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Abstract
The existence of complex data structures in today’s data collections requires appropriate approaches driving the scientific 
community towards elaborating more efficient methods for data analysis. Graph Theory can be effectively applied for 
mathematical modeling these structures as is the case in network analysis. The search for similar networks may therefore 
be viewed as a graph matching problem, which poses a fundamental challenge in real-world applications. This study 
investigates the quality of the detection of similar complex data structures which follows a novel approach introduced 
recently. The detection approach employs some basic concepts from the Graph Theory for leveraging the Locality Sensitive 
Hashing to efficiently address the graph matching problem for finding isomorphic graphs as well as the common subgraph 
embedded within them. This method may generate false duplicates which affect the accuracy of the solution so that even 
the finest tuning of the hyperparameters does not guarantee high levels of accuracy. This study therefore proposes an in-
depth investigation of crucial aspects of the detection approach in order to assess the accuracy of the same. The similarity 
of the detected pairs of similar graphs is analyzed as well as the critical aspect of the hashing step is investigated by 
bootstrapping the solution in order to assess its statistical properties. A real-world case study is considered to validate the 
potential of the proposed approach.
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1. Introduction
The vast amount of today’s data available for scientific research 
requires the development of increasingly efficient approaches for 
data analysis. A task of great interest for practical applications is 
identifying similar complex data structures in large-scale datasets. 
A widespread approach in the literature used to accomplish this 
task is the Graph Matching (GM) problem, which searches for 
an alignment between the vertex sets of graphs by preserving 
the common structure within them. This is posed as minimizing 
edge disagreements over all possible vertex alignments. Graph 
matching has various applications in diverse fields, such as pattern 
recognition machine learning bioinformatics neuroscience social 
network analysis and knowledge discovery in natural language 
processing [1-10]. In all these cases, the problem of finding an 
alignment between networks can be thought of as a variant of the 
GM problem by selecting the appropriate objective function to 
be optimized. The well-known graph isomorphism problem is a 
special case of the GM problem, which aims to find a bijection 
between the vertices of two graphs that exactly pre-serves the 
edge structure. The GM is generally equivalent to the NP-hard 
quadratic assignment problem, which is a challenging problem 
even though polynomial- time algorithms are applicable in the 
case of nearly isomorphic graphs [11,12]. Although an extensive 

review of the literature pertaining to the GM problem focuses on 
the pattern recognition topic, it is rather straightforward to accept 
that graph matching can also be addressed as a similarity search 
problem, with nearest neighbors graphs detected according to 
a predefined metric [13-15]. Due to the fact that in large-scale 
datasets, pairwise comparisons of the input data can hinder the 
majority of state-of-the-art methods, the use of approximate 
nearest neighbors search method is more efficient [16]. The idea 
behind this study is to leverage the Locality Sensitive Hashing 
technique to detect similar objects in high-dimensional spaces 
by tolerating the presence of false duplicates [17-21]. In real-
world applications, the concept of a network, which is used 
to describe a complex system of entities, is more popular as 
it is better understood even by the non-scientific community. 
A network is a set of objects called nodes or vertices that are 
connected to one another by edges or links. In mathematics, 
networks are often referred to as graphs, so the theoretical 
background of Graph Theory can be used for network modeling 
as well. One of the most important issues in network analysis 
is detecting similar structures embedded in networks, similar 
to determining similar subgraphs in a collection of graphs. 
In real-world networks, nodes may have attributes that are 
useful for network structure exploration [22]. Exploring large-
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scale datasets containing networks of different dimensions is a 
challenging task, which is often faced in practical applications. 
In these cases the leveraging of Locality Sensitive Hashing 
approach is a valid solution with respect to the computational 
effort [23]. This article adopts this approach for the detection 
of isomorphic networks as well as sub-networks embedded intp 
larger graphs in accordance with a suitable metric for graph 
matching problems. Although this method is computationally 
efficient and accurate a quality assessment of the same is 
mandatory. Relevant properties pertaining to the solution found 
as well as the hashing algorithm which is the key concept of the 
proposed approach are investigated in the this study.

