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Abstract 
Critical Point Theory plays a pivotal role in the study of Partial Differential Equations (PDEs), particularly in investigating 
the existence, uniqueness, and multiplicity of weak solutions to elliptic PDEs under specified boundary conditions. This article 
offers a concise survey of key concepts, including differentiation on Banach spaces, the analysis of maxima and minima, and 
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solutions for Dirichlet boundary value problems under specific conditions. A highlight of this work is the proof of Rabinowitz’s 
Saddle Point Theorem via the Brouwer Degree method. Researchers interested in exploring the themes covered in this paper will 
find the reference section to be a valuable resource for further study.

Subham De*

Citation: De, S. (2024). An Exposition on Critical Point Theory with Applications. Curr Res Stat Math, 3(3), 01-31.

Keywords: Critical Point, Saddle Point, Banach Spaces, Weak Convergence, Variational Principle, Weak Solution, Mountain Pass The-
orem, Rabinowitz Saddle Point Theorem, Brouwer Degree

Department of Mathematics, Indian Institute of Technology, 
Delhi, India

Curr Res Stat Math, 2024

ISSN: 2994- 9459

Current Research in Statistics & Mathematics

1 Introduction
1.1 Preliminaries
A priori given a partial differential equation on a bounded domain, be it linear or non-linear, we might end up obtaining solutions which 
also happens to be critica points of certain functionals defined on some appropriate Sobolev Space. Suppose, we consider the following 
boundary value problem on some bounded domain Ω ⊂ ℝn as follows:
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1 Introduction

1.1 Preliminaries

A priori given a partial differential equation on a bounded domain, be it linear or non-linear, we

might end up obtaining solutions which also happens to be critica points of certain functionals

defined on some appropriate Sobolev Space.

Suppose, we consider the following boundary value problem on some bounded domain Ω ⊂ Rn

as follows:
{

−∆u = f in Ω

u = 0 on ∂Ω
(1.1)

Where, ∂Ω denotes the boundary of Ω in Rn. A priori from the boundary condition, it only

suffices to search for weak solutions of (1.1) in the Sobolev Space H1
0 (Ω), the later assertion

follows from the fact that, not all functions in H1
0 (Ω) is smooth (i.e. C2).
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Definition 1.1.1. (Weak Solution) A function u ∈ H1
0 (Ω) is defined to be a weak solution of

(1.1) if,
∫

Ω

∇u∇ϕ =

∫

Ω

fϕ ∀ ϕ ∈ H1
0 (Ω) (1.2)

In case when u is a classical solution, i.e., in other words, when, u ∈ C2(Ω)∩C(Ω̄) and satisfies

(1.1) point-wise, then, we can indeed obtain (1.2) by multiplying (1.1) by ϕ and integrating by

parts.

Remark 1.1.1. (1.2) is valid only when, f ∈ H−1(Ω) =
(
H1

0 (Ω)
)∗
.

Define a functional, J : H1
0 (Ω) −→ R as,

J(u) :=
1

2

∫

Ω

|∇u|2 −
∫

Ω

fu (1.3)

It can be deduced that, J is in fact a C1-function, and, J ′(u) : H1
0 (Ω) −→ R is a bounded

linear functional having the following expression,

J ′(u)ϕ =

∫

Ω

∇u∇ϕ−
∫

Ω

fϕ ∀ ϕ ∈ H1
0 (Ω) (1.4)

Hence, we can infer that, u ∈ H1
0 (Ω) is a weak solution of (1.1) ⇔ J ′(u0) = 0.

1.2 Conditions on a C1-function defined on a Real Banach Space

Given a real Banach Space X and a C1-function, I : X → R, our primary objective in this

section shall be to obtain certain conditions on I in order to ensure that, ∃ x0 ∈ X satisfying,

I ′(x0) = 0.

The answer is quite simple for the one-dimensional case. Consider the example when, X = R.
Correspondingly, choose any C1-function, I : R → R. Then, for every x1, x2 ∈ R with, x1 < x2,

if ∃ x3 ∈ (x1, x2) satisfying, I(x3) > max{I(x1), I(x2)}, it follows that, ∃ x0 ∈ (x1, x2) such

that, I ′(x0) = 0.

Although, for higher dimensional cases, it’s rather difficult. For example, if we consider,

I : R2 → R defined as, I(x, y) := ex − y2. We can deduce that, for any (x1, y1) and (x1,−y1)

in R2 with x1, y1 > 0, I(x1,±y1) < 0 and, I(x, 0) = ex > 0. This implies that, the line, y = 0

separates the points (x1,±y1) where,

I(x, 0) > max{I(x1, y1), I(x1,−y1)}, ∀ x ∈ R

But, an important observation that, I ′(x, y) = (ex,−2y) helps us conclude that, ∄ any critical

point for I.
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point for I.
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Definition 1.1.1. (Weak Solution) A function u ∈ H1
0 (Ω) is defined to be a weak solution of

(1.1) if,
∫

Ω

∇u∇ϕ =

∫

Ω

fϕ ∀ ϕ ∈ H1
0 (Ω) (1.2)

In case when u is a classical solution, i.e., in other words, when, u ∈ C2(Ω)∩C(Ω̄) and satisfies

(1.1) point-wise, then, we can indeed obtain (1.2) by multiplying (1.1) by ϕ and integrating by

parts.

Remark 1.1.1. (1.2) is valid only when, f ∈ H−1(Ω) =
(
H1

0 (Ω)
)∗
.

Define a functional, J : H1
0 (Ω) −→ R as,

J(u) :=
1

2

∫

Ω

|∇u|2 −
∫

Ω

fu (1.3)

It can be deduced that, J is in fact a C1-function, and, J ′(u) : H1
0 (Ω) −→ R is a bounded

linear functional having the following expression,

J ′(u)ϕ =

∫

Ω

∇u∇ϕ−
∫

Ω

fϕ ∀ ϕ ∈ H1
0 (Ω) (1.4)

Hence, we can infer that, u ∈ H1
0 (Ω) is a weak solution of (1.1) ⇔ J ′(u0) = 0.

1.2 Conditions on a C1-function defined on a Real Banach Space

Given a real Banach Space X and a C1-function, I : X → R, our primary objective in this

section shall be to obtain certain conditions on I in order to ensure that, ∃ x0 ∈ X satisfying,

I ′(x0) = 0.

The answer is quite simple for the one-dimensional case. Consider the example when, X = R.
Correspondingly, choose any C1-function, I : R → R. Then, for every x1, x2 ∈ R with, x1 < x2,

if ∃ x3 ∈ (x1, x2) satisfying, I(x3) > max{I(x1), I(x2)}, it follows that, ∃ x0 ∈ (x1, x2) such

that, I ′(x0) = 0.

Although, for higher dimensional cases, it’s rather difficult. For example, if we consider,

I : R2 → R defined as, I(x, y) := ex − y2. We can deduce that, for any (x1, y1) and (x1,−y1)
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But, an important observation that, I′(x, y) = (ex,−2y) helps us conclude that, ∄ any critical point for I.

1.3 Palais-Smale Condition
Definition 1.3.1. (Palais-Smale Condition) Given a Banach Space X and, I ∈ C1(X;ℝ), we define the functional I to satisfy the Pal-
ais-Smale Condition, if every sequence {xn}n∈ℕ in X for which I(xn) is bounded and I′(xn) → 0 contains a convergent subsequence.

