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Abstract
Groundwater recharge Suitability (GWRS) mapping is a critical step towards planning for groundwater management 
and development. This study sought to assess the influence of change in climate and land use on the spatial-temporal 
variability of groundwater recharge suitability areas in Thiba river sub basin. The study applied the multi-influencing 
factor (MIF) technique to delineate the GWRS zones in Thiba river sub basin in three instances, historical (1986), cur-
rent (2020), and future (2050) period. Water availability for the various uses within Thiba river sub basin is uncertain 
in the dry season, attributed to resource degradation due to over-exploitation and limited investments. Over-reliance on 
surface water with poor development of groundwater that is allocated without detailed quantification and quality as-
sessment causing resource degradation. Future climate projections were derived from the Coordinated Regional Down-
scaling Experiment (CORDEX) for the African region under two Representative Concentration Pathways (RCP 4.5). 
Ground water recharge potential was assessed using a Multi-Influencing Factor (MIF) technique using Slope, Land use, 
Rainfall, lithology, landforms, Drainage density, Lineament density and soil as assessment parameters. Land cover im-
ages for the year 1986, 2003 and 2020 were classified into 6 land uses; bare, Built-up, cropland, forest, Grassland and 
Wetland areas and used to project land use in 2050 using the CA-Markov model. Results indicate that climate change 
will significantly impact water. Detailed study linking groundwater recharge and groundwater yields is recommended to 
better inform resource managers on the level of quantitative groundwater variability over space. 
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1. Introduction 
Sub–Saharan Africa is facing rapid rise in population and 
economic development. These two phenomena are characterized 
by anthropogenic activities that increasingly demand more 
water. Water Resources are, on the contrary, rapidly degrading 
in quality and quantity leading water uncertainty across since 
they can’t meet the demand [1]. Water scarcity is threatening 
many countries. By mid-century urban water needs shall rise 
by 80% and general global water demand by 50%, rendering 
about four Billion people in the world at water access risk. The 
production of energy and food shall rapidly increase. According 
to Floerke, (2018) more than 27% of the world’s cities will 
face water scarcity and potentially 19% of them will depend on 
inter-basin transfers from outside their territory. Surface water 
dominates water sources for the majority of Sub-Saharan Africa 
despite threats facing these resources.

Water resources need proper management for sustainability. 
Kenya’s temperature has risen by about 1.0 °C since 1960. 
Rainfall patterns have changed and become unreliable. Mt. 
Kenya national park and Aberdare forests form the origin of 
two major river systems in Kenya. The rivers are Tana and 
Ewaso Nyiro, draining about three-quarters of the country's 
surface area. River Tana provides water to about 50% of the 
country’s population. Tana river serves various water uses; 
irrigation, hydro-electric power generation, commercial use, 
tourism, livestock, industrial, domestic use, and public water. 
The Discharge of river Tana ranges between 60 and 750m3 s-1. 
The lower slopes of Mt. Kenya are incised to depths of 600ft by 
a network of radial streams. The high average annual rainfall has 
resulted in a dense network of parallel streams forming steep-
sided interfluves. The drainage variation in their physiography 
results from the varying nature and age of the underlying 
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geological structure. 

The older volcanic are deeply dissected resulting in the obvious 
conspicuous valleys with steep walls that characterize the 
western slope streams such as Thiba, Rupingazi and Nyamindi 
[2]. Thiba sub-basin is vital in supplying water to the Mwea 
Irrigation Scheme. It also supports other water demands, 
hydropower, domestic and industrial. Some of the major human 
activities include two upcoming micro-hydro plants. The 
Main problem currently facing the community, is fluctuating 
streamflow availability leading to inequitable access to water. 
However, groundwater remains to be largely undeveloped across 
the country (USAID and SWP, 2021). The study used the multi-
Influencing Factors (MIF) technique to assess the variability of 

GWRS zones in response to change in land use and climate. 

2. Study Area Characteristics
The study is in Tana basin area in Thiba river sub basin which 
traverse Kirinyaga and Embu counties at the slopes of Mount 
Kenya. The Thiba river sub-basin is divided into the lowest unit 
of catchment management called a sub catchment. It is located 
between 37°10'30"E and 37°28'0"E, 0°43'30"S and 0°10'0"S 
with an aerial coverage of 1,525 km2, which makes up 1.2 % of 
the entire Tana Basin. The study area falls into three ecological 
zones: the lowland areas (1158-2000) metres above sea level, 
midland areas (2000-3400) metres above sea level and the 
highland area (3,400 – 5380) metres above sea level. 
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It has a mean elevation ranging 1,158m to 5,380 m above sea 
level [2]. The sub basin receives long rain between March to 
May while short rains come between September to November. 
The peak rainfall of about 300 mm and 250 mm fall in April and 
November respectively with the lowest temperatures of 16oC 
recorded in July. The lower zones have a mean evapotranspiration 
potential of 1700mm compared to below 500mm in the upper 
zones [3]. Significant variation between rain and temperature 
is observed longitudinally. Mt. Kenya volcanics comprise the 
Mt Kenya Volcanics (North and South) and the Nyambene and 
the Eastern basement Volcanics. The Mt Kenya Volcanics on 
the northern side comprise mugearites, phonolites, basalts and 
trachytic tuffs interspersed by mudflows. The Southern volcanics 
has the uppermost units consist of ash accumulations, bedded 

deposits containing abundant lava and pumice inclusions of all 
sizes, with fragments of feldspars, nepheline, and dark minerals, 
in a fine-grained matrix underlain by micro porphyritic. The 
Eastern Basement is composed of banded biotite/muscovite/
hornblende gneisses; hornblende schists, granitoid gneisses. The 
gneisses and schists are of semi-pelitic and pelitic origin. Bands 
of crystalline limestone and calc-silicate gneisses occur. 

The study area is a climatically homogenous region sitting in the 
windward region of Mt. Kenya with two distinct seasons that 
align with the findings in this study [4]. The Upper Tana region 
has two seasons, wet and dry seasons that are characterized by 
significant spatial variation in precipitation [22]. The rainfall 
patterns are highly influenced by the relief features of the area 
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and the influence of the North-South movement of the zonal 
arm of the Inter-Tropical Convergence Zone [5]. The rainfall 
pattern is bimodal in seasons but locally vary in space. The study 
area has significant topographic variation that rise from 1158m 
to 5380m above sea level. The seasonal pattern is same, but 
rainfall distribution is greatly varied from the mountain peak of 
Mt. Kenya that receive about 1600mm/year to the Mwea plains 
that receive an average of 968mm/year [5,3]. The low rainfall 
and high temperatures recorded in the lower zone of the study 
area, areas around Mwea irrigation scheme are associated with 
the influence of the adjacent arid region that characterize the 
Athi basin and the low-lying basin like topography with dry 

winds most of the time in the year. Long term average of rainfall 
between the year 1986 up to 2020 show the lowland zone in 
the study area registering rainfall of 1160mm/yr and maximum 
temperature of about 19.20C in comparison to the highland 
that register a long-term average rainfall of 1550mm/yr and a 
maximum temperature of 16.40C [3]. 

