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Abstract
Rainfall variability is one of the most significant climate variables for global agricultural productivity. It has also affected the 
agricultural activities, water and food security in the Wolaita Zone. Station and merged satellite data from 1990–2020 and 
data from the two stages of the Coupled Model Intercomparison Project (CMIP6) were used to analyze historical (1985–2014) 
and future projected meteorological drought changes from (2041–2100) via two shared socioeconomic pathways (SSPs) under 
the SSP2–4.5 and SSP5–8.5 emission scenarios. The variability in rainfall at the annual, seasonal, and monthly scales was 
analyzed by using the coefficient of variation (CV) and standardized rainfall anomalies (SRAs) across the study area. The 
modified Mann–Kendall test was used to determine the upward or downward trend and Sen’s slope estimator was used to 
determine magnitude of increase or decrease. In this study, the power transformation (PT) bias correction method was used to 
correct the GCM (CMIP6) model data with the observed rainfall dataset serving as a reference. The SPI is the drought index, 
which indicates historical and future projected meteorological drought conditions at different severity levels that range from 
normal to extreme drought conditions. Future projected meteorological drought will be more affected by extreme and severe 
drought during the middle and far future under the SSP2–4.5 and SSP5–8.5 scenarios, which is more frequent and intense than 
the historical time over the study area. This study provides important guidance for identifying causes, minimizing impacts, and 
enhancing resilience to droughts in the Wolaita Zone.
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1. Introduction 
1.1. Background 
Rainfall is one of the most significant climate variables for global 
agricultural productivity [1]. It is also a significant source of climate 
variability for East African countries, with extreme occurrences 
resulting in drought and heavy rainfall often associated with food, 
energy and water shortages; loss of life and property and many 
other socioeconomic impacts [2]. The economies of East African 
countries largely depend on agriculture, which is highly vulnerable 
to the amount and distribution of rainfall. Many researchers in 
regional and international studies have examined changes in 
rainfall variability due to recent climate change [3]. There is strong 
evidence that climate change impacts the amount, distribution and 
intensity of rainfall, which leads to more frequent droughts and 
floods in many parts of East African countries [4].

Meteorological drought is a natural hazard that severely disrupts 
the economy and agricultural activities. The research area would 
have been affected by drought, which resulted in reduced water 
harvesting activities, crop yields and damage to local food security. 
Erratic rainfall and its distribution are the main problems that 
affect the Wolaita Zone during agricultural operations. The amount 
of production and productivity are frequently impacted by erratic 
rainfall, which in turn has an impact on their means of livelihood 
[5]. In these cases, this research would have been analyzed to 
minimize the impacts of past and future projected meteorological 
drought effects in the study area. Since its invention, the global 
climate model's (GCM) output has been used in several studies 
to predict future rainfall changes in the Earth's climate [6]. 
The data were derived from the GCMs in the Coupled Model 
Intercomparison with Project Phase 6 (CMIP6) under Shared 
Socioeconomic Pathways (SSPs) via a statistical downscaling 
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technique [7]. This study compared the historical simulations 
of the CMIP6 models and analyze the projected meteorological 
drought may affect multiple perspectives [8].

Rainfall in the study area varies significantly in terms of amount, 
duration and distribution. The seasonal pattern of rainfall included 
Belg (February, March, April and May) rainfall; the amount 
received was considerably less than that received by Kiremt 
(June, July, August and September). In general, rainfall is bimodal 
in the study area [9]. The Wolaita Zone has a high population 
density and is highly dependent on labor-intensive and small-
scale agriculture. According to the Wolaita Zone Finance and 
Economic Development Department (WZFEDD), rainfall in an 
area varies greatly in terms of its distribution and amount, typically 
decreasing from place to place [10]. In this area, earlier researchers 
have analyzed the effects of rainfall variability on household 
perceptions and its changes in the Wolaita Zone [11]. Nevertheless, 
the analysis of the variability of rainfall and characterization of 
(past and future projected) meteorological droughts has not been 
sufficiently investigated by other researchers. Therefore, this study 
analyzes and fills a gap in the literature by analyzing the variability 

of rainfall and characterizing (past and projected meteorological) 
drought over the Wolaita Zone, Ethiopia.

2. Materials and Methods 
2.1. Description of the Study Area
Geographically, the Wolaita Zone is located between 6.4°-
7.1° N and 37.4°-38.2° E. The Wolaita Zone is one of the zone 
administrations in Southern Ethiopia. The Wolaita Zone is located 
southwest of Addis Ababa, following the tarmac road from 
Shashemane to Arba Minch. Alternatively, it is located 330 km 
southwest of Addis Ababa, following the tarmac road that passes 
through Hosanna to Arba Minch. Sodo is established at the foot 
of Mount Damota and currently serves as the capital city of the 
Southern Ethiopian region and Wolaita Zone. Wolaita is bordered 
south by the Gamo Zone, west by the Omo River, which separates 
it from Dawro, northwest by the Kembata Zone and Tembaro 
Special Woreda, north by the Hadiya, northeast by the Oromia 
Region, east by the Bilate River, which separates it from the 
Sidama Region and southeast by Lake Abaya, which separates it 
from the Oromia Region, as shown in Figure 1.