We can infer about the above problem as discussed in the section (1.2) in case for an arbitrary Banach Spaces using a famous result by 
Ambrosetti and Rabinowitz.

Theorem 1.3.1. (Mountain-Pass Theorem) Given a Banach Space X and, I ∈ C1(X;ℝ), assume that, I satisfies the Palais-Smale Condi-
tion. Furthermore, suppose, ∃ R > 0 and, e ∈ X satisfying, ||e|| > R and, b =                      I(x) > max{I(0), I(e)}. Then, ∃ x0 ∈ X such that, 
I′(x0) = 0 and, I(x0) ≥ b.

Remark 1.3.2. In other words, the theorem implies that, if a pair of points in the graph of I are indeed separated by a mountain ∂BR(0), 
then I has a critical point.

Remark 1.3.3. One of our aims in this article is to present aproof of the Mountain-Pass Theorem (1.3.1), as well as applying the state-
ment of the same in order to look for non-negative weak solution u ∈ H1

0(Ω) to the non-linear boundary value problem (1.1) over a 
bounded domain Ω ⊂ ℝn, f : ℝ → ℝ being continuous.

1.4 Differentiation in Banach Spaces
Suppose, we choose any two real Banach Spaces X and Y , and, B(X; Y ) denotes the space of all bounded linear operators from X to Y. 
Let us further denote, X ∗ := B(X;ℝ). Moreover, let A ⊂ X be open.

Definition 1.4.1. Let, x0 ∈ A. A function, I : A → Y is defined to be Frechet Differentiable (or, just differentiable) at x0, if ∃ a bounded 
linear operator, DI(x0) : X → Y , in other words, DI(x0) ∈ B(X; Y ) satisfying,
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1.4 Differentiation in Banach Spaces

Suppose, we choose any two real Banach Spaces X and Y , and, B(X;Y ) denotes the space of

all bounded linear operators from X to Y . Let us further denote, X∗ := B(X;R). Moreover,

let A ⊂ X be open.

Definition 1.4.1. Let, x0 ∈ A. A function, I : A → Y is defined to be Frechet Differentiable

(or, just differentiable) at x0, if ∃ a bounded linear operator, DI(x0) : X → Y , in other words,

DI(x0) ∈ B(X;Y ) satisfying,

lim
h→0

||I(x0 + h)− I(x0)−DI(x0)h||Y
||h||X

= 0 (1.5)

Example 1.4.1. For any differentiable function, f : R → R at some x0 ∈ R, we have, f ′(x0) ∈ R.
Correspondingly, the Frechet Derivative, Df(x0) of f at the point x0 has the following

expression, Df(x0)(x) = f ′(x0).x, ∀ x ∈ R.
In general, in case when, X = R, A = (a, b) and, I : A → Y be differentiable at x0 ∈ (a, b),

then we define, I ′(x0) := DI(x0)(1) ∈ Y via the canonical isomorphism, i : B(R;Y ) → Y given

by, i(T ) := T (1).
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Example 1.4.1. For any differentiable function, f : ℝ → ℝ at some x0 ∈ ℝ, we have, f ′(x0) ∈ ℝ. Correspondingly, the Frechet Derivative, 
Df(x0) of f at the point x0 has the following expression, Df(x0)(x) = f ′(x0).x, ∀ x ∈ ℝ.

In general, in case when, X = ℝ, A = (a, b) and, I : A → Y be differentiable at x0 ∈ (a, b), then we define, I′ (x0) := DI(x0)(1) ∈ Y via the 
canonical isomorphism, i : B(ℝ; Y ) → Y given by, i(T) := T(1).

For arbitrary real Banach Spaces X and Y , if I : A → Y be Frechet Differentiable at some x0 ∈ A, then, corresponding to the Frechet 
Derivative of I at x0 defined as, DI(x0) satisfying (1.5), we write I′ (x0) to be the derivative of I at x0.

Definition 1.4.2. A function, I : A → Y is defined to be differentiable on A if it is differentiable at every point of A. Furthermore, I ∈ C1(A; 
Y ) if, I′ : A → B(X; Y ) is continuous.

Example 1.4.2. (i) Suppose, (X, ⟨., .⟩) be a Hilbert Space and, I : X → ℝ defined as, I(x) = ⟨x, x⟩. Then, I ∈ C1(X;ℝ) such that,
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Example 1.4.2. (i) Suppose, (X, ⟨., .⟩) be a Hilbert Space and, I : X → R defined as,

I(x) = ⟨x, x⟩. Then, I ∈ C1(X;R) such that,

I ′(x)y = 2⟨x, y⟩, x, y ∈ X.

(ii) Suppose, f ∈ H−1(Ω). Define, J : H1
0 (Ω) → R as,

j(u) :=
1

2

∫

Ω

|∇u|2 −
∫

Ω

fu.

We can in fact conclude that, J ∈ C1(H1
0 (Ω);R). Furthermore,

J ′(u)ϕ =

∫

Ω

∇u∇ϕ−
∫

Ω

fϕ ∀ u, ϕ ∈ H1
0 (Ω).

We can comment on some important properties of the derivative as follows.

1. (Chain Rule) A priori given X,Y and Z, and, A ⊂ X, B ⊂ Y being non-empty open

sets, suppose, I : A → Y and J : B → Z be functions satisfying, I(A) ⊂ B. If, I and J

are differentiable at x0 ∈ A and I(x0) respectively, then, J ◦ I : A → Z is differentiable at

x0, and,

(J ◦ I)′(x0) = J ′(I(x0)) ◦ I ′(x0). (1.6)

2. (Mean Value Theorem) A priori given a differentiable function, I : A → Y and,

x0, x1 ∈ A, let us define,

[x0, x1] = {λx0 + (1− λ)x1 : 0 ≤ λ ≤ 1}

to be a line segment in A.. Then,

||I(x1)− I(x0)|| ≤ sup
x∈[x0,x1]

||I ′(x)||||x1 − x0||. (1.7)
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I(x) = ⟨x, x⟩. Then, I ∈ C1(X;R) such that,

I ′(x)y = 2⟨x, y⟩, x, y ∈ X.

(ii) Suppose, f ∈ H−1(Ω). Define, J : H1
0 (Ω) → R as,

j(u) :=
1

2

∫

Ω

|∇u|2 −
∫

Ω

fu.

We can in fact conclude that, J ∈ C1(H1
0 (Ω);R). Furthermore,

J ′(u)ϕ =

∫

Ω

∇u∇ϕ−
∫

Ω

fϕ ∀ u, ϕ ∈ H1
0 (Ω).

We can comment on some important properties of the derivative as follows.

1. (Chain Rule) A priori given X,Y and Z, and, A ⊂ X, B ⊂ Y being non-empty open

sets, suppose, I : A → Y and J : B → Z be functions satisfying, I(A) ⊂ B. If, I and J

are differentiable at x0 ∈ A and I(x0) respectively, then, J ◦ I : A → Z is differentiable at

x0, and,

(J ◦ I)′(x0) = J ′(I(x0)) ◦ I ′(x0). (1.6)
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3. (Taylor’s Formula) A priori given a function, I : A → Y being differentiable at some

x ∈ A, let us define,

R(h) := I(x+ h)− I(x) + I ′(x)(h)

Then, by (1.5), the Remainder Term, R(h) satisfies,

lim
h→0

||R(h)||
||h||

= 0, i.e., R(h) = o(||h||). (1.8)

Theorem 1.4.3. Suppose, Ω ⊂ Rn be bounded and open, and, p > 1. Moreover, let g : R → R
be a C1-function satisfying,

1. |g(t)| ≤ a+ b|t|p,

2. |g′(t)| ≤ a+ b|t|p−1

for some constants a, b. Also,

I(u) :=

∫

Ω

g(u(x)). (1.9)

Then, I ∈ C1(Lp(Ω);R), and, for every u ∈ Lp(Ω),

I ′(u)ϕ =

∫

Ω

g′(u)ϕ, ∀ ϕ ∈ Lp(Ω).