3. Materials and Methods
3.1 Data Preparation 
Remote sensing data and field collected data were used to map 
the GWRP zones. Table 1 gives a summary of the data used for 
the study and their sources. 
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3.1.1 Rainfall and temperature 

The study used 0.25º x 0.25º gridded monthly Climate Hazard Group Infrared Precipitation with 

Stations (CHIRPS) and the fifth generation ECMWF reanalysis global climate (ERA5) datasets 

from 1986 to 2020 for the entire study. Details of these datasets can be found in (Bell et al., 2021; 

Dinku et al., 2018). CORDEX model outputs were downscaled to 25Km resolution and on a 

monthly timescale was used to project climate over the Thiba river Sub-basin until the year 2050. 

Two scenarios were considered; RCP4.5 and RCP8.5. Linear Scaling of precipitation and 

 Table 1: Data Types, Sources and Product Code Adopted for the Study.

3.1.1 Rainfall and Temperature
The study used 0.25º x 0.25º gridded monthly Climate Hazard 
Group Infrared Precipitation with Stations (CHIRPS) and the 
fifth generation ECMWF reanalysis global climate (ERA5) 
datasets from 1986 to 2020 for the entire study. Details of these 
datasets can be found in [6,7]. CORDEX model outputs were 
downscaled to 25Km resolution and on a monthly timescale was 
used to project climate over the Thiba river Sub-basin until the 
year 2050. Two scenarios were considered; RCP4.5 and RCP8.5. 
Linear Scaling of precipitation and temperature was used to 
correct for biases in the climate models. Several statistics were 
used to evaluate Models before further analysis which were 
correlation analysis, RMSE, standard deviation and model bias. 
More details about these statistics and bias correction methods 
can be found in [1]. The available observed data was correlated 

with the gridded data to assess the performance over the study 
area and high correlation coefficients of 0.85, 0.82 and 0.69 
were observed for rainfall, maximum and minimum temperature 
respectively. Climate projections were obtained from the World 
Climate Research Project (WCRP) domain (https://www.
wcrp-climate.org/), accessed on June 14th, 2022. The data was 
rasterized using the linear kriging interpolation method. 

3.1.2 Geology
Geological map of the area was generated by assembling existing 
geological maps of scale 1:125,000 obtained from the National 
Geodata Centre (NGDC) for Kenya. The maps were scanned, 
georeferenced and digitized in QGIS desktop environment. Data 
used is indicated in table 2.
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lava and pumice inclusions of all sizes, with fragments of 
feldspars, nepheline, and dark minerals, in a fine-grained 
matrix. These are underlain by micro porphyritic. 
<240m3/day. 

Medium  3 

Volcanics Ti Holocene – Basalt flows, pyroclastics. Low 2 
Metamorphics PC Precambrian -Banded biotite/ muscovite/ hornblende 

gneisses; hornblende schists, granitoid gneisses. The gneisses 
and schists are of semi-pelitic and pelitic origin. Bands of 
crystalline limestone and calc-silicate gneisses occur; high-
grade metamorphism has resulted. >86m3/day. 

Very 
Low 

1 
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Table 2: The Weights Allocated to the Geological Composition in the Area. 

3.1.3 Lineament Density
Lineament data was digitized from geological maps. Faults 
were converted to raster using Rasterize (vector to Raster) 
under Conversion of GDAL tools in QGIS and then reclassified. 
Lineament density was calculated from linear structures 
digitized from the Geological Map of Kenya with Structural 
Contours (BEICIP, 1987) [8]. The study used lineament-length 
density (Ld) after which represents the total length of lineaments 
in a unit area, as shown in equation 1:

where              denotes the total length of lineaments, and A 
denotes the unit area.
A high Ld value infers high secondary permeability, thus 
indicating a zone with greater potential for groundwater 
rechargeability for the same rock type. Lineament density range 
was classified into 3 groups – high, moderate, and low.

3.1.4 Landforms
The topography was classified as lowlands, midlands and 
uplands using the landform layer obtained from; https://maps.
princeton.edu/catalog/harvard-africover-ke-lndfrm. The study 
area was categorized into lowland (1,130-1180), midland (1180-
1750) and highland (1750 – 4750) meters above sea level. The 
classification is based on the agro-ecological zonation for Upper 
Tana (ISRIC, 2023). 

3.1.5 Slope
The slope factor was calculated using the 30 m DEM based on 
the maximum rate of percentage change in value from each cell 
to neighbouring cells [1]. 

3.1.6 Drainage Density
Drainage density (D) is defined as the closeness of spacing of 
stream channels calculated as the measure of the total length 
of the stream segment of all orders per unit distance [9]. The 

drainage density was represented by the following equation: 
The drainage density was generated indirectly from the slope as 
shown in equation 2.

Db = L/A………………                                                              (2)

Where: Db = Drainage Density, L = Total Length of all Stream 
Channel and A = Area of Basin. 

3.1.7 Soil
Soil map of the area was downloaded in digital form from the 
ILRI data portal. The soil was categorized into texture types. 

3.1.8 Land Use (LU)
Raw satellite imagery was from LANDSAT repository for 
Landsat 4-5(TM), and Landsat 8(OLI) 30m. The images were 
classified into 6 classes for the years 1986, 2003 and 2020. The 
classes included bare, Built-up, cropland, forest, Grassland and 
Wetland areas using level 1 scheme of classification suggested 
by [10]. Accuracy assessment was done by comparing classified 
to ground referenced data captured by GPS device and using 
the confusion matrix [11]. Land cover change prediction has 
two aspects: the quantity of change as provided by the Markov 
change model matrix and the spatial distribution of change given 
by multilayer perceptron neural network (MLPNN). Land cover 
maps were predicted for 2050 using transition maps from 1986-
2003-2020. 

3.1.9 Groundwater Levels
Borehole abstraction and borehole completion record data was 
obtained from the Water Resources Authority. The two were 
linked to obtain groundwater levels that were rasterized using 
linear kriging interpolation method. 