4 
 

passes through Hosanna to Arba Minch. Sodo is established at the foot of Mount Damota and 

currently serves as the capital city of the Southern Ethiopian region and Wolaita Zone. Wolaita is 

bordered south by the Gamo Zone, west by the Omo River, which separates it from Dawro, 

northwest by the Kembata Zone and Tembaro Special Woreda, north by the Hadiya, northeast by 

the Oromia Region, east by the Bilate River, which separates it from the Sidama Region and 

southeast by Lake Abaya, which separates it from the Oromia Region, as shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Study Area Map 

 

There are approximately 1,527,908 people living in the Wolaita zone, with men making up 

49.3% of the population and women making up 51.7% [12]. The altitude ranges from 501 meters 

at Bilate-Tena to 3000 meters above sea level at Damota Mountain. The mean annual rainfall in 

the Wolaita Zone varies from 817.5 mm at Bilate-Tena to 1500.33 mm at Mayokote. There are 

three agroecological zones in the study area: Kolla, Woyna-Dega and Dega. Each year, the 

average minimum and maximum temperatures are 15.5°C and 24.5°C, respectively. The rainfall 

distribution pattern is bimodal in the Wolaita Zone. The main rainy season, known as Kiremt, 

Figure 1: Study Area Map

There are approximately 1,527,908 people living in the Wolaita 
zone, with men making up 49.3% of the population and women 
making up 51.7% [12]. The altitude ranges from 501 meters at 
Bilate-Tena to 3000 meters above sea level at Damota Mountain. 
The mean annual rainfall in the Wolaita Zone varies from 817.5 
mm at Bilate-Tena to 1500.33 mm at Mayokote. There are three 
agroecological zones in the study area: Kolla, Woyna-Dega 
and Dega. Each year, the average minimum and maximum 
temperatures are 15.5°C and 24.5°C, respectively. The rainfall 
distribution pattern is bimodal in the Wolaita Zone. The main 

rainy season, known as Kiremt, lasts from mid-June to the end of 
September. The Belg season, also known as the short (secondary) 
rainy season, lasts from mid-February to the end of May.

2.2 Data Types and Sources
2.2.1. Meteorological Data
The observed station data and grid data were collected from the 
Ethiopian Meteorology Institute (EMI). The stations for this study 
are selected on basis of their representativeness within a given 
agroecology and the length of the recording period. To cover the 
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study area, relatively long periods of rainfall data (1990–2020) 
with a reasonable geographical distribution from fifteen stations 
and daily gridded or Enhanced National Climate Services 
(ENACTS) rainfall data were used to fill in the missing data in 
this study. ENACTS is performed by improving the availability of 

timely, relevant and high-quality climate information at relevant 
spatiotemporal scales and working to promote the effective use 
of these data [13]. The following table shows the names of the 
stations used to perform the trend and variability of the rainfall 
analyses for this study.

No Station Name latitude Longitude Altitude
1 Abaya 6.62 37.83 1182 m
2 Areka 7.06 37.71 1752 m
3 Bedessa 6.87 37.94 1609 m
4 Bele 6.92 37.53 1240 m
5 Bilatetena 6.93 38.13 1496 m
6 Bilate 6.82 38.09 1361 m
7 Boditischool 6.96 37.86 2043 m
8 Bombe 7.14 37.58 1544 m
9 Danna1 6.63 37.57 1282 m
10 Gesuba 6.73 37.56 1522 m
11 Halale 6.75 37.34 1854 m
12 Humbotebela 6.70 37.77 1618 m
13 Mayokote 6.89 37.85 2121m
14 Shanto 7.03 37.86 1955 m
15 Wolaytasodo 6.82 37.75 1854 m

Table 1: Meteorological Stations Used for This Study Area

2.3. CMIP6 Climate Model Data
This study utilized global climate model (GCM) datasets from the 
CMIP6 models[14]. The CMIP6 model data were downloaded 
from the Earth System Grid Federation (ESGF) archives https://
esgf-node.llnl.gov// search/cmip6. The definition of the SSP 
provides a new opportunity to examine the future in terms of 
physical climate change and global socioeconomic pathways. 
Furthermore, the datasets were grouped as baseline runs from 
1985–2014 with two future time frames, referred to here after 
as mid-future (2041–2070) and far-future (2071–2100)  [15]. 
The daily rainfall data under moderate (SSP2–4.5) scenarios and 
pessimistic or worst (SSP5–8.5) scenarios were used to estimate 
extreme rainfall events [15]. 

These SSP based scenarios consist of a set of baseline periods that 

describe future developments in the absence of climate change 
or new climate policies beyond those in place today, as well as 
mitigation scenarios that explore the implications of climate 
change mitigation policies applied to the baseline scenarios 
[16]. Compared with CMIP5 models, all CMIP6 models have 
more vertical layers and several advantages, including improved 
simulation accuracy in the stratosphere and a significant increase 
in the number of future scenarios investigated [17]. This study 
utilized the first realization (r1i1p1f1) of five models that have 
relatively high spatial resolutions (~1°). Table 2, presents the 
model description, including the spatial resolution, the institute(s) 
possessing intellectual property rights and the abbreviations of the 
dataset used. The study included a multimodel ensemble (MME) 
of the model datasets in its analyses.

Models Institution Resolution
BCC-CSM2-MR Beijing Climate Center and China Meteorological Administration, China 1.13° × 1.13 °
CMCC-ESM2 Euro-Mediterranean Centre on Climate Change Coupled Climate Model 1.25°×0.94°
GFDL-ESM4 Geophysical Fluid Dynamics Laboratory (GFDL), USA 1.25° × 1.00°
MPI-ESM1-2-HR Max Planck Institute, Germany 0.90° ×1.30°
MRI-ESM2-0 Meteorological Research Institute (MRI), Japan 1.13° × 1.13°

Table 2: Five Selected CMIP6 Climate Models for This Study
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2.4. Data Quality Control
The data were checked for quality, recording length, missing data, 
and inhomogeneity. The missing data were obtained from the 
Enhanced National Climate Services (ENACTS) dataset. High-
resolution satellite and station data were combined to fill in the gaps 
and record time inconsistencies in the observed rainfall data. This 
phenomenon is identified by the variations in the rainfall dataset, 
which could be caused by nonclimate factors such as instrumental 
inaccuracies, station relocations, and changes in instrumentation. 
Therefore, the homogeneity of the data series was checked via the 
standard normal homogeneity test [18]. The outliers of the data 
were checked and detected via Climate Data Tools (CDT). 

