
Volume 2 | Issue 12 | 1 Int Internal Med J, 2024

Research Article

Are Some Voltage State Orbits, Computed in a Discrete-Time Hopfield 
Neural Network, Which Correspond to Bifurcation Values, Fractals? Exists 
these Orbits in Reality or they Exists Just in Theory i.e. has these Orbits a 
Real Counterpart?
Andreea V. Cojocaru1* and Stefan Balint2* 
1Independent researcher 

2Department of Computer Science, West University of 
Timisoara, Blvd. V. Parvan 4, 300223 Timisoara, Romania 

Citation: Cojocaru, A., Balint, S. (2024). Are Some Voltage State Orbits, Computed in a Discrete-Time Hopfield Neural 
Network, Which Correspond to Bifurcation Values, Fractals? Exists these Orbits in Reality or they Exists Just in theory i.e. 
has these Orbits a Real Counterpart? Int Internal Med J, 2(12), 01-14.

Abstract
In case of a discrete-time Hopfield neural network of two neurons with two delays and no self-connections at 20 bifurcation 
values 20 voltage trajectories appear. Among the 20 voltage trajectories 14 voltage trajectory are not what we call orbits 
in classic sense. The geometrical aspect of these trajectories suggest that they are fractals. Our conjecture is that the 14 
trajectories in discussion are fractals having real counterpart. In case of a discrete-time Hopfield neural network of five 
neuron with delay and ring architecture at 9 bifurcation values 9 voltage trajectories appear. Among the 9 voltage trajectories 
we find 5 voltage trajectory which are not what we call orbits in classic sense. The geometrical aspect of these trajectories 
suggest that they are fractals. Our conjecture is that the 5 trajectories in discussion are fractals having real counterparts.. 
In case of a discrete-time, Hopfield neural network of two neurons with a single delay and self- connections the computed 
trajectories are what we call orbits in classic sense. In case of a discrete-time, Hopfield neural network of two neurons with 
two delays and self- connections the computed trajectories are what we call orbits in classic sense.
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1. Introduction
There is some disagreement among mathematician about how 
the concept of fractal should be formally defined. Mandelbrot 
himself summarized it is as “beautiful damn hard increasingly 
useful. That’s fractals. More formally, in 1982Mandelbrot 
defined fractal as follows: "A fractal is by definition a set for 
which the Hausdorff–Besicovitch dimension strictly exceeds the 
topological dimension [1]."Later, seeing this as too restrictive, 
he simplified and expanded the definition to this: "A fractal is 
a rough or fragmented geometric shape that can be split into 
parts, each of which is (at least approximately) a reduced-size 
copy of the whole [2]."Still later, Mandelbrot proposed, "to use 
fractal without a pedantic definition, to use fractal dimension as 
a generic term applicable to all the variants"[1]. The consensus 
among mathematicians is that theoretical fractals are infinitely 
self-similar iterated and detailed mathematical constructs, of 
which many examples have been formulated and studied [1-
3]. Fractals are not limited to geometric patterns, but can also 
describe processes in time [4-9]. Fractal patterns with various 