Corollary 1.4.4. Suppose, for any continuous function, f : R → R satisfying,

|f(t)| ≤ a+ b|t|p

for every, 1 < p ≤ (n+2)
(n−2) . Moreover, let, F (t) =

t∫
0

f(s)ds be the primitive of f . If, I : H1
0 (Ω) → R

has the following definition,

I(u) :=

∫

Ω

F (u(x))dx.

Then, I ∈ C1(H1
0 (Ω);R), and,

I ′(u)ϕ =

∫

Ω

f(u)ϕ ∀ ϕ ∈ H1
0 (Ω). (1.10)
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On the other hand, x0 is defined to be a global maximum of I if,

Therefore, we write,

Remark 2.0.1. Assume A ⊂ X to be open, and I : A → ℝ be diffeentiable on A. Then,

provided, x0 ∈ A is a local minima (or, a local maxima) of I.

Definition 2.0.3. (Critical Point) Suppose, A ⊂ X be open, and I : A → R be differentiable on A. A point x0 ∈ A is defined to be a critical 
point of I if, I′(x0) = 0. Subsequently, I(x0) ∈ ℝ is called the critical value.

It is evident from the definition that, local minima and local maxima of a differentiable function I on some subset A ⊂ X are indeed crit-
ical points of I. However, the same cannot be infered about the converse of this result.

For example, we take, X = ℝ2, I(x, y) = x2−y2. Then, I′ (x, y) = (2x,−2y), and, I′ (0, 0) = 0. Thus, (0, 0) is a critical point of I, although, is 
neither a local minima nor a local maxima of I. 
It follows from the fact that,
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Thus, (0, 0) is a critical point of I, although, is neither a local minima nor a local maxima of I.

It follows from the fact that,

I(0, 0) = 0 , I(x, 0) = x2 > 0 for, x ̸= 0,

I(0, y) = −y2 < 0 for, y ̸= 0

Remark 2.0.2. Critical points satisfying the condition as above as termed as Saddle Points.

Definition 2.0.4. (Saddle Point) Suppose, A ⊂ X be open, and I : A → R be differentiable on

A. We define a critical point x0 ∈ A of I to be a saddle point of I if, for every neighbourhood

U(x0) of x0, ∃ x1, x2 ∈ U(x0) satisfying,

I(x1) < I(x0) < I(x2) (2.7)

Definition 2.0.5. (Convex Function) A function I : X → R is defined to be convex, if

∀ x, y ∈ X,

I(tx+ (1− t)y) ≤ tI(x) + (1− t)I(y) , ∀ t ∈ (0, 1)

Example 2.0.3. Consider, X = R. Then, the function, f : R → R defined as, f(x) = ex is

convex everywhere on R.

Remark 2.0.4. In case when, I is convex on X, the critical points of I are in fact global

minima.

Proposition 2.0.5. For a convex and differentiable function I : X → R,

I(x0) ≤ I(x) ∀ x ∈ X,

i.e., I(x0) = min
x∈X

I(x).
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be a saddle point of I if, for every neighbourhood U(x0) of x0, ∃ x1, x2 ∈ U(x0) satisfying,

Definition 2.0.5. (Convex Function) A function I : X → ℝ is defined to be convex, if ∀ x, y ∈ X,

Example 2.0.3. Consider, X = ℝ. Then, the function, f : ℝ → ℝ defined as, f (x) = ex is convex everywhere on ℝ.

Remark 2.0.4. In case when, I is convex on X, the critical points of I are in fact global minima.

Proposition 2.0.5. For a convex and differentiable function I : X → ℝ,
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Definition 2.0.3. (Critical Point) Suppose, A ⊂ X be open, and I : A → R be differentiable on

A. A point x0 ∈ A is defined to be a critical point of I if, I ′(x0) = 0. Subsequently, I(x0) ∈ R
is called the critical value.
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convex everywhere on R.
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Proposition 2.0.5. For a convex and differentiable function I : X → R,

I(x0) ≤ I(x) ∀ x ∈ X,

i.e., I(x0) = min
x∈X
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Proposition 2.0.6. Suppose, I : X → ℝ be a differentiable function satisfying the following condition,
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Proposition 2.0.6. Suppose, I : X → R be a differentiable function satisfying the following

condition,

I(y) ≤ I(x) + I ′(y)(y − x) ∀ x, y ∈ X

Then, I is convex.

Proof. To prove the result, we’ll use the definition (2.0.5) of convexity.

Given that I(y) ≤ I(x) + I ′(y)(y − x) for every x, y ∈ X.

For λ ∈ [0, 1], consider z = λx+ (1− λ)y.

By the given condition:

I(z) ≤ I(x) + I ′(z)(z − x)

= I(x) + I ′(z)(λx+ (1− λ)y − x)

≤ I(x) + λI ′(z)(x− y)

Similarly,

I(z) ≤ I(y) + I ′(z)(z − y)

= I(y) + I ′(z)(λx+ (1− λ)y − y)

≤ I(y) + (1− λ)I ′(z)(x− y)

Combining these inequalities:

I(z) ≤ I(x) + λI ′(z)(x− y)

≤ I(x) + λI ′(z)(x− y) + (1− λ)I ′(z)(x− y)

= λI(x) + (1− λ)I(y) + λ(x− y)I ′(z)

Since λ ∈ [0, 1], I(z) ≤ λI(x) + (1− λ)I(y). Hence, I(x) is convex.

Before we investigate the existence of critical points of a function, one needs to justify that,

the definitions (2.0.1) and (2.0.2) of minima and maxima respectively are well-defined.

Definition 2.0.6. A priori, given X to be a hausdorff topological space, a function, I : X → R
is defined to be lower semi-continuous if ∀ c ∈ R, the set {x ∈ X | I(x) ≤ c} is closed.

Proposition 2.0.7. (i) Every continuous function is lower semi-continuous.

(ii) If A ⊂ X is open, then, χA is lower semi-continuous.
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Then, I is convex.

Proof. To prove the result, we’ll use the definition (2.0.5) of convexity.
Given that I(y) ≤ I(x) + I′ (y)(y − x) for every x, y ∈ X.
For λ ∈ [0, 1], consider z = λx + (1 − λ)y.
By the given condition:

Similarly,

Combining these inequalities:

Since λ ∈ [0, 1], I (z) ≤ λI (x) + (1 − λ)I(y). Hence, I(x) is convex.

Before we investigate the existence of critical points of a function, one needs to justify that, the definitions (2.0.1) and (2.0.2) of minima 
and maxima respectively are well-defined.

Definition 2.0.6. A priori, given X to be a hausdorff topological space, a function, I : X → ℝ is defined to be lower semi-continuous if ∀ 
c ∈ ℝ, the set {x ∈ X | I(x) ≤ c} is closed.

