
 Volume 5 | Issue 2 | 1

Abstract
The struggle of medics, computational biologist and experts in bioinformatics to find a cure for cancer is one of the most
difficult problems in the world today. Given the large amounts of genomic data that is generated on a daily basis, it is becoming
increasing difficult to evaluate and investigate this data. This is due to the fact that cancer data is heterogeneous, consisting
of passenger genes which do not contribute to oncogenesis as well as driver genes which are directly led to oncogenesis.
Hence identifying these driver genes from passenger genes in these large chunks of data increasingly becomes a difficult task.
Considering the previous methods that have been developed to solve this problem, in this research we propose a bio-inspired
method called Artificial Rabbit’s Optimization (ARO) that integrates a mutation phase to be used to solve this problem of
identifying cancer driver genes. This method merges the survival behavior of rabbits through exploration and exploitation
to handle both global and local search respectively, with a gene interaction network to improve the accuracy of discovering
cancer driver genes. The model is applied to 4 different types of cancers: breast cancer, brain cancer, prostate cancer and
ovarian cancer. The results demonstrate that the proposed model can identify well-known labelled canonical driver genes while
prioritizing them over unknown cancer driver genes. GBM found 9 genes, BRCA found 25 genes, OV found 4 genes and PRAD
found 12 genes in the top 30 ranked genes as recognized by the NCG7.0.

Citation: Ngobesing, L. A., Atay, Y. (2024). An Improved Artificial Rabbit’s Optimization (ARO) Algorithm for Identifying
Mutated Driver Genes in Cancer. J Robot Auto Res, 5(2), 01-12.

An Improved Artificial Rabbit’s Optimization (ARO) Algorithm for Identifying
Mutated Driver Genes in Cancer

Research Article

Lionel Alangeh Ngobesing and Yılmaz Atay*

Department of Computer Engineering, Engineering Faculty,
Gazi University, Çankaya, Ankara, Türkiye

*Corresponding Author
Yılmaz Atay, Department of Computer Engineering, Engineering Faculty,
Gazi University, Çankaya, Ankara, Türkiye.

 Submitted: 2024, Jan 31; Accepted: 2024, Mar 26; Published: 2024, May 21

Journal of Robotics and Automation Research

ISSN: 2831-6789

ISSN: 2831-6789

J Robot Auto Res, 2024

Keywords: Cancer, Driver Genes, Artificial Rabbits Optimization, Metaheuristic, Biological Interactions

1. Introduction
The development of cancer is driven by the alteration or evolution
in a cell’s genetic make-up, otherwise known as mutation [1].
Oncogenesis occurs when tumor suppressor genes are set to
inactive while activating oncogenes and Copy Number Aberrations
(CNA) tend to be a great contributor to oncogenesis [2]. In the field
of medicine, there are two major challenges involved in the study
of oncogenesis. The first challenge is faced in the identification
of molecular subtypes whereby patients are stratified clinically,
with the aim of improving patient treatment as well as prognosis.
The second challenge is in the discovery of cancer driver genes
and mutations that are effective in cancer development. This is
a challenge as cancer driver genes are shuffled up in passenger
mutations that do not directly contribute to the development
of cancer and also happen to exist in much larger numbers [3].
According to a study by The Cancer Genome Atlas (TCGA), a

single cancer patient can have up to 100 different cancer mutations
in their DNA and amongst these, only up to 6 actually are revealed
to be cancer driver mutations while the rest are just passenger
mutations with no effect on oncogenesis [4].

Approaches to identify cancer driver genes have been developed
which are based on classification techniques, for example, Random
Forests [5]. Unfortunately, it is difficult for these techniques to
provide information about the interaction between the different
regulatory systems involved when working with different
datatypes. Computational and statistical approaches which are
based on identifying patterns in driver gene groups or communities
across a number of patients have also been developed for the
purpose of identifying driver genes from passenger genes. Some
of the methods discovered over the years include Dendrix, MEMo,
RME and QuaDMutEx [6-9]. Using interaction networks for the

 Volume 5 | Issue 2 | 2J Robot Auto Res, 2024

identification of cancer driver genes has been a promising area of
study for bio-scientists and computational biologists.

The reason for this success is that cancer mutations that carry out
a particular function exists in groups that share similar biological
properties [10]. For example, HotNet and HotNet2 were one of the
first network-based cancer driver gene identification approaches to
be developed whereby a propagation process is applied to diffuse
mutation frequency score across the biological interaction network
(such as a gene-gene interaction network) in order to discover
significantly mutated cancer subnetworks. Another network-based
method called NBS which is closely similar to HotNet, identifies
cancer mutation subnetworks found different patients separately
and then uses a consensus clustering framework to combine all
of these subnetworks [11-13]. MUFFIN unlike the other methods,
takes the impact of neighbors of mutated genes into consideration
in order to prioritize cancer driver genes in the functional biological
network [14].

Junrong Song et al. in 2018 proposed a method known as
DyTidriver which aims at discovering cancer driver mutations
through the use of variation frequency, tissue-specific expression
and gene dysregulated expression on a human functional
interaction network [15]. In this method, mutation genes were
first of all selected with respect to the effect they have on their
downstream genes. This is then followed by weighing the gene
interactive network via its gene-to-gene co-expression and its
inter-mutated gene relations. Mutated genes were then ranked as
a result of merging variation frequency and the weighted graph.
In 2019, Junrong Song, Wei Peng and Feng Wang discovered a
novel method for driver gene identification which was based on
random walk [16]. In this work, a bipartite graph, subcellular
localization and mutation frequency we all integrated to improve
driver mutation prediction performance.

The random walk algorithm was then implemented in order to
efficiently combine the above-mentioned biological features. In
this work, the following hypothesis was used: the assumption that
driver mutations are identified through their appearance frequency,
dysregulated genes and reliable relationships found between
dysregulated genes and mutated genes in a range of patients. The
results showed that driver mutations are the mutations which are
more liable to affect more dysregulated genes while having a higher
variation frequency in important clusters. Zexian Zeng et al. used
deep learning for driver gene discovery in 2021 [17].

In this study, a Convolutional Neural Network (CNN) model was
used for raw sequencing of tumor DNA. A deep learning model was
used in this study due to the fact that these models were discovered to
be more efficient in learning intricate patterns gotten from raw data
as compared to the conventional models. [18-20]. Here, the CNNs
shares parameters between regions in order to compute convolution
on these regions. Hence, permitting smooth model training on large
sequences of DNA. Applications of this model we also done in
DanQ, DeepBind, DeepCpG and DeepSEA [21-24].

It is fact that meta-heuristic algorithms have become quite popular
in solving optimization problems. The reason for this is that meta-
heuristic algorithms are less expensive and also more efficient
than the normally-used numerical methods. Meta-heuristic
algorithms have a random nature which gives them an added
advantage in successfully escaping local minima and exploring
the entire search space. In cancer driver gene identification, some
of the common meta-heuristic algorithms such as the Genetic
Algorithm and Differential Evolution have been implemented [25,
26]. Even though there are have been many proposed algorithms,
more algorithms are still being developed to solve optimization
problems. The reason to this is because there doesn’t exist an
algorithm that performs best in solving all optimization problems,
most algorithms are problem specific and developed to solve
specific optimization problems.

Therefore, in this study, recently proposed metaheuristic algorithm
known as the Artificial Rabbits Optimization algorithm (ARO) was
implemented for the discovery of cancer driver genes [27]. This
algorithm was further improved by implementing mutation such as
that implemented in the Genetic Algorithm at every iteration. The
mutation step was used to help generate more optimized results.
The optimization process proposed here is generally divided into
the exploration step and exploitation step. Exploration allows
the algorithm to search for a new solution in the solution space
found far away from the current solution while keeping the search
extensive and global. Exploitation on the other hand aims to
improve the current solution in its local neighborhood intensively.
ARO is based on the mathematical modelling of the survival
nature of rabbits. This nature is based on three search strategies
which will be implemented here. These are: random hiding, detour
foraging and energy shrinking strategy. In this research we first of
all generate a bipartite graph as that implemented by DriverNet
and BetweenNet [28, 29].

The ARO algorithm is then implemented on the generated bipartite
graph in order to identify cancer driver mutations in accordance
with the Network of Cancer Genes and Healthy Drivers (NCG)
[30]. The experiments were carried out on 4 benchmarking cancer
datasets from TCGA: Glioblastoma Multiforme (GBM) brain
cancer dataset, Prostate Adenocarcinoma (PRAD) prostate cancer
dataset, Breast Cancer (BRCA) dataset and Ovarian Cancer (OV)
dataset. Gene Ontology (GO) analysis was then performed on
the results in order to outline the biological significance of the
discovered genes in biological processes in humans. The rest of
this research is divided as follows. Section 2 discusses the materials
and methods used in this study. This includes the mathematical
model of the Artificial Rabbits Optimization algorithm, the
datasets used, and the proposed model. Section 3 discusses the
experimental analysis carried out and discusses the results. The
results are compared with other state-of-the-art methods for
detecting cancer driver genes developed in recent years. Section
4 is the discussion section which give a full summary of the entire
study and perspectives for future challenges. Finally, Section 5
summaries and concludes the study.

 Volume 5 | Issue 2 | 3J Robot Auto Res, 2024

2. Materials and Methods
2.1 Background
The use of an evolutionary method for cancer driver gene
identification is crucial as evolutionary methods are better in
maximizing the data search space while avoiding local maxima
and/or minima and attaining global maxima and/or minima
respectively. This is due to the fact that day by day the amount
of available cancer data increasingly becomes overwhelming.
Therefore, efficiently picking out this data is quite important. The
ARO algorithm enhances search by accurately alternating between
two important phases later on explained in this chapter. These
phases are: exploration (detour foraging) and exploitation (random
hiding).

2.2 Artificial Rabbits Optimization (ARO) algorithm General
Idea
ARO is a bio-inspired algorithm derived from the strategies
rabbits use in order to survive in nature. Rabbits are animals that
feed on greens such as leafy weeds, grass and forbs (herbivores),
and just like other evolutionary animals, they have to evolve with
survival [31]. The survival strategy of rabbits is to eat grass which
are far away from their own nests, hence preventing their nests
from being discovered by predators. Given their wide arial vision,
they are able to scan wide areas for food resources [32-33]. This
strategy is known as “detour foraging” and will be regarded as
the exploration mechanism in this study. Another strategy for
survival used by rabbits is the random hiding strategy. Rabbits
escape predators through the use of burrows. Rabbits dig many

burrows and randomly choose one during a chase and uses it for
shelter [34]. Because rabbits can easily stop and change direction
while being chased at high speeds, this technique has been a very
important strategy for survival. This random hiding technique
is known here as exploitation. Rabbits being on the lower level
of the food chain have a vast range of predators, meaning they
have to be able to run really fast to escape danger. This affects
the rabbit energy-wise, meaning that they have to change between
random hiding and detour foraging adaptatively with respect to
their energy levels.

