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Abstract
The influence of the secondary process of evaporation of the reaction product on the kinetics of interaction of gases (O2, Cl2, 
NH3, H2O and N2H4 vapors) with the surface of some metals (Cr, Pb, Si, Ge) and compounds (BN, SiO2, SiC) is discussed.  
Also is considered the case when the growth of the scale is preceded by the process of gas etching of the metal surface. A 
general equation is given that describes the scale growth-evaporation kinetic (sample mass change - time) curves during the 
interaction of gases with the surface of metals and compounds. Special cases of parabolic, cubic and fourth degree processes 
are discussed. The kinetics of nitridation of the surface of single-crystaline germanium by ammonia and hydrazine vapors was 
studied in detail. By evaporating the nitride formed on the germanium surface, a film of germanium oxyntride is deposited on 
a substrate located in the cold zone of the reactor.
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1. Introduction                           
This work is a continuation of, where the role of reduction of 
the reaction surface and evaporation of scale in the process of 
oxidation of chromium-containing alloys is considered [1]. Here 
we will consider in more detail the influence of the secondary 
process of evaporation (sublimation) on the formal kinetics (mass 
change - time) of the interaction of gases (O2, Cl2, NH3, H2O and 
N2H4 vapors) with some metals and compounds. We used data 
from various works collected in, the results of the indicated author, 
as well as your data [2].

The process of scale formation with its simultaneous evaporation 
significantly changes the kinetics of the process. When the overall 

kinetics is determined not by the rate of the chemical reaction 
itself, but by the diffusion of ions in the scale (volume diffusion), 
then the kinetics is parabolic and is called the Tedmon's process 
(although a similar case was discussed somewhat earlier [3-12]. In 
the case of short-circuit diffusion, cubic kinetics takes place, and 
in the case of local electric fields and volume charges, the kinetic 
law of the fourth degree is realized [13-17].

All of the above is clearly shown in the kinetic dependences of 
the mass gain, which are presented in the figure 1. Here M is total 
mass change per unit area at the time t and m is a specific mass 
gain of oxidized object due to reacted oxigen).
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Figure 1. Kinetic curves: (1) for reaction Cr+2HCl=CrCl2+H2 at 750oC [18] and (2) 

4Cr+3O2=2CrO3 at 1200oC [19]; 1',2' – dependences m – t  

 

    The slopes of the straight lines in Fig.1 corresponds to the rate of the mass decrease of the 
sample (vm) due to the metallic component of the reaction product (Here we consider the 
coordinate systems t - m and t - M; another coordinate system tW – W is considered in section 
1.2.) To determine of reaction order (n), we can use the formula [20]: 

                                                            n=��[(����)(������̅)/�����]
�� [(������̅)/����]

 ,                                               (1)     

where q=vm/vg, p=(vm+vg)/vg=q+1 (vm is the speed of the system mass reduction due to the metal 
component of the evaporating part of the scale, vg is the evaporation rate of reaction products by 
the gaseous component), kr is rectilinear constant (dm/dt at the origin of coordinate system) and 
k=vg/(kr-vg). The tangents of the curves in Fig. 1 virtually coincide with ordinate axis at the 
origin of the coordinates: k� → ∞ ⇒ k → 0. In this case formula (1) is simplified as follows:    

Figure 1: Kinetic Curves: (1) for Reaction Cr + 2HCl = CrCl2 + H2  at 750o  and (2) 4Cr + 3O2 = 2CrO3 at 1200oC [18-19]; 1',2' – 
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The slopes of the straight lines in Fig.1 corresponds to the rate of 
the mass decrease of the sample (vm) due to the metallic component 
of the reaction product (Here we consider the coordinate systems 
t - m and t - M; another coordinate system tW – W is considered 
in section 1.2.) To determine of reaction order (n), we can use the 
formula [20]:

                                                            

where q = vm/ vg, p = (vm+vg) / vg = q + 1 (vm is the speed of 
the system mass reduction due to the metal component of the 
evaporating part of the scale, vg is the evaporation rate of reaction 
products by the gaseous component), kr is rectilinear constant (dm/
dt at the origin of coordinate system) and k = vg / (kr - vg). The 
tangents of the curves in Fig. 1 virtually coincide with ordinate 
axis at the origin of the coordinates:                        In this case 
formula (1) is simplified as follows: 
  

