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Abstract
The Riemann zeta function ζ(s) plays a crucial role in number theory and its applications such as cryptography. By utilizing the 
implications of the hypothesis and the distribution of prime numbers, algorithms can be created using primes to send and receive 
data with reliable security. The Riemann Hypothesis (RH) posits that zeros of ζ(s) other than the trivial ones are located on the 
line defined by the equation Re(s) =1/2. This paper introduces a novel and straightforward proof of the Riemann Hypothesis. 
The proof employs a standard method, utilizing the eta function in place of the zeta function, under the assumption that the real 
part is greater than zero. The equation for the real and imaginary parts of the Riemann zeta function (eta function) is completely 
separated. Initially, let ζ(s) = Reζ(s) + Imζ(s) with s = a + ib. The value of the real part is determined by solving the equation, 
and the process is repeated for ζ(1 - s) identifying the potential roots shared by the two functions, a common value is obtained, 
leading to a =1/2, which represents the real part of the main root of the function ζ(s). Using a standard method and with the help 
of two functions ζ(s) and ζ(1-s), the real part of the root of the zeta function is obtained. To create a generator function for prime 
numbers in terms of b, one can solve the root of the zeta function where it equals one (i.e., ζ(s) =1 ) and obtain a relationship 
between b’ and prime numbers. Giving the value of zeta equal to one and s' = a' + ib’, similar to zeta equal to zero, the roots 
are again placed on the 1/2 line. Then, by using the zeta function defined by multiplying prime numbers, we arrive at a new 
meaningful relation between b’ and its corresponding prime number. 
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trivial ones are located on the line defined by the equation Re(s) =1/2. This paper 
introduces a novel and straightforward proof of the Riemann Hypothesis. The proof 
employs a standard method, utilizing the eta function in place of the zeta function, 
under the assumption that the real part is greater than zero. The equation for the real 
and imaginary parts of the Riemann zeta function (eta function) is completely 
separated. Initially, let  ( )      ( )      ( ) with s=      . The value of the real part 
is determined by solving the equation, and the process is repeated for  (  
 )    identifying the potential roots shared by the two functions, a common value is 
obtained, leading to a =1/2, which represents the real part of the main root of the 
function ζ(s). By using a standard method and with the help of two functions ζ(s) and 
ζ(1-s), the real part of the root of the zeta function is obtained. To create a generator 
function for prime numbers in terms of b, one can solve the root of the zeta function 
where it equals one (i.e., ( )   ) and obtain a relationship between b’ and prime 
numbers. Giving the value of zeta equal to one and s' = a' + ib’, similar to zeta equal to 
zero, the roots are again placed on the 1/2 line. Then, by using the zeta function 
defined by multiplying prime numbers, we arrive at a new meaningful relation 
between b’ and its corresponding prime number is obtained. 
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1. Introduction 
The Riemann Zeta Function embodies both additive and multiplicative 
structures in a single function, making it the most important tool in the study 
of prime numbers. The Riemann zeta function is crucial in number theory and 
has applications in physics, probability theory, and applied statistics. It is 
named after the German mathematician Bernhard Riemann, who discussed it 
in the memoir "On the Number of Primes Less Than a Given Quantity," 
published in 1859.[1] Riemann knew that the function equals zero for all 
negative even integers -2,-4,-6, etc.(referred to as trivial zeros), and that it has 
an infinite number of zeros in the critical strip of complex numbers between 
the lines x = 0 and x = 1. Riemann conjectured that all nontrivial zeros are on 
the critical line, a conjecture that later became known as the Riemann 
hypothesis. In 1900, the German mathematician David Hilbert referred to the 
Riemann Hypothesis as one of the most important questions in all of 
mathematics, as evidenced by its inclusion in his influential list of 23 unsolved 
problems that he presented to 20th-century mathematicians. [2]  
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2. Riemann Hypothesis 
The real part of every nontrivial zero of the Riemann zeta function is 1/2. Therefore, if the hypothesis is correct, all nontrivial zeros lie 
on the critical line consisting of the complex numbers                 , where b is a real number and i is an imaginary unit.

2.1. Riemann Zeta Function 
The Riemann zeta function can be expressed in the following form for complex s.
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By utilizing the trigonometric relationship, we can convert Riemann’s zeta function from a complex form to 
a sinusoidal form. 
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If the expression                        equals to zero and the expression               equals to one, then Relation 37 becomes similar to Relation 15.