2. Theoretical Background
In order to introduce the fundamental aspects of the detection 
process to the reader, some notions from the Graph Theory as 
well as the basic concepts of the Locality Sensitive Hashing 
technique are reported in this section.

2.1 Graph Theory Background
A graph G = (V, E) with i = 1, 2, . . . , n vertices vi ∈ V and j = 
1, 2, . . . , m edges ej €E⊂V ×V is undirected If the edges have 
no direction and simply connect pairs of vertices. The graph 
is said to be connected if every pair of vertices in the graph is 
connected, i.e. there is a path between every pair of vertices. The 
graph is said to be complete or fully connected if each vertex is 
connected to all other vertices so that the set E is constituted by 
m = n(n − 1)/2 edges as is the case in undirected graphs. The 
geometric structure of the graph is summarized by its adjacency 
matrix A = {akh} defined as follows:

This matrix is symmetric if the graph is undirected. An alternative 
formulation often adopted in particular for large graphs is the 
adjacency list in which each pair of vertices connected by an 
edge of the graph is listed by row in a table. The graph is said 
to be weighted if there exists a real number wkh (weight) related 
to each edge ekh in that the adjacency matrix W = {wkh} is as 
follows:

A simple closed path of length l starting from vertex i and 
returning to the same is a sequence of distinct vertices connected 
by l edges. In a weighted graph the simple closed path of 
minimum cost is the sequence of edges related to the smallest 
value of the sum of their weights. A complete subgraph or 
clique S(G) is a group of fully connected vertices belonging 
to the vertices set of the graph. The Depth-First Search (DFS) 
algorithm is an algorithm to explore a graph. The DFS is very 
appropriate for identifying the connected components into a 
graph. If the graph has disconnected components, DFS can be 
used to explore and locate each connected component as well as 
complete subgraphs effectively.

2.2 Graph Matching Basics
The problem of the graph matching between the graphs Gi = (Vi, 
Ei) and Gj = (Vj, Ej) is generally formulated as follows:

where Ai and Aj are the adjacency matrices of the graphs to 
compare. The objective is to find the matrix P which represents 
the optimal assignment. The general formulation of this problem 
is NP-hard even though in some real-world applications turns 
into a linear problem which is solvable in O(n3) for an assignment 
of n vertices.

2.3 Locality Sensitive Hashing Fundamentals
In data science Locality Sensitive Hashing (LSH) refers to a 
method designed for an approximate similarity search in high-
dimensional spaces where traditional search methods become 
computationally expensive. There are several metrics that LSH 
encompasses for finding near-duplicates by means of a suitable 
family of hash functions h(⦁) which establish a relation between 
two input data points (xk, xh) €X and the probability of sharing 
the same hash code: sim(xk, xh) = P[h(xk) = h(xh)]. The choice of 
the hash function determines the metric to approximate. Every 
family associates input data to integers which are thought of as 
being buckets with the purpose of hashing is to group similar 
data points together into the same bucket so that neighboring 
data fall into the same bucket with a high probability while data 
which are likely to be distant in the input space belong to different 
buckets. In a database context, this facilitates the detection 
of pairwise similar observations in accordance with varying 
degrees of similarity. In this study the LSH-family known as 
minhash tailored for evaluating the similarity between sets by 
approximating the Jaccard index is adopted. In order to use this 
specific LSH-family, each input object is transformed into a set 
of features called shingles. As an example, if the data objects 
in the input dataset were texts they would be broken down into 
k-shingles which are sequences of k consecutive characters so 
that each text would be transformed into a set of shingles. As 
is the case every input data has to be transformed into a set of 
appropriate features which will be referred to as shingles. Every 
shingle s is subsequently hashed into an integer number by using 
a hash function h(s). By applying this function to every shingle 
belonging to the set in which the input object has been converted 
it becomes a set of integer numbers. The minimum value of 
these integers is the minhash code pertaining to the input object. 
By means of a sequence of H randomly generated hash functions 
hi(s), the input dataset is transformed into a dataset of signatures 
which are sequences of H i.i.d. hash codes. As a result the input 
dataset containing N objects of varying dimension is transformed 
into a (N×H) signature matrix which is elaborated in the section 
which follows.