2.5. Methods
2.5.1. Variability analysis 
Coefficient of Variability (CV)	
The coefficient of variation (CV) was used to analyze the annual, 
seasonal and monthly variabilities in rainfall via the following 
formula:

where: CV = coefficient variation, σ = standard deviation; and x = 
mean precipitation

The coefficient of variation was used to categorize the amount of 
rainfall variability [19].

Accordingly, CV < 20 = less variable; CV 20-30 = moderately 
variable; and CV >30 = highly variable.

Standardized Rainfall Anomaly (SRA)
The variability of rainfall was computed via the standardized 
rainfall anomaly (SRA) method  [20]. The standardized rainfall 
anomaly (SRA) was calculated as the difference between the 
annual total of a particular year and the long-term average rainfall 
records divided by the standard deviation of the long-term data. 
This index is used to determine the interannual fluctuations 
of rainfall in the study area over the observation period and is 
represented mathematically as follows:

where: SRA is the standardized rainfall anomaly, Pt is the annual 
rainfall in year t, Pm is the long-term mean annual rainfall over the 
observation period, and σ is the standard deviation of the annual 
rainfall over the observation period. According to Harka et al., 
(2021), the Z values are classified as extremely wet (Z > 2), very 
wet (1.9 > Z > 1.5), moderately wet (1.49 > Z > 1.0), nearly normal 
(0.99 > Z > -0.99), moderately dry (-1.0 > Z > -1.49), severely dry 
(-1.5 > Z > -1.99), or extremely dry (Z < - 2) [21].

2.5.2. Trend Analysis
Modified Mann–Kendall Test: The Mann–Kendall (MK) statistic 
test  is advised by the WMO for spotting trends in meteorological 
data [22,23,24]. This study applied the Mann–Kendall (MK) trend 

test method for historical and future rainfall data analysis via 
XLSTAT. A nonparametric technique called the Mann–Kendall 
(MK) test is used to identify trends in the time series of rainfall 
data. Therefore, before applying this test, we conducted the 
autocorrelation test suggested by [25]. For nonnormally distributed 
data series, such as rainfall data, the MK test is also recommended 
[26]. 

The monthly, seasonal and annual rainfall series were analyzed 
via the MK test. If the value in a time series is greater than its 
previous value, a score of +1 is given; conversely, a score of -1 is 
given. Let X1, X2, X3……….. Xn represent n data points, where 
Xj represents the data point at time j. Then, the Mann–Kendall 
statistics (S) are given by

where the sign function is:

where, Xj and Xi are the sequential data values in months j and i 
(j>i), respectively.

An increasing (upward) trend is shown by a positive value of 
S, whereas a decreasing (downward) trend is represented by a 
negative number. At the 0.01, 0.05, and 0.1 significance levels, 
the statistical significance of an increasing or decreasing trend in 
the mean precipitation and temperature values is assessed via a 
normalized test statistic (Z-score).

Where the variance of S is calculated as

where, g is the number of tied groups, ti is the number of tied 
values in the ith group, Var (S) is the reduction in the variance, and 
n is the number of data points.

This Z value and the Z value for (-1) from the standard normal 
distribution are compared to determine the significance.
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2.5.3. Standard Precipitation Index (SPI)
The SPI was used for this investigation, which converts the 
rainfall parameter to a single numerical value to define the 
drought conditions of the study area [31]. The SPI allows for the 
determination of the duration, severity, and frequency of drought 
[32]. Its main advantage is that it is calculated for several time 
scales and identifies various drought types, such as meteorological, 
hydrological, and agricultural droughts [33]. Considering the 
minimum value of the SPI as the lower boundary and the maximum 
as the upper boundary of the uncertainty range, the uncertainty 
in the GCM projections was drawn for the period between 2041 
and 2100 for SSP scenarios [34]. As a result, the SPI is calculated 
from the one-month rainfall data by first fitting the gamma 
probability distribution function and then transforming it into a 
normal distribution [31,35]. The alpha and beta parameters of the 
gamma probability density function are estimated for each station 
for different periods, including 1, 3, 6, 12, 24, and 48 months [36]. 
The gamma distribution is defined by its frequency or probability 
density function:

where; α > 0 is a shape parameter, β > 0 is a scale parameter, x is 
the rainfall amount and Γ (α) is the gamma function.

The parameters of the gamma probability density function may 
be estimated from the data sample via the maximum likelihood 
method for the station, for each time scale of interest, and for each 
month of the year.
Thus, we obtain:
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The resulting parameters are then used to find the cumulative 
probability of an observed precipitation event for the given 
month and time scale for the station in question. The cumulative 
probability is given by:
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2.5.3. Standard Precipitation Index (SPI) 

The SPI was used for this investigation, which converts the rainfall parameter to a single 

numerical value to define the drought conditions of the study area [31]. The SPI allows for the 

determination of the duration, severity, and frequency of drought [32]. Its main advantage is that 

it is calculated for several time scales and identifies various drought types, such as 

meteorological, hydrological, and agricultural droughts [33]. Considering the minimum value of 

the SPI as the lower boundary and the maximum as the upper boundary of the uncertainty range, 

the uncertainty in the GCM projections was drawn for the period between 2041 and 2100 for 

SSP scenarios [34]. As a result, the SPI is calculated from the one-month rainfall data by first 

fitting the gamma probability distribution function and then transforming it into a normal 

distribution [31,35]. The alpha and beta parameters of the gamma probability density function 

are estimated for each station for different periods, including 1, 3, 6, 12, 24, and 48 months [36]. 