7 
 

If    (√ 
 )         √      √ 

   √   ( )  
    ( )   ( )

  (  )

            o                c                # 

 ∑(  )       co  [  
      ( )

 

   
]

 (√ 
 )      {co [ 

      ( )]}      {co [ 
       ( )]}        {co [ 

       ( )]}

   

(√ 
 )      {co [ 

      ( )]}      {co [ 
       ( )]}     

    {     co [ 
       ( )]}    

∑(  )       co  [  
      ( )

 

   
]  {(√ 

 )     }   {    √ } {   co [ 
       ( )]}      {co [ 

      ( )]} 

     {co  [ 
       ( )]}}         {co [ 

       ( )]}                                                                                          (  ) 

If the expression (√ 
 )      equals to zero and the expression     √  equals to one, then Relation 37 

becomes similar to Relation 15. 

If    (√ 
 )         √      √ 

   √   ( )  
    ( )   ( )

  (  )

Table 1: potential values of the real part “s”, 0  a ≤   
    , for   ( )   

n 2 3 4 5 6 7 8 … m 

a  
  0.315464  

  0.215338 0.193426 0.178103  
  …   ( )

  (  ) 

Graphical proof:  

By plotting the function at certain points, it is easy to understand that the Zeta Riemann function has no 
roots at these points except for the Re(s) =    

 

 

 

 

 

 

7 
 

If    (√ 
 )         √      √ 

   √   ( )  
    ( )   ( )

  (  )

            o                c                # 

 ∑(  )       co  [  
      ( )

 

   
]

 (√ 
 )      {co [ 

      ( )]}      {co [ 
       ( )]}        {co [ 

       ( )]}

   

(√ 
 )      {co [ 

      ( )]}      {co [ 
       ( )]}     

    {     co [ 
       ( )]}    

∑(  )       co  [  
      ( )

 

   
]  {(√ 

 )     }   {    √ } {   co [ 
       ( )]}      {co [ 

      ( )]} 

     {co  [ 
       ( )]}}         {co [ 

       ( )]}                                                                                          (  ) 

If the expression (√ 
 )      equals to zero and the expression     √  equals to one, then Relation 37 

becomes similar to Relation 15. 

If    (√ 
 )         √      √ 

   √   ( )  
    ( )   ( )

  (  )

Table 1: potential values of the real part “s”, 0  a ≤   
    , for   ( )   

n 2 3 4 5 6 7 8 … m 

a  
  0.315464  

  0.215338 0.193426 0.178103  
  …   ( )

  (  ) 

Graphical proof:  

By plotting the function at certain points, it is easy to understand that the Zeta Riemann function has no 
roots at these points except for the Re(s) =    

 

 

 

 

 

 

Table 1: Potential Values of the Real Part “s”, 0 < a ≤      , for   (s) = 0  

Graphical proof:  
By examining the function at specific points (Figures 1, 2, and 3), it becomes clear that the Riemann zeta function has no roots at these 
points except when Re(s) = a = 1/2
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2.2.2. Determining the Value of “a” in  (1- s) 
In the strip 0 < Re(s) < 1 this extension of the zeta function satisfies the functional equation.
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2.2.2. Determining the value of “a” in  (   ) 
In the strip 0 < Re(s) < 1 this extension of the zeta function satisfies the functional equation. 
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In the second sentence of relation 42, we make a small change because 1 minus 1 equals 0.
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If the expression                          equals to zero and the expression                     equals to one, then Equation 48 becomes similar to 
Relation 39.
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Analytical proof:  

According to Table 2, the root of ζ(1-s) lies between 1/2 and 1 if 0 < Re(s) ≤ 1/2, which is not possible. 
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According to Table 2, the root of ζ(1-s) lies between 1/2 and 1 if 0 < Re(s) ≤ 1/2, which is not possible. 
Therefore, values of a ≠ 1/2 cannot be the real part of the root of the zeta function. Thus, the function only 
has roots on the line Re(s) = 1/2. On the other hand, comparing of Table 1 and Table 2, shows that the only 
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Analytical proof:  

According to Table 2, the root of ζ(1-s) lies between 1/2 and 1 if 0 < Re(s) ≤ 1/2, which is not possible. 
Therefore, values of a ≠ 1/2 cannot be the real part of the root of the zeta function. Thus, the function only 
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According to Table 2, the root of ζ(1-s) lies between 1/2 and 1 if 0 < Re(s) ≤ 1/2, which is not possible. 
Therefore, values of a ≠ 1/2 cannot be the real part of the root of the zeta function. Thus, the function only 
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Analytical proof:  

According to Table 2, the root of ζ(1-s) lies between 1/2 and 1 if 0 < Re(s) ≤ 1/2, which is not possible. 
Therefore, values of a ≠ 1/2 cannot be the real part of the root of the zeta function. Thus, the function only 
has roots on the line Re(s) = 1/2. On the other hand, comparing of Table 1 and Table 2, shows that the only 
common root between ζ(s) and ζ(1-s) is a=1/2. 
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Analytical proof:  