2.3 Model and Algorithm
In ARO, detour foraging is implemented as the exploration strategy
while random hiding is implemented as the exploitation strategy.
Finally, as an energy shrinking strategy, rotation between random
hiding and detour foraging is applied. The model is described as
follows.

2.3.1 Detour Foraging (Exploration)
Detour foraging as mentioned earlier is a technique where the
rabbits feed on food far away from their own nests. This is done
by randomly selecting a location which is far away from the home
location. Rabbits assume that every rabbit in the population has a
nest with a given number of burrows, d. So, in detour foraging, the
rabbits randomly update their position close to the nest of other
rabbits in the population. This is demonstrated mathematically as
follows:

 �⃗�𝑣𝑖𝑖 (𝑡𝑡 + 1) = ⃗𝑗𝑗 (𝑡𝑡) + 𝑅𝑅 ⋅ (⃗i (𝑡𝑡) − ⃗𝑗𝑗 (𝑡𝑡)) + 𝑟𝑟𝑜𝑜𝑢𝑢𝑛𝑛𝑑𝑑 (0.5 ⋅ (0.05 + 𝑟𝑟1)) ⋅ 𝑛𝑛1 𝑖𝑖, 𝑗𝑗 = 1, …, 𝑛𝑛 and 𝑗𝑗 ≠ 𝑖𝑖 (1)

 𝑅𝑅 = L * c (2)

 ((
)

) * sin(2πr2) (3)

 (𝑘𝑘) { 𝑖𝑖𝑖 𝑘𝑘 (𝑙𝑙)
 𝑙𝑙𝑙 k , …, 𝑑𝑑 and 𝑙𝑙 , …, ⌈𝑟𝑟3⋅ 𝑑𝑑⌉ (4)

 = 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑𝑝𝑝 𝑟𝑟𝑚𝑚(𝑑𝑑) (5)

 𝑛𝑛 ∼ 𝑁𝑁(0, 1) (6)

In the above equations, �⃗�𝑣𝑖𝑖 (𝑡𝑡 + 1) represents the

candidate position at time t+1 of the ith rabbit, n is

the population size, ⃗𝑗𝑗 (𝑡𝑡) represents the position of

the rabbit at time t, d is the problem dimension, T is

the number of iterations, roundperm(d) is a function

that returns a random integer between 1 and d, L is

the running length when carrying out detour foraging,

r1, r2 and r3 are random numbers between 0 and 1, n1

is the subject to standard normal deviation.

Equations 1-6 are implemented to achieve detour

foraging. Equation 1 is used to demonstrate the

random search of individuals in finding a food

source. This significantly contributes to exploration

and gives the ARO algorithm the ability to perform

global search. Equation 3 represents the running

length, L, generated during iterations, which is

typically longer during initial iterations and shorter

during later iterations.

- Random Hiding (Exploitation)

This is the situation whereby the rabbit has to dig a

couple of burrows around its nest, in which it

randomly chooses and hides when it is being chased

by a predator. ARO implements random hiding by

generating across the search space d number of

burrows in each iteration. At every iteration, one of

the burrows is chosen for hiding in order to increase

probability of survival. In mathematically expressing

exploitation, a hiding parameter, H, linearly drops

from 1 to 1/T, where T is the total number of

iterations [35]. This implies that as the start of the

iterations, the search space across which burrows are

generated is quite large, and reduces as the iteration

number increases. The mathematical implementation

of random hiding is demonstrated below using

Equations 7-11.

 H =
 * r4 (7)

 �⃗�𝑣𝑖𝑖 (𝑡𝑡 + 1) = ⃗𝑗𝑗 (𝑡𝑡) + 𝑅𝑅 ⋅ (⃗i (𝑡𝑡) − ⃗𝑗𝑗 (𝑡𝑡)) + 𝑟𝑟𝑜𝑜𝑢𝑢𝑛𝑛𝑑𝑑 (0.5 ⋅ (0.05 + 𝑟𝑟1)) ⋅ 𝑛𝑛1 𝑖𝑖, 𝑗𝑗 = 1, …, 𝑛𝑛 and 𝑗𝑗 ≠ 𝑖𝑖 (1)

 𝑅𝑅 = L * c (2)

 ((
)

) * sin(2πr2) (3)

 (𝑘𝑘) { 𝑖𝑖𝑖 𝑘𝑘 (𝑙𝑙)
 𝑙𝑙𝑙 k , …, 𝑑𝑑 and 𝑙𝑙 , …, ⌈𝑟𝑟3⋅ 𝑑𝑑⌉ (4)

 = 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑𝑝𝑝 𝑟𝑟𝑚𝑚(𝑑𝑑) (5)

 𝑛𝑛 ∼ 𝑁𝑁(0, 1) (6)

In the above equations, �⃗�𝑣𝑖𝑖 (𝑡𝑡 + 1) represents the

candidate position at time t+1 of the ith rabbit, n is

the population size, ⃗𝑗𝑗 (𝑡𝑡) represents the position of

the rabbit at time t, d is the problem dimension, T is

the number of iterations, roundperm(d) is a function

that returns a random integer between 1 and d, L is

the running length when carrying out detour foraging,

r1, r2 and r3 are random numbers between 0 and 1, n1

is the subject to standard normal deviation.

Equations 1-6 are implemented to achieve detour

foraging. Equation 1 is used to demonstrate the

random search of individuals in finding a food

source. This significantly contributes to exploration

and gives the ARO algorithm the ability to perform

global search. Equation 3 represents the running

length, L, generated during iterations, which is

typically longer during initial iterations and shorter

during later iterations.

- Random Hiding (Exploitation)

This is the situation whereby the rabbit has to dig a

couple of burrows around its nest, in which it

randomly chooses and hides when it is being chased

by a predator. ARO implements random hiding by

generating across the search space d number of

burrows in each iteration. At every iteration, one of

the burrows is chosen for hiding in order to increase

probability of survival. In mathematically expressing

exploitation, a hiding parameter, H, linearly drops

from 1 to 1/T, where T is the total number of

iterations [35]. This implies that as the start of the

iterations, the search space across which burrows are

generated is quite large, and reduces as the iteration

number increases. The mathematical implementation

of random hiding is demonstrated below using

Equations 7-11.

 H =
 * r4 (7)

In the above equations, v⃗𝑖 (𝑡 + 1) represents the candidate
position at time t+1 of the ith rabbit, n is the population size, x⃗𝑗
(𝑡) represents the position of the rabbit at time t, d is the problem
dimension, T is the number of iterations, roundperm(d) is a
function that returns a random integer between 1 and d, L is the
running length when carrying out detour foraging, r1, r2 and r3 are
random numbers between 0 and 1, n1 is the subject to standard
normal deviation.

Equations 1-6 are implemented to achieve detour foraging.

Equation 1 is used to demonstrate the random search of
individuals in finding a food source. This significantly contributes
to exploration and gives the ARO algorithm the ability to perform
global search. Equation 3 represents the running length, L,
generated during iterations, which is typically longer during initial
iterations and shorter during later iterations.

2.3.2 Random Hiding (Exploitation)
This is the situation whereby the rabbit has to dig a couple
of burrows around its nest, in which it randomly chooses and

 Volume 5 | Issue 2 | 4J Robot Auto Res, 2024

hides when it is being chased by a predator. ARO implements
random hiding by generating across the search space d number of
burrows in each iteration. At every iteration, one of the burrows
is chosen for hiding in order to increase probability of survival.
In mathematically expressing exploitation, a hiding parameter,
H, linearly drops from 1 to 1/T, where T is the total number of

iterations [35]. This implies that as the start of the iterations, the
search space across which burrows are generated is quite large,
and reduces as the iteration number increases. The mathematical
implementation of random hiding is demonstrated below using
Equations 7-11.

 �⃗�𝑣𝑖𝑖 (𝑡𝑡 + 1) = ⃗𝑗𝑗 (𝑡𝑡) + 𝑅𝑅 ⋅ (⃗i (𝑡𝑡) − ⃗𝑗𝑗 (𝑡𝑡)) + 𝑟𝑟𝑜𝑜𝑢𝑢𝑛𝑛𝑑𝑑 (0.5 ⋅ (0.05 + 𝑟𝑟1)) ⋅ 𝑛𝑛1 𝑖𝑖, 𝑗𝑗 = 1, …, 𝑛𝑛 and 𝑗𝑗 ≠ 𝑖𝑖 (1)

 𝑅𝑅 = L * c (2)

 ((
)

) * sin(2πr2) (3)

 (𝑘𝑘) { 𝑖𝑖𝑖 𝑘𝑘 (𝑙𝑙)
 𝑙𝑙𝑙 k , …, 𝑑𝑑 and 𝑙𝑙 , …, ⌈𝑟𝑟3⋅ 𝑑𝑑⌉ (4)

 = 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑𝑝𝑝 𝑟𝑟𝑚𝑚(𝑑𝑑) (5)

 𝑛𝑛 ∼ 𝑁𝑁(0, 1) (6)

In the above equations, �⃗�𝑣𝑖𝑖 (𝑡𝑡 + 1) represents the

candidate position at time t+1 of the ith rabbit, n is

the population size, ⃗𝑗𝑗 (𝑡𝑡) represents the position of

the rabbit at time t, d is the problem dimension, T is

the number of iterations, roundperm(d) is a function

that returns a random integer between 1 and d, L is

the running length when carrying out detour foraging,

r1, r2 and r3 are random numbers between 0 and 1, n1

is the subject to standard normal deviation.

Equations 1-6 are implemented to achieve detour

foraging. Equation 1 is used to demonstrate the

random search of individuals in finding a food

source. This significantly contributes to exploration

and gives the ARO algorithm the ability to perform

global search. Equation 3 represents the running

length, L, generated during iterations, which is

typically longer during initial iterations and shorter

during later iterations.