3.1.10 Parameter Rating for Weighted Overlay
Tables 3 and Table 4 show the parameter rating for weighted 
overlay before and after sensitivity analysis respectively.
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Table 3 Parameter rating before sensitivity analysis 

Factor Domain Effect 
Domain 
Weight Epoch 

Allocated Rate of 
 influence / 
Parameter 

Calculation process for 
% rate 

Percentage Rate 
of influence/ 
factor 

Lineament 
Density 6 – 15km/km2 3     
 2 – 6 km/km2 2  1.5 (1.5/18) * 100 8.33 
 0-2 km/km2 1 N/A    
       
Rainfall 998 - 1115 1     
 1115 - 1217 2 1986    
 1217 - 1322 3     
 1322 - 1434 4     
 1434 - 1566 5     
       
 724-876 1     
 876-1070 2     
 1070-1380 3  2.5 (2.5/18) * 100 13.89 
 1380-1675 4 2020    
 1675-1903 5     
       
 1071 - 1189 1     
 1189 - 1300 2     
 1300 - 1414 3     
 1414 - 1513 4 2050    
 1513 - 1618 5     
       
Soil Loamy 2 N/A 1 (1.0/18) * 100 5.56 
 Clayey 1     

 
      

Drainage Density 0-4 5     
 04-12 4     
 12-23 3 N/A 1.5 (1.5/18) * 100 8.33 
 23-39 2     
 39-65 1     
       

Lithology 
Quaternary deposits (Poorly 
sorted) 3     
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Factor Domain Effect 
Domain 
Weight Epoch 

Allocated Rate of 
 influence / 
Parameter 

Calculation process for 
% rate 

Percentage Rate 
of influence/ 
factor 

 Volcanics 2  2.5 (2.5/18) * 100 13.89 
 Metamorphics 1 N/A    
       
Slope 0-5.22 5     
 5.22-12.46 4     
 12.46-22.5 3  4 (4/18) * 100 22.22 
 22.5-38.18 2     
 38.18-102.47 1     
       
Land use Forest 6     
 Grassland 5     
 Cropland 4  3 (2.5/18) * 100 16.67 
 Wetland 3     
 Bare 2     
 Built Up 1     
 Forest 6     
       
Landforms Hills and Mountain Foot ridges 1     
 Mountains 2  2 (2/18) * 100 11.11 
 Plain 3     
       

   
 Σ18  100.00 

 

  

 Table 3: Parameter Rating Before Sensitivity Analysis 
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Table 4 Parameter rating after sensitivity analysis and weight adjustment 

Factor Domain  
Effect 

Domain Weight Epoch Allocated Rate  
of influence /  
Parameter 

Calculation process 
for % rate 

Percentage Rate  
of influence/ factor 

Lineament Density 6 – 15km/km2 3         

 2 – 6 km/km2 2   1.2 (1.2/16.1) * 100 7.45 
 0-2 km/km2 1 N/A       
Rainfall 998 - 1115 1     
 1115 - 1217 2 1986    
 1217 - 1322 3     
 1322 - 1434 4     
 1434 - 1566 5     
 724-876 1         
 876-1070 2         
 1070-1380 3   2.5 (2.5/16.1) * 100 15.53 
 1380-1675 4 2020       

 1675-1903 5         
 1071 - 1189 1      
 1189 - 1300 2      
 1300 - 1414 3      
 1414 - 1513 4 2050    
 1513 - 1618 5      
Soil Loamy 2  N/A 1 (1.0/16.1) * 100 6.21 
 Clayey 1        
Drainage Density 0-4 5         
 04-12 4         
 12-23 3  N/A 1.4 (1.4/16.1) * 100 8.70 
 23-39 2        
 39-65 1         
Lithology Quaternary deposits 

 (Poorly sorted) 
3         

 Volcanics 2   2 (2.0/16.1) * 100 12.42 
 Metamorphics 1 N/A       
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Factor Domain  
Effect 

Domain Weight Epoch Allocated Rate  
of influence /  
Parameter 

Calculation process 
for % rate 

Percentage Rate  
of influence/ factor 

       
Slope 0-5.22 5         
 5.22-12.46 4         
 12.46-22.5 3   3.5 (3.5/16.1) * 100 21.74 
 22.5-38.18 2         
 38.18-102.47 1         
Land use Forest 6         
 Grassland 5         
 Cropland 4   3 (2.5/16.1) * 100 18.63 
 Wetland 3         
 Bare 2         
 Built Up 1         
 Forest 6         
Landforms Hills and Mountain 

 Foot ridges 
1         

 Mountains 2   1.5 (1.5/16.1) * 100 9.32 
 Plain 3         
    Σ16.1  100.00 
  Table 4: Parameter Rating After Sensitivity Analysis and Weight Adjustment 

3.2 Methods  
3.2.1 Multi-Influencing Factors (MIF)
Groundwater recharge potential zones were mapped using the 
Multi-Influencing Factors (MIF) technique using eight factors, 
namely: Rainfall, Lineament density, Slope, Drainage density, 
Land use/land cover, Lithology, landforms, and Soil type layers. 
MIF is a widely used MCDM technique for environmental 
management. 

The procedure for mapping groundwater Recharge Zones using 
the weighted overlay tool of weighted Overlay analysis tool of 
QGIS 3.18. The thematic layers were converted into standard 
1km2 grid raster. The calculation was done by multiplying 
individual cell factor cell values with the assigned weight and 
summing together the values of all layers for every cell to 
produce the groundwater recharge potential map. Equation 3 
shows the ground water recharge potential weighted overlay 
equation [12]. 
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Where Groundwater Recharge Suitability (GWRS) is the Groundwater recharge suitable zone, Wi 

is the weight of every thematic layer, Ri is the rating of each class in every thematic layer. LI is 

the lithology of the aquifer, LU/LC is the land-use/land-cover, SLO is the slope, LD is the 

lineament, RF is the rainfall, DD is the drainage density, GM is the geomorphology/Landforms 

and SL is the soil cover. The subscripts c and w refer, respectively, to the factor class of a 

thematic layer and its percentage influence on recharge. This means each class rank is multiplied 

by the layer weight to obtain the position for the layer in the overlay analysis (Zghibi et al., 

2020). Figure 2 shows the flow chart methodology for mapping recharge suitability. 

Where Groundwater Recharge Suitability (GWRS) is the 
Groundwater recharge suitable zone, Wi is the weight of every 
thematic layer, Ri is the rating of each class in every thematic 
layer. LI is the lithology of the aquifer, LU/LC is the land-use/
land-cover, SLO is the slope, LD is the lineament, RF is the 
rainfall, DD is the drainage density, GM is the geomorphology/

Landforms and SL is the soil cover. The subscripts c and w 
refer, respectively, to the factor class of a thematic layer and its 
percentage influence on recharge. This means each class rank 
is multiplied by the layer weight to obtain the position for the 
layer in the overlay analysis [12]. Figure 2 shows the flow chart 
methodology for mapping recharge suitability.
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Figure 2 Methodology for mapping groundwater recharge suitability assessment. 

*GWRS: Groundwater Recharge Suitability, LULC: Land use Land cover, RF: Rainfall, LI: 
Lithology, LD: Lineament Density, SLO: Slope, St: Soil Texture, GM: 
Geomorphology/Landforms, DD: Drainage Density, SL: Soil 

3.2.2 Raster Reclassification 

The Raster maps were processed at a standard one kilometer (1000m X1000m) square raster 

grids; The overlay was done based on Weighted Overlay sum (Spatial Analysis), which considers 

data set influence of each layer. 

