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Understanding and optimizing the behavior of artificial magnetic conductors require modeling them through analytical 
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is presented, exhibiting an in-phase reflection of incident waves at 1.21 GHz, 1.61 GHz, and 2.46 GHz. The design is based 
on a triple square loop structure, where each frequency is controlled by one square loop. Additionally, an analytical model 
is proposed to predict the operating frequencies of the artificial magnetic conductor.
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1. Introduction 
Artificial magnetic conductor is a type of metamaterial that 
exhibits properties similar to a perfect magnetic conductor [1]. 
Due to its ability to reflect incident waves with zero reflection 
phase, it has been implemented in many antenna designs as a 
back reflector to enhance their gain. The complexity of AMC 
structures makes it challenging to model them through analytical 
methods, and in most previous publications, full-wave simulation 
was the main analytical approach. Nevertheless, analytical 
methods remain of great interest and need to be explored.

In this paper, a triple-band AMC based on a square loop 
structure is introduced, where each frequency can be controlled 
independently, facilitating its design. Moreover, an analytical 
model is proposed that predicts where the three null reflection 
phases occur. Section 2 will present the triple-band AMC design 
along with its analytical model. In Section 3, a comparison 
between simulation and modeled results will be shown and 
discussed. Finally, a conclusion will be drawn in Section 4.

2. The Triple-Band AMC
• Design
The triple-band AMC unit cell (shown in Figure 1) is based on 
[2], where the structure is composed of three square loops with 
dimensions d1 = 22.29mm, w1 = 0.305mm, d2 = 21.68mm, w2 = 
2.14mm, d3 = 15.64mm, w3 = 4.32mm, printed on a substrate 
with relative permittivity εr = 10.2 and dimensions p = 25mm, 
h = 5mm. The AMC operates at three frequencies, where each 
frequency is controlled by one square loop respectively.

To obtain the reflection phase diagram of the AMC shown in 
Figure 2a, a unit cell model in CST Microwave Studio software 
using the frequency domain solver with periodic boundary

Figure 1: The Proposed Triple-Band AMC

Conditions was simulated. A perfect magnetic and electric 
conducting wall was imposed on ±y and ±x directions, 
respectively. The waveguide port was placed in the far-field 
region and was used to excite the signal along +z while perfect 
electric (Et = 0) was applied due to a full ground along –z.

Figure 2: Simulation Overview: Setup and Results

These boundary conditions were used to imitate the periodic 
nature of the structure (Figure 2b). The simulation results show 
resonance at 1.21 GHz, 1.61 GHz, and 2.46 GHz, at which the 
AMC can reflect incident waves with a zero-reflection phase, 
having the same characteristics as PMC.
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Fig. 2: Simulation Overview: Setup and Results

These boundary conditions were used to imitate the periodic
nature of the structure (Figure 2b). The simulation results show
resonance at 1.21 GHz, 1.61 GHz, and 2.46 GHz, at which the
AMC can reflect incident waves with a zero-reflection phase,
having the same characteristics as PMC.

Analytical Model

To model the proposed triple-band AMC analytically, a
transmission line model is established Figure 3. The AMC
is divided into a frequency selective surface (FSS) and a slab
treated as a spacing medium between the FSS and the ground
plane [3]. The surface impedance Zs is then calculated from
the parallel connection of the FSS grid impedance Zg and the
slab impedance Zd:

Zs =
ZgZd

Zg + Zd
(1)

The reflection coefficient is then computed as:

ΓTE =
Zs cos θ − η0
Zs cos θ + η0

, ΓTM =
Zs − η0 cos θ

Zs + η0 cos θ
(2)
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2.1 Analytical Model
To model the proposed triple-band AMC analytically, a 
transmission line model is established Figure 3. The AMC 
is divided into a frequency selective surface (FSS) and a slab 
treated as a spacing medium between the FSS and the ground 
plane [3]. The surface impedance Zs is then calculated from the 
parallel connection of the FSS grid impedance Zg and the slab 
impedance Zd:

The reflection coefficient is then computed as:

Figure 3: Equivalent Transmission Line Model for Plane 
Wave Incidences [3].