- Random Hiding (Exploitation)

This is the situation whereby the rabbit has to dig a

couple of burrows around its nest, in which it

randomly chooses and hides when it is being chased

by a predator. ARO implements random hiding by

generating across the search space d number of

burrows in each iteration. At every iteration, one of

the burrows is chosen for hiding in order to increase

probability of survival. In mathematically expressing

exploitation, a hiding parameter, H, linearly drops

from 1 to 1/T, where T is the total number of

iterations [35]. This implies that as the start of the

iterations, the search space across which burrows are

generated is quite large, and reduces as the iteration

number increases. The mathematical implementation

of random hiding is demonstrated below using

Equations 7-11.

 H =
 * r4 (7)

 �⃗�𝑣𝑖𝑖 (𝑡𝑡 + 1) = ⃗𝑗𝑗 (𝑡𝑡) + 𝑅𝑅 ⋅ (⃗i (𝑡𝑡) − ⃗𝑗𝑗 (𝑡𝑡)) + 𝑟𝑟𝑜𝑜𝑢𝑢𝑛𝑛𝑑𝑑 (0.5 ⋅ (0.05 + 𝑟𝑟1)) ⋅ 𝑛𝑛1 𝑖𝑖, 𝑗𝑗 = 1, …, 𝑛𝑛 and 𝑗𝑗 ≠ 𝑖𝑖 (1)

 𝑅𝑅 = L * c (2)

 ((
)

) * sin(2πr2) (3)

 (𝑘𝑘) { 𝑖𝑖𝑖 𝑘𝑘 (𝑙𝑙)
 𝑙𝑙𝑙 k , …, 𝑑𝑑 and 𝑙𝑙 , …, ⌈𝑟𝑟3⋅ 𝑑𝑑⌉ (4)

 = 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑𝑝𝑝 𝑟𝑟𝑚𝑚(𝑑𝑑) (5)

 𝑛𝑛 ∼ 𝑁𝑁(0, 1) (6)

In the above equations, �⃗�𝑣𝑖𝑖 (𝑡𝑡 + 1) represents the

candidate position at time t+1 of the ith rabbit, n is

the population size, ⃗𝑗𝑗 (𝑡𝑡) represents the position of

the rabbit at time t, d is the problem dimension, T is

the number of iterations, roundperm(d) is a function

that returns a random integer between 1 and d, L is

the running length when carrying out detour foraging,

r1, r2 and r3 are random numbers between 0 and 1, n1

is the subject to standard normal deviation.

Equations 1-6 are implemented to achieve detour

foraging. Equation 1 is used to demonstrate the

random search of individuals in finding a food

source. This significantly contributes to exploration

and gives the ARO algorithm the ability to perform

global search. Equation 3 represents the running

length, L, generated during iterations, which is

typically longer during initial iterations and shorter

during later iterations.

- Random Hiding (Exploitation)

This is the situation whereby the rabbit has to dig a

couple of burrows around its nest, in which it

randomly chooses and hides when it is being chased

by a predator. ARO implements random hiding by

generating across the search space d number of

burrows in each iteration. At every iteration, one of

the burrows is chosen for hiding in order to increase

probability of survival. In mathematically expressing

exploitation, a hiding parameter, H, linearly drops

from 1 to 1/T, where T is the total number of

iterations [35]. This implies that as the start of the

iterations, the search space across which burrows are

generated is quite large, and reduces as the iteration

number increases. The mathematical implementation

of random hiding is demonstrated below using

Equations 7-11.

 H =
 * r4 (7)

 �⃗�𝑣(𝑡𝑡) ⃗ (𝑡𝑡) 𝑅𝑅 * (r4* ⃗⃗ , (𝑡𝑡)- ⃗ (𝑡𝑡)) , i=1,…, n (8)

 (𝑘𝑘) { 𝑖𝑖 𝑘𝑘 |𝑟𝑟 ⋅ 𝑑𝑑|
 𝑙𝑙𝑙 k , …., n (9)

 ⃗⃗ , (𝑡𝑡) ⃗ (𝑡𝑡) ⃗ (𝑡𝑡) (10)

 ⃗ (𝑡𝑡) { ⃗ (𝑡𝑡) (⃗ (𝑡𝑡)) (�⃗�𝑣(𝑡𝑡))
�⃗�𝑣(𝑡𝑡) (⃗ (𝑡𝑡)) (�⃗�𝑣(𝑡𝑡)) (11)

Equations 1 and 8 denote the new candidate

positions generated for each rabbit. Here, ⃗⃗ , is a

burrow selected at random from the total d number of

burrows. r4 and r5 are two randomly selected number

between 0 and 1. If the calculated fitness score of

these positions is better than that of the current

position, the rabbit’s position will be updated with

respect to this new candidate positions. Updating the

position of the rabbit is shown by Equation 11.

- Energy Shrink (Alternating between exploitation

and exploration)

Rabbits tend to perform detour foraging when they

have high energy levels. Later when energy levels

drop, they will switch to random hiding. This

application is the same in ARO. At the start of the

iterations, exploration is performed and then switches

to exploitation at later stages in the iteration. This

brings about an energy factor in the current rabbit that

is used to model the alternation between random

hiding and detour foraging. This energy factor is

given mathematically as follows on Equation 12.

Where r is a random number between 0 and 1.

 A(t) = 4(1- 𝑡𝑡)ln

(12)

A large value of A(t) indicates that the rabbit has enough

energy to perform exploration. On the other hand, a small

value of A(t) indicates that the rabbit has less energy and

has to go into hiding (exploitation). This is indicated in

ARO by: exploration occurs when A(t) > 1 and

exploitation when A(t) ≤ 1. Wang L et al. [27]

demonstrate the behavior of the energy factor over 1000

iterations as shown on Figure 1 below. This shows how

the value of the energy factor decreases as the number of

iterations increase.

- Mutation

ARO in this study is improved by implementing

mutation just before detour foraging and random

hiding. Mutation here is implemented in order to

 �⃗�𝑣(𝑡𝑡) ⃗ (𝑡𝑡) 𝑅𝑅 * (r4* ⃗⃗ , (𝑡𝑡)- ⃗ (𝑡𝑡)) , i=1,…, n (8)

 (𝑘𝑘) { 𝑖𝑖 𝑘𝑘 |𝑟𝑟 ⋅ 𝑑𝑑|
 𝑙𝑙𝑙 k , …., n (9)

 ⃗⃗ , (𝑡𝑡) ⃗ (𝑡𝑡) ⃗ (𝑡𝑡) (10)

 ⃗ (𝑡𝑡) { ⃗ (𝑡𝑡) (⃗ (𝑡𝑡)) (�⃗�𝑣(𝑡𝑡))
�⃗�𝑣(𝑡𝑡) (⃗ (𝑡𝑡)) (�⃗�𝑣(𝑡𝑡)) (11)

Equations 1 and 8 denote the new candidate

positions generated for each rabbit. Here, ⃗⃗ , is a

burrow selected at random from the total d number of

burrows. r4 and r5 are two randomly selected number

between 0 and 1. If the calculated fitness score of

these positions is better than that of the current

position, the rabbit’s position will be updated with

respect to this new candidate positions. Updating the

position of the rabbit is shown by Equation 11.

- Energy Shrink (Alternating between exploitation

and exploration)

Rabbits tend to perform detour foraging when they

have high energy levels. Later when energy levels

drop, they will switch to random hiding. This

application is the same in ARO. At the start of the

iterations, exploration is performed and then switches

to exploitation at later stages in the iteration. This

brings about an energy factor in the current rabbit that

is used to model the alternation between random

hiding and detour foraging. This energy factor is

given mathematically as follows on Equation 12.

Where r is a random number between 0 and 1.

 A(t) = 4(1- 𝑡𝑡)ln

(12)

A large value of A(t) indicates that the rabbit has enough

energy to perform exploration. On the other hand, a small

value of A(t) indicates that the rabbit has less energy and

has to go into hiding (exploitation). This is indicated in

ARO by: exploration occurs when A(t) > 1 and

exploitation when A(t) ≤ 1. Wang L et al. [27]

demonstrate the behavior of the energy factor over 1000

iterations as shown on Figure 1 below. This shows how

the value of the energy factor decreases as the number of

iterations increase.

- Mutation

ARO in this study is improved by implementing

mutation just before detour foraging and random

hiding. Mutation here is implemented in order to

 �⃗�𝑣(𝑡𝑡) ⃗ (𝑡𝑡) 𝑅𝑅 * (r4* ⃗⃗ , (𝑡𝑡)- ⃗ (𝑡𝑡)) , i=1,…, n (8)

 (𝑘𝑘) { 𝑖𝑖 𝑘𝑘 |𝑟𝑟 ⋅ 𝑑𝑑|
 𝑙𝑙𝑙 k , …., n (9)

 ⃗⃗ , (𝑡𝑡) ⃗ (𝑡𝑡) ⃗ (𝑡𝑡) (10)

 ⃗ (𝑡𝑡) { ⃗ (𝑡𝑡) (⃗ (𝑡𝑡)) (�⃗�𝑣(𝑡𝑡))
�⃗�𝑣(𝑡𝑡) (⃗ (𝑡𝑡)) (�⃗�𝑣(𝑡𝑡)) (11)

Equations 1 and 8 denote the new candidate

positions generated for each rabbit. Here, ⃗⃗ , is a

burrow selected at random from the total d number of

burrows. r4 and r5 are two randomly selected number

between 0 and 1. If the calculated fitness score of

these positions is better than that of the current

position, the rabbit’s position will be updated with

respect to this new candidate positions. Updating the

position of the rabbit is shown by Equation 11.

- Energy Shrink (Alternating between exploitation

and exploration)

Rabbits tend to perform detour foraging when they

have high energy levels. Later when energy levels

drop, they will switch to random hiding. This

application is the same in ARO. At the start of the

iterations, exploration is performed and then switches

to exploitation at later stages in the iteration. This

brings about an energy factor in the current rabbit that

is used to model the alternation between random

hiding and detour foraging. This energy factor is

given mathematically as follows on Equation 12.

Where r is a random number between 0 and 1.

 A(t) = 4(1- 𝑡𝑡)ln

(12)

A large value of A(t) indicates that the rabbit has enough

energy to perform exploration. On the other hand, a small

value of A(t) indicates that the rabbit has less energy and

has to go into hiding (exploitation). This is indicated in

ARO by: exploration occurs when A(t) > 1 and

exploitation when A(t) ≤ 1. Wang L et al. [27]

demonstrate the behavior of the energy factor over 1000

iterations as shown on Figure 1 below. This shows how

the value of the energy factor decreases as the number of

iterations increase.