According to formula (2) for [18] it turns out t n ≅ 2.02, and for 
[19] n ≅ 3.75, that are approaching to 2 [18-19]. Corresponding 
empirical expressions are: t ≅ -15.707ln(1-0.554m)-8.693m and 
t ≅ 28.885{[0.577 arctg ((1.424m) / (0.822m+2)] - [0.167ln((1 
- 0.822m)2 / (m2+0.822m+1))]} - 23.75m, where m is in mg/cm2 

and t is in hours. The curves constructed using these equations on 
the scale used in Fig.1 practically coincide with the experimental 
curves.

The rate of mass increase due to the reacted gas in the general case 
is:

 

where n=2, 3 or 4; kr ≡ dm/dt (at point t=0,m=0) is rectilinear 
constant; kn is the power-law constant. Its integral form is as 
follows: 

                                               

where k = vg / (kr - vg), and mmax = (kn / nkr k)1/(n-1) is the maximum 
mass gain of the system at the expense of active gas. Boundary 
condition for solving of Eq. (2) for different n is t = 0, m = 0.
The Tedmon-Wajsel equation (n = 2) in our notation will be:

  

       

For n=3 and 4 we will have:

respectively [20]. For the total mass change will be:

                                          M = m - vmt.                                     (8) 

Such containing maxima curves were obtained in a number of 
works, in works collected in, and others [2]. Here we will look at 
graphs in which this maximum is clearly expressed and from which 
reliable information can be obtained (some graphs, which are not 
considered here, give unrealistic values of kinetic parameters) [18-
28].

2. Experimental
In the experiments, we used plates of single-crystalline germanium 
of N-type conductivity and with concentration of charge carriers n 
= 2∙1020 m-3. They were successively degreased in boiling toluene, 
dried in the air, etched in a liquid etchant CP-4A (HF : HNO3 : 
CH3COOH = 1:15:1) for (4 - 5) min and, washed in running distilled 
water, followed by drying.Ammonia (freezing point -33.4°C) was 
dried by slowly passing it through a trap cooled with a mixture 
of liquid nitrogen and alcohol or ice with NaCl. The pressure of 
ammonia was PNH3 = 2.7∙103Pa, and pressure of hydrazine PN2H4 = 
2∙103Pa (saturated vapor pressure of N2H4 at room temperature). In 
the case of ammonia, water vapor was deliberately introduced into 
the reactor: P ≡ PH2O / PNH3 ≅ 2 and 5%. The nitridation temperature 
was (680-820)oC. The temperature of the electric heater was 
regulated using a high-precision regulator        (VRT)-3 with an 
accuracy of ±0.5oC. Kinetic measurements were carried out by 
continuously weighing the samples during the oxidation process. 
For this purpose, a homemade microbalance built into a vacuum 
unit was used (sensitivity ≅ 10-6g). Electromagnetic compensation 
for changes in the sample mass was carried out automatically.

3. Results and Discussion
3.1. Analysis of kinetic curves of mass change during the interaction 
of active gases with the surface of certain metals and compounds 
with simultaneous evaporation of the products of reaction

3.1.1. Kinetic Curves of the Total Mass Change, Having a 
Maximum
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3 we did not find such data, although cubic processes (with curves 
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the case of ammonia, water vapor was deliberately introduced into the reactor: P≡PH2O/PNH3≅2 
and 5%. The nitridation temperature was (680-820)oC. The temperature of the electric heater was 
regulated using a high-precision regulator ვრტ (VRT)-3  with an accuracy of ±0.5 oC. Kinetic 
measurements were carried out by continuously weighing the samples during the oxidation 
process. For this purpose, a homemade microbalance built into a vacuum unit was used 
(sensitivity≅10-6g). Electromagnetic compensation for changes in the sample mass was carried 
out automatically.                                                                                                                                  
3. Results and Discussion 