The gamma distribution is defined by its frequency or probability density function: 
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where, n = the number of precipitation observations 

The resulting parameters are then used to find the cumulative probability of an observed 

precipitation event for the given month and time scale for the station in question. The cumulative 

probability is given by: 
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distribution. These errors depend on the number of months with null precipitation (x = 0), and 

they are evident only for the 1-month precipitation. For longer time scales (e.g., 3 months, 6 

months, etc.), the probability of precipitation was zero. This study evaluates the SPI index over 

one and three months. The cumulative probability, h(x), after its computation, is transformed to 

the standard normal random variable z with a mean equal to zero and a variance of one, which is 

the value of the SPI. The standard precipitation indices (SPI) and their interpretations are shown 
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SPI Value Drought Category
-2.00 and less Extreme Drought
−1.50 to−1.99 Severe Drought
−1.00 to−1.49 Moderate Drought
0.99 to−0.99 Normal
1.00 to 1.49 Moderate Wet
1.50 to 1.99 Severe Wet
2.00 and more Extreme Wet

Source: [30]
Table 3: SPI Values with Associated Drought Categories

Definitions of Drought Duration, Severity, Intensity and 
Frequency
To analyze the impact of drought events in the study area, the 
drought components of drought duration (DD), drought severity 
(DS), and drought frequency (DF) to detect the possible effects of 
drought events [37]. The study defines the DS and DF are defined 
as follows.

Drought durations (DD): The number of months between the start 
of a drought (included) and the end of a drought (not included) that 
determines the drought duration.

Drought severity (DS): The drought severity is the cumulative sum 
of the index values based on the duration extent.

Drought intensity (DS): The intensity of a drought event is the 
severity divided by the duration of the event, as expressed in Eq. 
14(b). Drought events that have a shorter duration and greater 
severity have greater intensities.

Drought frequency (DF): The occurrence frequency is defined in 
Eq. 14(c) as follows:

where ns is the number of drought events (SPI<−1.0), Ns is the 
total number of months for the study period, and s is a grid cell.

2.6. Model Performance Assessment Metrics
Differences in model data were quantified via three statistical 
metrics namely the correlation coefficient, mean error (ME), and 
relative bias (BIAS). The ME is a standard statistical metric used 
to measure model performance in fields such as meteorology 
and climate studies [38] the ME results are the average distance 
between simulated and observed values, and the metric does not 
indicate bias [39]. For ME, the lower the value is the better the fit, 
and 0 is the ideal result; ME ranges from -∞ to ∞. Relative bias 

(BIAS) measures systematic errors in calculating the differences 
between rainfall datasets [40].
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corrected. This is mainly because the climate model outputs are biased due to imperfect 

conceptualization and parameterization, insufficient length of data records, quality of reference 

datasets and insufficient spatial resolution [41,42]. Therefore, this study uses the Climate Data 

Operator (CDO) to downscale the GCM climate models for the study periods from 2041–2070 

and 2071–2100. GCM model output data often have a large bias, which requires correlation to 

monitor data bias reduction and increase data quality and reliability. It also serves as a channel to 

correlate GCM outputs to the climate model [4344,]. Before climate data are used for climate 

change impact studies and climate change assessment simulations, biases often need to be 

corrected [45]. Several bias correlation methods that outperform different methods under 

different conditions are available in the literature. In this study, I used the power transformation 

(PT) bias correction method to correct the statistical distribution function of the value simulated 

by the GCM relative to the distribution function of the observed data for rainfall. The power 

transformation (PT) method uses an exponential form to further adjust the standard deviation of 

the rainfall series. In this study, each monthly rainfall amount Praw is transformed to a corrected 

rainfall amount Pcor via equation (17). 
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simulated time series, i.e., those considered in the bias correction process [46]. 
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observed rainfall. The parameter α was then determined such that 
the mean of the corrected monthly rainfall value corresponded 
with the observed mean monthly rainfall. These data were added 
to the CMhyd platform to perform bias correction. The CMhyd 
selects the closest observed station to the climate model grid cells 
to compare the observed and simulated time series, i.e., those 
considered in the bias correction process [46].

3. Results and Discussion
3.1. Variability and Trends of Rainfall
3.1.1. Variability of Rainfall
The mean annual and seasonal rainfall variabilities in the Wolaita 

Zone are presented in Table 4. The research area experiences 
bimodal rainfall and receives high amounts of rainfall during the 
Kiremt season, which is the main rainy season. The Belg rainfall 
contributes a small amount of the total rainfall. The mean annual 
rainfall in the study area was 1149.61 mm. However, the seasonal 
rainfall variability was highest from February to May in the Belg 
season and lowest in the Kiremt season from June to August in 
the Wolaita Zone. The Belg rainfall is much more variable than 
the summer (Kiremt) rainfall distribution variation. The Kiremt 
rainfall distribution is more variable than the annual rainfall 
distribution variation across the study area.

Annual Belg Kiremt
Stations Mean CV (%) Mean CV (%) Mean CV (%)
Abaya 766.53 22.77 306.41 32.88 309.76 37.08
Areka 1377.02 27.12 475.07 36.55 700.44 32.66
Bedessa 1049.58 24.42 357.43 41.73 545.67 30.20
Bele 1208.08 53.88 352.24 34.15 586.35 40.49
Bilatetena 921.29 30.65 351.31 35.98 368.42 41.18
Bilate 817.51 23.84 315.66 38.79 315.99 29.80
Boditischool 1224.33 15.82 470.44 30.21 558.05 22.68
Bombe 1374.79 29.65 497.39 33.64 687.03 40.87
Danna1 1200.13 25.12 430.18 37.09 560.59 35.87
Gesuba 1007.49 27.11 398.10 31.34 429.67 36.62
Halale 1230.21 27.48 465.17 30.62 551.26 41.88
Humbotebela 1110.59 24.22 375.37 28.68 530.64 40.70
Mayokote 1500.33 28.06 558.25 48.81 687.26 45.64
Shanto 1124.24 16.59 426.53 33.26 531.82 23.10
Wolaita sodo 1332.08 16.92 472.77 28.51 635.91 25.13