- Mutation

ARO in this study is improved by implementing

mutation just before detour foraging and random

hiding. Mutation here is implemented in order to

 �⃗�𝑣(𝑡𝑡) ⃗ (𝑡𝑡) 𝑅𝑅 * (r4* ⃗⃗ , (𝑡𝑡)- ⃗ (𝑡𝑡)) , i=1,…, n (8)

 (𝑘𝑘) { 𝑖𝑖 𝑘𝑘 |𝑟𝑟 ⋅ 𝑑𝑑|
 𝑙𝑙𝑙 k , …., n (9)

 ⃗⃗ , (𝑡𝑡) ⃗ (𝑡𝑡) ⃗ (𝑡𝑡) (10)

 ⃗ (𝑡𝑡) { ⃗ (𝑡𝑡) (⃗ (𝑡𝑡)) (�⃗�𝑣(𝑡𝑡))
�⃗�𝑣(𝑡𝑡) (⃗ (𝑡𝑡)) (�⃗�𝑣(𝑡𝑡)) (11)

Equations 1 and 8 denote the new candidate

positions generated for each rabbit. Here, ⃗⃗ , is a

burrow selected at random from the total d number of

burrows. r4 and r5 are two randomly selected number

between 0 and 1. If the calculated fitness score of

these positions is better than that of the current

position, the rabbit’s position will be updated with

respect to this new candidate positions. Updating the

position of the rabbit is shown by Equation 11.

- Energy Shrink (Alternating between exploitation

and exploration)

Rabbits tend to perform detour foraging when they

have high energy levels. Later when energy levels

drop, they will switch to random hiding. This

application is the same in ARO. At the start of the

iterations, exploration is performed and then switches

to exploitation at later stages in the iteration. This

brings about an energy factor in the current rabbit that

is used to model the alternation between random

hiding and detour foraging. This energy factor is

given mathematically as follows on Equation 12.

Where r is a random number between 0 and 1.

 A(t) = 4(1- 𝑡𝑡)ln

(12)

A large value of A(t) indicates that the rabbit has enough

energy to perform exploration. On the other hand, a small

value of A(t) indicates that the rabbit has less energy and

has to go into hiding (exploitation). This is indicated in

ARO by: exploration occurs when A(t) > 1 and

exploitation when A(t) ≤ 1. Wang L et al. [27]

demonstrate the behavior of the energy factor over 1000

iterations as shown on Figure 1 below. This shows how

the value of the energy factor decreases as the number of

iterations increase.

- Mutation

ARO in this study is improved by implementing

mutation just before detour foraging and random

hiding. Mutation here is implemented in order to

Equations 1 and 8 denote the new candidate positions generated for
each rabbit. Here, b⃗i,r is a burrow selected at random from the total
d number of burrows. r4 and r5 are two randomly selected number
between 0 and 1. If the calculated fitness score of these positions is
better than that of the current position, the rabbit’s position will be
updated with respect to this new candidate positions. Updating the
position of the rabbit is shown by Equation 11.

2.3.3 Energy Shrink (Alternating between exploitation and
exploration)
Rabbits tend to perform detour foraging when they have high
energy levels. Later when energy levels drop, they will switch
to random hiding. This application is the same in ARO. At the
start of the iterations, exploration is performed and then switches
to exploitation at later stages in the iteration. This brings about
an energy factor in the current rabbit that is used to model the
alternation between random hiding and detour foraging. This
energy factor is given mathematically as follows on Equation 12.
Where r is a random number between 0 and 1.

A large value of A(t) indicates that the rabbit has enough energy
to perform exploration. On the other hand, a small value of A(t)
indicates that the rabbit has less energy and has to go into hiding
(exploitation). This is indicated in ARO by: exploration occurs
when A(t) > 1 and exploitation when A(t) ≤ 1. Wang L et al. [27]
demonstrate the behavior of the energy factor over 1000 iterations
as shown on Figure 1 below. This shows how the value of the
energy factor decreases as the number of iterations increase.

2.3.4 Mutation
ARO in this study is improved by implementing mutation just before
detour foraging and random hiding. Mutation here is implemented
in order to variate the search space and foster evolution, hence
prevent the algorithm from converging and eventually coming to
a halt. To implement mutation, at every iteration, individuals in
the current solution are randomly chosen and given new randomly
selected positions. Exploration and exploitation are then carried
out on the output solution gotten from mutation.

 Volume 5 | Issue 2 | 5J Robot Auto Res, 2024

variate the search space and foster evolution, hence

prevent the algorithm from converging and

eventually coming to a halt. To implement mutation,

at every iteration, individuals in the current solution

are randomly chosen and given new randomly

selected positions. Exploration and exploitation are

then carried out on the output solution gotten from

mutation.

Figure 1: Behavior of the energy factor, A, over 1000 iterations.
Figure 1: Behavior of the energy factor, A, over 1000 iterations.

2.3.5 The Algorithm
The improved ARO algorithm implemented in this research is as
follows: First, a random solution of X rabbits is initialized. The
fitness of this initial rabbit is calculated and labelled as the best
solution Xbest. The iteration parameter is then set as the terminating
criteria. In the iteration loop, mutation is first of all applied to the
current selected population of X rabbits. For each individual in
this population, the energy factor of the rabbit is calculated. If the
energy factor, A, is greater than 1, then a new rabbit is randomly
chosen from the neighborhood population, it fitness calculated and
position updated using Equation 11.

If the energy factor is less than or equal to 1, a number of burrows,
d, is generated, random hiding implemented and the position of
the current selected rabbit is updated using Equation 11. These
steps are repeated until the stopping criteria for both the inner and
outer loops are met, after which the update best solution is taken
as the optimized solution. The flowchart for the ARO algorithm
is demonstrated on Figure 2. The algorithm is simplified in the
following pseudocode in Table 1

- The Algorithm

The improved ARO algorithm implemented in this

research is as follows: First, a random solution of X

rabbits is initialized. The fitness of this initial rabbit

is calculated and labelled as the best solution Xbest.

The iteration parameter is then set as the terminating

criteria. In the iteration loop, mutation is first of all

applied to the current selected population of X

rabbits. For each individual in this population, the

energy factor of the rabbit is calculated. If the energy

factor, A, is greater than 1, then a new rabbit is

randomly chosen from the neighborhood population,

it fitness calculated and position updated using

Equation 11.

If the energy factor is less than or equal to 1, a

number of burrows, d, is generated, random hiding

implemented and the position of the current selected

rabbit is updated using Equation 11. These steps are

repeated until the stopping criteria for both the inner

and outer loops are met, after which the update best

solution is taken as the optimized solution. The

flowchart for the ARO algorithm is demonstrated on

Figure 2. The algorithm is simplified in the following

pseudocode in Table 1:

Pseudocode for ARO

 Begin
 Initialize a random solution of rabbits, X
 Calculate their fitness, Xbest
 Start while (t < iteration count)

 Implement mutation on the current solution
 Begin for loop

o For each solution, X, calculate the energy factor, A, using Equation 12
o If (A > 1),

 Randomly choose new rabbit from neighborhood
 Calculate R using Equations 2-6, perform detour foraging using equation 1,
 Calculate the fitness and update the position of the rabbit using Equation 11

o Else If (A ≤ 1),
 Generate d number of burrows and choose one of the burrows at random

which will be used for hiding (Equation 10)
 Use Equation 8 to perform random hiding then calculate the fitness of the

solution.
 Finally, update the position of the rabbit using Equation 11

o End if
 End for loop.

 End while loop
 Update the solution to get the new best solution Xbest
 End

Table 1: Pseudocode for Artificial Rabbits Optimization. Table 1: Pseudocode for Artificial Rabbits Optimization.

 Volume 5 | Issue 2 | 6J Robot Auto Res, 2024

Figure 2: Flow chart of Artificial Rabbits Optimization (ARO) algorithm. Figure 2: Flow chart of Artificial Rabbits Optimization (ARO) algorithm.

3. Results
3.1 Datasets
In this research, 4 different datasets were used to carry out
experimental analysis. These datasets were gotten from of The
Cancer Genome Atlas (TCGA) datasets gotten from the cBioPortal
for Cancer genomics [36]. Table 2 below shows the demographics
of the different datasets with respect to the number of patients
involved, the number of genes, number of mutations, CNA and
RNA-Seq. The first dataset used for experiments in this research

was made up of copy number alteration (CNA), mRNA sequencing
expression and gene mutation data for 585 patients with brain
cancer. This dataset is called the Glioblastoma Multiforme (GBM).
The next dataset was for patients with ovarian cancer. This dataset
was made up of copy number alterations, gene mutations and
mRNA sequencing expression data for 585 patients. It is called
the TCGA Ovarian Serous Cystadenocarcinoma (OV). The third
dataset was the TCGA Prostate Adenocarcinoma (PRAD) dataset.
This dataset was made up of gene expression data, gene mutations

 Volume 5 | Issue 2 | 7J Robot Auto Res, 2024

and copy number alteration data for 334 patients. The fourth dataset
was the TCGA Breast Cancer (BRCA) dataset which was made up
of mRNA-seq expression data, gene expression data and CNA data
for 112 patients. The biological interaction network used here was
a gene-gene interaction influence graph gotten from REACTOME
database, consisting of over of 518,302 genes.

In this study, experiments were carried out on 4 benchmarking
datasets from TCGA as mentioned above in section 2. These were
GBM, BRCA, OV and PRAD datasets. The implementation was
carried out in a python environment with number of iterations being

the input parameter. The fitness is calculated using the Schwefel
2.22 function, which is an unconstraint test benchmark function
[37]. The Top 30 ranked genes discovered by this algorithm for each
dataset are represented on Table 3. Benchmarking performance
analysis was then carried out on the results and compared with the
results of 4 state-of-the-art models: HotNet2 Dendrix, DriverNet
and QuaDMutNetEx [6, 9, 28, 38]. The analysis was done using
information of genes labelled as canonical cancer driver genes by
the Network of Cancer Genes and Healthy Drivers (NCG7.0) data
repository [30].

Dataset No of Patients No of genes Mutations CNA RNA-Seq

PRAD 334 34,192 333 333 290

OV 585 53,204 523 572 300

GBM 585 68,802 397 575 160

BRCA 112 17,272 112 112 112

Table 2: TCGA datasets from the cBioPortal

3.2 Performance Benchmarking Analysis

In the benchmarking performance analysis of the

glioblastoma multiforme brain cancer dataset (GBM)

which consist of 68,802 genes, a total of 15 canonical

genes were identified out of the total 24 canonical

genes presented by NCG7.0. of these 15 genes, 9

were ranked amongst the top 30 genes by the ARO

algorithm. These genes include: TP53, PTEN,

PIK3R1, PIK3CA, RB1, NF1, PDGFRA, PTPN11

and STAG2. For the triple negative breast cancer

dataset (BRCA), out of the total 110 canonical driver

genes, a total of 55 BRCA driver genes were

identified in this study. From the 55 identified driver

genes, 25 were ranked in the top 30 genes by ARO.