2.4 Near-Duplicates Search
Subsequent to the generation of the aforementioned matrix 
each signature is shrunk into B bands in order to speed up the 
search for near-duplicates. Each band  consists of R adjacent 
combined hash codes so that the relation H = BR holds. Similar 
input objects are finally detected by sorting the (N×B) banded 
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signature matrix and sequentially scanning it B times. Every 
pair of consecutive signatures with at least one corresponding 
equal band indicates a pair of near-duplicate input objects. 
The probability of there being a pair of similar objects with a 
similarity value σ is given by:

π = 1 − (1 − σR)B                        (4)

It is widely reported in the literature that the LSH is an approximate 
method which may give rise to false duplicates in the solution. 
The rate of the same as up to now being controlled solely by 
means of an appropriate tuning process of the hyperparameters.

2.5 Bootstrap Method
The bootstrap method is a powerful statistical technique used for 
estimating the distribution of a sample statistic by resampling 
with replacement from the original dataset [24,25]. This method 
is particularly valuable when the theoretical distribution of a 
statistic is complex or unknown. By repeatedly sampling from 
the data and recalculating the statistic for each sample, the 
bootstrap method allows for the approximation of the sampling 
distribution, which can be used to construct confidence intervals 
perform hypothesis testing, and assess the uncertainty of the 
estimates. Key advantages of the bootstrap method include its 
flexibility and minimal assumptions. It can be applied to a wide 
range of statistical problems, including those involving complex 
models and small sample sizes. Additionally, it does not require 
assumptions about the underlying distribution of the data, 
rendering it a robust tool in both parametric and non-parametric 
contexts. The bootstrap method is a versatile and widely-used 
approach in modern statistics, enabling more accurate and 
reliable inference when traditional methods are infeasible or 
insufficient.

3. Detection of Similar Network Structures
The proposed algorithm is devised for detecting isomorphic 
networks as well as similar sub-networks embedded in different 
ones contained in a large dataset. The main steps of the algorithm 
are described in this section.

3.1 Input Networks
The input dataset contains N networks which are mathematically 
described as being fully connected undirected weighted graphs 
of n vertices. The number of vertices is variable so that there are 
networks of different dimensions in the dataset. Every vertex is 
related to a sequence of K categorical variables (nodal attributes) 
a(1){a1

(1) , a2
(1), . . . , aK

(1) } called the profile of the vertex vi (i = 1, 
2, . . . , n). A sketch of input Network is reported in Figure 1. The 
edges eij of the graph are related to real numbers wij € [0,1] which 
indicate the algebraic complement to the relative frequency of 
the pair of the observed profiles of the node i and the node j 
with respect to the total number of profiles in the entire dataset. 
The similarities of interest are calculated by using the attributes 
related to the graphs. The Jaccard similarity is calculated by 
appropriately considering the triangles of the graphs to be 
compared. As a consequence a pair of networks which share the 
same profiles corresponds to a value of the Jaccard similarity 
equal to 1 while this value decreases as the number of profiles in 

common decreases.

Figure 1: Input network of n = 5 vertices

For an isomorphism between two graphs, there has to be a one-
to-one correspondence between their vertices while preserving 
the links between them at the same time. Only the networks 
having the same number of nodes as well as the same profiles 
are considered isomorphic. The special case of two networks 
having the same node profiles but a different number of nodes 
is emphasized by the proposed approach. Therefore, the cases 
which remain reveal the correspondence between subgraphs.
 