degrees of self-similarity have been rendered or studied in visual 
physical, and aural media and found in nature, technology, art, 
and architecture [10-19]. In this context fractal geometry lies 
within the mathematical branch of measure theory presenting 
different measures and algorithms for the computation of 
different types of fractal dimensions of geometrical patterns; 
box counting dimension, correlation dimension ,generalized or 
Renyi dimensions, Higuchi dimension, Lyapunov dimension, 
Multifractal dimensions, Hausdorff dimension, Packing 
dimension, Assouad dimension, Local connected dimension, 
Degree dimension, Parabolic Hausdorff dimension [3,20]. These 
fractal dimensions strictly exceed the topological dimension and 
although for compact sets with exact affine self-similarity all 
these dimensions coincide; in general, they are not equivalent. 
When fractal describe processes in time, then for the analysis 
of statistical data, fractal analysis use also tools for: investigate 
statistical self-similarity, find probability density function 
(PDF), fractal scaling in time, time series analysis, fractal 
kinetic description ,power law and fractal statistics. Beside the 
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mathematical description of the voltage dynamics of neural cells 
and systems using fractals, there exist a large amounts of papers, 
which use classical theory of electrical circuits or fractional 
order derivative circuits for describe the neural cells dynamics 
[4-9,16,21-33]. Papers use classical theory of electricity (integer 
order differential equations) for the description of the ion 
transport through the nervous cell membrane [34-41]. Papers 
use time fractional order circuits for the description of the ion 
transport through the nervous cell membrane [42-44]. In the 
papers it was shown that: Mathematical descriptions of the ion 
transport, across passive or active biological neuron membrane, 
voltage propagation along neuron axons and dendrites having 
passive or active membrane and ion transport in biological 
neuron networks, using classic Caputo or Riemann-Liouville 
fractional order derivatives, is nonobjective [45,46]. The no 
objectivity is originated in the incompatibility of the classic 
Caputo and Riemann- Liouville fractional order derivatives 
with the understanding of the time evolution, used in case of the 
mathematical description of real word phenomena.

Hopfield paper claims to be mathematical descriptions of 
electrical phenomena appearing in nervous system [47]. Later 
in  this model was extended to optimization and cryptography 
[48–50]. In papers, theoretical studies of the Hopfield neural 
system are carried out in the continuous time and discrete 
time versions [51-71]. Papers reveal configuration of steady 
states, local exponential stability of steady states in Lyapunov 
sense, regions of attraction of exponential stable steady states, 
bifurcation properties etc. Several example of low dimensional 
(two, fife neurons) neural network are presented which 
exhibit extremely interesting orbits and bifurcation diagrams. 
Although for some values of the bifurcation parameter the orbits 
completely disintegrate and no longer resemble what we call 
orbit in classical sense, their fractal quality is not analyzed and 
highlighted. In addition, no reference is made to the question: 
whether or not these completely dismembered orbits have a real 
counterpart? In the case of strange bifurcation diagrams, their 
approach with fractals, as far as we know, is not done. In this 
paper, we will present in case of four neural networks, examples 
of strange orbits and bifurcation diagrams, and try to bring 
arguments to support that they are fractals. We also hypothesize 
that they have a real counterpart. They exists not only in theory.

2. Case of a Discrete-Time Hopfield Neural Network of Two 
Neurons with Two Delays and No Self- Connections
 In an extended analysis of the chaotic dynamics of the neural 
network defined

was undertaken [67]. The external inputs are equal to zero and 
the system parameters are regarded as  numerical expression 
of the state of network. The network state can change due to a 
disease for    example. Therefore, the network voltage dynamics 
change too. In  this kind of change is analyzed with respect to 
the product of the interconnection coefficients as aggregated 
characteristic parameter for the system [67]. The main result 
obtained in, is that, if the magnitudes of the interconnection 
coefficients are large enough, then the neural network exhibits 
Marotto’s chaotic behavior [67]. For illustrate what this means 

the following numerical example was considered: a1 = 1/4, a2 = 
3/4, T12 = 1, g1(t) = tanh(t) and  g2(t) = sin(t), b = T21 k1 = 1 and k2 
= 2. For different values of b, trajectory of the neuron’s voltages 
were computed and represented. We will present some of these 
trajectories. 

Figure 2.1: Trajectory for b=-0.35

Figure 2.2: Trajectory for b=-0.36

Figure 2.3: Trajectory for b=-1.26

Figure 2.4: Trajectory for b=-1.27
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Fig.2.3.Trajectory for b=-1.26                                    Fig.2.4.Trajectory for b=-1.27 

 For b=−0.35, the null solution is asymptotically stable, and the trajectories converges to the 
origin. For b=−0.36, an asymptotically stable cycle (1-torus, drift ring) is present, and the 
trajectories converges to this cycle. At b = b1 =−0.35635 a supercritical Neimark–Sacker 
bifurcation takes place. For b = −1.26, there is only one asymptotically stable limit cycle (1-
torus), symmetrical to the origin. For b =−1.27, there are two stable limit cycles, not 
symmetrical to the origin. For each plot, the first 106 iterations have been dropped, and the 
next 104 iterations have been plotted. At around b =−1.265, a bifurcation phenomenon takes 
place, which determines the appearance of two stable limit cycles (1-tori) close to the origin. 