For ovarian cancer (OV), out of the total of 11

canonical cancer genes, a total of 6 were identified in

this study, with 4 gene (TP53, BRCA1, RB1, FAT3)

ranking in the top 30. Finally for the prostate

adenocarcinoma (PRAD) dataset, out of the total 43

canonical driver genes, 19 were identified in

experiments with ARO, where 12 of these genes rank

in the top 30 genes. Table 4 shows the cancer driver

genes identified by ARO in this study.

Table 2: TCGA datasets from the cBioPortal

3.2 Performance Benchmarking Analysis
In the benchmarking performance analysis of the glioblastoma
multiforme brain cancer dataset (GBM) which consist of 68,802
genes, a total of 15 canonical genes were identified out of the total
24 canonical genes presented by NCG7.0. of these 15 genes, 9
were ranked amongst the top 30 genes by the ARO algorithm.
These genes include: TP53, PTEN, PIK3R1, PIK3CA, RB1, NF1,
PDGFRA, PTPN11 and STAG2. For the triple negative breast
cancer dataset (BRCA), out of the total 110 canonical driver genes,

a total of 55 BRCA driver genes were identified in this study. From
the 55 identified driver genes, 25 were ranked in the top 30 genes
by ARO. For ovarian cancer (OV), out of the total of 11 canonical
cancer genes, a total of 6 were identified in this study, with 4 gene
(TP53, BRCA1, RB1, FAT3) ranking in the top 30. Finally for
the prostate adenocarcinoma (PRAD) dataset, out of the total 43
canonical driver genes, 19 were identified in experiments with
ARO, where 12 of these genes rank in the top 30 genes. Table
4 shows the cancer driver genes identified by ARO in this study.

Rank GBM BRCA OV PRAD

1 TP53 TP53 TP53 TP53
2 PTEN PIK3CA EP300 CTNNB1
3 PIK3R1 EP300 UBC EP300
4 PIK3CA AKT1 TTN FOXA1
5 RB1 CDH1 DYNC1H1 PIK3CA
6 EB300 KMT2C EGFR ATM
7 NF1 GATA3 PIK3CA PTEN
8 PLCG2 NCOR2 BRCA1 TTN
9 PRKACA PIK3R1 RB1 STAT3

10 UBC MAP3K1 PRKCB CREBBP
11 PDGFRA NOTCH1 PIK3CB HSPA8
12 PTPN11 ERBB3 NCOA3 DYNC1H1
13 PIK3CB NCOR1 DCTN1 SPOP
14 CREBBP ERBB2 TAF1 SPTA1
15 SP1 NF1 LRRK2 HRAS

16 SPTA1 CBFB SRC PRKACA

17 LRP2 EGFR PRKACB KMT20
18 APOB ARID1A LRP2 FAT3
19 PIK3CG BRCA1 STAT3 NCOR1
20 DYNC1I1 CTCF SP1 EGFR
21 KDR SMAD4 FAT3 PIK3CD
22 MUC16 NCOA3 HTT RELA
23 ITGB2 JAK1 NCOR2 MUC16
24 JUN RYNX1 PDGFRA APC
25 SRC ATR ATM POLR2B
26 PRKCB AKAP9 POLR2A HTT
27 STAG2 ERBB4 NFKB1 KMT2C
28 ARRB1 TAF1 ALMS1 PLCB4
29 ESR1 SMARCC2 GNAL SMAD4
30 DYNC1H1 HERC2 PCDH15 ANK2

Table 3: Top 30 ranked genes discovered by ARO from experiments on GBM, BRCA, PRAD and OV.

 Volume 5 | Issue 2 | 8J Robot Auto Res, 2024

Rank GBM BRCA OV PRAD

1 TP53 TP53 TP53 TP53
2 PTEN PIK3CA EP300 CTNNB1
3 PIK3R1 EP300 UBC EP300
4 PIK3CA AKT1 TTN FOXA1
5 RB1 CDH1 DYNC1H1 PIK3CA
6 EB300 KMT2C EGFR ATM
7 NF1 GATA3 PIK3CA PTEN
8 PLCG2 NCOR2 BRCA1 TTN
9 PRKACA PIK3R1 RB1 STAT3

10 UBC MAP3K1 PRKCB CREBBP
11 PDGFRA NOTCH1 PIK3CB HSPA8
12 PTPN11 ERBB3 NCOA3 DYNC1H1
13 PIK3CB NCOR1 DCTN1 SPOP
14 CREBBP ERBB2 TAF1 SPTA1
15 SP1 NF1 LRRK2 HRAS

16 SPTA1 CBFB SRC PRKACA

17 LRP2 EGFR PRKACB KMT20
18 APOB ARID1A LRP2 FAT3
19 PIK3CG BRCA1 STAT3 NCOR1
20 DYNC1I1 CTCF SP1 EGFR
21 KDR SMAD4 FAT3 PIK3CD
22 MUC16 NCOA3 HTT RELA
23 ITGB2 JAK1 NCOR2 MUC16
24 JUN RYNX1 PDGFRA APC
25 SRC ATR ATM POLR2B
26 PRKCB AKAP9 POLR2A HTT
27 STAG2 ERBB4 NFKB1 KMT2C
28 ARRB1 TAF1 ALMS1 PLCB4
29 ESR1 SMARCC2 GNAL SMAD4
30 DYNC1H1 HERC2 PCDH15 ANK2

Table 3: Top 30 ranked genes discovered by ARO from experiments on GBM, BRCA, PRAD and OV.

Table 3: Top 30 ranked genes discovered by ARO from experiments on GBM, BRCA, PRAD and OV.

Dataset Canonical Driver Genes

BRCA

TP53
PIK3CA
EP300
AKT1
CDH1

KMT2C
GATA3
PIK3R1

MAP3K1
NOTCH1
ERBB3
NCOR1
ERBB2

NF1
CBFB
EGFR

ARID1A
BRCA1
CTCF

SMAD4
ATR
RB1

RUNX1
PTEN

OV

TP53
BRCA1

RB1
FAT3

GBM

TP53
PTEN

PIK3R1
PIK3CA

RB1
NF1

PDGFRA
PTPN11
STAG2

PRAD

TP53
CTNNB1
FOXA1
PIK3CA

ATM
PTEN
SPOP
HRAS

KMT2D
NCOR1

APC
KMT2C

Table 4: Driver genes discovered by ARO ranked amongst top 30.

Table 4: Driver genes discovered by ARO ranked amongst top 30.

 Volume 5 | Issue 2 | 9J Robot Auto Res, 2024

3.3 Performance Evaluation
3.3.1 Exploration and Exploitation Analysis
Artificial Rabbits Optimization tends to have an accelerated
convergence at during its iterations. Therefore, at initial iterations,
the search individuals can identify promising regions and then speed
up the rate of convergence. ARO depicts an effective performance
due to the fact that the global search mechanism used is integrated
to effectively enhance the exploration level. This makes ARO very
competitive in exploration the search space for the best solution in
a multimodal function. By balancing exploitation and exploration,
ARO and evidently avoid local optima. Furthermore, the ratio of

exploration to exploitation is defined by a trade-off between two
searches as shown by Hussain K. et al. [39].

3.3.2 Performance Analysis
The performance of the algorithm was done by calculating the
precision, recall, f-score and accuracy of the results. Here, true
positives are represented as TP, true-negative as TN, false-positive
represented as FP, and false-negative represented as FN. Table 5
below shows the number of genes labelled as canonical genes by
the NCG7.0 for the different datasets used in this research.

3.3 Performance Evaluation

3.3.1 Exploration and Exploitation Analysis

Artificial Rabbits Optimization tends to have an

accelerated convergence at during its iterations.

Therefore, at initial iterations, the search individuals

can identify promising regions and then speed up the

rate of convergence. ARO depicts an effective

performance due to the fact that the global search

mechanism used is integrated to effectively enhance

the exploration level. This makes ARO very

competitive in exploration the search space for the

best solution in a multimodal function. By balancing

exploitation and exploration, ARO and evidently

avoid local optima. Furthermore, the ratio of

exploration to exploitation is defined by a trade-off

between two searches as shown by Hussain K. et al.

[39].

3.3.2 Performance Analysis

The performance of the algorithm was done by

calculating the precision, recall, f-score and accuracy

of the results. Here, true positives are represented as

TP, true-negative as TN, false-positive represented as

FP, and false-negative represented as FN. Table 5

below shows the number of genes labelled as

canonical genes by the NCG7.0 for the different

datasets used in this research.

Dataset Number of Canonical Genes

GBM 24

BRCA 110

OV 11

PRAD 43

Table 5: Canonical driver gene count in the NCG7.0 for datasets

Precision, recall and the f-score are calculated as follows:

 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 (13)

 𝑅𝑅𝑟𝑟𝑅𝑅𝑅𝑅𝑅𝑅
 (14)

 𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (15)

3.3 Performance Evaluation

3.3.1 Exploration and Exploitation Analysis

Artificial Rabbits Optimization tends to have an

accelerated convergence at during its iterations.

Therefore, at initial iterations, the search individuals

can identify promising regions and then speed up the

rate of convergence. ARO depicts an effective

performance due to the fact that the global search

mechanism used is integrated to effectively enhance

the exploration level. This makes ARO very

competitive in exploration the search space for the

best solution in a multimodal function. By balancing

exploitation and exploration, ARO and evidently

avoid local optima. Furthermore, the ratio of

exploration to exploitation is defined by a trade-off

between two searches as shown by Hussain K. et al.

[39].

3.3.2 Performance Analysis

The performance of the algorithm was done by

calculating the precision, recall, f-score and accuracy

of the results. Here, true positives are represented as

TP, true-negative as TN, false-positive represented as

FP, and false-negative represented as FN. Table 5

below shows the number of genes labelled as

canonical genes by the NCG7.0 for the different

datasets used in this research.