Where η0 is the free space wave impedance and θ is the incident 
angle. The resonant frequency for the zero-degree reflection 
phase must satisfy:

Zd is simply the input impedance of a TEM line section of length 
h, and in most interesting cases kdh ≪ 1, both ZdTE and ZdTM are 
practically equal [4,5].

The grid impedance Zg of the FSS depends on the specific 
geometry used in the design. In our case, the triple-square loop is 
modeled using the equivalent circuit approach (shown in Figure 
4). For transverse electrical (TE) wave incidence, the vertical 
strips act as an L impedance, and the horizontal gratings as a C 
impedance [6,7].

Figure 4: Equivalent Circuit Model of the Triple Square 
Loop FSS

The basic equations for calculating the values of inductance and 
capacitance are found in Marcuvitz [8] and are given in general 
form by:

And G is the correction term:

The six circuit elements given in Figure 4: Lf1, Cf1, Lf2, Cf2, Lf3, 
Cf3, are calculated as follows:

The factor εeff present in Equation (6) was introduced by
Munk [9] with the value of εeff = 0.5(εr + 1).

It is important to note that the equations presented here have
certain conditions that need to be respected to obtain correct
results, such as s/p ≪ 1, p/λ ≪ 1, and p(1 + sin θ)/λ < 1.

3. Results and Discussion
By solving Equation (3) for the proposed dimensions, we 
obtain the three frequencies predicted by the analytical model: 
1.21 GHz, 1.61 GHz, 2.46 GHz, which are identical to the 
electromagnetic (EM) simulation.

To further investigate the analytical model and demonstrate 
how different parameters affect the resonance frequencies, a 
parametric study is conducted and shown in Figure 5.

The parametric study reveals that the three resonant frequencies, 
f1, f2, f3, of the artificial magnetic conductor (AMC) are highly 
dependent on the square sides d1, d2, d3 respectively, and on the 
substrate characteristics such as thickness h and permittivity εr. 
The results also demonstrate that varying one frequency does 
not significantly affect the other two frequencies, and sometimes 
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where η0 is the free space wave impedance and θ is the
incident angle. The resonant frequency for the zero-degree
reflection phase must satisfy:

Xg(ω0) +Xd(ω0) = 0 (3)

Xg(ω0) = Im(Zg), Xd(ω0) = Im(Zd)

Zd is simply the input impedance of a TEM line section of
length h, and in most interesting cases kdh ≪ 1, both ZdTE
and ZdTM are practically equal [4], [5]:

ZTE, TM
d ≈ jωµ0h (4)

The grid impedance Zg of the FSS depends on the specific
geometry used in the design. In our case, the triple-square
loop is modeled using the equivalent circuit approach (shown
in Figure 4). For transverse electrical (TE) wave incidence,
the vertical strips act as an L impedance, and the horizontal
gratings as a C impedance [6], [7].

Fig. 4: Equivalent circuit model of the triple square loop FSS

The basic equations for calculating the values of inductance
and capacitance are found in Marcuvitz [8] and are given in
general form by:

Inductance:
XL

Z0
= ωL =

d

p
cos θF (p, s, λ) (5)

Capacitance:
Bc

Y0
= ωC =

4d

p
sec θF (p, s, λ)εeff (6)

where: F (p, s, λ) =
p

λ

(
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πs

2p
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)
(7)

And G is the correction term:
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1

2

(
1− β2

)2 [(
1− β2

4

)
(A+ +A−) + 4β2A+A−

]
(
1− β2

4

)
+ β2

(
1 + β2

2 − β4

8

)
(A+ +A−) + 2β6A+A−

(8)

A± =
1√

1± 2p sin θ
λ −

(
p cos θ

λ

)2
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sinπω

2p
(9)

The six circuit elements given in Figure 4: Lf1, Cf1, Lf2,
Cf2, Lf3, Cf3, are calculated as follows:

Lf1 =
2 · (L1 ∥ L2) · d1

p
, Cf1 =

0.75 · C1 · d1 · εeff

p
(10)

Lf2 =
L3 · d2

p
, Cf2 =

(C1 in series with C2) · d2 · εeff

p
(11)

Lf3 =
1.455 · L4 · d3

p

Cf3 =
(C1 in series with C2 in series with C3) · d3 · εeff

p
(12)

Where:
L1 = F (p, w1, λ), C1 = 4F (p, 2g1, λ),

L2 = F (p, w2, λ), C2 = 4F (p, g2, λ),

L3 = F (p, 2w2, λ), C3 = 4F (p, g3, λ),

L4 = F (p, 2w3, λ)

(13)

The factor εeff present in Equation (6) was introduced by
Munk [9] with the value of εeff = 0.5(εr + 1).

It is important to note that the equations presented here have
certain conditions that need to be respected to obtain correct
results, such as s/p ≪ 1, p/λ ≪ 1, and p(1 + sin θ)/λ < 1.

III. RESULTS AND DISCUSSION

By solving Equation (3) for the proposed dimensions, we
obtain the three frequencies predicted by the analytical model:
1.21 GHz, 1.61 GHz, 2.46 GHz, which are identical to the
electromagnetic (EM) simulation.

To further investigate the analytical model and demonstrate
how different parameters affect the resonance frequencies, a
parametric study is conducted and shown in Figure 5.

The parametric study reveals that the three resonant fre-
quencies, f1, f2, f3, of the artificial magnetic conductor
(AMC) are highly dependent on the square sides d1, d2,
d3 respectively, and on the substrate characteristics such as
thickness h and permittivity εr. The results also demonstrate
that varying one frequency does not significantly affect the
other two frequencies, and sometimes they remain unchanged.
This independence allows tuning one frequency by altering
the dimensions of the corresponding square loop without
affecting the remaining frequencies, greatly facilitating the
design process.

Lastly, the analytical model successfully predicted the three
resonant frequencies for most cases. The root-mean-square
error (RMSE) has been calculated for the complete parametric

2
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study, where the frequencies predicted by the model were
evaluated against the electromagnetic (EM) simulation, and
the results are shown in Figure 6.

Fig. 6: RMSE evaluation for each parameter.

The figure shows that the analytical model has the least
accuracy when it comes to the thickness parameter. Moreover,
the third frequency has the highest error among all three
frequencies, so more work needs to be done to improve the
model.

IV. CONCLUSION

In this paper, a novel triple-band Artificial Magnetic Con-
ductor (AMC) unit cell has been proposed. It has been
demonstrated that the three operating frequencies (1.21 GHz,
1.61 GHz, 2.46 GHz) at which it reflects incident waves in-
phase can be set independently, significantly facilitating the
design process. Moreover, an analytical model of the tri-band
AMC is developed. This model can predict the frequencies at

which the AMC operates with an error estimation lower than
170 MHz compared to the full wave simulation.
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Figure 5: Results of the Parametric Study on the Triple-Band AMC

Study, where the frequencies predicted by the model were evaluated against the electromagnetic (EM) simulation, and the results 
are shown in Figure 6.

Figure 6: RMSE Evaluation for Each Parameter
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The figure shows that the analytical model has the least accuracy 
when it comes to the thickness parameter. Moreover, the third 
frequency has the highest error among all three frequencies, so 
more work needs to be done to improve the model.

4. Conclusion
In this paper, a novel triple-band Artificial Magnetic Conductor 
(AMC) unit cell has been proposed. It has been demonstrated 
that the three operating frequencies (1.21 GHz, 1.61 GHz, 
2.46 GHz) at which it reflects incident waves inphase can 
be set independently, significantly facilitating the design 
process. Moreover, an analytical model of the tri-band AMC is 
developed. This model can predict the frequencies at which the 
AMC operates with an error estimation lower than 170 MHz 
compared to the full wave simulation.
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