For the localization of bifurcations values the Largest Lyapunov Characteristic Exponent (LCE) 
and the Lyapunov spectrum (LCEs) for system (2.1) was used. For the computation of the 
Lyapunov spectrum, for each b value (step size 0.01 for b), the initial conditions were reset and 
105 time-steps were iterated before calculating the LCEs (which were computed over the next 
105 time steps). The Lyapunov spectrum was computed using the Householder QR based 
(HQRB) method. The obtained LCE and LCEs are represented in Fig.2.5. and Fig.2.6. respectively. 

 

Fig.2.5. Largest Lyapunov Characteristic Exponent. 
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For b=−0.35, the null solution is asymptotically stable, and 
the trajectories converges to the origin. For b=−0.36, an 
asymptotically stable cycle (1-torus, drift ring) is present, and 
the trajectories converges to this cycle. At b = b1 =−0.35635 
a supercritical Neimark–Sacker bifurcation takes place. For 
b = −1.26, there is only one asymptotically stable limit cycle 
(1-torus), symmetrical to the origin. For b =−1.27, there are 
two stable limit cycles, not symmetrical to the origin. For each 
plot, the first 106 iterations have been dropped, and the next 104 
iterations have been plotted. At around b =−1.265, a bifurcation 
phenomenon takes place, which determines the appearance of 

two stable limit cycles (1-tori) close to the origin.

For the localization of bifurcations values the Largest Lyapunov 
Characteristic Exponent (LCE) and the Lyapunov spectrum 
(LCEs) for system (2.1) was used. For the computation of the 
Lyapunov spectrum, for each b value (step size 0.01 for b), the 
initial conditions were reset and 105 time-steps were iterated 
before calculating the LCEs (which were computed over the next 
105 time steps). The Lyapunov spectrum was computed using the 
Householder QR based (HQRB) method. The obtained LCE and 
LCEs are represented in Fig.2.5. and Fig.2.6. respectively.

 

Fig.2.3.Trajectory for b=-1.26                                    Fig.2.4.Trajectory for b=-1.27 

 For b=−0.35, the null solution is asymptotically stable, and the trajectories converges to the 
origin. For b=−0.36, an asymptotically stable cycle (1-torus, drift ring) is present, and the 
trajectories converges to this cycle. At b = b1 =−0.35635 a supercritical Neimark–Sacker 
bifurcation takes place. For b = −1.26, there is only one asymptotically stable limit cycle (1-
torus), symmetrical to the origin. For b =−1.27, there are two stable limit cycles, not 
symmetrical to the origin. For each plot, the first 106 iterations have been dropped, and the 
next 104 iterations have been plotted. At around b =−1.265, a bifurcation phenomenon takes 
place, which determines the appearance of two stable limit cycles (1-tori) close to the origin. 

For the localization of bifurcations values the Largest Lyapunov Characteristic Exponent (LCE) 
and the Lyapunov spectrum (LCEs) for system (2.1) was used. For the computation of the 
Lyapunov spectrum, for each b value (step size 0.01 for b), the initial conditions were reset and 
105 time-steps were iterated before calculating the LCEs (which were computed over the next 
105 time steps). The Lyapunov spectrum was computed using the Householder QR based 
(HQRB) method. The obtained LCE and LCEs are represented in Fig.2.5. and Fig.2.6. respectively. 

 

Fig.2.5. Largest Lyapunov Characteristic Exponent. Figure 2.5: Largest Lyapunov Characteristic Exponent

Figure 2.6: Largest Lyapunov Characteristic Spectrum

Figure 2.7: Trajectory for b=-1.42                          Figure 2.8: Trajectory for b=-1.43

The trajectories presented in Fig. 2.1-Fig.2.4 are what we call orbits in classical sense. However, they become more and more 
complex for various values of b ∈ (−1.5, −1.4). This can be seen on the following figures. 