Dataset Number of Canonical Genes

GBM 24

BRCA 110

OV 11

PRAD 43

Table 5: Canonical driver gene count in the NCG7.0 for datasets

Precision, recall and the f-score are calculated as follows:

 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 (13)

 𝑅𝑅𝑟𝑟𝑅𝑅𝑅𝑅𝑅𝑅
 (14)

 𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (15)

3.3 Performance Evaluation

3.3.1 Exploration and Exploitation Analysis

Artificial Rabbits Optimization tends to have an

accelerated convergence at during its iterations.

Therefore, at initial iterations, the search individuals

can identify promising regions and then speed up the

rate of convergence. ARO depicts an effective

performance due to the fact that the global search

mechanism used is integrated to effectively enhance

the exploration level. This makes ARO very

competitive in exploration the search space for the

best solution in a multimodal function. By balancing

exploitation and exploration, ARO and evidently

avoid local optima. Furthermore, the ratio of

exploration to exploitation is defined by a trade-off

between two searches as shown by Hussain K. et al.

[39].

3.3.2 Performance Analysis

The performance of the algorithm was done by

calculating the precision, recall, f-score and accuracy

of the results. Here, true positives are represented as

TP, true-negative as TN, false-positive represented as

FP, and false-negative represented as FN. Table 5

below shows the number of genes labelled as

canonical genes by the NCG7.0 for the different

datasets used in this research.

Dataset Number of Canonical Genes

GBM 24

BRCA 110

OV 11

PRAD 43

Table 5: Canonical driver gene count in the NCG7.0 for datasets

Precision, recall and the f-score are calculated as follows:

 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 (13)

 𝑅𝑅𝑟𝑟𝑅𝑅𝑅𝑅𝑅𝑅
 (14)

 𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (15)

Table 5: Canonical driver gene count in the NCG7.0 for datasets

Precision, recall and the f-score are calculated as follows:

Where, TP is the total number of genes discovered by the
algorithm that have also been labelled as canonical driver genes
by the NCG7.0.
TN is the number of genes that have not been labelled by NCG7.0
as canonical driver gene and also have not been ranked amongst
the top N genes by the algorithm. FP is the total number of genes
identified by our algorithm but have not been labelled by the
NCG7.0 as canonical driver genes. FN is the total number of
genes which have not been discovered by the algorithm but have
been labelled as driver genes by the NCG7.0 database.

Table 6 shows the comparison of results of ARO with HotNet2,
Dendrix, DriverNet and QuaDMutNetEx. The table depicts the
genes found in the solution for each algorithm, the canonical genes
identified, the True Positives and False Positives for each of the
datasets.

4. Discussion
The proposed algorithm in this research is an improved version
of the bio-inspired Artificial Rabbit’s Optimization algorithm
proposed by Wang L et al. in 2022 [27]. This algorithm was
improved by adding a mutation phase before implementing
the detour foraging and random hiding phases of the ARO. The
model in this study is as follows. First, using the cancer data for
the respective cancer type gotten from the TCGA data repository
and a biological interaction network similar to that presented by
Sarkar A et al., a bipartite graph was generated as that presented
in DriverNet and QuaDMutNetEx [40]. ARO was then applied on
this bipartite graph to identify cancer driver genes. This improved
ARO algorithm is implemented as thus. A random solution is
initialized in the neighborhood space. Mutation was then applied
on this solution to generate a more diverse solution that covers the
search space.

 Volume 5 | Issue 2 | 10J Robot Auto Res, 2024

Dataset Algorithm Genes in Solution Canonical Genes TP FP f-score

OV

ARO 11 6 6 5 0.545

HotNet2 11 4 4 7 0.363

DriverNet - - - - -

Dendrix 11 3 3 8 0.273

QuaDMutNetEx 11 7 7 5 0.636

GBM

ARO 24 11 11 13 0.458

HotNet2 24 11 11 26 0.458

DriverNet 24 9 9 8 0.375

Dendrix 24 4 4 20 0.167

QuaDMutNetEx 24 6 6 18 0.250

PRAD

ARO 43 19 19 24 0.442

HotNet2 43 9 9 34 0.209

DriverNet 43 14 14 32 0.326

Dendrix 43 8 8 35 0.186

QuaDMutNetEx 43 13 13 30 0.302

BRCA

ARO 110 55 55 55 0.500

HotNet2 110 18 18 92 0.164

DriverNet 110 33 33 77 0.300

Dendrix 110 16 16 94 0.145

QuaDMutNetEx 110 25 25 85 0.227

Table 6: Comparison of canonical genes with HotNet2, DriverNet, Dendrix and QuaDMutNetEx.

Next, the energy factor, A, was calculated to

determine whether detour foraging or random hiding

will be implemented on the current rabbit solution.

This is the energy shrinking mechanism which is

used by rabbits for survival. If the energy factor is

greater than 1, then detour foraging (exploration) is

implemented to generate the new position of the

rabbit. If the energy factor is less than or equal to 1,

then random hiding is implemented to generate the

new position of the current rabbit. At every iteration,

the fitness of the current solution was calculated by

using the Schwefel 2.22 function and compared with

that of the candidate solution in order to select the

new current solution. The best solution was then

gotten at the end of the iterations. Performance

analysis was then applied to evaluate the results of

this model. Performance analysis was carried out on 4

benchmarking datasets: Glioblastoma Multiforme

Table 6: Comparison of canonical genes with HotNet2, DriverNet, Dendrix and QuaDMutNetEx.

Next, the energy factor, A, was calculated to determine whether
detour foraging or random hiding will be implemented on the
current rabbit solution. This is the energy shrinking mechanism
which is used by rabbits for survival. If the energy factor is
greater than 1, then detour foraging (exploration) is implemented
to generate the new position of the rabbit. If the energy factor
is less than or equal to 1, then random hiding is implemented to
generate the new position of the current rabbit. At every iteration,
the fitness of the current solution was calculated by using the
Schwefel 2.22 function and compared with that of the candidate
solution in order to select the new current solution. The best
solution was then gotten at the end of the iterations. Performance
analysis was then applied to evaluate the results of this model.
Performance analysis was carried out on 4 benchmarking datasets:
Glioblastoma Multiforme (GBM) brain cancer dataset, Prostate
Adenocarcinoma (PRAD) prostate cancer dataset, Breast Cancer
(BRCA) dataset and Ovarian Cancer (OV) dataset. Comparison on
results was performed with 4 other state-of-the-art models used for
identifying cancer driver mutations: Dendrix, DriverNet, HotNet2
and QuaDMutNetEx. ARO proposed in this study proved to be

quite efficient in identifying cancer driver mutations in comparison
with these methods. ARO was able to identify the following driver
genes labelled as canonical genes by the NCG7.0. For GBM:
TP53, PTEN, PIK3R1, PIK3CA, RB1, NF1, PDGFRA, PTPN11
and STAG2 were identified among the top 30 ranked; for OV:
TP53, BRCA1, RB1 and FAT3 were identified among the top 30
ranked; for PRAD: TP53, CTNNB1, FOXA1, PIK3CA, ATM,
PTEN, SPOP, HRAS, KMT2D, NCOR1, APC and KMT2C were
identified among the top 30 ranked; for BRCA: TP53, PIK3CA,
EP300, AKT1, CDH1, KMT2C, GATA3, PIK3R1, MAP3K1,
NOTCH1, ERBB3, NCOR1, ERBB2, NF1, CBFB, EGFR,
ARID1A, BRCA1, CTCF, SMAD4, ATR, RB1, RUNX1 and
PTEN were identified among the top 30 ranked.

There are several aspects to why ARO serves are an appropriate
algorithm for this study. In ARO, the detour foraging helps in
accomplishing global search, while random hiding helps in
accomplishing local search. There parameter, R, presented in
Equation 2 could be adaptatively adjusted as the number of
iterations increase, in order to foster the gradual alternation from

 Volume 5 | Issue 2 | 11J Robot Auto Res, 2024

exploration to exploitation. Approximately half of the iterations
are assigned to exploitation (A ≤ 1) and the other half assigned
to exploration (A > 1), as an outcome of the energy factor, A.
This energy factor is a time dependent factor effectively switches
between exploitation and exploration as well as enhances these
phases. Furthermore, ARO has a good ability for bearing fault
diagnosis gotten from its ability to balance exploitative and
explorative search. The computation complexity of ARO is linear
and given by Equation 16 below:

Despite having a superior performance, ARO also has a couple
of shortcomings. ARO lacks multiple search mechanisms during
optimization of problems that have variable types of certainty.
Also, ARO faces shortcomings in handling unimodal problems that
have multiple extrema. Hence ARO is less efficient in solving NP-
Hard problems. These problems could be solved by implementing
multi-objective and binary versions of the algorithm.

(GBM) brain cancer dataset, Prostate

Adenocarcinoma (PRAD) prostate cancer dataset,

Breast Cancer (BRCA) dataset and Ovarian Cancer

(OV) dataset. Comparison on results was performed

with 4 other state-of-the-art models used for

identifying cancer driver mutations: Dendrix,

DriverNet, HotNet2 and QuaDMutNetEx. ARO

proposed in this study proved to be quite efficient in

identifying cancer driver mutations in comparison

with these methods. ARO was able to identify the

following driver genes labelled as canonical genes by

the NCG7.0. For GBM: TP53, PTEN, PIK3R1,

PIK3CA, RB1, NF1, PDGFRA, PTPN11 and STAG2

were identified among the top 30 ranked; for OV:

TP53, BRCA1, RB1 and FAT3 were identified

among the top 30 ranked; for PRAD: TP53,

CTNNB1, FOXA1, PIK3CA, ATM, PTEN, SPOP,

HRAS, KMT2D, NCOR1, APC and KMT2C were

identified among the top 30 ranked; for BRCA: TP53,

PIK3CA, EP300, AKT1, CDH1, KMT2C, GATA3,

PIK3R1, MAP3K1, NOTCH1, ERBB3, NCOR1,

ERBB2, NF1, CBFB, EGFR, ARID1A, BRCA1,

CTCF, SMAD4, ATR, RB1, RUNX1 and PTEN

were identified among the top 30 ranked.

There are several aspects to why ARO serves are an

appropriate algorithm for this study. In ARO, the

detour foraging helps in accomplishing global search,

while random hiding helps in accomplishing local

search. There parameter, R, presented in Equation 2

could be adaptatively adjusted as the number of

iterations increase, in order to foster the gradual

alternation from exploration to exploitation.

Approximately half of the iterations are assigned to

exploitation (A ≤ 1) and the other half assigned to

exploration (A > 1), as an outcome of the energy

factor, A. This energy factor is a time dependent

factor effectively switches between exploitation and

exploration as well as enhances these phases.