3.2 Network Hashing
Every possible profile j = 1, 1, . . . , P is coded by randomly 
coupling it with a unique integer number xj ⁓U [0, m−1] of fixed 
length L in bits so that the total number of possible integers 
is equal to m = 2L. This length depends on the number of all 
possible profiles   	         where | · | is the cardinality of 
the categorical variable. For each graph in the input dataset, the 
list of all the shingles of length 3, i.e. triangles of minimum cost 
is created so that there is a resulting list of n triangles pertaining 
to a graph of n nodes. Every triangle ti is constituted by a triplet 
of integers {xi, xh, xk} where i, h, k = 1, 2, . . . , n (i≠h≠k) which 
is hashed on the basis of the following:

where ti(1) = xi, ti(2) = xh and ti(3) = xk. The parameters (αq, γq) 
have to satisfy the statistical requirements of randomness and 
uniformity as well as the universal hashing requirement in order 
to reduce the number of collisions as much as possible [26]. It 
is straightforward that in order to map all the triangles into m 
different hash codes the number of possible profiles is limited 
by the condition            implying a relation between profiles 
and the minimum memory bit-space required 1. The function 
reported in Equation 5 is applied to all the i = 1, 2, . . . , n 
triangles in the list TGj related to the graph Gj in the input dataset. 
The minimum value of the integers in the list is the minhash 
code of the network. By generating q = 1, 2, . . . , H i.i.d. hash 
functions every graph is identified by a sequence of H minhash 
codes (signature). Subsequent to the transformation of the input 
dataset of N graphs into a (N×H) signature matrix the search for 
near-duplicate graphs is carried out as described in Section 2.

The number of bits necessary is equal to: L ≥ ⌈3 log2 P ⌉ (highest 
nearest integer).

V1

V2

V3V4

V5

Fig. 1 Input network of n = 5 vertices

decreases. For an isomorphism between two graphs, there has to be a one-to-one
correspondence between their vertices while preserving the links between them at the
same time. Only the networks having the same number of nodes as well as the same
profiles are considered isomorphic. The special case of two networks having the same
node profiles but a different number of nodes is emphasized by the proposed approach.
Therefore, the cases which remain reveal the correspondence between subgraphs.

3.2 Network hashing
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3.3 Optimization of the Solution
The LSH-family of minhash approximates the pairwise Jaccard 
similarity between the graphs by considering all the triangles 
they have in common. The solution set should be composed 
solely by all the pairs with a high probability of being similar 
with a high degree of similarity. Due to the probabilistic nature 
of the LSH, the presence of false duplicates must be controlled 
by carefully setting the parameters {H,B,R}. Their setting is 
generally a critical aspect of the nearest neighbors search in that 
an inappropriate setting could compromise the solution. The 
parameters in the algorithm proposed here are therefore set in 
order to achieve an almost zero false negatives rate in opposition 
to a probable higher false positives rate. In order to lower the 

rate of false positives, the number of the pairs detected can 
be reduced by evaluating the Jaccard index of every detected 
pair directly and therefore by filtering out all the pairs whose 
similarity satisfies a desired criterion. By setting		
the number of unique traingles in the graphs i and j respectively, 
the condition

reduces the solution to pairs having a similarity eqeual to 1 as 
well as pairs with a subgraph entirely embedded in the larger 
graph of the pair.
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graphs by considering all the triangles they have in common. The solution set should
be composed solely by all the pairs with a high probability of being similar with a
high degree of similarity. Due to the probabilistic nature of the LSH, the presence
of false duplicates must be controlled by carefully setting the parameters {H,B,R}.
Their setting is generally a critical aspect of the nearest neighbors search in that an
inappropriate setting could compromise the solution. The parameters in the algorithm
proposed here are therefore set in order to achieve an almost zero false negatives rate
in opposition to a probable higher false positives rate. In order to lower the rate of false
positives, the number of the pairs detected can be reduced by evaluating the Jaccard
index of every detected pair directly and therefore by filtering out all the pairs whose
similarity satisfies a desired criterion. By setting |Gi| and |Gj | the number of unique
traingles in the graphs i and j respectively, the condition

J(Gi, Gj) =
min(|Gi|, |Gj |)
max(|Gi|, |Gj |)

(6)

reduces the solution to pairs having a similarity eqeual to 1 as well as pairs with a
subgraph entirely embedded in the larger graph of the pair2.