 

 
Fig.2.6.Largest Lyapunov Characteristic Spectrum. 

The trajectories presented in Fig. 2.1-Fig.2.4 are what we call orbits in classical sense. However, 
they become more and more complex for various values of b ∈ (−1.5, −1.4). This can be seen on 
the following figures.  

 

Fig.2.7.Trajectory for b=-1.42                                  Fig.2.8.Trajectory for b=-1.43 
 

 

 
Fig.2.6.Largest Lyapunov Characteristic Spectrum. 

The trajectories presented in Fig. 2.1-Fig.2.4 are what we call orbits in classical sense. However, 
they become more and more complex for various values of b ∈ (−1.5, −1.4). This can be seen on 
the following figures.  

 

Fig.2.7.Trajectory for b=-1.42                                  Fig.2.8.Trajectory for b=-1.43 
 

 

 
Fig.2.6.Largest Lyapunov Characteristic Spectrum. 

The trajectories presented in Fig. 2.1-Fig.2.4 are what we call orbits in classical sense. However, 
they become more and more complex for various values of b ∈ (−1.5, −1.4). This can be seen on 
the following figures.  

 

Fig.2.7.Trajectory for b=-1.42                                  Fig.2.8.Trajectory for b=-1.43 
 



Volume 2 | Issue 12 | 4 Int Internal Med J, 2024

 

Fig.2.9.Trajectory for b=-1.457                            Fig.2.10.Trajectory for b=-1.46 
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Fig.2.15.Trajectory for b=-1.49 

 
Hear for each plot, the first 106 iterations of system (2.1) have been dropped, and the next 104 
iterations have been plotted. These trajectories corresponds to the bifurcations values: 
b=−1.42: 1-tori; b=−1.43: 2-tori; b=−1.457: 2-tori declining into strange attractors; b =−1.46: 
strange attractors; b =−1.47: two stable period-52 orbits; b =−1.473: strange attractors; b 
=−1.48: strange attractors; b =−1.485: two stable period-39 orbits; b=−1.49: strange attractors. 
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Hear for each plot, the first 106 iterations of system (2.1) have 
been dropped, and the next 104 iterations have been plotted. 
These trajectories corresponds to the bifurcations values: 
b=−1.42: 1-tori; b=−1.43: 2-tori; b=−1.457: 2-tori declining into 
strange attractors; b =−1.46: strange attractors; b =−1.47: two 
stable period-52 orbits; b =−1.473: strange attractors; b =−1.48: 
strange attractors; b =−1.485: two stable period-39 orbits; 
b=−1.49: strange attractors.

It seems that from bifurcation point of view, everything is clear 
but from the point of view of the trajectory, geometry is not at all 
clear. That is because it can be seen that “Trajectories” presented 
in Fig.2.10.-Fig.2.15. are not at all what we call orbits in classic 

sense. Their geometry moreover is fractal. Are “Trajectories” 
presented in Fig.2.10.-Fig.2.15 objects of Fractal Geometry? 
Have they real counterpart or they exist just in theory? There 
are similar behavior mentioned in or elsewhere in specialized 
literature? These are our main questions. In our opinion Fig.2.10-
Fig.2.15. are fractals. If not, what are these geometrical figures 
[10,12,16,21-25,27-33]? 

For various values of b ∈ (−10,−2) the trajectories were also 
computed using the same procedure i.e. the first 106 Iterations 
of system (2.1) have been dropped, and the next 104  iterations 
have been plotted.
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Figure 2.20: Trajectory for b=-5                             Figure 2.21: Trajectory for b=-6.5

 
Fig.2.20.Trajectory for b=-5                             Fig.2.21. Trajectory for b=-6.5 

 

       

 
Fig.2.22. Trajectory for b=-7                                 Fig.2.23.Trajectory for b=-9. 

These trajectories corresponds to the bifurcations values: b =−2: hyperchaos (LE2 > 0, LE3 < 0) 
b=−3: hyperchaos (LE3 > 0, LE4 < 0); b=−4: one stable period-2 orbit (LE1 < 0); b=−4.6: strange 
attractor developing from the period-2 solution; b = −5: hyperchaos (LE4 > 0, LE5 < 0); b = −6.5: 
two stable period-3 orbits (LE1 < 0); b = −7: hyperchaos (LE4 > 0, LE5 < 0); b = −9: hyperchaos 
(LE5 > 0). 