3.2.3 Estimating relative weights 

Weights were assigned to variables based on expert opinion and past study recommendations on 

their influence on groundwater storage and flow.  The weights were categorized as minor (0.5) or 

major (1). The total weights assigned through a pairwise comparison was normalized by diving 

the variable total weight by the cumulative variable weight (Equation 4).  

Figure 2: Methodology for Mapping Groundwater Recharge Suitability Assessment

*GWRS: Groundwater Recharge Suitability, LULC: Land use Land cover, RF: Rainfall, LI: Lithology, LD: Lineament Density, 
SLO: Slope, St: Soil Texture, GM: Geomorphology/Landforms, DD: Drainage Density, SL: Soil  

3.2.2 Raster Reclassification
The Raster maps were processed at a standard one kilometer 
(1000m X1000m) square raster grids; The overlay was done 
based on Weighted Overlay sum (Spatial Analysis), which 
considers data set influence of each layer. 

3.2.3 Estimating Relative Weights
Weights were assigned to variables based on expert opinion and 
past study recommendations on their influence on groundwater 
storage and flow. The weights were categorized as minor (0.5) 
or major (1). The total weights assigned through a pairwise 
comparison was normalized by diving the variable total weight 
by the cumulative variable weight (Equation 4). 

where Xij is normalized pair-wise matrix value at ith row and jth 
column, C is the value assigned to each criterion at Ith row and 
jth column and Lij is the total values in each column of the pair-
wise matrix.

This rate was converted to a percentage using Equation 5, the 
outcome in Table 5.
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Figure 3 Pairwise variable analysis on their influence on Groundwater recharge suitability. 
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3.2.4 Graphical Pairwise Comparison of Variables
The variables were compared using the graphical method as indicated in figure 3.

Figure 3: Pairwise Variable Analysis on their Influence on Groundwater Recharge Suitability
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Table 5: Weights assigned to variables influencing groundwater recharge through pairwise comparison. 

Factor SUM-
Major 
relation 

Singular 
Weight 
(major) 

Sum-Minor  
relations 

Singular 
Weight 
(minor) 

Calculation process for 
singular factor influence 

Cumulative 
Weight/ factor 

Calculation process for % 
rate 

Percentage 
Rate of 
influence / 
factor 

Lineament 
Density 

1.00 1.00 1.00 0.50 (1x1) +(1x0.5) 1.50 (1.5/18) * 100 8.33 

Rainfall 1.00 1.00 3.00 0.50 (1x1) +(3x0.5) 2.50 (2.5/18) * 100 13.89 
Soil 0.00 1.00 2.00 0.50 (0x1) +(2x0.5) 1.00 (1.0/18) * 100 5.56 
Drainage 
Density 

1.00 1.00 1.00 0.50 (1x1) +(1x0.5) 1.50 (1.5/18) * 100 8.33 

Lithology 1.00 1.00 3.00 0.50 (1x1) +(3x0.5) 2.50 (2.5/18) * 100 13.89 
Slope 4.00 1.00 0.00 0.50 (4x1) +(0x0.5) 4.00 (4.0/18) * 100 22.22 
Land use 3.00 1.00 0.00 0.50 (3x1) +(0x0.5) 3.00 (3.0/18) * 100 16.67 
Landforms 1.00 1.00 2.00 0.50 (1x1) +(2x0.5) 2.00 (2.0/18) * 100 11.11 
      Σ18  100.00 
  Table 5: Weights Assigned to Variables Influencing Groundwater Recharge Through Pairwise Comparison

3.2.5 Land Use Classification
a) Classification Scheme
Selection of a classification scheme preceded the image classification. The land cover classes (Table 6) that were adopted were level 
1 modified USGS land use / land cover system suggested by Anderson, (1976).
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3.2.5 Land use Classification. 

a) Classification scheme 

Selection of a classification scheme preceded the image classification. The land cover classes 

(Table 6) that were adopted were level 1 modified USGS land use / land cover system suggested 

by Anderson,  (1976). 

Table 6 Land cover classification system (source: Anderson et al., (1976) Land use 
classification) 

 

The study used Landsat sensor images at a spatial resolution of 30- meters (1986, 2003 and 

2020). Image classification was supervised classification using the maximum likelihood 

according to Ohana-Levi et al., (2015) and which have also been utilized by (Murunga, 2017). 

Visual accuracy assessment was done by comparing classified to ground referenced data captured 

by GPS device and using high resolution Google Earth imagery. Systematic accuracy assessment 

was performed using the confusion matrix (García-Álvarez et al., 2022). Overall accuracy and 

Kappa statistics were used to assess the accuracy of classification. Summary of steps of LULC 

classification and projection are as presented in Figure 4. 

Main class Description 
Agriculture 
land 

Agricultural Land may be defined broadly as land used primarily for 
production of food and fibre. This category includes Cropland and Pasture, 
Ornamental Horticultural Areas. 

Forest Forest Lands have a tree-crown areal density (crown closure percentage) of 10 
% or more, are stocked with trees capable of producing timber or other wood 
products and exert an influence on the climate or water regime. Forestlands 
include Deciduous, 
Evergreen and Mixed Forestlands. 

Settlement/ 
built up 

This comprises of areas of intensive use with much of the land covered by 
structures. Included in this category are cities, towns, villages, highways and 
transportation, power, and communications facilities. 

Grassland/ 
Rangeland 

Land where the potential natural vegetation is predominantly grasses, grass 
like plants, forbs, or shrubs. 

Barren land Barren Land is land of limited ability to support life and in which less than 
one third of the area has vegetation or other cover. 

 Table 6: Land Cover Classification System (source: anderson et al., (1976) Land Use Classification)

The study used Landsat sensor images at a spatial resolution 
of 30- meters (1986, 2003 and 2020). Image classification 
was supervised classification using the maximum likelihood 
according to Ohana-Levi and which have also been utilized by 
Murunga. Visual accuracy assessment was done by comparing 
classified to ground referenced data captured by GPS device 

and using high resolution Google Earth imagery. Systematic 
accuracy assessment was performed using the confusion matrix 
[11]. Overall accuracy and Kappa statistics were used to assess 
the accuracy of classification. Summary of steps of LULC 
classification and projection are as presented in Figure 4.
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Figure 4 Land use classification and prediction up to 2050 using CA-Markov algorithm. 

b) Landcover Prediction 

Land cover change prediction has two aspects: the quantity of change as provided by the Markov 

change model matrix and the spatial distribution of change given by multilayer perceptron neural 

network (MLPNN). Land cover provides the quantity of change by evaluating the Markov matrix 

comparing the initial (T1) and second land cover (T2), and then predicts the future land cover 

(T3) using a transition probability matrix for the future. The transition probability matrix displays 

the probability of each land cover category changing into another category. A value close to 0 

indicates a low conversion probability, and 1 indicates a high conversion probability for the 

target land cover. Land cover maps were predicted for 2050 using transition potential maps from 

2003-2020. The agreement of the two categorical maps was measured by using Validate Tool in 

Idrisi Selva. The model is regarded to be validated if the Kstandard (overall kappa) score exceeds 

70%. The values of k-index greater than 80% show good agreement between the projected and 

actual LULC map that exceeds the minimum acceptable standard. All indices are greater than 

80%, showing a good overall agreement and projection ability of the model. 

