. Available: https://people.csail.mit.edu/hubert/pyaudio/

[2] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright,
S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. May-
orov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey,
İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perk-
told, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M.
Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy
1.0 Contributors, “SciPy 1.0: Fundamental Algorithms for Scien-
tific Computing in Python,” Nature Methods, vol. 17, pp. 261–272,
2020.

[3] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Batten-
berg, and O. Nieto, “librosa: Audio and music signal analysis in
python,” in Proceedings of the 14th python in science conference,
vol. 8, 2015.

[4] Bastian Bechtold, “Pysoundfile.”

[5] M. Geier et al., “Sounddevice,” 2020. [Online]. Available:
https://python-sounddevice.readthedocs.io/en/0.3.15/index.html

[6] Stanford Artificial Intelligence Laboratory et al., “Robotic
operating system.” [Online]. Available: https://www.ros.org

[7] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers,
P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J.
Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk,
M. Brett, A. Haldane, J. F. del R’ıo, M. Wiebe, P. Peterson,
P. G’erard-Marchant, K. Sheppard, T. Reddy, W. Weckesser,
H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming
with NumPy,” Nature, vol. 585, no. 7825, pp. 357–362, Sep. 2020.
[Online]. Available: https://doi.org/10.1038/s41586-020-2649-2

Copyright: ©2024 Nicolas Shu, et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

https://opastpublishers.com

https://pypi.org/project/PyAudio/
https://pypi.org/project/PyAudio/
https://www.nature.com/articles/s41592-019-0686-2
https://www.nature.com/articles/s41592-019-0686-2
https://www.nature.com/articles/s41592-019-0686-2
https://www.nature.com/articles/s41592-019-0686-2
https://d1wqtxts1xzle7.cloudfront.net/40296500/librosa-libre.pdf?1448292194=&response-content-disposition=inline%3B+filename%3Dlibrosa_Audio_and_Music_Signal_Analysis.pdf&Expires=1711361268&Signature=VsUc~HSSj03U2C23GlyuaQHqvt4oFOdCXdtnnCk9VREWxNMGcHJTTjiUrYJbytp~j1OLYs4rx1glsCI29G~hpwEQQfDdEDEjE~~emaRVZcFNc3kqY8NXvIOytfZctBZDYu3nd0y0zy91DHdPuO8cgF~xaiJcNdJrMV9saM-Qg847jox6hGZt1bYHM0oDO2cCbZ205en-8pbEjuQ-rT0aVOEOp3dnIiSL4nhh~~9kHPwsbQqyNFY4mwuSQtahhinJi0YtH6euQh6kin1L8qlATeXT5pV-FkSWE0RmxUKXBZdvxJFTpk2wxNtN7pzVqrNNpVxg-4l~MuPr8O0dpuGefA__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/40296500/librosa-libre.pdf?1448292194=&response-content-disposition=inline%3B+filename%3Dlibrosa_Audio_and_Music_Signal_Analysis.pdf&Expires=1711361268&Signature=VsUc~HSSj03U2C23GlyuaQHqvt4oFOdCXdtnnCk9VREWxNMGcHJTTjiUrYJbytp~j1OLYs4rx1glsCI29G~hpwEQQfDdEDEjE~~emaRVZcFNc3kqY8NXvIOytfZctBZDYu3nd0y0zy91DHdPuO8cgF~xaiJcNdJrMV9saM-Qg847jox6hGZt1bYHM0oDO2cCbZ205en-8pbEjuQ-rT0aVOEOp3dnIiSL4nhh~~9kHPwsbQqyNFY4mwuSQtahhinJi0YtH6euQh6kin1L8qlATeXT5pV-FkSWE0RmxUKXBZdvxJFTpk2wxNtN7pzVqrNNpVxg-4l~MuPr8O0dpuGefA__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/40296500/librosa-libre.pdf?1448292194=&response-content-disposition=inline%3B+filename%3Dlibrosa_Audio_and_Music_Signal_Analysis.pdf&Expires=1711361268&Signature=VsUc~HSSj03U2C23GlyuaQHqvt4oFOdCXdtnnCk9VREWxNMGcHJTTjiUrYJbytp~j1OLYs4rx1glsCI29G~hpwEQQfDdEDEjE~~emaRVZcFNc3kqY8NXvIOytfZctBZDYu3nd0y0zy91DHdPuO8cgF~xaiJcNdJrMV9saM-Qg847jox6hGZt1bYHM0oDO2cCbZ205en-8pbEjuQ-rT0aVOEOp3dnIiSL4nhh~~9kHPwsbQqyNFY4mwuSQtahhinJi0YtH6euQh6kin1L8qlATeXT5pV-FkSWE0RmxUKXBZdvxJFTpk2wxNtN7pzVqrNNpVxg-4l~MuPr8O0dpuGefA__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://github.com/bastibe/PySoundFile
https://pypi.org/project/sounddevice/
https://ai.stanford.edu/
https://ai.stanford.edu/
https://www.nature.com/articles/s41586-020-2649-2
https://www.nature.com/articles/s41586-020-2649-2
https://www.nature.com/articles/s41586-020-2649-2
https://www.nature.com/articles/s41586-020-2649-2