Our main questions are the same: are “Trajectories” presented in Fig.2.16.-Fig.2.23 objects of 
Fractal Geometry? Have they real counterpart or they exist just in theory? If not, what are these 
geometrical figures? There are similar behavior mentioned in [10]-[12],[16],[21]-[25],[27]-[33] 
or elsewhere in specialized literature? Our conjecture is that ‘Trajectories” presented in 
Figs:2.10.-2.23.are fractals and has real counterpart.  
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hyperchaos (LE5 > 0).

Our main questions are the same: are “Trajectories” presented in 
Fig.2.16.-Fig.2.23 objects of Fractal Geometry? Have they real 
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Our conjecture is that ‘Trajectories” presented in Figs:2.10.-
2.23.are fractals and has real counterpart. 

3. Case of a Discrete-Time Hopfield Neural Network of Two 
Neurons with a Single Delay and Self- Connections
 In an analysis of the dynamics of the neural network defined by

                                                                                   	 (3.1)  

was undertaken [68]. The external inputs are equal to zero and the 
system parameters are regarded as numerical expression of the 
state of network. The network state can change due to a disease 
for example. Therefore, the network voltage dynamics change 
too. In  this kind of change is analyzed [68].The conclusion 
in, is: The bifurcation analysis of two-dimensional discrete-
time Hopfield neural networks with a single delay reveals the 
existence of Neimark–Sacker, fold and some codimension 2 
bifurcations values of the bifurcation parameters that have 
been chosen [68]. For illustrate what this means the following 
numerical example was considered:
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The origin is asymptotically stable if and only if 
At 1.40693 a supercritical Neimark–Sacker bifurcation occurs.
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For  the null solution of (3.2) is asymptotically stable.Fig.3.1.illustrate that the 
trajectories of (3.2) converges to the null solution. These trajectories are what we call orbits in 
classic sense. For the null solution is unstable and an asymptotically stable closed 
invariant curve is present. The trajectory of (3.2) converges to the asymptotically stable 
invariant curve as is shown in Fig.3.2. Fig.3.3.The trajectories presented in Fig. 3.2, Fig.3.3 are 
what we call orbits in classical sense. This summary analysis does not reveal trajectories that 
are no longer classic curves. Even the asymptotically stable closed invariant curve, 
corresponding to the bifurcation value is a classical curve. 

 4. Case of a discrete-time Hopfield neural network of two neurons with a two delays and self- 
connections. 
 In [69] an analysis of the dynamics of the neural network defined by 
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as numerical expression of the state of network. The network state can change due to a disease 
for example. Therefore, the network voltage dynamics change too. In [69] this kind of change is 
analyzed .The conclusion in [69], is: “The results presented in this paper complete the 
bifurcation results obtained for discrete-time  Hopfield neural networks with a single delay and 
self-connections presented in [68] and for networks  with two delays and no self-connections 
presented in [66], with new results concerning the case of neural networks with two different 
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For α=1.4, the null solution of (3.2) is asymptotically stable.
Fig.3.1.illustrate that the trajectories of (3.2) converges to 
the null solution. These trajectories are what we call orbits 
in classic sense. For α=1.5, the null solution is unstable and 
an asymptotically stable closed invariant curve is present. 
The trajectory of (3.2) converges to the asymptotically stable 
invariant curve as is shown in Fig.3.2. Fig.3.3.The trajectories 
presented in Fig. 3.2, Fig.3.3 are what we call orbits in classical 
sense. This summary analysis does not reveal trajectories that 
are no longer classic curves. Even the asymptotically stable 
closed invariant curve, corresponding to the bifurcation value 
α=1.5, is a classical curve.
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delays and self-connections, revealing some resemblances (the 
existence of  Neimark-Sacker, Fold, resonance 1:1, double 
Neimark-Sacker bifurcations) and some differences (the possible 
existence of Flip and Flip–Neimark-Sacker bifurcations), as 
well” [66,68,69]. For illustrate what this means the following 
numerical example was considered:
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with; a = 0.5, k1 = 4, k2 = 10,
For γ=0.19 the null solution of (4.2) is asymptotically stable and 
trajectories converges to the null solution.Fig.4.1.illustrate that 
the trajectories of (4.2) converges to the null solution and the fact 
that these trajectories are what we call orbits in classic sense.