  

Figure 4: Land Use Classification and Prediction up to 2050 Using Ca-Markov Algorithm

b) Landcover Prediction
Land cover change prediction has two aspects: the quantity of 
change as provided by the Markov change model matrix and 
the spatial distribution of change given by multilayer perceptron 
neural network (MLPNN). Land cover provides the quantity of 
change by evaluating the Markov matrix comparing the initial 

(T1) and second land cover (T2), and then predicts the future land 
cover (T3) using a transition probability matrix for the future. 
The transition probability matrix displays the probability of each 
land cover category changing into another category. A value 
close to 0 indicates a low conversion probability, and 1 indicates 
a high conversion probability for the target land cover. Land 
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cover maps were predicted for 2050 using transition potential 
maps from 2003-2020. The agreement of the two categorical 
maps was measured by using Validate Tool in Idrisi Selva. 
The model is regarded to be validated if the Kstandard (overall 
kappa) score exceeds 70%. The values of k-index greater than 
80% show good agreement between the projected and actual 
LULC map that exceeds the minimum acceptable standard. All 
indices are greater than 80%, showing a good overall agreement 
and projection ability of the model.

(i) The Markov Model
Equation (6) explains the calculation of the prediction of land 
use changes:

where S (t) is the system status at time of t, S (t + 1) is the system 
status at time of t + 1; Pij is the transition probability matrix in a 
state which is calculated as follows [13].
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(i) The Markov Model 

Equation (6) explains the calculation of the prediction of land use changes: 

𝑆𝑆(𝑡𝑡𝑡𝑡+ ) = 𝑃𝑃 𝑗𝑗 𝑥𝑥 𝑆𝑆(𝑡𝑡)………………(6)  

where S (t) is the system status at time of t, S (t + 1) is the system status at time of t + 1; Pij is the 

transition probability matrix in a state which is calculated as follows (Kumar et al., 2014). 

𝑃𝑃 = ‖𝑃𝑃 𝑗𝑗‖ = ‖
𝑃𝑃 ,  𝑃𝑃 ,2 … 𝑃𝑃 ,𝑁𝑁
𝑃𝑃2,  𝑃𝑃2,2 … 𝑃𝑃2,𝑁𝑁
…    …    …  …

𝑃𝑃𝑁𝑁,  𝑃𝑃𝑁𝑁,2 … . 𝑃𝑃𝑁𝑁,𝑁𝑁

‖ (0 ≤ 𝑃𝑃 𝑗𝑗 ≤ 1)………………(7)  

P is the transition probability; Pij stands for the probability of converting from current state I to 

another state j in next time; PN is the state probability of any time. Low transition will have a 

probability near (0) and high transition have probabilities near (1). 

 Markov chain enables the prediction of LULC change through transition probabilities files 

which are matrices that record the probability that each land cover class will change to every 

other class. Through the Markov chain modelling, the analysis of two different dates of the 

LULC images induces the transition matrices, a transition area matrix, and a set of conditional 

probability image (Mishra et al., 2014). The Markov chain model consists of two significant 

probabilities:  

1) The Markov Chain-Transition probability Matrix 

To predict LULC, the transition probability matrix must be calculated for the base period used in 

the prediction. The transition probability matrices are derived from Markov chain analysis 

(Ozturk, 2015). 

2) The CA-Markov Chain Model (CA-MCM) 

Transition models are vital especially where LULC change is driven by the factors difficult to 

represent mechanically such as socio-economic factors (Turner, 1989). The probability of one 

LULC pixel change or not can be estimated through generating a probability transition matrix 

(Mishra et al., 2014). 
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other class. Through the Markov chain modelling, the analysis of two different dates of the 

LULC images induces the transition matrices, a transition area matrix, and a set of conditional 

probability image (Mishra et al., 2014). The Markov chain model consists of two significant 

probabilities:  

1) The Markov Chain-Transition probability Matrix 

To predict LULC, the transition probability matrix must be calculated for the base period used in 

the prediction. The transition probability matrices are derived from Markov chain analysis 

(Ozturk, 2015). 

2) The CA-Markov Chain Model (CA-MCM) 

Transition models are vital especially where LULC change is driven by the factors difficult to 

represent mechanically such as socio-economic factors (Turner, 1989). The probability of one 

LULC pixel change or not can be estimated through generating a probability transition matrix 

(Mishra et al., 2014). 
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P is the transition probability; Pij stands for the probability of 
converting from current state I to another state j in next time; PN 
is the state probability of any time. Low transition will have a 
probability near (0) and high transition have probabilities near 
(1).

Markov chain enables the prediction of LULC change through 
transition probabilities files which are matrices that record the 
probability that each land cover class will change to every other 
class. Through the Markov chain modelling, the analysis of 
two different dates of the LULC images induces the transition 
matrices, a transition area matrix, and a set of conditional 
probability image [14]. The Markov chain model consists of two 
significant probabilities: 

1) The Markov Chain-Transition probability Matrix
To predict LULC, the transition probability matrix must be 
calculated for the base period used in the prediction. The 
transition probability matrices are derived from Markov chain 
analysis [15]. 

2) The CA-Markov Chain Model (CA-MCM)
Transition models are vital especially where LULC change is 
driven by the factors difficult to represent mechanically such as 
socio-economic factors [16]. The probability of one LULC pixel 
change or not can be estimated through generating a probability 
transition matrix [14]. 

3.2.6 Rainfall Projection
Monthly output from the CORDEX Africa experiment was used 
to provide the projections and this was done for the period 2021-
2050. The data was analysed on monthly timesteps, focusing on 
two scenarios; RCP4.5 and RCP8.5 to represent medium and 
high emission scenarios respectively. For evaluation of changes 
in the future climate, two time slices were also created: 1991-
2020 (as the reference/ baseline scenario) and 2021-2050 (as 
the present near future / mid-century scenario). The trends were 
tested at α=0.05 significant level using Mann Kendall trend test. 
Table 7 indicates the stations used in the analysis in the area of 
study and their long-term trends.
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Where Bmap is the base map generated through weighting all the 
thematic layers. N is the number of the full thematic layers used 
to compute the Bmap and n is the thematic variable removed to 
compute sensitivity towards its removal. The bigger the variation 
of the random dimensionless index values from the Bmap average 
index, the higher the sensitivity. 

3.2.8 Verification/Validation of Groundwater Recharge Zone 
and Suitability Analysis 
The study used production borehole depths and yields to validate 
the GWRS map generated. The water yields were extracted 
and interpolated into a raster grid using the local polynomial 
interpolation method. The water yields map was compared 
partially to the groundwater recharge potential maps. 