Proposition 2.0.7. (i) Every continuous function is lower semi-continuous.

(ii) If A ⊂ X is open, then, χA is lower semi-continuous.

Proof. (i) We intend to show that for any continuous function f : X → ℝ, where X is a topological space, the set {x ∈ X : f (x) > α} = A 
(say) is open for every α ∈ ℝ. This implies that for any point x0 in X, there exists a neighborhood U of x0 such that f (x) > α for all x in U.

Let α ∈ ℝ be arbitrarily chosen. For any point x0 ∈ A, since f (x0) > α, by the continuity of f, ∃ a neighborhood Ux0 of x0 such that f (x) > 
α ∀ x ∈ Ux0.
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Thus, for any x0 ∈ A, there exists a neighborhood Ux0 of x0 contained in A, implying A is open.

Therefore, every continuous function f : X → ℝ is lower semi-continuous.

(ii) To prove that the indicator function χA of an open set A ⊂ X is lower semi-continuous, it suffices to show that for any x0 ∈ X, and for 
any α < 1, ∃ a neighborhood U of x0 such that χA (x) > α for all x ∈ U.

Formally, let χA be the indicator function of A, defined as:

2 CRITICAL POINTS

Proof. (i) We intend to show that for any continuous function f : X → R, where X is a

topological space, the set {x ∈ X : f(x) > α} = A (say) is open for every α ∈ R. This

implies that for any point x0 in X, there exists a neighborhood U of x0 such that f(x) > α

for all x in U .

Let α ∈ R be arbitrarily chosen. For any point x0 ∈ A, since f(x0) > α, by the continuity

of f , ∃ a neighborhood Ux0 of x0 such that f(x) > α ∀ x ∈ Ux0 .

Thus, for any x0 ∈ A, there exists a neighborhood Ux0 of x0 contained in A, implying A is

open.

Therefore, every continuous function f : X → R is lower semi-continuous.

(ii) To prove that the indicator function χA of an open set A ⊂ X is lower semi-continuous, it

suffices to show that for any x0 ∈ X, and for any α < 1, ∃ a neighborhood U of x0 such

that χA(x) > α for all x ∈ U .

Formally, let χA be the indicator function of A, defined as:

χA(x) =



1 if x ∈ A

0 if x /∈ A

Let x0 ∈ X be arbitrary, and let α < 1 be given. Since A is open, ∃ a neighborhood U of

x0 contained in A. For any x ∈ U , x ∈ A, so χA(x) = 1. Since α < 1, χA(x) > α for all

x ∈ U .

Therefore, χA of an open set A ⊂ X is indeed lower semi-continuous.

Remark 2.0.8. A function which is lower semi-continuous may not be continuous. For example,

we can consider X = R, and, A = (a, b) ⊂ R for any a, b ∈ R with a < b. Then, χA is indeed

lower semi-continuous on R (using above proposition), although it is not continuous at the

points a and b in R.

Theorem 2.0.9. A priori given X to be a compact and Hausdorff topological space. Furthermore,

I : X → R be lower semi-continuous. Then, I is bounded below, and, ∃ x0 ∈ X such that,

I(x0) = min
x∈A

I(x).

Proof. I being lower semi-continuous implies that, the set, An = {x ∈ X | I(x) > −n} is open

∀ n ∈ N. Moreover, X =
∞
n=1

An, and, is compact. Hence, we must have, X =
n0
n=1

An for some

n0 ∈ N.
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Let x0 ∈ X be arbitrary, and let α < 1 be given. Since A is open, ∃ a neighborhood U of x0 contained in A. For any x ∈ U, x ∈ A, so χA (x) 
= 1. Since α < 1, χA (x) > α for all x ∈ U.

Therefore, χA of an open set A ⊂ X is indeed lower semi-continuous.

Remark 2.0.8. A function which is lower semi-continuous may not be continuous. For example, we can consider X = ℝ, and, A = (a, b) 
⊂ ℝ for any a, b ∈ ℝ with a < b. Then, χA is indeed lower semi-continuous on R (using above proposition), although it is not continuous 
at the points a and b in ℝ.

Theorem 2.0.9. A priori given X to be a compact and Hausdorff topological space. Furthermore, I : X → ℝ be lower semi-continuous. 
Then, I is bounded below, and, ∃ x0 ∈ X such that,

Proof. I being lower semi-continuous implies that, the set, An = {x ∈ X | I (x) > − n} is open ∀ n ∈ ℕ. Moreover,               An, and, is 
compact. Hence, we must have,               An for some n0 ∈ ℕ.

As a consequence, I (x) > − n0 ∀ x ∈ X. Thus, it establishes that, X is bounded below.
Let us choose, inf I = l (> − ∞). We claim that, such a ”l” do exists. If not, then, we consider the collection {Bn}

∞   where, Bn :=

x ∈ X | I (x) > l + 1/n for every n ∈ ℕ such that,
n=1

X

2 CRITICAL POINTS

As a consequence, I(x) > −n0 ∀ x ∈ X. Thus, it establishes that, X is bounded below.

Let us choose, inf
X

I = l (> −∞). We claim that, such a ”l” do exists. If not, then, we

consider the collection {Bn}∞n=1 where, Bn :=
{
x ∈ X | I(x) > l + 1

n

}
for every n ∈ N such

that,

X =
∞⋃
n=1

Bn

A priori from the compactness condition of X, ∃ n1 ∈ N satisfying, X =
n1⋃
n=1

Bn. In other words,

the collection, {Bn}n1
n=1 indeed is a finite subcover of X for some n1 ∈ N.

Subsequently, I(x) > l + 1
n1
, ∀ x ∈ X, a contradiction to the fact that, l = inf

X
I.

For the ease of computation, we introduce the notion of sequentially lower semi-continuous.

Definition 2.0.7. Given a Hausdorff topological space X, a function, I : X → R is defined to

be sequentially lower semi-continuous if, for every sequence {xn} tending to x in X,

I(x) ≤ lim
n→∞

I(xn) (2.8)

Proposition 2.0.10. For a Hausdorff topological space X and a function I : X → R, the
following holds true:

(1) I is lower semi-continuous =⇒ I is sequentially lower semi-continuous.

(2) Converse holds true only if X is a metric space.

Proof. (1) Given I : X → R to be lower semi-continuous. Suppose, (xn) be a sequence in X

converging to x, and suppose I(xn) → I(x). We wish to show that I(x) ≤ lim inf
n→∞

I(xn).

Since I is lower semi-continuous, for any ϵ > 0, ∃ a neighborhood U of x such that

I(y) > I(x)− ϵ ∀ y ∈ U .

Since xn → x, ∃ N ∈ N such that ∀ n ≥ N , xn ∈ U .
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Since ϵ was arbitrary, we conclude:

Therefore, I is sequentially lower-semi continuous, and the proof is thus complete.

(2) Assume I : X → ℝ be a sequentially lower semi-continuous function, and let α ∈ ℝ be arbitrary. It suffices to establish that, the set A 
:= {x ∈ X : I (x) > α} is open in X.
Let x0 be any point in the set, say, {x ∈ X : I (x) > α}, i.e., I (x0) > α.

Since I is sequentially lower semi-continuous, for any sequence (xn) in X converging to x0, we have I ( 0) ≤ lim inf  I (xn).