For γ=0.2 the null solution is unstable and an asymptotically 
stable closed invariant curve is present. The trajectories of (4.2) 
converges to the asymptotically stable invariant curve as is 
shown in Fig.4.2., Fig.4.3. The trajectories presented in Fig. 4.2, 
Fig.4.3 are what we call orbits in classical sense.

For β=0.82 and γ=0.47 the null solution of (4.2) is unstable 
and an asymptotically stable cycle of period 2 is present. The 
trajectory of (4.2) converges to the asymptotically stable cycle 
i.e. Flip (period-doubling) bifurcation occurs as is shown in 
Fig.4.4.. The trajectory presented in Fig. 4.4, are what we call 
orbit in classical sense.

This summary analysis does not reveal trajectories that are no 
longer classic curves.
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was undertaken. The external inputs are equal to zero and the system parameters are regarded 
as numerical expression of the state of network. The network state can change due to a disease 
for example. Therefore, the network voltage dynamics change too. In [70] this kind of change is 
analyzed with respect to the network parameters. The stability domain of the null solution is 
found, the values of the characteristic parameter for which bifurcations occur at the origin are 
identified and the existence of Fold/Cusp, Neimark-Sacker and Flip bifurcations is proved. These 
bifurcations were analyzed by applying the center manifold theorem and the normal form 
theory. It is proved that resonant 1:3 and 1:4 bifurcations may be present. It is shown that the 
dynamics in a neighborhood of the null solution become more and more complex as the 
characteristic parameter grows in magnitude and passes through the bifurcation values. A 
theoretical proof is given for the occurrence of Marotto's chaotic behavior, if the magnitudes of 
the interconnection coefficients are large enough and at least one of the activation functions 
has two simple real roots. For illustrate what this means the following numerical example was 
considered: 
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All numerical computations have been done using Mathematica. Denoting b=T3, based on the 
theoretical result  presented, we find that the critical values of b are  {-7.593;-6.396;-3.784; -
1.538; -0.433; -0.102; -0.036; 0.031; 0.055; 0.209;0.851; 2.531; 5.148; 7.276}. The stability 
domain of the null solution, with respect to T is DS= (-0.331116; 0.31498). At T= 0.31498, a Cusp 
bifurcation occurs at the origin, while at T=-0.331116 a supercritical Neimark-Sacker bifurcation 
takes place (as shown in Fig.5.1) 

5. Case of a Discrete-Time Hopfield Neural Network with 
Delay and Ring Architecture
In an extended analysis of the chaotic dynamics of the neural 
network with delay and ring architecture defined by
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Figure 4.4: Trajectory for β = -0.82, γ = -0.47
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Fig.5.1. Supercritical Neimark-Sacker bifurcation at T=-0.331116. 

For T=-0.33, the null solution is asymptotically stable, and the trajectory converges to the origin. 
For T=-0-34, an asymptotically stable cycle (1-torus, drift ring) is present, and the trajectory 
converges to this cycle. If modulus T is sufficiently large, chaotic behavior may be expected.  
Figs. 5.1-5.4 describe the route towards chaos occurring in system (5.2) in a neighborhood of 
the origin, as T decreases from 0 to -3. The bifurcation diagram (Fig. 5.2) and the computed four 
largest Lyapunov Characteristic Exponents shown in Fig. 5.3, (computed using the Householder 
QR based method developed by Bremen, Udwadia, and Proskurowski (1997)), clearly describe 
this route, being consistent with the theoretical results presented. 