Table 4: Mean (Annual and Seasonal) Rainfall and Coefficient of Variation From 1990–2020

3.1.2. Standardized Rainfall Anomaly Index
The standard rainfall anomalies were computed, and the results 
indicate that there were positive and negative anomalies, which 
implies the presence of annual and seasonal rainfall variability 
across the observed time series in the study area. For the annual 
standardized rainfall, the highest positive anomaly (+2.13) was 
observed in 2020, and the lowest negative anomaly (−1.61) was 
observed in 1990. The annual negative anomaly exceeded the 

positive anomaly in all years; there was also high variability; a 
dry year was followed by another two or three dry years and then 
replaced by wet years across the study area. Because of the rainfall 
variability over the study area, the highest values represent the 
highest rainfall recorded, and the lowest values also represent the 
lowest rainfall recorded. Generally, a positive value in the figure 
below indicates wet year anomalies, and a negative value indicates 
dry anomalies of the rainfall variability in the study area.
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3.1.3. Trends of Rainfall
The Kiremt and annual rainfall data indicate a declining trend 
at three and two stations, respectively, even though the Kiremt 
rainfall data are not statistically significant except at the Halale 
and Shanto stations, where there is a statistically significant (P 
< 0.05) reduction in the Kiremt rainfall trend, as shown in Table 

5. However, Bilatetena, Halale, and Shanto registered significant 
increases in the annual rainfall of the Wolaita Zone. The Belg 
season rainfall shows no statistically significant increasing trend 
(P < 0.05) at any of the 15 stations. Generally, the direction and 
magnitude of the seasonal rainfall trend were not uniform across 
the different stations.

Annual Belg-season Kiremt-season
Stations Z Q P_value Z Q P_value Z Q P_value
Abaya 0.19 8.24 0.14 -0.02 -0.38 0.92 0.20 5.47 0.11
Areka 0.03 0.40 0.80 -0.13 -2.67 0.32 0.18 3.56 0.16
Bedessa -0.05 -2.59 0.74 -0.07 -2.06 0.61 -0.05 -1.50 0.69
Bele -0.02 -1.66 0.87 -0.07 -1.09 0.59 0.08 2.26 0.54
Bilatetena 0.35 11.20 0.00 0.07 1.47 0.57 0.23 5.84 0.08
Bilate 0.14 6.47 0.30 0.15 2.32 0.25 0.14 3.17 0.27
Bodity -0.23 -12.56 0.07 -0.23 -5.88 0.07 0.25 9.91 0.05
Bombe 0.23 15.51 0.07 0.03 0.50 0.80 -0.06 9.91 0.66
Danna1 -0.02 -0.63 0.87 -0.08 -1.11 0.57 0.08 2.85 0.54
Gesuba 0.16 5.43 0.21 0.02 0.55 0.87 0.23 3.19 0.07
Halale 0.28 8.76 0.03 0.06 1.48 0.64 0.26 4.20 0.04
Humbotebela 0.20 6.95 0.13 -0.18 -2.82 0.17 0.18 6.59 0.15
Mayokote 0.02 0.50 0.91 -0.13 -3.25 0.31 0.10 2.57 0.46
Shanto 0.39 21.25 0.00 0.01 0.44 0.97 0.47 16.95 0.00
Wolaita sodo 0.14 4.54 0.26 0.06 1.14 0.67 0.10 2.02 0.46

Bold values indicate a significance level of P < 0.05.
Table 5: Mann–Kendall (Z) and Sen’s slope (Q) Trend Test (mm/year) Results for the Annual, Belg, and Kiremt Rainfall at the 
Selected Stations in the Wolaita Zone, Southern Ethiopia

3.1.4. Monthly Rainfall Variability
The mean monthly rainfall distribution in the Wolaita Zone 
varied from 25.22 to 150.11 mm from 1990–2020 (Figure 3). 
Comparatively, the monthly rainfall was low in December, January, 
and February. Moreover, relatively intensive rainfall was recorded 
as 190.65 mm in May and 206.68 mm in August. The monthly 
rainfall peaks in April (188.68 mm), May (190.65 mm), July 

(206.45 mm) and August (206.68 mm). The minimum monthly 
rainfall was recorded in December (14.14 mm) and January (11.39 
mm). Generally, the maximum value represents the sum of the 
highest rainfall recorded per month, the minimum value represents 
the sum of the minimum or lowest rainfall recorded per month, and 
the mean values represent the average of the highest and the lowest 
rainfall recorded per month over the study area.



Env Sci Climate Res, 2024 Volume 2 | Issue 1 | 9

19 
 

Table 5: Mann–Kendall (Z) and Sen’s slope (Q) Trend Test (mm/year) Results for the Annual, 

Belg, and Kiremt Rainfall at the Selected Stations in the Wolaita Zone, Southern Ethiopia 

 

3.1.4. Monthly Rainfall Variability 

The mean monthly rainfall distribution in the Wolaita Zone varied from 25.22 to 150.11 mm 

from 1990–2020 (Figure 3). Comparatively, the monthly rainfall was low in December, January, 

and February. Moreover, relatively intensive rainfall was recorded as 190.65 mm in May and 

206.68 mm in August. The monthly rainfall peaks in April (188.68 mm), May (190.65 mm), July 

(206.45 mm) and August (206.68 mm). The minimum monthly rainfall was recorded in 

December (14.14 mm) and January (11.39 mm). Generally, the maximum value represents the 

sum of the highest rainfall recorded per month, the minimum value represents the sum of the 

minimum or lowest rainfall recorded per month, and the mean values represent the average of the 

highest and the lowest rainfall recorded per month over the study area. 