3.4 Evaluating the solution

The solution set is split into the partitions which follow:

� S1: is the subset of pairs of isomorphic graphs Gi and Gj (i ̸= j) with the Jaccard
index J(Gi, Gj) = 1 and |Vi| = |Vj |;

� S2: is the subset of pairs Gi and Gj (i ̸= j) with the Jaccard index J(Gi, Gj) = 1
and |Vi| ̸= |Vj |. The graphs in every pair of this set share the same node profiles;

� S3: is the subset of pairs Gi and Gj (i ̸= j) with the Jaccard index J(Gi, Gj) < 1.
The graphs in every pair of this set have a matching subgraph;

The estimation of the probability of there being a pair with a given degree of sim-
ilarity as described in Equation 4 does not imply a reliable setting of the LSH
hyper-parameters. Hashing collisions are inevitable even when the modulus m is large
enough with respect to the number of profiles P which have to be mapped as indi-
cated in Section 3. Collisions may give rise to false duplicate networks, therefore it
is worth investigating to what extent the hashing method in Equation 5 may affect
the accuracy of the proposed approach. In this study the three aforementioned sub-
sets which compose the solution are analyzed by performing different tests. The first
testing approach provides the comparison of the two distributions pertaining to the
average of the edge-weigths of the graphs. The asymptotic two-sample Kolmogorov-
Smirnov test is carried out separately on every subset. The objective being that of
evaluating whether the distribution on the left pertaining to every first graph in the

2This condition is the same as requiring the maximum value pf the overlap between the teo graphs of the
pair defined as folloes: overlap = |Gi ∩ Gj |/max(|Gi|, |Gj |)
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imply a reliable setting of the LSH hyperarameters. Hashing 
collisions are inevitable even when the modulus m is large 
enough with respect to the number of profiles P which have to be 
mapped as indicated in Section 3. 

Collisions may give rise to false duplicate networks, therefore 
it is worth investigating to what extent the hashing method in 
Equation 5 may affect the accuracy of the proposed approach. 
In this study the three aforementioned sub- sets which compose 
the solution are analyzed by performing different tests. The 
first testing approach provides the comparison of the two 
distributions pertaining to the average of the edge-weigths of the 
graphs. The asymptotic two-sample Kolmogorov- Smirnov test 
is carried out separately on every subset. The objective being 
that of evaluating whether the distribution on the left pertaining 
to every first graph in the	

This condition is the same as requiring the maximum value pf 
the overlap between the teo graphs of the pair defined as folloes: 
overlap = |Gi ∩ Gj |/max(|Gi|, |Gj |)

pairs is the same as that on the right. The second investigation 
provides the evaluation of the confidence interval (CI) for the 
average number of collisions caused by the hashing algorithm 
of Equation 5. The average number of collisions is estimated 
by generating a signature of H hashes for every distinct triangle 
belonging to the graphs in each subset and by checking whether 
two different triangles share the same hash code. By repeating this 

test H times, the overall average value is considered as being the 
parameter of interest. Subsequent to the determination of these 
parameters their confidence intervals are estimated by using the 
Bootstrap method for each subset of the solution. Similarly to 
this last test, the confidence intervals of: (1) average number 
of equal bands between the signatories, (2) average number of 
triangles in common for each detected pair of graphs as well 
as (3) average number of profiles in common are estimated via 
bootstrap method for each subset.

4. Application to a Statistical Population Register
The detection of complex data structures contained in statistical 
registers is an inter- esting case study for testing the potential of 
the proposed approach. The data source is a collection of socio-
economic individual attributes describing the living conditions 
of a population referred to a specific time period obtained by 
integrating several sta- tistical registers and administrative 
data pertaining to: demographic characteristics, occupation, 
education and income.