 

Fig.5.2 Bifurcation diagram for system (5.2), in the (T, x1) -plane, for -3< T<0, with the step size 
of 0:005 for T. 
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Figure 5.3: Four Largest Lyapunov Characteristic Exponents for System (5.2)

For T=-0.33, the null solution is asymptotically stable, and the 
trajectory converges to the origin. For T=-0-34, an asymptotically 
stable cycle (1-torus, drift ring) is present, and the trajectory 
converges to this cycle. If modulus T is sufficiently large, 
chaotic behavior may be expected.  Figs. 5.1-5.4 describe the 
route towards chaos occurring in system (5.2) in a neighborhood 

of the origin, as T decreases from 0 to -3. The bifurcation 
diagram (Fig. 5.2) and the computed four largest Lyapunov 
Characteristic Exponents shown in Fig. 5.3, (computed using the 
Householder QR based method developed by Bremen, Udwadia, 
and Proskurowski (1997)), clearly describe this route, being 
consistent with the theoretical results presented.

For the computation of the Lyapunov spectrum, for each T value 
(step size 0:005 for T) the initial conditions were reset and 105 

time steps were iterated before calculating the LCEs (which 

were computed over the next 105 time steps). In Fig.5.4. Phase 
portraits for various values of T, -3<T<-1/4 can be seen:
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were computed over the next 105 time steps). In Fig.5.4. Phase portraits for various values of T, 
-3<T<-1/4 can be seen: 

                               

                       

        

 
Fig.5.4. Phase portraits for: T=-1.4; T=-1.45; T=-1.5; T=-1.65; T=-1.7; T=-1.9; T=-2.1; T=-2.5; T=-

2.7. 

From the bifurcation point of view, the meaning of these figures is clear: T=-1.4, stable torus 
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> 0); T=-1.7; T =-1.9, stable tori (LE1= 0);T =-2.1, hyperchaos (LE3 > 0); T=-2.5, stable period-38 
orbit (LE1 < 0); T=-2.7, chaos (LE1 > 0). The question is: are the phase portrait corresponding to 
T=-1.45, T=-1.65, T=-2.1, T= -2.5, T=--2.7 objects of Fractal Geometry? Have they real 

Figure 5.4: Phase Portraits for: T=-1.4; T=-1.45; T=-1.5; T=-1.65; T=-1.7; T=-1.9; T=-2.1; T=-2.5; T=-2.7

From the bifurcation point of view, the meaning of these figures 
is clear: T=-1.4, stable torus (LE1= 0); T=-1.45, stable period-32 
orbit (LE1 < 0); T=-1.5, stable torus (LE1= 0); T=1.65, chaos (LE1 
> 0); T=-1.7; T =-1.9, stable tori (LE1= 0);T =-2.1, hyperchaos 
(LE3 > 0); T=-2.5, stable period-38 orbit (LE1 < 0); T=-2.7, chaos 
(LE1 > 0). The question is: are the phase portrait corresponding 
to T=-1.45, T=-1.65, T=-2.1, T= -2.5, T=--2.7 objects of Fractal 

Geometry? Have they real corresponding or they exist just in 
theory? Our conjecture, based on the geometrical aspect, is that 
the phase portraits for T=-1.45, T=-1.65, T=-2.1, T=_2.5, T=--
2.7 are fractals and they have real counterpart.

6. Results
In case of a discrete-time Hopfield neural network of two 
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neurons with two delays and no self- connections 23 voltage 
“trajectories” are computed at bifurcation points. Among the 23 
voltage “trajectories” we find 14 voltage trajectory which are not 
what we can call orbits in classic sense. The geometrical aspect 
of these trajectories suggest that they are fractals. Our conjecture 
is that the 14 trajectories in discussion are fractals and has real 
counterpart.

In case of a discrete-time Hopfield neural network of five neuron 
with delay and ring architecture 9 voltage “trajectories” appear 
at bifurcation points. Among the 9 voltage trajectories we find 
5 voltage “trajectory” which are not what we can call “orbits” 
in classic sense. The geometrical aspect of these “trajectories” 
suggest that they are fractals. Our conjecture is that the 5 
trajectories in discussion are fractals having real counterpart.