 
Figure 3: Maximum, Minimum, and Mean Monthly Rainfall Distributions 

 

3.1.5. Annual and Seasonal Rainfall Trends  

Figure 4 shows the annual and seasonal rainfall over the Wolaita Zone. From 1990–2020, the 

annual rainfall ranged from 910.3 mm to 1465.9 mm. The highest annual rainfall, 1465.9 mm, 

was recorded in 2020. The minimum annual rainfall, 910.3 mm, was recorded in 1990. In the 

Belg season, the highest rainfall, 694.5 mm, was recorded in 2018. The minimum value which 

was 309.3 mm, recorded in the 2019. In the Kiremt season, the highest rainfall, 752.8 mm 

recorded in 2019. The minimum value was 379.5 mm, recorded in 1990. The variability in the 

0
50

100
150
200
250

R
ai

nf
al

l i
n 

(m
m

) 

Months 

Max Min Mean

Figure 3: Maximum, Minimum, and Mean Monthly Rainfall Distributions

3.1.5. Annual and Seasonal Rainfall Trends	
Figure 4 shows the annual and seasonal rainfall over the Wolaita 
Zone. From 1990–2020, the annual rainfall ranged from 910.3 
mm to 1465.9 mm. The highest annual rainfall, 1465.9 mm, was 
recorded in 2020. The minimum annual rainfall, 910.3 mm, was 
recorded in 1990. In the Belg season, the highest rainfall, 694.5 
mm, was recorded in 2018. The minimum value which was 309.3 
mm, recorded in the 2019. In the Kiremt season, the highest rainfall, 

752.8 mm recorded in 2019. The minimum value was 379.5 mm, 
recorded in 1990. The variability in the annual and seasonal rainfall 
represented similar increases in amount and distribution, except 
for a few years when an extremely high rainfall distribution was 
recorded over the study area. Generally, when there is variability 
in the rainfall distribution across the research area, some years 
usually have the highest and some years have the lowest rainfall 
distributions recorded over the study area.
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Figure 4: Annual and Seasonal Rainfall Distribution Variation From 1990–2020
3.1.6. Spatial Distribution of Mean Seasonal and Mean Annual 
Rainfall
Figure 5 shows the spatial distribution of the seasonal and annual 
rainfall in the Wolaita Zone. In the Belg season, the southeastern 
parts of the Wolaita Zone are dominated by decreasing rainfall. 
However, significant decreasing and increasing rainfall trends 
occurred in the southwestern, western, and northeastern parts 
of the Wolaita Zone. The remaining part of the Wolaita Zone is 
dominated by an increasing rainfall distribution. The spatial 
distribution of Belg rainfall shows that the rainfall of the eastern, 
southern, and southeastern parts of the Wolaita Zone is less than 
the average rainfall value, whereas the northern, western, central, 
and southwestern parts of the Wolaita Zone receive more rainfall 
than the average.

The rainfall in the Kiremt season represents dominance-increasing 
distribution in most parts of the Wolaita Zone. In general, some 
parts of the southern, southwestern, southeastern, central, and 
northeastern parts of the Wolaita Zone represent significantly 
decreasing rainfall distributions, whereas the northern, 
northwestern, and central parts of the Wolaita Zone represent 
significantly increasing rainfall distributions. 

The spatial distribution pattern of annual rainfall reflects the 
combined effect of seasonal rainfall. The rainfall distribution 
decreases in the southern, southwestern, southeastern, and eastern 
parts of the Wolaita Zone. The remaining parts of the Wolaita Zone 
show increasing rainfall distributions. The rainfall distribution 
map of the Wolaita Zone revealed that the annual rainfall value 
ranged from 910.3 mm to 1465.9 mm.
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3.2. Bias Correction of the CMIP6 Model Simulations
The model's capacity for ensemble mean values and observed 
values is used to determine the accuracy of future projected 
changes over the study area [47,48]. After bias correction, the three 
selected models show the best performance. These selected models 
are the Beijing Climate Center (BCC) and China Meteorological 
Administration (CMA), China (BCC-CSM2-MR) Model; 
Geophysical Fluid Dynamics Laboratory, USA (GFDL-ESM4) 
Model, and Meteorological Research Institute (MRI), Japan (MRI-
ESM2-0) Model. According to Ayugi et al., (2022) in this study 
the best-performing selected GCM models are based on previous 

studies [37]. The present results agree with existing findings and 
support corrections for GCM biases before employing data for 
impact research [47,49,50].

The ensemble means were combined with multiple other models 
in the study period. Compared with the other individual GCMs, 
the ensemble means of the GCMs performed better in terms of the 
correlation metric and had a greater correlation with the observed 
rainfall [51]. As a result, understanding the contributions of GCMs 
uncertainty is critical for analyzing drought in this study area.

GCM models CORR ME (mm) BIAS (%)
BCC-CSM2-MR 0.7 7.4 1.1
GFDL-ESM4 0.7 3.4 1.0
MRI-ESM2-0 0.6 2.1 1.0
Ensemble 0.8 2.0 1.0

Table 6: GCM Model Performance Assessment and Statistical Metric Criteria

3.2.1. Simulated CMIP6 Models and Observed Rainfall
The GCMs model rainfall was overestimated and underestimated 
compared with the ensemble mean and observed rainfall in 
the study area. The ensemble mean and observed rainfall data 
compared with other individual GCM model rainfall data outputs 
are illustrated in Figure 8. The BCC-CSM2-MR and GFDL-ESM4 

models overestimated the mean and observed rainfall compared 
with the ensemble model. Compared with ensemble model mean 
and observed rainfall the MRI-ESM2-0 model is underestimated. 
The results indicate that the simulated ensemble mean rainfall data 
are close to the observed rainfall data.
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Figure 6: Observed Rainfall and GCM Simulated Baseline Rainfall From 1985–2014

3.2.2. Historical Meteorological Drought Events
To assess the ability of the CMIP6 model to predict meteorological 
drought effects across the Wolaita Zone. The SPI was first 
calculated via observed and bias-corrected GCM model rainfall and 
then calculated after drought events. The observed and ensemble 
means of the SPI (30 and 90) days were analyzed to show that 
meteorological drought events were recorded from 1985–2014. 
The study area drought index indicated that the multimodel 
ensemble means frequent drought and normal conditions or 
drought at different time scales (30 and 90 days) across the study 
area. 