Furthermore, ARO has a good ability for bearing

fault diagnosis gotten from its ability to balance

exploitative and explorative search. The computation

complexity of ARO is linear and given by Equation

16 below:

Despite having a superior performance, ARO also has

a couple of shortcomings. ARO lacks multiple search

mechanisms during optimization of problems that

have variable types of certainty. Also, ARO faces

shortcomings in handling unimodal problems that

have multiple extrema. Hence ARO is less efficient in

solving NP-Hard problems. These problems could be

solved by implementing multi-objective and binary

versions of the algorithm.

O(ARO) = O(1+ n + Tn + 0.5*Tnd + 0.5 Tnd) = O(Tnd + Tn + n). ………….. (16)

(GBM) brain cancer dataset, Prostate

Adenocarcinoma (PRAD) prostate cancer dataset,

Breast Cancer (BRCA) dataset and Ovarian Cancer

(OV) dataset. Comparison on results was performed

with 4 other state-of-the-art models used for

identifying cancer driver mutations: Dendrix,

DriverNet, HotNet2 and QuaDMutNetEx. ARO

proposed in this study proved to be quite efficient in

identifying cancer driver mutations in comparison

with these methods. ARO was able to identify the

following driver genes labelled as canonical genes by

the NCG7.0. For GBM: TP53, PTEN, PIK3R1,

PIK3CA, RB1, NF1, PDGFRA, PTPN11 and STAG2

were identified among the top 30 ranked; for OV:

TP53, BRCA1, RB1 and FAT3 were identified

among the top 30 ranked; for PRAD: TP53,

CTNNB1, FOXA1, PIK3CA, ATM, PTEN, SPOP,

HRAS, KMT2D, NCOR1, APC and KMT2C were

identified among the top 30 ranked; for BRCA: TP53,

PIK3CA, EP300, AKT1, CDH1, KMT2C, GATA3,

PIK3R1, MAP3K1, NOTCH1, ERBB3, NCOR1,

ERBB2, NF1, CBFB, EGFR, ARID1A, BRCA1,

CTCF, SMAD4, ATR, RB1, RUNX1 and PTEN

were identified among the top 30 ranked.

There are several aspects to why ARO serves are an

appropriate algorithm for this study. In ARO, the

detour foraging helps in accomplishing global search,

while random hiding helps in accomplishing local

search. There parameter, R, presented in Equation 2

could be adaptatively adjusted as the number of

iterations increase, in order to foster the gradual

alternation from exploration to exploitation.

Approximately half of the iterations are assigned to

exploitation (A ≤ 1) and the other half assigned to

exploration (A > 1), as an outcome of the energy

factor, A. This energy factor is a time dependent

factor effectively switches between exploitation and

exploration as well as enhances these phases.

Furthermore, ARO has a good ability for bearing

fault diagnosis gotten from its ability to balance

exploitative and explorative search. The computation

complexity of ARO is linear and given by Equation

16 below:

Despite having a superior performance, ARO also has

a couple of shortcomings. ARO lacks multiple search

mechanisms during optimization of problems that

have variable types of certainty. Also, ARO faces

shortcomings in handling unimodal problems that

have multiple extrema. Hence ARO is less efficient in

solving NP-Hard problems. These problems could be

solved by implementing multi-objective and binary

versions of the algorithm.

O(ARO) = O(1+ n + Tn + 0.5*Tnd + 0.5 Tnd) = O(Tnd + Tn + n). ………….. (16)

5. Conclusion
This study implements a modified version of a newly developed
bio-inspired optimizer which mimics the natural behavior of
rabbits. The optimizer models the strategies used by rabbits
for survival, through random hiding and detour foraging. This
model, known as Artificial Rabbits Optimization, was developed
to accurately determine global optima for multimodal, unimodal
and composite functions while performing both local and global
search. In this study, we use make use of this algorithms property
to identify known cancer driver mutations found in cancer patients.
The Artificial Rabbits Optimization algorithm is significantly
important in tackling engineering problems that have constrained
as well as unknown search spaces. With that respect, it is important
to mention that this algorithm properly serves cancer driver
mutation identification as the amount of available cancer data in
the world increases day by day. That is, the search space for cancer
driver genes is continuously changing. To highlight the efficiency
of the algorithm in this context, experiments are carried out in this
research on 4 different cancer types: Breast cancer, ovarian cancer,
brain cancer and prostate cancer. Even though this algorithm shows
some shortcomings in finding multiple search mechanisms for
exploration, it still portrays outstanding performance in achieving
efficient results.

Declaration
Ethical Approval and Consent to Participate
Not Applicable.
Consent to publication
Not Applicable.
Data Availability Statement
Data, Codes and Materials are available privately now at https://
github.com/Alangeh/Improved-ARO.
Conflict of Interest
Authors declare that there was no conflict interest.
Funding
No funding was gotten for this research.
Acknowledgements
Not Applicable.

Authors Contributions
Both authors of this paper were actively involved in the
development of the research study. Mr. Lionel was mainly focused

on developing and implementing the code for the proposed
algorithm, gathering and analyzing the results, while Dr. Yilmaz
was behind the logic of the algorithm, better shaping it to provide
the best results.

References
1. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer:

the next generation. cell, 144(5), 646-674.
2. Zack, T. I., Schumacher, S. E., Carter, S. L., Cherniack, A.

D., Saksena, G., Tabak, B., ... & Beroukhim, R. (2013). Pan-
cancer patterns of somatic copy number alteration. Nature
genetics, 45(10), 1134-1140.

3. Stratton, M. R., Campbell, P. J., & Futreal, P. A. The cancer
genome. Nature [Internet]. 2009; 458 (7239): 719–24.

4. Weinstein, J. N., Collisson, E. A., Mills, G. B., Shaw, K.
R., Ozenberger, B. A., Ellrott, K., ... & Stuart, J. M. (2013).
The cancer genome atlas pan-cancer analysis project. Nature
genetics, 45(10), 1113-1120.

5. List, M., Hauschild, A. C., Tan, Q., Kruse, T. A., Baumbach,
J., & Batra, R. (2014). Classification of breast cancer subtypes
by combining gene expression and DNA methylation data.
Journal of integrative bioinformatics, 11(2), 1-14.

6. Vandin, F., Upfal, E., & Raphael, B. J. (2012). De novo
discovery of mutated driver pathways in cancer. Genome
research, 22(2), 375-385.

7. Ciriello, G., Cerami, E., Sander, C., & Schultz, N. (2012).
Mutual exclusivity analysis identifies oncogenic network
modules. Genome research, 22(2), 398-406.

8. Miller, C. A., Settle, S. H., Sulman, E. P., Aldape, K. D., &
Milosavljevic, A. (2011). Discovering functional modules
by identifying recurrent and mutually exclusive mutational
patterns in tumors. BMC medical genomics, 4, 1-11.

9. Bokhari, Y., Alhareeri, A., & Arodz, T. (2020). QuaDMutNetEx:
a method for detecting cancer driver genes with low mutation
frequency. BMC bioinformatics, 21, 1-12.

10. Wei, P. J., Zhang, D., Xia, J., & Zheng, C. H. (2016).
LNDriver: identifying driver genes by integrating mutation
and expression data based on gene-gene interaction network.
BMC bioinformatics, 17, 221-230.

11. Vandin, F., Upfal, E., & Raphael, B. J. (2011). Algorithms for
detecting significantly mutated pathways in cancer. Journal of
Computational Biology, 18(3), 507-522.

https://www.cell.com/abstract/S0092-8674%2811%2900127-9?ref=https://githubhelp.com
https://www.cell.com/abstract/S0092-8674%2811%2900127-9?ref=https://githubhelp.com
https://www.nature.com/articles/ng.2760
https://www.nature.com/articles/ng.2760
https://www.nature.com/articles/ng.2760
https://www.nature.com/articles/ng.2760
https://www.nature.com/articles/ng.2764.
https://www.nature.com/articles/ng.2764.
https://www.nature.com/articles/ng.2764.
https://www.nature.com/articles/ng.2764.
https://doi.org/10.1515/jib-2014-236
https://doi.org/10.1515/jib-2014-236
https://doi.org/10.1515/jib-2014-236
https://doi.org/10.1515/jib-2014-236
https://doi.org/10.1101/gr.120477.111
https://doi.org/10.1101/gr.120477.111
https://doi.org/10.1101/gr.120477.111
https://doi.org/10.1101/gr.125567.111
https://doi.org/10.1101/gr.125567.111
https://doi.org/10.1101/gr.125567.111
https://link.springer.com/article/10.1186/1755-8794-4-34
https://link.springer.com/article/10.1186/1755-8794-4-34
https://link.springer.com/article/10.1186/1755-8794-4-34
https://link.springer.com/article/10.1186/1755-8794-4-34
https://link.springer.com/article/10.1186/s12859-020-3449-2
https://link.springer.com/article/10.1186/s12859-020-3449-2
https://link.springer.com/article/10.1186/s12859-020-3449-2
https://link.springer.com/article/10.1186/s12859-016-1332-y
https://link.springer.com/article/10.1186/s12859-016-1332-y
https://link.springer.com/article/10.1186/s12859-016-1332-y
https://link.springer.com/article/10.1186/s12859-016-1332-y
https://doi.org/10.1089/cmb.2010.0265
https://doi.org/10.1089/cmb.2010.0265
https://doi.org/10.1089/cmb.2010.0265

 Volume 5 | Issue 2 | 12J Robot Auto Res, 2024

Copyright: © 2024 Yılmaz Atay, et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

https://opastpublishers.com/

12. Leiserson, M. D., Vandin, F., Wu, H. T., Dobson, J. R.,
Eldridge, J. V., Thomas, J. L., ... & Raphael, B. J. (2015).
Pan-cancer network analysis identifies combinations of rare
somatic mutations across pathways and protein complexes.
Nature genetics, 47(2), 106-114.

13. Hofree, M., Shen, J. P., Carter, H., Gross, A., & Ideker, T.
(2013). Network-based stratification of tumor mutations.
Nature methods, 10(11), 1108-1115.

14. Cho, A., Shim, J. E., Kim, E., Supek, F., Lehner, B., & Lee,
I. (2016). MUFFINN: cancer gene discovery via network
analysis of somatic mutation data. Genome biology, 17, 1-16.

15. Song, J., Peng, W., Wang, F., & Wang, J. (2019). Identifying
driver genes involving gene dysregulated expression, tissue-
specific expression and gene-gene network. BMC medical
genomics, 12, 1-12.