Since x0 is in the set {x ∈ X : I (x) > α}, we have lim inf  I (xn) > α.

As a result, ∃ N ∈ ℕ such that ∀ n ≥ N, I (xn) > α [ ∵ the limit inferior of a sequence is the greatest lower bound of the set of subsequential 
limits ].

Therefore, for any sequence (xn) in X converging to x0, ∃ a neighborhood U of x0 such that I (x) > α for all x ∈ U, which implies that {x 
∈ X : I (x) > α} is open in X.

Since α was arbitrary, this holds for all α ∈ ℝ. Therefore, we can conclude that,  is lower semi-continuous.

Remark 2.0.11. A sequentially lower semi-continuous function on a non metrizable space may not be lower semi-continuous. Consider 
the example where, X = ℝ is equipped with the cofinite topology.

Define the function f : X → ℝ as follows:

n→∞

n→∞

2 CRITICAL POINTS

(2) Assume I : X → R be a sequentially lower semi-continuous function, and let α ∈ R be
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I(x) > α for all x ∈ U , which implies that {x ∈ X : I(x) > α} is open in X.

Since α was arbitrary, this holds for all α ∈ R. Therefore, we can conclude that, I is lower

semi-continuous.

Remark 2.0.11. A sequentially lower semi-continuous function on a non metrizable space may

not be lower semi-continuous. Consider the example where, X = R is equipped with the cofinite

topology.

Define the function f : X → R as follows:

f(x) =



x if x ∈ Q

0 if x /∈ Q

Consider any sequence (xn) in X converging to x. Since every neighborhood of x in the

cofinite topology contains all but finitely many points of X, xn equals x for all sufficiently large

n. Therefore, lim inf
n→∞

f(xn) = f(x), which makes f(x) sequentially lower semi-continuous.

Let’s examine the point x = 0. The set {x ∈ X : f(x) > 0} is the set of irrational numbers in

X, which is not open in the cofinite topology because it contains infinitely many points. Hence,

f(x) is not lower semi-continuous.

Proposition 2.0.12. Given a Hausdorff topological space X and, I : X → R, suppose that, for

every c ∈ R,

The set {x ∈ X : I(x) ≤ c} is compact, (2.9)

Then, I is bounded below, and, ∃ x0 ∈ X satisfying, I(x0) = inf
x∈X

I(x).
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The set {x ∈ X : I(x) ≤ c} is compact, (2.9)

Then, I is bounded below, and, ∃ x0 ∈ X satisfying, I(x0) = inf
x∈X

I(x).
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Then, I is bounded below, and, ∃ x0 ∈ X satisfying, I (x0) = inf  I (x).

Proof. To prove this statement, we’ll use the fact that compactness of the level sets of I implies certain properties about I.

Suppose I is not bounded below. Then, for each n ∈ ℕ, ∃ xn ∈ X such that I (xn) < − n. However, this implies that the set {x ∈ X : I (x) 
≤ − n} is nonempty and contains the sequence {xn}, but it cannot be compact as the sequence has no convergent subsequence due to the 
unboundedness of I. This contradicts the assumption that all such sets are compact. Hence, I must be bounded below.

Since I is bounded below, let c = inf I (x). Then, for each n ∈ ℕ, ∃ xn ∈ X such that I (xn) < c + 1 n. Consider the sequence {xn}. Since 

{x ∈ X : I (x) ≤ c + 1/n} is compact, there exists a subsequence {xnk} converging to some x0 in X. By continuity of I, I(xnk ) → I (x0). But 
since I (xnk ) < c + 1/nk, we have I (x0) ≤ c. Conversely, since c is the greatest lower bound of I, we have I (x0) ≥ c. Therefore, I (x0) = c, 
and x0 is the desired point.

Remark 2.0.13. Consider, X = ℝ. Define a function, I : ℝ → ℝ as, I (x) = e −x. We can observe that, I is indeed smooth and bounded be-
low, but I does not achieve its infimum. Applying Theorem (2.0.9) and Proposition (2.0.10) in order to obtain infimum, a compactness 
condition either for the space or, for the function must be required.

In case for infinite dimensional Banach Space X, the compactness condition is not achieved under the norm topology. However a certain 
amount of compactness is achieved to ensure the attainment of the infimum can be obtained in weaker topology on X.

In the next section, we shall learn more about a weaker topology called weak topology on X as compared to the norm topology defined 
on it.

3. Weak Topology on Banach Spaces
3.1 Weak Convergence
Suppose we consider (X, ||.||) to be a Banach Space with X ∗ as its dual. Moreover, τ be the metric topology on X induced by the norm ||.||, 
having the following definition, d (x, y) = ||x − y||, ∀ x, y ∈ X.

We intend to define the weakest topology τw on X as follows : “Every functional f ∈ X * is continuous on X with respect to the topology 
τw on X”. The topology τw thus formed is defined as the Weak Topology on X. As for convergence of any sequence under weak topology, 
we provide the following definition.

Definition 3.1.1. (Weak Convergence) A sequence {xn}
∞  in X is said to converge to x ∈ X weakly, and is denoted by, xn ⇀ x, if,

x∈X

x∈X

n=1

n=1
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Definition 3.1.1. (Weak Convergence) A sequence {xn}∞n=1 in X is said to converge to x ∈ X

weakly, and is denoted by, xn ⇀ x, if,

f(xn) −→ f(x) ∀ f ∈ X∗

Remark 3.1.1. If a sequence {xn}∞n=1 converges to x with respect to the norm ||.|| (i.e.,

||xn − x|| → 0 as n → ∞), we assert that, xn converges to x strongly in X, in other words,

xn → x.

Proposition 3.1.2. We can accumulate some important properties of weak convergence of

sequences as follows:

1. xn ⇀ x in X =⇒ x is unique.

2. xn → x in X =⇒ xn ⇀ x. The converse is not true in general.

3. xn ⇀ x =⇒ {||xn||}∞n=1 is bounded, and, ||x|| ≤ lim inf
n→∞

||xn||.

This implies, ||.|| : X → R is weakly sequentially lower semi-continuous.

4. Suppose, X be reflexive. Furthermore, ||xn|| ≤ M ∀ n ∈ N for some, M > 0. Then,

∃ x0 ∈ X and a subsequence, {xnk
}∞k=1 of {xn}∞n=1 in X such that, xnk

⇀ x0.

5. Let, Y be another Banach Space and T ∈ B(X,Y ). Then,

� xn ⇀ x =⇒ Txn ⇀ Tx.

� If T is compact and, xn ⇀ x =⇒ Txn → Tx in Y .

6. If X be a Hilbert Space, Then, xn ⇀ x and, ||xn|| → ||x|| =⇒ xn → x.

Proof. 1. Suppose, {xn} and {yn} be two sequences in X such that, xn ⇀ x and, xn ⇀ y.

Then, for every f ∈ X∗, f(xn) → f(x) and, f(xn) → f(y). SInce, {f(xn)} is a sequence

of numbers, hence its limit is unique, i.e., f(x) = f(y), i.e., for every f ∈ X∗, we have,

f(x− y) = 0.

Therefore, using Corollary (4.3.4) (cf. [24, Pg 223]), we conclude, x− y = 0, and thus, the

weak limit is indeed unique.

2. By definition, xn → x means, ||xn − x|| −→ 0 =⇒ For every f ∈ X∗,

|f(xn)− f(x)| = |f(xn − x)| ≤ ||f ||.||xn − x|| −→ 0.