Compared with each other, multimodel ensemble means and 

observation periods have effects on the meteorological drought, 
and the drought pattern and frequencies are similar at both time 
periods. The SPI is the drought index, which indicates drought 
conditions at different severity levels that range from no drought 
to extreme drought conditions. In the multimodel ensemble 
mean, moderate drought was more frequent than it was during 
the multimodel observation period. Extreme droughts in 1987 
and 2005 (SPI-30 and SPI-90) occurred at the left panels. Severe 
droughts occurred on both the right and left panels of the Wolaita 
Zone in 1986, 1987, 1990, 2004, 2008, and 2012 (SPI-30 and SPI-
90). Moderate droughts occurred during the both right and left 
panels in 1989, 1994, and 2008 (SPI-30 and SPI-90), as shown in 
Fig. 7 (left panels). 
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Figure 7: Observed (left panel) and Multimodel Ensemble Mean (Right Panel) Meteorological 

Drought From 1985–2014 
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3.2.3. Historical Trends in Meteorological Drought Events
Initially, the MK test is performed to check the significance of a 
trend. The bold values in the table indicate significant values. The 
Mann–Kendall trend test was conducted to determine whether 
the trend increased or decreased across the different time series 
in the study area. The results of the Mann–Kendall trend test for 

the observed and ensemble mean periods indicate an increasing 
trend or upward trends at the SPI-30 and SPI-90 days at the 95% 
confidence level. The results indicate that the area in the models' 
ensemble mean trends is insignificant for the SPI-30 and SPI-90 
days, but the trends are significant for the SPI-30 and SPI-90 days 
at the observed times, as shown in Table 7. 
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Days Observed Ensemble Mean
Tau Sen's slope P–value Tau Sen's slope P–value

30 0.119 0.002 0.001 0.058 0.001 0.101
90 0.172 0.003 0.000 0.083 0.001 0.019

Bold values indicate statistically significant trends.
Table 7: Mann–Kendal (Tau) Statistics and Sen’s Slope Trend Test Results for the Observed and Ensemble Mean Periods of 
Meteorological Drought with a Significance Level of P < 0.05

3.2.4. Future Projected Changes in Meteorological Drought 
Events
Figure 8 (left and right panels) depicts the multimodel ensemble 
mean increases in drought duration in the middle future (2041–
2070) and far future (2071–2100) for various emission scenarios 
based on the baseline period from 1985–2014. The projected 
changes in drought frequency are greater in the far future (2071–
2100) under the SSP2–4.5 and SSP5–8.5 scenarios than in the 
middle future (2041–2070) under the SSP2–4.5 and SSP5–8.5 
scenarios of the projection of future changes in drought intensity 
in the Wolaita Zone. 

Projected future meteorological droughts will increase in the study 
areas from 2041–2070 under the SSP2–4.5 scenario but decrease 
in intensity in the study areas from 2071–2100 under the SSP5–
8.5 scenario. The drought intensity is projected to follow a diverse 
pattern of drought changes under different emission scenarios. 
The analysis of the SPI with varying time scales was derived from 
three bias-corrected GCM models over the Wolaita Zone. For SPI-
30 and SPI-90 days, extreme droughts are expected in 2044, 2046, 
and 2063 under the SSP2–4.5 and SSP5–8.5 scenarios in the mid-

future. Severe droughts are expected in 2044, 2046, 2052, 2056, 
2062, 2068, and 2070 under the SSP2–4.5 and SSP5–8.5 scenarios 
in the mid-future, and moderate droughts are expected in 2041, 
2043, 2058, 2066, and 2068 under the SSP2–4.5 and SSP5–8.5 
scenarios relative to the baseline period of the study area. At the 
(SPI-30 and SPI-90) days, extreme droughts will be expected in 
the years 2073, 2075, and 2086 under the SSP2–4.5 and SSP5–
8.5 scenarios in the far-future. Severe droughts are expected in 
2073, 2076, 2079, 2083, 2093, and 2100, and moderate droughts 
are expected in 2071, 2077, 2079, 2083, and 2097 under the 
SSP2–4.5 and SSP5–8.5 scenarios in the far-future relative to the 
baseline period of the study area. The results of the study area will 
experience a similar number of frequent droughts in the mid-future 
(2041–2070) under SSP2–4.5 and SSP5–8.5 compared with the far-
future (2071–2100) under the SSP2–4.5 and SSP5–8.5 scenarios. 
Meteorological droughts in the far-future under the two scenarios 
are more frequent and intense than that in the mid-future under 
the two scenarios. In general, the meteorological drought severity 
and frequency in the middle and far-future under the SSP2–4.5 
and SSP5–8.5 scenarios from 2041–2100 are more frequent and 
intense than those in the base period from 1985–2014.
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Figure 8: Projected Changes in the Drought (Top Right and Left Panels) in the Near Future 

(2041–2070) Under SSP2–4.5 and SSP5–8.5 Scenarios and (Bottom right and left panels) in the 
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3.2.5. Future Trend Changes in Drought 

Initially, the MK test is performed to check the significance of a trend. The bold values in the 

table indicate significant values. A statistical test was conducted to check whether a trend existed 

in the SPI at different time series in the study area via the Mann–Kendall. The Mann–Kendall 

trend test in the mid-future (2041–2070) under the SSP2–4.5 and SSP5–8.5 scenarios revealed 

increasing trends in the SPI values on SPI-30 and SPI-90 days at the 95% confidence level. A 

negative trend was observed in the far-future (2071–2100) under the SSP2–4.5 and SSP5–8.5 

scenarios; however, the trend was statistically insignificant in the middle and far-future at all SPI 

time scales except in the far-future (2071–2100) under the SSP2–4.5 scenarios at the (SPI-90) 

days at the 95% confidence level. The results in the Table 8 blow indicate that the areas in the 

middle and far-future trends are insignificant under both the SSP2–4.5 and SSP5–8.5 scenarios. 