1. Analysis of  kinetic curves of  mass change during the interaction of active gases with the 
surface of certain metals and compounds with simultaneous evaporation of the products of 
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+ 2O2  =  SiO2  +  CO2, Si3N4 + 3O2  =  3SiO2 + 2N2 and 4BN + 3O2 
= 2B2O3 + 2N2 (for all reactions the kinetics are parabolic: kp - 
power-law constant at n=2). We have added data for reactions Cr 
+ 2HCl = CrCl2 + H2 and 3Ge + 4NH3 = Ge3N4 + 6H2 (also with 
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On these curves, the initial decrease of mass is due to the etching 
of the germanium surface by water vapor, which is contained in 
small quantities also in concentrated hydrazine (volatile GeO is 
formed here: GeO + H2O = GeO + H2) [29-30]. Also it is obvious 
that the formation of nitride on the germanium surface will begin 
before the zero point in the t - m coordinate system. But from the 
presented model it follows that the m - t dependences are convex 
in the positive direction. Time shifts betveen equations (3) and (9), 
(4) and (10), (5) and 11) are:
                                              

and
                     

       

respectively. Thus, the values of m0 can be estimated by solving 
of transcendental equations (9')-(11') by substituting the values of  
k, mmax, vg, and t0 determined from experimental data. The main 
difficulty is the accurate determination of t0 in the initial section of 
the curves - conducting an additional experiment of short duration 
would lead to even larger errors.

According to the experimental data presented in Fig.3, one can 
estimate t0 ≈ -3 min, -0.14 h,  and -0.33 h, respectively with Figs(a), 
(b) and (c). Then the values of m0 will be ≈ 0.3, 0.05 and 0.03 
mg/cm2. As you can see, m0 makes up (20-34)% of corresponding 
mmax(0.145, 1.42, 0.092 mg/cm2, respectively)and this cannot be 
ignored when conducting an experiment using the gravimetric  
method.

Footnote
When active gases interact with metal or alloy surface, processes 
often occur in which compounds of doping impurities are formed. 
These compounds can create diffusion barriers that prevent the 
main reaction from occurring. This is equivalent to a decrease in the 
area of the reaction surface. The corresponding kinetic equations 
have been derived for such processes. The situation is complicated 
by the simultaneous occurrence of the processes of evaporation of 
the main compound and a decrease in the reaction surface. In paper 
1, it is indicated that the solution of the corresponding differential 
equation cannot be expressed using elementary functions. It would 
be possible to compile tables similar to some known functions, but 
this would be of interest only for the problem under consideration. 
Moreover, at present it is possible to construct the necessary graphs 
using computer programs without considering mathematical 
formulas.

4. Conclusion
A general equation is given that describes the scale growth-
evaporation kinetic (sample mass change - time) curves during the 
interaction of gases with the surface of metals and compounds. 
Special cases of parabolic, cubic and fourth degree processes 
are discussed. Equations are also given for the case when scale 
formation is preceded by the process of gas etching of the metal 
surface. By evaporating the nitride formed on the germanium 
surface (along with the formation of volatile monoxide), a film 
of germanium oxyntride is deposited on a substrate located in the 
cold zone of the reactor. 
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Figure 3. Kinetic dependences of interaction of Ge: with  NH3+H2O at (a) P=2%, 820oC, (b) 
P=5%, 800oC, (P≡PH2O/PNH3); and  (c) with N2H4 (PN2H4=2∙103Pa) at 720oC – (1) dependences 

W – t, (2) – dependences m – t; 2' – calculated curves (in the scale of the figure (c), the 
experimental and calculated curves practically coincide with each other)   

    On these curves, the initial decrease of mass is due to the etching of the germanium surface by 
water vapor, which is contained in small quantities also in concentrated hydrazine (volatile GeO 
is formed here [29,30]: GeO+H2O=GeO+H2). Also it is obvious that the formation of nitride on 
the germanium surface will begin before the zero point in the t - m coordinate system. But from 
the presented model it follows that the m - t dependences are convex in the positive direction.             
Time shifts betveen equations (3) and (9), (4) and (10), (5) and 11) are: 
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