Implying that, xn ⇀ x.
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Remark 3.1.1. If a sequence {xn}
∞  converges to x with respect to the norm ||.|| (i.e., ||xn − x|| → 0 as n → ∞), we assert that, xn converges 

to x strongly in X, in other words, xn → x.

Proposition 3.1.2. We can accumulate some important properties of weak convergence of sequences as follows:

1. xn ⇀ x in X =⇒ x is unique.

2. xn → x in X =⇒ xn ⇀ x. The converse is not true in general

3. xn ⇀ x =⇒ {||xn||}
∞   is bounded, and, ||x|| ≤ lim inf ||xn||.

This implies, ||.|| : X → ℝ is weakly sequentially lower semi-continuous.

4. Suppose, X be reflexive. Furthermore, ||xn|| ≤ M ∀ n ∈ ℕ for some, M > 0. Then,∃ x0 ∈ X and a subsequence, {xnk}∞ of {xn} ∞  n=1 in 
X such that, xnk ⇀ x0.

n→∞n=1

n=1k=1
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5. Let, Y be another Banach Space and T ∈ B(X, Y ). Then,

• xn ⇀ x ⇒ Txn ⇀ Tx.
• If T is compact and, xn ⇀ x ⇒ Txn → Tx in Y .

6. If X be a Hilbert Space, Then, xn ⇀ x and, ||xn|| → ||x|| ⇒ xn → x.

Proof. 1. Suppose, {xn} and {yn} be two sequences in X such that, xn ⇀ x and, xn ⇀ y. Then, for every f ∈ X∗, f (xn) → f (x) and, f (xn) → f 
(y). SInce, {f (xn)} is a sequence of numbers, hence its limit is unique, i.e., f (x) = f (y), i.e., for every f ∈ X*, we have, f (x − y) = 0.

Therefore, using Corollary (4.3.4) (cf. [24, Pg 223]), we conclude, x − y = 0, and thus, the weak limit is indeed unique.

2. By definition, xn → x means, ||xn − x|| −→ 0 ⇒ For every f ∈ X*,

Implying that, xn ⇀ x.

Converse is not true in general.

Consider the sequence {xn}, where, xn = en, ∀ n ∈ ℕ in ℓ2, where en is the sequence whose n-th term is 1 and all other terms are 0. Let 
f be any bounded linear functional on ℓ2. Then f (en) = 1 for all n. Since en is the unit vector along the n-th coordinate, |f (en)| = ∥f∥∥en∥ 
= ∥f∥ (by the Cauchy-Schwarz inequality). Therefore, f (en) = 1 for all n implies that f does not converge to 0 as n → ∞. Hence, xn = en 
converges weakly to 0. For strong convergence, we need to show that ∥xn − 0∥ = ∥en∥ → 0 as n → ∞. However, 
∥en∥ = 1 for all n, so ∥xn − 0∥ = 1 for all n, which does not tend to 0.
Therefore, the sequence xn in ℓ2 converges weakly to 0 but does not converge strongly.

3. Given, xn ⇀ x. Thus, f (xn) → f (x) ∀ f ∈ X∗ ⇒ {f (xn)} is a convergent sequence of numbers, hence is bounded.

Let, |f (xn)| ≤ cf ∀ n ∈ ℕ, where, cf is a constant depending on f, but not on n. Using the canonical mapping, C: X −→ X∗∗ (cf. (5) of Sec. 
4.6 [24, Pg. 240]), where X∗∗ denotes the double dual of X, we can in fact define, gn ∈ X∗∗ by,
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Converse is not true in general.

Consider the sequence {xn}, where, xn = en, ∀ n ∈ N in ℓ2, where en is the sequence

whose n-th term is 1 and all other terms are 0.

Let f be any bounded linear functional on ℓ2. Then f(en) = 1 for all n. Since en is the

unit vector along the n-th coordinate, |f(en)| = ∥f∥∥en∥ = ∥f∥ (by the Cauchy-Schwarz

inequality). Therefore, f(en) = 1 for all n implies that f does not converge to 0 as n → ∞.

Hence, xn = en converges weakly to 0.

For strong convergence, we need to show that ∥xn − 0∥ = ∥en∥ → 0 as n → ∞. However,

∥en∥ = 1 for all n, so ∥xn − 0∥ = 1 for all n, which does not tend to 0.

Therefore, the sequence xn in ℓ2 converges weakly to 0 but does not converge strongly.

3. Given, xn ⇀ x. Thus, f(xn) → f(x) ∀ f ∈ X∗ =⇒ {f(xn)} is a convergent sequence of

numbers, hence is bounded.

Let, |f(xn)| ≤ cf ∀ n ∈ N, where, cf is a constant depending on f , but not on n. Using

the canonical mapping, C : X −→ X∗∗ (cf. (5) of Sec. 4.6 [24, Pg. 240]), where X∗∗

denotes the double dual of X, we can in fact define, gn ∈ X∗∗ by,

gn(f) = f(xn), f ∈ X∗

Then,

|gn(f)| = |f(xn)| ≤ cf n ∈ N.

Implying that, the sequence, {|gn(f)|} is bounded for every f ∈ X∗. Since, X∗ is complete,

by (2.10.4) (cf. [24, Pg. 120]), we can apply the Uniform Boundedness Theorem (cf. [24,

Pg. 249]) to conclude that, {||gn||} is bounded.

Now, ||gn|| = ||xn|| by (4.6.1) (cf. [24, Pg. 240]) helps us conclude that, {||xn||} is bounded.

As for the second part, if, x = 0, then, ||x|| = 0, and the statement is obviously true. Now,

we assume, ||x|| ≠ 0. By Theorem (4.3.3) (cf. [24, Pg. 223]), ∃ some f ∈ X∗ such that,

||f || = 1 , f(x) = ||x||

Since, {xn} converges weakly to x, and, f is indeed continuous, we have,

lim
n→∞

f(xn) = f(x) = ||x||.

But, f(xn) ≤ |f(xn)| ≤ ||f ||.||xn|| = ||xn||. Hence,

lim inf
n→∞

||xn|| ≥ lim
n→∞

f(xn) = ||x||.
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Then,

Implying that, the sequence, {|gn (f)|} is bounded for every f ∈ X *. Since, X* is complete, by (2.10.4) (cf. [24, Pg. 120]), we can apply the 
Uniform Boundedness Theorem (cf. [24, Pg. 249]) to conclude that, {||gn||} is bounded.

Now, ||gn|| = ||xn|| by (4.6.1) (cf. [24, Pg. 240]) helps us conclude that, {||xn||} is bounded.

As for the second part, if, x = 0, then, ||x|| = 0, and the statement is obviously true. Now, we assume, ||x||≠ 0. By Theorem (4.3.3) (cf. [24, 
Pg. 223]), ∃ some f ∈ X* such that,

Since, {xn} converges weakly to x, and, f is indeed continuous, we have,

But, f (xn) ≤ |f (xn)| ≤ ||f||.||xn|| = ||xn||. Hence,
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4. To prove this statement, we can utilize the Eberlein–Smulian Theorem, which states that in a reflexive Banach space, every bounded 
sequence has a weakly convergent subsequence. Since X is reflexive, every bounded sequence in X has a weakly convergent subse-
quence.
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The proof is thus complete.
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Eberlein–Šmulian Theorem, ∃ a subsequence {xnk
}∞k=1 of {xn}∞n=1 such that xnk

⇀ x0 in

X.