In general, during the historical period, a positive trend was observed on the SPI-30 and SPI-90 

Figure 8: Projected Changes in the Drought (Top Right and Left Panels) in the Near Future (2041–2070) Under SSP2–4.5 and SSP5–8.5 
Scenarios and (Bottom right and left panels) in the Far Future (2071–2100) Under SSP2–4.5 and SSP5–8.5 Scenarios



Env Sci Climate Res, 2024 Volume 2 | Issue 1 | 13

3.2.5. Future Trend Changes in Drought
Initially, the MK test is performed to check the significance of a 
trend. The bold values in the table indicate significant values. A 
statistical test was conducted to check whether a trend existed in the 
SPI at different time series in the study area via the Mann–Kendall. 
The Mann–Kendall trend test in the mid-future (2041–2070) under 
the SSP2–4.5 and SSP5–8.5 scenarios revealed increasing trends 
in the SPI values on SPI-30 and SPI-90 days at the 95% confidence 
level. A negative trend was observed in the far-future (2071–2100) 
under the SSP2–4.5 and SSP5–8.5 scenarios; however, the trend 
was statistically insignificant in the middle and far-future at all SPI 
time scales except in the far-future (2071–2100) under the SSP2–

4.5 scenarios at the (SPI-90) days at the 95% confidence level. The 
results in the Table 8 blow indicate that the areas in the middle 
and far-future trends are insignificant under both the SSP2–4.5 
and SSP5–8.5 scenarios. In general, during the historical period, 
a positive trend was observed on the SPI-30 and SPI-90 days 
compared with the future projected periods under the SSP2–4.5 
and SSP5–8.5 scenarios. The mid-future trend will show a positive 
trend under the SSP2–4.5 and SSP5–8.5 scenarios on SPI-30 and 
SPI-90 days, but there will be a negative trend in the far-future 
under the SSP2–4.5 and SSP5–8.5 scenarios on SPI-30 and SPI-
90 days. A summary of the MK test results in the middle and far 
future periods is presented in Table 8.

Day SSP2–4.5
(2041–2070)

SSP2–4.5
(2071–2100)

SSP5–8.5
(2041–2070)

SSP5–8.5
(2071–2100)

Tau Sen's slope P–value Tau Sen's slope P–value Tau Sen's slope P–value Tau Sen's slope P–value
30 0.021 0.000 0.528 -0.094 -0.001 0.008 0.006 0.00 0.874 -0.011 0.000 0.760
90 0.010 0.000 0.865 -0.108 -0.002 0.002 0.040 0.001 0.257 -0.053 -0.001 0.133

Bold values indicate statistically significant trends, whereas unbold values indicate statistically insignificant trends.
Table 8: Mann–Kendal (Tau) Statistics and Sen’s Slope Trend Test Results for Two Different Future Scenarios of Drought with 
A Significance Level of P < 0.05

4. Conclusions 
This research aims to determine the variability in rainfall at 
the observed time from 1990–2020 over the Wolaita Zone. 
Additionally, the duration, frequency, and severity of the (past and 
future projected) meteorological drought with a base period from 
1985–2014 and a future projection from 2041–2100 were used for 
this study. The spring (belg) rainfall is much more variable than 
the summer (Kiremt) and annual rainfall. Spatial and temporal 
variations in rainfall have been determined at mean monthly, 
seasonal, and annual time scales. The modified Mann–Kendall test 
was used to determine the upward or downward trend, and Sen’s 
slope estimator was used to determine the magnitude of increase 
or decrease. The Kiremt rainfall data indicate a decreasing trend 
at two and three stations, although the Kiremt rainfall data are 
insignificant except at the Halale and Shanto stations, which are 
statistically significant at P < 0.05. The historical period, shows a 
positive or upward trend at the SPI-30 and SPI-90 days compared 
with the mid-future period, which show a positive or upward trend 
under the SSP2–4.5 and SSP5–8.5 scenarios at the SPI-30 and SPI-
90 days but the far-future period, shows a negative or downward 
trend under the SSP2–4.5 and SSP5–8.5 scenarios at the SPI-30 
and SPI-90 days, which are statistically significant at P < 0.05.

Additionally, this study employed bias-corrected CMIP6 (GCM) 
data to assess the historical and future changes in meteorological 
drought over the Wolaita Zone. Two scenarios (SSP2–4.5 and 
SSP5–8.5) were used to determine future projected changes in 
meteorological drought at two time scales during the mid-future 
(2041–2070) and far-future (2071–2100) relative to a baseline 
period (1985–2014). In the far-future (2070–2100), under the 
SSP2–4.5 and SSP5–8.5 scenarios, meteorological drought will 
be more frequent and intense than in the mid-future (2041–2070) 
under the SSP2–4.5 and SSP5–8.5 scenarios. Future projected 

meteorological drought in the study area will be more affected 
by extreme, severe, and moderate drought during the middle and 
far-future under the SSP2–4.5 and SSP5–8.5 scenarios, which 
is more frequent and intense than the historical period over the 
study area. However, current SPI prescriptions cannot be used to 
accurately determine the exact times of drought periods or monitor 
meteorological droughts below the one-month scale.
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