4.1 The Input Dataset
Input data comprises a subset of the entire available 
aforementioned dataset of a spe- cific territory. A population 
of 940535 people is grouped into N = 253286 households by 
means of an identification number. In this case the number of 
households was restricted to groups of n 3 members only, so 
that the complex data structures to investigate concern different 
number of people ranging from n = 3 to n = 14 members. The 
list of the attributes of each individual is reported in Table 1. As 
a consequence
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Table 1: Attributes in the Input Dataset

the total number of possible profiles is equal to P = 448.

4.2 Complex Data Structures Hashing
Representing households as networks or graphs makes sense in 
the context about to be described. Every household is a fully 
connected undirected graph. Nodal profiles are the observed 
combinations of the attributes reported in Table 1. In accordance 
with the number of profiles P the appropriate number of bits 
for mapping them into unique integers is L = 32. Edge weights 
are equal to the algebraic complement of the relative frequency 
of the combination of two adjacent profiles with respect to all 
the observed combinations. Every graph is hashed in accordance 
with the procedure described in Section 3.

4.3 LSH Hyperparameters Setting
The setting provides that every network is signed by a sequence 
of H = 200 i.i.d. minhashes. Every hash is a L = 32 bits long 
integer which is a sufficient length for hashing the graphs. 
Each signature is grouped into B = 50 bands of R = 4 hashes 
combined in bitwise XOR. The application of the similarity 
criterion described in Section 3 for refining the solution only 
affects the subset S3 of the pairs in which one graph is a subgraph 

completely embedded into the other one. The minimum value τ 
for the Jaccard similarity equal to 0.491074 by assuming a 95% 
probability of detecting similar pairs was therefore not applied.

4.4 Some Results
The number of pairs detected is respectively equal to: |S1| = 
160370, S2 = 10532 and S3 = 242585. The first subset contains 
isomorphic households which share the same number of 
members with the same profiles and therefore the same structure 
(the graphs share the same triangles). The number of distinct 
profiles may be equal to the number of household members at 
maximum. As a consequence the number of distinct triangles in 
common may also vary starting from a minimum value equal to 
1. The second subset includes all the pairs of households with 
different numbers of members which share the same profiles. 
The third subset contains the pairs of households in which a 
smaller household is completely embedded into the larger one. 
The number of pairs in these subsets distributed by number of 
household members and number of common distinct profiles are 
reported in Table 2, Table 3 and Table 4 respectively. Except for 
the first subset, the number of household members reported

Table 2: Pairs Distribution in the Subset S1

Table 3: Pairs Distribution in the Subset S2

in the tables is always equal to the minimum value between the numbers of members of the two households in the pair. All the results 
reported in the tables are overall

N Variable Description Number of classes
1 GENDER Gender of the household member 2
2 AGE Age of the household member (in classes) 4
3 CITIZEN Citizenship of the household member 2
4 EDUCATION Level of education of the household member 4
5 MAIN SOURCE Main source of income of the household member 7

1 2 3 4 5 6 7
3 50 3634 95003 0 0 0 0
4 2 38 8914 47974 0 0 0
5 0 0 119 1460 2897 0 0
6 0 0 0 10 82 180 0
7 0 0 0 0 1 4 1

8 0 0 1 0 0 0 0

1 2 3 4 5 6 7
3 10 146 6126 0 0 0 0
4 1 11 288 3309 0 0 0
5 0 6 13 165 412 0 0
6 0 1 0 2 12 25 0
7 0 0 0 0 1 2 1
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Table 4: Pairs Distribution in the Subset S3

Table 5: Clusters of Similar Graphs in the Subset S1

Table 6: Clusters of Similar Graphs in the Subset S2

Table 7: Clusters of Similar Graphs in the Subset S3

Figure 2: Distribution of the Average Edge-Weight of the Pairs Belonging to the Subset S1

counts of pairs of households and sub-households pertaining 
to different arrangements of the household members profiles. 
Although cluster analysis is not the main objective of this 
study, by applying the depth-search algorithm from the Graph 
Theory to the subsets, groups of isomorphic graphs having the 

same node profiles as well as groups of graphs containing the 
same subgraph are obtained. The results of this process are 
summarized in Table 5, Table 6 and Table 7 The results reported 
in Table 5, Table 6

and Table 7 give an idea of the diversity of the various types 
of networks present in the input dataset. The application of 
this method for the identification of groups of similar networks 
can lead to the detection of many small clusters containing one 
pair of them only. In the study presented here these results are 
repoted only to have an insight of the information content of the 
input dataset.