7. Discussion
The scientific literature concerning fractals in the description of 
nervous system is extensive.

In for example it is shown that, Currents through Ion Channels 
has fractal properties in time, Electrical Activity of Auditory 
Nerve Cells is described in terms of fractal [21]. 

In authors sustain that “fractal and conventional morphometry 
may represent complementary analytical/ quantitative tools to 
elucidate the diversity of morphological patterns and functional 
parameters which characterize neural cells and brain structures” 
[22].

In the author writ: “the present survey provides experimental 
data confirming that biological processes including growth, 
proliferation, apoptosis, epigenetic and genetic mechanism, 
morphologic/ultrastructural and functional organization 
occurring in living shaped elements and complex structured 
tissues may follow fractal rules [23]. The large agreement 
with the fractal nature of the brain and nervous cell system 
sustained by theoretical, experimental and heuristic foundations 
is nowadays consolidated and intervenes more than thirty 
years after the publication of the Fractal Geometry of Nature, 
in which Mandelbrot recognized that “the notion that neurons 
are fractals remains conjectural” Its relevance and contribution 
to the cultural development of mankind (as comprehensive of 
humanistic and scientific thinking) is keen underlined by the 
observation of some years ago arguing that the fractal geometry 
could be considered as a biological design principle for living 
organisms. 

Paper use fractal time series analysis (detrended fluctuation 
analysis; DFA) to examine the spontaneous activity of single 
neurons in an anesthetized animal model, specifically, the 
mitral cells in the rat main olfactory bulb [24]. DFA bolstered 
previous research in suggesting two subclasses of mitral cells. 
Although there was no difference in the fractal scaling of the 
interspike interval series at the shorter timescales, there was a 
significant difference at longer timescales. Neurons in Group B 
exhibited fractal, power-law scaled interspike intervals, whereas 
neurons in Group A exhibited random variation. These results 
raise questions about the role of these different cells within the 

olfactory bulb and potential explanations of their dynamics. 
Specifically, self-organized criticality has been proposed as an 
explanation of fractal scaling in many natural systems, including 
neural systems. However, this theory is based on certain 
assumptions that do not clearly hold in the case of spontaneous 
neural activity, which likely reflects intrinsic cell dynamics 
rather than activity driven by external stimulation. Moreover, it 
is unclear how self-organized criticality might account for the 
random dynamics observed in Group A, and how these random 
dynamics might serve some functional role when embedded in 
the typical activity of the olfactory bulb.

In the paper the authors conclude:” Given the central role of 
brain’s “wiring”, our previous research for focused on the 
importance of fractal scaling in establishing connectivity between 
neurons [25]. Diagnostic Analysis (DA} was show to relate to the 
optimization of competing functional constraints—the ability of 
dendrites to reach out and connect other neurons versus the costs 
associated with doing so. Within this model, different neuron 
types were predicted to different DA values depending on the 
relative importance of connectivity and material cost with higher 
DA values indicating a greater emphasis on connectivity. In the 
current investigation, we hypothesize that pathological state of 
neurons might also affect this fractal optimization and consider 
whether changes in DA might therefore, be used as a diagnostic 
tool. This analysis represents an appealing development because 
it relates form to function rather than relying purely on pattern 
characterization.”

Our approach in this paper is different from those presented in 
the above-referred literature. We start considering the discrete-
time Hopfield neural network model, which claim to describe the 
electrical activity of a neural system. The bifurcation analysis of 
some low dimensional networks show that for certain values of 
the bifurcation parameter the geometry of the voltage orbits of 
neurons are what we call classic orbits and there exists other 
bifurcation values for which the geometrical aspect of trajectories 
are not at all what we call classic orbits. Their geometrical 
aspects suggest that they are moreover fractals.  The present 
paper present to the reader both type of trajectories putting the 
natural question: Are some of the presented voltage state orbits, 
fractals? Exists these orbits in reality or they exists just in theory 
i.e. has these orbits a real counterpart?  Our conjecture is that 
some of the voltage trajectories presented here are fractals and 
have real counterpart.  

Author Contributions: The two authors contributed equally to 
the realization of this work. All authors have read and agreed to 
the published version of the manuscript.
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