4. Results and Discussion 
4.1.1 Result Overview and Basis for Analysis
The area is constituted of three zones, the mountainous, hills and 
mountain foot ridges and the plain land zones covering (30.11%), 
46.65%, and 23.24% of the land mass respectively [17]. High 
drainage density indicates low percolation thus unsuitable for 
recharge. Soil texture controls the percolation and infiltration 
of surface water into the aquifers, influencing groundwater 
recharge through properties such as porosity, structure, adhesion, 
and consistency. Clay and loam soil cover 92% and 8% of Thiba 
river sub basin respectively. The ranks of soils were assigned 
according to their degree of infiltration. Drainage density (Dd) 
is a measure on how the catchment is drained by streams. Dd is 
influenced by numerous factors, including resistance to erosion, 
infiltration capacity, vegetation cover, surface roughness and 
runoff intensity index and climatic conditions. Areas with high 
drainage density have less recharge rate, whereas low drainage 
density areas have a high recharge rate and can directly influence 
the groundwater recharge. These are networks such as fractures, 

joints and faults increase porosity and play an important role 
in groundwater movement and high groundwater recharge 
potential. While high lineaments frequency indicates very high 
recharge potential due to the presence of recharge pathways, low 
frequency does not necessarily translate into very low recharge 
potential. The Northeastern areas have more concentration of 
lineament densities. The lineaments are distributed 0-2km/km2, 
2-6km/km2 and 6-15km/km2 covering 85.29%, 13.42% and 
1.28% respectively. This leaves the larger area not very suitable 
for percolation and the most suitable area has a very steep slope 
compromising the available time for water to percolate [3]. This 
area has an indigenous forest with thick undergrowth which 
compensates for the resistance to flow, making it one of the vital 
recharge zones in the sub basin [18]. 

4.1.2 Rainfall and Temperature
In figure 5a all the stations exhibited two distinct seasons; March-
April-May (MAM) and October-November-December (OND), 
where MAM records the highest rainfall amount (~300mm). 
OND is the second rainfall season with at least 250mm of 
rainfall. However, the month of September is the driest and 
receives less than 50mm of rainfall. In figure 5b, there are two 
distinct warm seasons; February-March-April and September-
October-November. June-July-August (JJA) season is usually a 
cold season over the sub basin. Generally, the coldest month in 
this region is July with temperatures as low as 16.0ºC, while 
February, March, April, and October are warm months. This is 
also true since the mean average temperature also indicates that 
JJA is the coldest season and Sept-Oct and Feb-March are warm 
months/seasons. These findings confirm with several authors 
including who found that, rainfall in the Upper Tana basin has 
two distinct seasons; wet and dry, with March-May receiving 
more rainfall in a year over this region [19, 3,18,20]. 
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Figure 5 Monthly means of rainfall and temperature over Thiba river Sub-basin (1986-2020) 

In figure 6a, the mean annual temperature has been significantly increasing, with the maximum 

record observed in the year 2019 with a mean of 18.6ºC.  The only cool years observed were 
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Figure 5: Monthly Means of Rainfall and Temperature Over Thiba River Sub-Basin (1986-2020)
In figure 6a, the mean annual temperature has been significantly 
increasing, with the maximum record observed in the year 
2019 with a mean of 18.6ºC. The only cool years observed 
were 1986/89 and 1999 (17.4, 17.3ºC and 17.4ºC respectively). 
The years 2015, 2017 and 2019 were warm years had higher 
temperatures compared to the earlier years. The total annual 
rainfall (figure 6b) on the other hand has been gradually 
increasing with the years 1988, 1997, 2006 and 2018/19/20 
receiving high amounts of rainfall (>1600mm), while the years 

1996, 2000, 2004, 2017 and 2022 were dry years, with rainfall 
(<1000mm). Similar studies done by established that, Thiba sub 
catchment observed variable trends in the annual rainfall series, 
with significant increases in annual temperatures [18,19,21]. The 
long-term rainfall variations over the catchment area as a result 
of several factors; orographic influence from the Mt. Kenya 
region (Mueni, 2016), and climate indices affecting rainfall over 
East Africa [22,23].
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Figure 6: Mean Annual Temperature (A) and Total Annual Rainfall (B) Over Thiba River Sub-Basin for the Period 1986- 2022

In figure 7 precipitation trend shows a minimal increase 
in the near future. The rising temperatures and increase in 
evapotranspiration in the area can explain the erratic and slight 
increase in precipitation. The more rainfall predicted in the year 
2050 especially in the middle zone can explain the increase in 
average recharge suitability in the middle zone. 

Thiba sub catchment region has undergone several forms 
of droughts, meteorological, agricultural, hydrological, and 
socioeconomic [24]. The rising temperatures can be the cause 
of increased potential evapotranspiration that has triggered 

hydrological imbalance that led to agricultural, hydrological, 
and socioeconomic droughts [25]. Thiba river sub basin has 
faced varying levels of these forms of drought, rice fields failing 
due to inadequate water caused by hydrological drought. Decline 
in agricultural harvest triggering agricultural droughts and both 
contribute to socioeconomic drought. The decline in rainfall into 
the future can be explained by the changing micro-climate in the 
region, a factor associated with rapid change in land cover and 
increased urbanization that is increasing carbon emissions into 
the atmosphere. 
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Figure 7 Rainfall data used in the assessment of groundwater recharge suitability 1986(a), 2020(b) and predicted rainfall in 2050(c)
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Figure 7: Rainfall Data Used in the Assessment of Groundwater Recharge Suitability 1986(A), 2020(B) and Predicted Rainfall in 
2050(C)

4.2. Zonal Variable Characterization
a) Mountainous Zone
The mountain zone consists of Lineament density that varies 
between the three zones 6-15, 2-6 and 0-2km/km2 respectively. 
Lithology, consisting of grey basalts, with sparse phenocrysts 
of deep green olivine. Older lavas consist of extensive flows 
of porphyritic phonolites that lie directly on Basement System 
gneisses. The phonolites are associated with the brecciated 
phonolite. This zone has a slope rise of between 0-102%, annual 
mean rainfall of more than 1500mm, lithology that consists of 
grey basalts, with sparse phenocrysts of deep green olivine. 
Older lavas consist of extensive flows of porphyritic phonolites 
that lie directly on Basement System gneisses. The phonolites 
are associated with bands of brecciated phonolites. Land cover 
(year 2020) consists of bare land 14.6%, cropland 1.7%, Forest 
82.4% and Grassland 1.2%. 

Despite the density of lineaments, this landform is covered with 
the largest indigenous forest in the sub basin which improves 
the resistance to surface run off making infiltration possible. 
This is evidenced by the many streams that emanate from this 
area watering the sub basin downstream. The streams are a 
result of shallow sub terranean flow that meets the surface after 
percolation upstream. This zone has varying drainage densities 
ranging 0-4km/km2, 4-12 km/km2, 12-23 km/km2, 23-39 km/
km2 represent 7.74%, 47.15%, 36.5%, and 8.61% respectively. 