4.5 Accuracy of the Solution
The distributions (D1, D2) of the mean edge-weight pertaining 
to the left-hand side graph and to the right-hand side graph 
in the pairs belonging to the subsets are reported in Figure 2, 
Figure 3 and Figure 4: The results of the asymptotic two-sample 
Kolmogorov-Smirnov test are: D = 5.612 × 10−5 (p-value = 1) 
for S1, D = 0.001804 (p-value = 1) for S2 and D = 0.0022013 
(p-value = 0.5992) for S3 where D indicates the distance between 
the two distributions. As can be appreciated the aforementioned

Table 6 Clusters of similar graphs in the subset S2

Min. 1st Qu. Median Mean 3rd Qu. Max.

1 2.00000 2.00000 3.00000 2.85097 3.00000 14.00000

Table 7 Clusters of similar graphs in the subset S3

Min. 1st Qu. Median Mean 3rd Qu. Max.

1 2.00000 2.00000 3.00000 27.67235 4.00000 212202.00000
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Fig. 2 Distribution of the average edge-weight of the pairs belonging to the subset S1

edge-weight distributions are very close one to the other.
In order to further evaluate the accuracy of the solution, an empirical estimation
of the statistical properties of hashing collisions was carried out by using the boot-
strap method. In the same manner, the confidence intervals of the average number of
equal bands between the signatures of similar networks, the number of equal triangles
between the two graphs in each pair as well as the number of equal profiles were also
calculated by bootstrapping the solutions subsets. The results are reported in Table 8,
Table 9 and Table 10.

5 Conclusion

The proposed approach detects similarities between complex data structures, for exam-
ple networks of individuals grouped together by any type of utility bond. By leveraging
the well-known computational efficiency of the Locality Sensitive Hashing technique,
the proposed approach is particularly suitable for detecting similar networks in large
datasets. The use of some basic concepts from the Graph Theory offers a strong mathe-
matical representation of these objects in that it facilitates their exploration. Networks

11

1 2 3 4 5 6 7
3 - - 165200 0 0 0 0
4 - - 9948 47916 0 0 0
5 - - 172 2214 4644 0 0
6 - - 3 66 249 264 0
7 - - 2 1 13 15 4
8 - - 0 1 2 1 1

Min. 1st Qu. Median Mean 3rd Qu. Max.
1 2.00000 2.00000 3.00000 7.27548 7.00000 521.00000

Min. 1st Qu. Median Mean 3rd Qu. Max.
1 2.00000 2.00000 3.00000 2.85097 3.00000 14.00000

Min. 1st Qu. Median Mean 3rd Qu. Max.
1 2.00000 2.00000 3.00000 27.67235 4.00000 212202.00000
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edge-weight distributions are very close one to the other.

In order to further evaluate the accuracy of the solution, an 
empirical estimation of the statistical properties of hashing 
collisions was carried out by using the boot- strap method. In the 
same manner, the confidence intervals of the average number 
of equal bands between the signatures of similar networks, the 
number of equal triangles between the two graphs in each pair 
as well as the number of equal profiles were also calculated by 
bootstrapping the solutions subsets. The results are reported in 
Table 8, Table 9 and Table 10.