Therefore, xnk
⇀ x0 weakly, where x0 ∈ X and {xnk

}∞k=1 is a subsequence of {xn}∞n=1.

The proof is thus complete.

5. � Given, xn ⇀ x in X, thus, f(xn) −→ f(x) for every f ∈ X∗.We intend to show that,

φ(T (xn)) −→ φ(T (x)) ∀ φ ∈ Y ∗

In other words,

(φ ◦ T )(xn) −→ (φ ◦ T )(x) ∀ φ ∈ Y ∗

Although, φ ◦ T ∈ X∗, therefore, our hypothesis guarantees our desired conclusion.

� Suppose T is a compact operator from X to Y , and xn ⇀ x in X implies Txn ⇀ Tx

in Y . By the definition of compact operators, every bounded sequence {xn} in X

has a weakly convergent subsequence {xnk
} in X. Suppose, xnk

⇀ x. Since T is

compact, {Txnk
} has a convergent subsequence {Txnkj

} in Y . Let Txnkj
→ y in Y .

Now, we have xnkj
⇀ x and Txnkj

→ y. Since weak convergence implies boundedness,

we have {xnkj
} is bounded in X.

By the first part of the statement, Txnkj
⇀ Tx in Y . But since Txnkj

converges to

y in Y , by uniqueness of limits in Banach spaces, Tx = y. Hence, Txn → Tx in Y .

Therefore, if T is compact and xn ⇀ x implies Txn → Tx in Y , and the statement

holds true.

6. To prove this statement, let X be a Hilbert space, and suppose xn ⇀ x weakly in X. Also,

assume that ∥xn∥ → ∥x∥.

Since xn ⇀ x weakly, for any y ∈ X, we have ⟨xn, y⟩ → ⟨x, y⟩.

Now, consider the sequence yn = xn − x. We have:

∥yn∥2 = ⟨yn, yn⟩ = ⟨xn − x, xn − x⟩ = ∥xn∥2 − 2⟨xn, x⟩+ ∥x∥2

Given that ∥xn∥ → ∥x∥, and ⟨xn, y⟩ → ⟨x, y⟩ for any y, it follows that ⟨xn, x⟩ → ⟨x, x⟩.
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In other words,

Although, φ ◦ T ∈ X*, therefore, our hypothesis guarantees our desired conclusion.
• Suppose T is a compact operator from X to Y, and xn ⇀ x in X implies Txn ⇀ Tx in Y. By the definition of compact operators, every bound-
ed sequence {xn} in X has a weakly convergent subsequence {xnk} in X. Suppose, xnk ⇀ x. Since T is compact, {Txnk} has a convergent 
subsequence {Txnkj} in Y. Let Txnkj → y in Y.

Now, we have xnkj ⇀ x and Txnkj → y. Since weak convergence implies boundedness, we have {xnkj} is bounded in X. By the first part of 
the statement, Txnkj ⇀ Tx in Y . But since Txnkj converges to y in Y , by uniqueness of limits in Banach spaces, Tx = y. Hence, Txn → Tx 
in Y .

Therefore, if T is compact and xn ⇀ x implies Txn → Tx in Y , and the statement holds true.

6. To prove this statement, let X be a Hilbert space, and suppose xn ⇀ x weakly in X. Also, assume that ∥xn∥ → ∥x∥.
Since xn ⇀ x weakly, for any y ∈ X, we have ⟨xn,y⟩ → ⟨x,y⟩.
Now, consider the sequence yn = xn − x. We have:

Given that ∥xn∥ → ∥x∥, and ⟨xn, y⟩ → ⟨x, y⟩ for any y, it follows that ⟨xn, x⟩ → ⟨x, x⟩.

Thus, ∥yn∥2 = ∥xn∥2 − 2⟨xn,x⟩ + ∥x∥2 → ∥x∥2 − 2⟨x,x⟩ + ∥x∥2 = 0 as n → ∞.
This implies that ∥yn∥ → 0. But ∥yn∥ = ∥xn − x∥, so we have xn → x in X.
Therefore, if X is a Hilbert space, xn ⇀ x weakly and ∥xn∥ → ∥x∥, then xn → x strongly in X.

3.2 Existence of Minima
Theorem 3.2.1. Given a reflexive Banach Space (X,||.||), suppose, A be a weakly sequentially closed subset of X. Define, I: A → R satis-
fying the following:

(I) (Compactness Condition) I is coercive on A, i.e.,
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Thus, ∥yn∥2 = ∥xn∥2 − 2⟨xn, x⟩+ ∥x∥2 → ∥x∥2 − 2⟨x, x⟩+ ∥x∥2 = 0 as n → ∞.

This implies that ∥yn∥ → 0. But ∥yn∥ = ∥xn − x∥, so we have xn → x in X.

Therefore, if X is a Hilbert space, xn ⇀ x weakly and ∥xn∥ → ∥x∥, then xn → x strongly

in X.

3.2 Existence of Minima

Theorem 3.2.1. Given a reflexive Banach Space (X, ||.||), suppose, A be a weakly sequentially

closed subset of X. Define, I : A → R satisfying the following:

(I) (Compactness Condition) I is coercive on A, i.e.,

I(u) → ∞ as ||u|| → ∞, u ∈ A.

(II) I is weakly sequentially lower semi-continuous on A, i.e., if un, u ∈ A with un ⇀ u in

X, then,

I(u) ≤ lim inf
n→∞

I(un).

Then, I is indeed bounded below, and, ∃ u0 ∈ A such that,

I(u0) = min
u∈A

I(u).

Proof. Let us denote, l := inf {I(u) | u ∈ A}. We intend on proving that, l > −∞ and,

I(u0) = l for some u0 ∈ A. Suppose, {un} ⊂ A satisfying, I(un) → l.

A priori using the fact that, I is coercive on A, ∃ M > 0 such that, ||un|| ≤ M ∀ n ∈ N.
Since, X is reflexive, ∃ a subsequence {unk

}∞k=1 of {un}∞n=1 with unk
⇀ u0 in X for some

u0 ∈ X.

Moreover, A being weakly sequentially closed, we thus conclude that, u0 ∈ A. Also, I is

given to be weakly sequentially lower semi-continuous on A, which yields,

l ≤ I(u0) ≤ lim inf
n→∞

I(unk
) = l = inf

u∈A
I(u).

And the proof is complete.
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(II) I is weakly sequentially lower semi-continuous on A, i.e., if un, u ∈ A with un ⇀ u in X, then,
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Then, I is indeed bounded below, and, ∃ u0 ∈ A such that,

Proof. Let us denote, l:= inf {I (u) | u ∈ A}. We intend on proving that, l > −∞ and, I (u0) = l for some u0 ∈ A. Suppose, {un} ⊂ A satis-
fying, I (un) → l.

A priori using the fact that, I is coercive on A, ∃ M > 0 such that, ||un|| ≤ M ∀ n ∈ ℕ.

Since, X is reflexive, ∃ a subsequence                                        with unk ⇀ u0 in X for some u0 ∈ X.

Moreover, A being weakly sequentially closed, we thus conclude that, u0 ∈ A. Also, I is given to be weakly sequentially lower semi-con-
tinuous on A, which yields,

And the proof is complete.
	