The mountain region shows favorable groundwater recharge 
ability. This is explained by the dense indigenous forest that cover 
the area creating favorable conditions for infiltration. The land in 
this area is also void of human activities being a gazette area thus 
the soil surface is stable creating a constant recharge process 
over a long time. Surface run-off in this area is characterized 

with a slow flow creating more chance for infiltration. The high 
mean annual rainfall also explains the availability of adequate 
rainfall that generates adequate run-off from which a fraction is 
infiltrated. The region’s rainfall is predicted to increase in small 
margins into the near future. The current mean rainfall is on 
average 1453mm/yr and is predicted to increase to 1460mm/yr 
by the year 2050. This zone has significant lineament densities 
and slope variation that contribute to the water ponding which is 
a suitable condition for groundwater recharge. 

b) Hills and Mountain Foot Ridge Zone
The hills and mountain foot ridge zone are characterized with 
a slope of 0-12% rise, 100% loam soil coverage, moderate 
rainfall of about 1250mm/yr. Land cover (year 2020) consists 
of cropland 87.24%, Forest 3.85% and Grassland 2.27% built 
up area 1.53% and insignificant bare and wetland area. The zone 
has varying drainage densities ranging 0-4km/km2, 4-12 km/
km2, 12-23 km/km2, 23-39 km/km2, 39-65 km/km2 represent 
11.9%, 47.66%, 27.42%, 12%, and 1.01% respectively. 

The Suitability for recharge significantly reduced in the mountain 
foot ridge zone where it can be explained by the rapid conversion 
of land use from forest and grassland to cropland and built up. 
This can lead to a reduction in recharge by decreasing water 
retention for percolation and an increase in impermeable surfaces 
[26]. The middle zone of the sub basin became less suitable with 
the land area along the rivers being the least suitable areas. This 
is explained by the influence of rivers on recharge. Streams are 
often areas of fast stream flow and where groundwater flow 
meets the surface thus there is minimal percolation but external 
flow of groundwater. This does not rule out the ability of surface 
stream flow recharging aquifers in other cases where the aquifer 
formation allows percolation and stream flow is favorable. 
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The most suitable ground recharge areas increased by 2% 
especially in the mountain foot ridge zone, many of the suitable 
areas scattered in the western region of the sub basin. A reduction 
in more groundwater recharge suitable areas with minimal 
increase in most suitable groundwater recharge areas negate 
the extreme increase in the most suitable areas. The isolated 
increase in the most suitable recharge areas can be explained by 
the historical long-term recharge favorable conditions associated 
with the presence of forest cover in the middle western region 
of the sub basin. The long-time groundwater cycle takes to 
travel explains the lag period of recharge change between the 
clearance of the forest and improvement in suitability [27]. It is 
also predicted to experience more precipitation in the year 2050. 
This can also explain the regeneration of the recharge suitability 
compared to the decline in the year 2020 which is also associated 
with the current general decline of precipitation in rainfall. 

c) Lowland/Plain Land Zone 
 Plain land zone is characterized by a 0-12% slope rise, rainfall 
of about 950mm/yr. Land cover (year 2020) consists of cropland 

92.72%, Forest 0.37% and Grassland 4.41% built up area 
2.26%, wetland 0.24% and no bare land. Lineament density of 
2-6km/km2, lithology is made up of Banded biotite/muscovite/
hornblende gneisses; hornblende schists, granitoid gneisses. The 
gneisses and schists are of semi-pelitic and pelitic origin. Bands 
of crystalline limestone and calc-silicate gneisses occur. Clay 
soil with fine texture covers the plane lands and is utilized for 
rice farming. The zone has varying drainage densities ranging 
0-4km/km2, 4-12 km/km2, 12-23 km/km2, 23-39 km/km2, 39-
65 km/km2 represent 36.64%, 28.3%, 16.2%, 9.76%, and 9.09% 
respectively.

The region shows a rapid deterioration in the groundwater 
recharge suitability with the historical recharge suitability 
converting to moderate suitability by the year 2050. The 
historical dominance of grassland land cover in the areas 
is largely changed to cropland and built up by the year 2050 
with insignificant patches of grassland. Cropland and built 
environment are associated with high evapotranspiration and 
reduction in water percolation. 
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Figure 8 Data used in the assessment of groundwater recharge suitability Lineament Density (a), 
Lithology (b), Landforms (c), Slope (d), Drainage Density (e) and Soil Type (f) 
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Figure 8: Data Used in the Assessment of Groundwater Recharge Suitability Lineament Density (A), Lithology (B), Landforms (C), 
Slope (D), Drainage Density (E) and Soil Type (F)
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Figure 9 Land use Data used in the assessment of groundwater recharge suitability land use 1986(a), 2003(b), 2020(c) and predicted 
2050(d). 
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Figure 9: Land Use Data Used in The Assessment of Groundwater Recharge Suitability Land Use 1986(A), 2003(B), 2020(C) and 
Predicted 2050(D)
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Table 8 Land use/cover of Thiba River sub basin (1986, 2020 and 2050) 

 1986 2020 2050 

Class Area (  2) Area (  2) Area (  2) 

Bare 13.23 68.63 70.07 

Grass land 721.34 83.84 82.79 

Crop land 369.05 969.99 980.61 

Forest 448.03 414.79 385.18 

Built up 3.70 19.29 40.04 

Wet land 3.17 1.98 0.19 

 

4.3 Ground Water Recharge 

The spatial outputs of GWR suitability assessment show a spatial variation in the suitability for 

groundwater recharge across Thiba river sub basin. The Southwestern area of study is facing the 

greatest limitation of groundwater recharge suitability while the Northeastern is privileged with 

abundant recharge area options. The distribution of recharge suitability in the year 1986 had 

most, more, moderate, less, and least suitable areas constituting 14%, 30%, 32%, 20% and 5% 

respectively. The spatial distribution of more to most suitable areas was spatially even with the 

entire sub-basin indicating significant areas that had suitable rechargeability except the veins 

along the rivers especially in the hills foot ridges and plain zones (Figure 10a). 

 In the year 2020, the most, more, moderate, less, and least suitable land area represented 17.5%, 

19.1%, 32.3%, 23.8% and 8.2% respectively (Figure 10b).  The Suitability for recharge 
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groundwater flow meets the surface thus there is minimal percolation but external flow of 

groundwater. This does not rule out the ability of surface stream flow recharging aquifers in other 

cases where the aquifer formation allows percolation and stream flow is favorable.  
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4.3 Ground Water Recharge
The spatial outputs of GWR suitability assessment show a 
spatial variation in the suitability for groundwater recharge 
across Thiba river sub basin. The Southwestern area of study is 
facing the greatest limitation of groundwater recharge suitability 
while the Northeastern is privileged with abundant recharge 
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1986 had most, more, moderate, less, and least suitable areas 
constituting 14%, 30%, 32%, 20% and 5% respectively. The 
spatial distribution of more to most suitable areas was spatially 
even with the entire sub-basin indicating significant areas that 
had suitable rechargeability except the veins along the rivers 
especially in the hills foot ridges and plain zones (Figure 10a).