According to Table 2, the root of ζ(1-s) lies between 1/2 and 1 if 0 < Re(s) ≤ 1/2, which is not possible. 
Therefore, values of a ≠ 1/2 cannot be the real part of the root of the zeta function. Thus, the function only 
has roots on the line Re(s) = 1/2. On the other hand, comparing of Table 1 and Table 2, shows that the only 
common root between ζ(s) and ζ(1-s) is a=1/2. 
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Analytical proof:  

According to Table 2, the root of ζ(1-s) lies between 1/2 and 1 if 0 < Re(s) ≤ 1/2, which is not possible. Therefore, values of a ≠ 1/2 cannot 
be the real part of the root of the zeta function. Thus, the function only has roots on the line Re(s) = 1/2. On the other hand, comparing 
of Table 1 and Table 2, shows that the only common root between ζ(s) and ζ(1-s) is a=1/2.

2.2.3. The Final Proof of the Riemann Hypothesis  
The complex form of equations (5 and 18) for     (s)   and                 are written. 
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When solving the equation, terms with a factor of  
√  are placed on the left, while the remaining terms with 
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prime in the denominator. The complete proof of the relationship between prime numbers and the 
generalized zeta function is given in Appendix B 
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2.2.5. Results 
The correctness of Riemann's hypothesis has been proven by accurately determining that a=1/2. The real 
part of every nontrivial zero of the Riemann zeta function is Re(s) =       Thus, the hypothesis is correct, 
and all the nontrivial zeros lie on the critical line consisting of the complex numbers a  ib, where a=     is a 
real number and b is the imaginary number. 
In general, the following relationships hold for the zeta function. 
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When solving the equation, terms with a factor of  
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generalized zeta function is given in Appendix B 
 
Therefore, the final form of the equation will be as follows. 

∑  
√ 

 co [    ( )]   ∑  
√ 

    [    ( )]
 

   

 

   

                                                                                                             (  ) 

∑  
√ 

 co [    ( )]                                            ∑  
√ 

    [    ( )]   

 

   

 

   

                                                                (  ) 

2.2.5. Results 
The correctness of Riemann's hypothesis has been proven by accurately determining that a=1/2. The real 
part of every nontrivial zero of the Riemann zeta function is Re(s) =       Thus, the hypothesis is correct, 
and all the nontrivial zeros lie on the critical line consisting of the complex numbers a  ib, where a=     is a 
real number and b is the imaginary number. 
In general, the following relationships hold for the zeta function. 

 ( )                     [(   
  )  ( )]            [(   

  )  ( )]    ,         

2.2.5. Results 
The correctness of Riemann's hypothesis has been proven by accurately determining that a=1/2. The real part of every nontrivial zero of 
the Riemann zeta function is Re(s) =  Thus, the hypothesis is correct, and all the nontrivial zeros lie on the critical line consisting of the 
complex numbers a + ib, where a= 1/2 is a real number and b is the imaginary number.

In general, the following relationships hold for the zeta function. 

16 
 

 ( )  ∑    
 

   
 ∏ (  

   
  

)                       
                                                                                                          

∏ (  
   

  

)   
   

  

   

      
 
    

 
 
      

    

     
√ 

           

         (   )        ( )  co [    ( )]      [    ( )] 

   

     
√ 

 
(  co (    ( ))

√  )   (    (    ( ))
√  )

(   
   co (    ( ))

√  )
                                                                                                      (  )  

To determine the root of the equation, we set the value of  ( ) equal to zero and simplify the equation. 

 ( )  ∑    
 

   
 ∏ (  

   
  

)   ∏

(

 
 (  co (    ( ))

√  )   (   (    ( ))
√  )

(   
   co (    ( ))

√  )
)

 
                                           (  )    

When solving the equation, terms with a factor of  
√  are placed on the left, while the remaining terms with 

a factor of one are placed on the right. Expressions that involve the multiplication of multiple primes in the 
denominator of the fraction are ignored with high confidence, compared to expressions that have only one 
prime in the denominator. The complete proof of the relationship between prime numbers and the 
generalized zeta function is given in Appendix B 
 
Therefore, the final form of the equation will be as follows. 

∑  
√ 

 co [    ( )]   ∑  
√ 

    [    ( )]
 

   

 

   

                                                                                                             (  ) 

∑  
√ 

 co [    ( )]                                            ∑  
√ 

    [    ( )]   

 

   

 

   

                                                                (  ) 

2.2.5. Results 
The correctness of Riemann's hypothesis has been proven by accurately determining that a=1/2. The real 
part of every nontrivial zero of the Riemann zeta function is Re(s) =       Thus, the hypothesis is correct, 
and all the nontrivial zeros lie on the critical line consisting of the complex numbers a  ib, where a=     is a 
real number and b is the imaginary number. 
In general, the following relationships hold for the zeta function. 