5. Conclusion
The proposed approach detects similarities between complex 
data structures, for exam- ple networks of individuals grouped 
together by any type of utility bond. By leveraging the well-
known computational efficiency of the Locality Sensitive 
Hashing technique, the proposed approach is particularly 
suitable for detecting similar networks in large datasets. The use 
of some basic concepts from the Graph Theory offers a strong 
mathematical representation of these objects in that it facilitates 
their exploration. Networks 

Figure 3: Distribution of the average edge-weight of tthe pairs belonging to the subset S2

Figure 4: Distribution of the average edge-weight of tthe pairs belonging to the subset S3
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Fig. 4 Distribution of the average edge-weight of tthe pairs belonging to the subset S3

of varying dimensions are represented as being fully connected undirected weighted
graphs with attributes relating to their vertices. These attributes are comprised by a
set of pre-defined categorical variables and every combination of their possible values
is a profile. The weights pertaining to the edges of the graph are equal to the rela-
tive frequency of the combinations between a pair of adjacent profiles with respect
to the total of the observed pairs in the input dataset. By listing all the triangles
of minimum cost, every graph is transformed in a sequence of hash codes by means
of an appropriate hashing algorithm. The advantage of reducing the dimensions of
the problem is straightforward as the resolution of graph matching problems between
all possible pairs of graphs in the input dataset turns into a more scalable search
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of varying dimensions are represented as being fully connected undirected weighted
graphs with attributes relating to their vertices. These attributes are comprised by a
set of pre-defined categorical variables and every combination of their possible values
is a profile. The weights pertaining to the edges of the graph are equal to the rela-
tive frequency of the combinations between a pair of adjacent profiles with respect
to the total of the observed pairs in the input dataset. By listing all the triangles
of minimum cost, every graph is transformed in a sequence of hash codes by means
of an appropriate hashing algorithm. The advantage of reducing the dimensions of
the problem is straightforward as the resolution of graph matching problems between
all possible pairs of graphs in the input dataset turns into a more scalable search

12

of varying dimensions are represented as being fully connected 
undirected weighted graphs with attributes relating to their 
vertices. These attributes are comprised by a set of pre-defined 
categorical variables and every combination of their possible 
values is a profile. The weights pertaining to the edges of the 
graph are equal to the relative frequency of the combinations 
between a pair of adjacent profiles with respect to the total of 

the observed pairs in the input dataset. By listing all the triangles 
of minimum cost, every graph is transformed in a sequence 
of hash codes by means of an appropriate hashing algorithm. 
The advantage of reducing the dimensions of the problem is 
straightforward as the resolution of graph matching problems 
between all possible pairs of graphs in the input dataset turns 
into a more scalable search
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Table 8: Quality of the Solution Pertaining to the Pairs in the Subset S1

Table 9: Quality of the Solution Pertaining to the Pairs in the Subset S2

Table 10: Quality of the Solution Pertaining to the Pairs in the Subset S3

for near-duplicate graphs by approximating their Jaccard 
similarity index. The interesting aspect is that the proposed 
method addresses two types of well-known hard graph matching 
problems at the same time, namely the problem of finding 
isomorphic networks as well as the problem of detecting the 
common subgraph in a pair of net- works. The hashing process 
of the proposed algorithm is a key aspect of this study. The 
function proposed has satisfactory statistical properties: a long 
period of pseudo- random number generation and sufficient 
dispersion of the generated integers as the parameters of the 
function are chosen appropriately at random. By having selected 
the hashing functions uniformly at random and their modulus is 
large enough, the expected number of collisions is guaranteed 
as being low as is demonstrated in the results. The modulus 
adopted must also be computationally efficient in order to 
avoid overburdening. Nevertheless theae functions map all the 
different graph triangles of the reported case study adeguately. 
Although the probability of ensuing collisions is not null, an in-
depth analysis of the solution found is required; even a samll 
probability of there being collisions may give rise to false 
positives. As a consequence, even the most accurate setting of 
the LSH hyperparameters is unable to avoid these collisions. 
The settin of the LSH hyperparameters in this study reduces 
the probability of there being false negatives almost to zero 
while this does not apply to the probability of there being false 
positives. The solution refinement pre-defined criterion reduces 
the number of detected pairs by restricting the subset of pairs 
of networks in which one is entirely embedded in the other 
only while it leaves unchanged the other subsets of isomorphic 
networks. The results of the in-depth analysis confirm that 
the detection of similar complex data structures proposed is a 
reliable approach.
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