 In the year 2020, the most, more, moderate, less, and least 
suitable land area represented 17.5%, 19.1%, 32.3%, 23.8% 
and 8.2% respectively (Figure 10b). The Suitability for recharge 
significantly reduced in the mountain foot ridge zone where 

it can be explained by the rapid conversion of land use from 
forest and grassland to cropland and built up. This can lead 
to a reduction in recharge by decreasing water retention for 
percolation and an increase in impermeable surfaces (Han et al., 
2017). The middle zone of the sub basin became less suitable 
with the land area along the rivers being the least suitable areas. 
This is explained by the influence of rivers on recharge. Streams 
are often areas of fast stream flow and where groundwater flow 
meets the surface thus there is minimal percolation but external 
flow of groundwater. This does not rule out the ability of surface 
stream flow recharging aquifers in other cases where the aquifer 
formation allows percolation and stream flow is favorable. 

The predicted recharge suitability for the year 2050 shows the 
most, more, moderate, less, and least suitable groundwater 
recharge areas to represent 14%, 22%, 34%, 25% and 5% 
respectively (Figure 10c). The most suitable ground recharge 
areas are predicted to decrease by 2% in the year 2050 especially 
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in the mountain foot ridge zone, many of the suitable areas 
scattered in the western region of the sub basin. An increase in 
more groundwater recharge suitable areas with a decrease in 
most suitable groundwater recharge areas negate the extreme 
increase in the most suitable areas. 

The isolated general average increase in the moderately 

suitable recharge areas in the Western region of the sub basin 
can be explained by the historical long-term recharge favorable 
conditions associated with the presence of forest cover in the 
middle western region of the sub basin (Figure 9). The long-
time groundwater cycle takes to travel explains the lag period of 
recharge suitability change between the clearance of the forest 
and improvement in suitability (Condon et al., 2021). [25]. 
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The groundwater recharge suitability trend analysis shows an 
uncertain situation with the recharge suitability dynamically 
decreasing and increasing except the less suitable areas that 
are constantly increasing between 1986 up to 2050 (Table 9). 

This can be associated with the rapid uncertain trend in land use 
(Table 8) in the sub basin which is linked to various influences 
on recharge suitability.

Suitability 1986 2020 2050
Least Suitable 5 8 5
Less Suitable 20 24 25
Moderately Suitable 32 31 34
More Suitable 30 19 22
Most Suitable 14 18 14

 Table 9: Recharge Suitability Percentage Area Coverage in 1986, 2020 and Predicted 2050
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4.4 Sensitivity Analysis
Through sensitivity analysis using the map removal method. 
The groundwater recharge suitability influencing variables were 
determined to have varying influence on the recharge. Slope, 

Land use, Rainfall, Lithology, Landforms, Drainage Density, 
Lineament density and soil were found to have high to low 
influence on recharge respectively (Table 10).
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Table 10 Sensitivity Analysis standard variation analysis on the mean value between the 
minimum and maximum random index range compared to the mean value of the base map 
(Figure 12) 

SENSITIVITY LEVEL 

DATA SET MIN  MAX MRSA 

AVG 

GWRS  

(8Layers) 

AVG 

MRSA 

AVG 

STDV 

GWRS (Sum 7layers) Less Slope 24 54 39 52.5 39 9.5 

GWRS (Sum 7layers) Less Land use 28.5 51 39.75 52.5 39.75 9.0 

GWRS (Sum 7layers) Less Rainfall 29.5 55 42.25 52.5 42.25 7.2 

GWRS (Sum 7layers) Less Lithology 30.5 60 45.25 52.5 45.25 5.1 

GWRS (Sum 7layers) Less Landforms 33.5 61 47.25 52.5 47.25 3.7 

GWRS (Sum 7layers) less Drainage 

Density 

33.5 62.5 48 52.5 48 3.2 

GWRS (Sum 7layers) Less Lineament 

Density 

36 62.5 49.25 52.5 49.25 2.3 

GWRS (Sum 7layers) Less Soil 36.5 64 50.25 52.5 50.25 1.6 

*STDV: Standard deviation, AVG: Average, MIN: Minimum, MAX: Maximum, MRSA AVG: 
Map Removal Sensitivity Analysis Average Random Index with one layer removed, 
GWRS(8Layers) AVG: Map Removal Sensitivity Analysis Average Random Index with eight 
layers used as base map random average index 

Table 10: Sensitivity Analysis Standard Variation Analysis on the Mean Value Between the Minimum and Maximum Random 
Index Range Compared to the Mean Value of the Base Map (Figure 12) 
*STDV: Standard deviation, AVG: Average, MIN: Minimum, MAX: Maximum, MRSA AVG: Map Removal Sensitivity Analysis 
Average Random Index with one layer removed, GWRS(8Layers) AVG: Map Removal Sensitivity Analysis Average Random Index 
with eight layers used as base map random average index
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Figure 12 Groundwater potential (2020) Base map before Sensitivity Analysis using un-adjusted 
parameter weights.

Figure 12: Groundwater Potential (2020) Base Map Before Sensitivity Analysis Using Un-Adjusted Parameter Weights
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Figure 13 Map Removal Sensitivity Analysis for all the variables used in GWR assessment. Figure 13: Map Removal Sensitivity Analysis for All the Variables Used in Gwr Assessment

4.5 Validation of Groundwater Recharge Zones
The borehole yields were rasterized based on their yields in 
cubic meter per day. These were done using productive borehole 
records obtained from the Water Resources Authority. The result 
shows a positive correlation between the most suitable locations 

and the most productive boreholes area. This phenomenon 
validates the recharge mapping since the study assumed that 
the most suitable areas for groundwater recharge are also places 
with high yielding boreholes (figure 14). 
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Figure 14 Water Yield surface map generated from productive boreholes yields in m3/per day Figure 14: Water Yield Surface Map Generated from Productive Boreholes Yields in M3/Per Day

5. Conclusion
Groundwater recharge areas show significant variation in space 
and quantity over time when subjected to the changing land use 
and rainfall that was used to denote climate. Multi-Influencing 
Factors (MIF) technique yielded very good results in mapping 
the GWR suitability as an indicator of variation in groundwater 
potential both for abstraction and management. Temperature has 
been significantly increasing over the years while mean annual 
rainfall has been non-significantly increasing over time. This 
will lead to large evapotranspiration and an eventual decline 
in discharge in the rivers making groundwater an inevitable 
option. The development and sustainable management of the 
groundwater resources will ensure water security into the future. 
The larger area of the Eastern area has very good recharge 
potential and validation showed a potential of 25-2356m3/day 
yields in many areas with minor unsuitable recharge and yield 
areas.
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