 ( )                     [(   
  )  ( )]            [(   

  )  ( )]    ,         



Volume 4 | Issue 3 | 16J Sen Net Data Comm, 2024 17 
 

 a=                       o                                                      

  [(   
  )  ( )]  ∑(  )       co [    ( )]

 

   
                                                                                                                

  [(   
  )  ( )]   ∑(  )          [    ( )]      

 

   
                                                                                                      

∑ (  )   

√ 
 co [    ( )]   ∑ (  )   

√ 
    [    ( )]

 

   

 

   

                                                                           

∑ (  )   

√ 
 co [    ( )]                          ∑ (  )   

√ 
    [    ( )]

 

   

  

 

   

 

∑  
√ 

 co [    ( )]   ∑  
√ 

    [    ( )]
 

   

 

   

                                           

∑  
√ 

 co [    ( )]                                   ∑  
√ 

    [    ( )]   

 

   

 

   

 

 
3. The generator function of prime numbers    
First, we set the value of the original zeta function to 1. Using the trigonometric relationship, we convert it 
into a complex form and consider the real part as 1 and the imaginary part as 0. By summing the two real 
and imaginary components, we reach a value of a = 1/2.To find b’, we utilize the multiplicative form of 
prime numbers and set the value to 1 resulting in a new sinusoidal form of the real and imaginary parts 
which includes two parameters b’ and P. In this case, the amplitude of the zeta function is 1. With the 
correct assumption, the true value can be considered equal to the cosine of the arbitrary angle theta, and its 
imaginary part equal to the sine of the same angle. By using the relationship between the sine and cosine of 
the theta angle and solving the resulting equation, we obtained a correct relationship between b’ and the 
prime number corresponding to it. 

The Riemann zeta function can be expressed in the following form for complex s. 
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By utilizing the trigonometric relationship provided, we are able to convert the shape of Riemann’s zeta 
function from complex to sinusoidal form.          
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By expanding equation 64 using the trigonometric relation, we obtain equation 61. 
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In the second sentence of relation 65, we make a small change because -1+1 equals 0. 
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Once we have defined the relationships, we can revisit the function, which is similar to relation #59. 
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√   -  

  ) is equal to zero and the expression (    √ ) is equal to one, then Relation 67 

becomes similar to Relation 63. 
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Additionally, both the positive and negative values of b can be applied in equations 61.          
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3.2. Definition of the generating function of prime numbers 
The real and imaginary components of equation 69 can be thought of as the cosine and sine of a 
trigonometric angle.  
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We can use the trigonometric relationship of the sum of the squares of sine and cosine to then obtain an 
independent relationship between b’ and the prime number. 
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3.4. Results 
To find the values of b’, you can numerically solve equation 67 and then calculate the corresponding prime 
number using equation 76. 
In general, the following relationships hold for the zeta function. 
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4. Conclusions 

In this article, we began by attempting to prove the Riemann hypothesis. We started by working with the 
initial form of the function and then transformed it into its complex form. To find the roots of the function’s 
real and imaginary values, we set it equal to zero. By considering s = a   ib, we were able to derive the 
phase-shifted form of the equation using trigonometric relations. Next, we combined the real and 
imaginary parts of the equations (relations 9 and 10), expanded the resulting equation, and compared it 
with the phase-shifted state. This process led to obtaining two simple equations for values of a. Solving 
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We combine relations 7 and 8 to obtain relation 16
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In the second sentence of relation 18, we make a small change because -1+1 equals 0. 
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With the use of 20, we will have. 
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√  -    ) is equal to zero and the expression (    √ ) is equal to one, then equation 

becomes the Phase-Shifted Riemann Zeta Function (Relation 14). 
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Once we have defined the relationships, we can revisit the Phase-Shifted Riemann Zeta Function, which is similar to relation #14.

If the expression                       is equal to zero and the expression                  is equal to one, then equation becomes the Phase-Shifted 
Riemann Zeta Function (Relation 14).
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To simplify the multiplication process, the expression is changed from complex to exponential form.

With high confidence, expressions involving the multiplication of several prime numbers in the denominator of the fraction can be 
ignored compared to expressions containing only one prime number in the denominator.

When rearranging the terms of the equation, the terms with a factor of       are placed on the left side, while the remaining terms with the 
number one are included on the right side.
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When rearranging the terms of the equation, the terms with a factor of  
√   are placed on the left side, while 

the remaining terms with a factor one are included on the right side. 
With high confidence, expressions involving the multiplication of several prime numbers in the 
denominator of the fraction can be ignored when compared to expressions containing only one prime 
number in the denominator. 
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