16. Song, J., Peng, W., & Wang, F. (2019). A random walk-based
method to identify driver genes by integrating the subcellular
localization and variation frequency into bipartite graph. BMC
bioinformatics, 20, 1-17.

17. Zeng, Z., Mao, C., Vo, A., Li, X., Nugent, J. O., Khan, S. A., ...
& Luo, Y. (2021). Deep learning for cancer type classification
and driver gene identification. BMC bioinformatics, 22, 1-13.

18. Mamoshina, P., Vieira, A., Putin, E., & Zhavoronkov, A.
(2016). Applications of deep learning in biomedicine.
Molecular pharmaceutics, 13(5), 1445-1454.

19. Mao, C., Yao, L., Pan, Y., Luo, Y., & Zeng, Z. (2018,
December). Deep generative classifiers for thoracic disease
diagnosis with chest x-ray images. In 2018 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM) (pp.
1209-1214). IEEE.

20. Angermueller, C., Pärnamaa, T., Parts, L., & Stegle, O. (2016).
Deep learning for computational biology. Molecular systems
biology, 12(7), 878.

21. Quang, D., & Xie, X. (2016). DanQ: a hybrid convolutional
and recurrent deep neural network for quantifying the
function of DNA sequences. Nucleic acids research, 44(11),
e107-e107.

22. Alipanahi, B., Delong, A., Weirauch, M. T., & Frey, B. J.
(2015). Predicting the sequence specificities of DNA-and
RNA-binding proteins by deep learning. Nature biotechnology,
33(8), 831-838.

23. Angermueller, C., Lee, H. J., Reik, W., & Stegle, O. (2017).
DeepCpG: accurate prediction of single-cell DNA methylation
states using deep learning. Genome biology, 18, 1-13.

24. Zhou, J., & Troyanskaya, O. G. (2015). Predicting effects
of noncoding variants with deep learning–based sequence
model. Nature methods, 12(10), 931-934.

25. Holland, J. H. (1992). Adaptation in natural and artificial
systems: an introductory analysis with applications to biology,
control, and artificial intelligence. MIT press.

26. Storn, R., & Price, K. (1997). Differential evolution–a simple

and efficient heuristic for global optimization over continuous
spaces. Journal of global optimization, 11, 341-359.

27. Wang, L., Cao, Q., Zhang, Z., Mirjalili, S., & Zhao, W.
(2022). Artificial rabbits optimization: A new bio-inspired
meta-heuristic algorithm for solving engineering optimization
problems. Engineering Applications of Artificial Intelligence,
114, 105082.

28. Bashashati, A., Haffari, G., Ding, J., Ha, G., Lui, K., Rosner,
J., ... & Shah, S. P. (2012). DriverNet: uncovering the impact
of somatic driver mutations on transcriptional networks in
cancer. Genome biology, 13, 1-14.

29. Erten, C., Houdjedj, A., & Kazan, H. (2021). Ranking cancer
drivers via betweenness-based outlier detection and random
walks. BMC bioinformatics, 22, 1-16.

30. Repana, D., Nulsen, J., Dressler, L., Bortolomeazzi, M.,
Venkata, S. K., Tourna, A., ... & Ciccarelli, F. D. (2019). The
Network of Cancer Genes (NCG): a comprehensive catalogue
of known and candidate cancer genes from cancer sequencing
screens. Genome biology, 20, 1-12.

31. Tůmová, E., Martinec, M., & Chodová, D. (2011). Analysis
of Czech rabbit genetic resources. Scientia agriculturae
bohemica, 42(3), 113-118.

32. Juan, Q. (2017). Rabbits do not eat grass around the nest.
Knowl. Window.13, 39.

33. Tynes, V. V. (Ed.). (2010). Behavior of exotic pets. John Wiley
& Sons.

34. Camp, M. J., Rachlow, J. L., Shipley, L. A., Johnson, T. R.,
& Bockting, K. D. (2014). Grazing in sagebrush rangelands
in western North America: implications for habitat quality
for a sagebrush specialist, the pygmy rabbit. The Rangeland
Journal, 36(2), 151-159.

35. Mirjalili, S., & Lewis, A. (2016). The whale optimization
algorithm. Advances in engineering software, 95, 51-67.

36. cBioPortal for Cancer genomics. 24th May 2022, http://www.
cbioportal.org.

37. Trivedi, I. N., Pradeep, J., Narottam, J., Arvind, K., & Dilip,
L. (2016). Novel adaptive whale optimization algorithm
for global optimization. Indian Journal of Science and
Technology.

38. Leiserson, Vandin, F., Wu, HT., Dobson, JR., Eldridge, JV.,
Thomas, JL., (2018) HotNet2.

39. Hussain, K., Salleh, M. N. M., Cheng, S., & Shi, Y. (2019).
On the exploration and exploitation in popular swarm-
based metaheuristic algorithms. Neural Computing and
Applications, 31(11), 7665-7683.

40. Sarkar, A., Atay, Y., Erickson, A. L., Arisi, I., Saltini, C., &
Kahveci, T. (2019). An efficient algorithm for identifying
mutated subnetworks associated with survival in cancer.
IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 17(5), 1582-1594.

https://doi.org/10.1038%2Fng.3168
https://doi.org/10.1038%2Fng.3168
https://doi.org/10.1038%2Fng.3168
https://doi.org/10.1038%2Fng.3168
https://doi.org/10.1038%2Fng.3168
https://www.nature.com/articles/nmeth.2651
https://www.nature.com/articles/nmeth.2651
https://www.nature.com/articles/nmeth.2651
https://link.springer.com/article/10.1186/s13059-016-0989-x
https://link.springer.com/article/10.1186/s13059-016-0989-x
https://link.springer.com/article/10.1186/s13059-016-0989-x
https://link.springer.com/article/10.1186/s12920-019-0619-z
https://link.springer.com/article/10.1186/s12920-019-0619-z
https://link.springer.com/article/10.1186/s12920-019-0619-z
https://link.springer.com/article/10.1186/s12920-019-0619-z
https://link.springer.com/article/10.1186/s12859-019-2847-9
https://link.springer.com/article/10.1186/s12859-019-2847-9
https://link.springer.com/article/10.1186/s12859-019-2847-9
https://link.springer.com/article/10.1186/s12859-019-2847-9
https://link.springer.com/article/10.1186/s12859-021-04400-4
https://link.springer.com/article/10.1186/s12859-021-04400-4
https://link.springer.com/article/10.1186/s12859-021-04400-4
https://doi.org/10.1021/acs.molpharmaceut.5b00982
https://doi.org/10.1021/acs.molpharmaceut.5b00982
https://doi.org/10.1021/acs.molpharmaceut.5b00982
https://doi.org/10.1109%2FBIBM.2018.8621107
https://doi.org/10.1109%2FBIBM.2018.8621107
https://doi.org/10.1109%2FBIBM.2018.8621107
https://doi.org/10.1109%2FBIBM.2018.8621107
https://doi.org/10.1109%2FBIBM.2018.8621107
https://doi.org/10.15252/msb.20156651
https://doi.org/10.15252/msb.20156651
https://doi.org/10.15252/msb.20156651
https://doi.org/10.1093/nar/gkw226
https://doi.org/10.1093/nar/gkw226
https://doi.org/10.1093/nar/gkw226
https://doi.org/10.1093/nar/gkw226
https://www.nature.com/articles/nbt.3300.
https://www.nature.com/articles/nbt.3300.
https://www.nature.com/articles/nbt.3300.
https://www.nature.com/articles/nbt.3300.
https://link.springer.com/article/10.1186/s13059-017-1189-z
https://link.springer.com/article/10.1186/s13059-017-1189-z
https://link.springer.com/article/10.1186/s13059-017-1189-z
https://doi.org/10.1038%2Fnmeth.3547
https://doi.org/10.1038%2Fnmeth.3547
https://doi.org/10.1038%2Fnmeth.3547
https://link.springer.com/article/10.1023/a:1008202821328
https://link.springer.com/article/10.1023/a:1008202821328
https://link.springer.com/article/10.1023/a:1008202821328
https://doi.org/10.1016/j.engappai.2022.105082
https://doi.org/10.1016/j.engappai.2022.105082
https://doi.org/10.1016/j.engappai.2022.105082
https://doi.org/10.1016/j.engappai.2022.105082
https://doi.org/10.1016/j.engappai.2022.105082
https://link.springer.com/article/10.1186/gb-2012-13-12-r124
https://link.springer.com/article/10.1186/gb-2012-13-12-r124
https://link.springer.com/article/10.1186/gb-2012-13-12-r124
https://link.springer.com/article/10.1186/gb-2012-13-12-r124
https://link.springer.com/article/10.1186/s12859-021-03989-w
https://link.springer.com/article/10.1186/s12859-021-03989-w
https://link.springer.com/article/10.1186/s12859-021-03989-w
https://link.springer.com/article/10.1186/s13059-018-1612-0
https://link.springer.com/article/10.1186/s13059-018-1612-0
https://link.springer.com/article/10.1186/s13059-018-1612-0
https://link.springer.com/article/10.1186/s13059-018-1612-0
https://link.springer.com/article/10.1186/s13059-018-1612-0
https://www.researchgate.net/publication/292703080_Analysis_of_Czech_rabbit_genetic_resources
https://www.researchgate.net/publication/292703080_Analysis_of_Czech_rabbit_genetic_resources
https://www.researchgate.net/publication/292703080_Analysis_of_Czech_rabbit_genetic_resources
https://www.publish.csiro.au/RJ/RJ13065
https://www.publish.csiro.au/RJ/RJ13065
https://www.publish.csiro.au/RJ/RJ13065
https://www.publish.csiro.au/RJ/RJ13065
https://www.publish.csiro.au/RJ/RJ13065
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.17485/ijst/2016/v9i38/126949
https://doi.org/10.17485/ijst/2016/v9i38/126949
https://doi.org/10.17485/ijst/2016/v9i38/126949
https://doi.org/10.17485/ijst/2016/v9i38/126949
https://link.springer.com/article/10.1007/s00521-018-3592-0
https://link.springer.com/article/10.1007/s00521-018-3592-0
https://link.springer.com/article/10.1007/s00521-018-3592-0
https://link.springer.com/article/10.1007/s00521-018-3592-0
https://doi.org/10.1109/TCBB.2019.2911069
https://doi.org/10.1109/TCBB.2019.2911069
https://doi.org/10.1109/TCBB.2019.2911069
https://doi.org/10.1109/TCBB.2019.2911069
https://doi.org/10.1109/TCBB.2019.2911069