3.3 Applications of the Existence of Minima
3.3.1 Application in Linear PDEs
We can in fact utilize Theorem (3.2.1) in order to find solutions to linear partial differential equations in the following manner.

Theorem 3.3.1. Suppose, Ω ⊂ ℝn be a bounded domain. For every f ∈ L2(Ω) (more generally, f ∈ H−1(Ω)), ∃ a weak solution, u0 ∈        
      to the following problem,
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3.3 Applications of the Existence of Minima

3.3.1 Application in Linear PDEs

We can in fact utilize Theorem (3.2.1) in order to find solutions to linear partial differential

equations in the following manner.

Theorem 3.3.1. Suppose, Ω ⊂ Rn be a bounded domain. For every f ∈ L2(Ω) (more generally,

f ∈ H−1(Ω)), ∃ a weak solution, u0 ∈ H1
0 (Ω) to the following problem,

{
−∆u = f in Ω

u = 0 on ∂Ω
(3.1)

In other words, for every ϕ ∈ H1
0 (Ω),

∫

Ω

∇u0∇ϕ =

∫

Ω

fϕ.

3.3.2 Constrained Minimization

A priori given a Hilbert Space X over R and f, g ∈ C1(H,R), let us define, G := {u ∈ H | g(u) =
0}. Moreover, let, g′(u) ̸= 0 ∀ u ∈ H (This implies that, G is a manifold of co-dimension 1).

An important observation is, the gradient of g, denoted as g′(u) is in fact normal to G.

Correspondingly, the tangent space Tu at u ∈ G is defined as,

Tu := {v ∈ H | ⟨g′(u), v⟩ = 0}.

Definition 3.3.1. A point u0 ∈ G is defined to be a critical point of (f |G), i.e., (f |G)′(u0) = 0

if,

f ′(u0)(v) = 0 ∀ v ∈ Tu.

Tu0 being of co-dimension 1, we conclude that, f ′(u0) = µg′(u0), for some µ ∈ R.
µ in the above case is defined to be the Lagrange Multiplier.

Proposition 3.3.2. If ∃ u0 ∈ G and, f(u0) = min
u∈G

{f(u)} ∈ G, then, we have,

(f |G)′(u0) = 0.
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0}. Moreover, let, g′(u) ̸= 0 ∀ u ∈ H (This implies that, G is a manifold of co-dimension 1).

An important observation is, the gradient of g, denoted as g′(u) is in fact normal to G.

Correspondingly, the tangent space Tu at u ∈ G is defined as,

Tu := {v ∈ H | ⟨g′(u), v⟩ = 0}.

Definition 3.3.1. A point u0 ∈ G is defined to be a critical point of (f |G), i.e., (f |G)′(u0) = 0

if,

f ′(u0)(v) = 0 ∀ v ∈ Tu.

Tu0 being of co-dimension 1, we conclude that, f ′(u0) = µg′(u0), for some µ ∈ R.
µ in the above case is defined to be the Lagrange Multiplier.

Proposition 3.3.2. If ∃ u0 ∈ G and, f(u0) = min
u∈G

{f(u)} ∈ G, then, we have,

(f |G)′(u0) = 0.
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3.3.3 Application in Non-Linear PDEs

Assume Ω ⊂ Rn be a bounded domain. We choose, λ ∈ R and, 1 < p ≤ (n+2)
(n−2) . We intend to

obtain a weak solution to the following non-linear Dirichlet boundary value problem,




−∆u = |u|p−1u+ λu in Ω

u ≥ 0, u ̸≡ 0 in Ω

u = 0 on ∂Ω

(3.2)

In other words, ∀ ϕ ∈ H1
0 (Ω),



Ω

∇u0∇ϕ =



Ω

=



Ω

|u|p−1u0ϕ+ λ


u0ϕ. (3.3)

Taking, ϕ = u0 in (3.3),



Ω

|∇u0|2 =


Ω

=



Ω

|u|p+1 + λ


u20. (3.4)

Applying the Sobolev Embedding Theorem, we can in fact obtain the following embedding,

H1
0 (Ω) → Lq(Ω), where, q ≤ 2n

(n−2) . Moreover, q = p+ 1 helps us conclude that, there indeed

exist a weak solution to the equation (3.2) in H1
0 (Ω) for every 1 < p ≤ (n+2)

(n−2) .

Suppose, ϕ ∈ H1
0 (Ω) with ϕ ≥ 0 be the Eigenfunction corresponding to the first Dirichlet

Eigenvalue, λ1(Ω) of −∆ for the DIrichlet boundary condition as described in (3.2), having the

following expression,

λ1(Ω) := inf
ϕ∈H1

0 (Ω)\{0}





Ω

|∇ϕ|2


Ω

ϕ2




Furthermore, from (3.2),


−∆ϕ = λ1(Ω)ϕ in Ω

ϕ = 0 on ∂Ω
(3.5)

Proposition 3.3.3. For 1 < p ≤ (n+2)
(n−2) and, λ ≥ λ1(Ω), the problem (3.2) admits no solution.

Sobolev Embedding Theorem ensures the existence of an embedding,H1
0 (Ω) → Lp+1(Ω), which

is compact for every p < 2n
(n−2) . We shall comment later on the case when, p = (n+2)

(n−2) , n ≥ 3.
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(n−2) . Moreover, q = p+ 1 helps us conclude that, there indeed

exist a weak solution to the equation (3.2) in H1
0 (Ω) for every 1 < p ≤ (n+2)

(n−2) .

Suppose, ϕ ∈ H1
0 (Ω) with ϕ ≥ 0 be the Eigenfunction corresponding to the first Dirichlet

Eigenvalue, λ1(Ω) of −∆ for the DIrichlet boundary condition as described in (3.2), having the

following expression,

λ1(Ω) := inf
ϕ∈H1

0 (Ω)\{0}
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
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Furthermore, from (3.2),


−∆ϕ = λ1(Ω)ϕ in Ω

ϕ = 0 on ∂Ω
(3.5)

Proposition 3.3.3. For 1 < p ≤ (n+2)
(n−2) and, λ ≥ λ1(Ω), the problem (3.2) admits no solution.

Sobolev Embedding Theorem ensures the existence of an embedding,H1
0 (Ω) → Lp+1(Ω), which

is compact for every p < 2n
(n−2) . We shall comment later on the case when, p = (n+2)

(n−2) , n ≥ 3.
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Theorem 3.3.4. Assume, 1 < p < (n+2)
(n−2) . For every λ ∈ (−∞, λ1(Ω)), the Dirichlet boundary

value problem (3.2) admits of a weak solution. In other words, ∃ u0 ∈ H1
0 (Ω) satisfying,



Ω

∇u0∇ϕ =



Ω

|u0|p−1u0ϕ+ λ


u0ϕ. (3.6)

for every ϕ ∈ H1
0 (Ω).

Proof. Proof of the above result primarily hinges on two claims. First, we shall introduce some

notations.

We define, J : H1
0 (Ω) → R as,

J(u) :=
1

2



Ω

|∇u|2 − 1

p+ 1



Ω

|u|p+1 − λ

2



Ω

u2.

Moreover, for g ∈ C1(R) given by, g(t) := |t|p−1t + λt, and, G(t) :=
t
0

g(s)ds, we can in fact

infer that,

G(u) =
1

p+ 1



Ω

|u|p+1 +
λ

2



Ω

u2

and, also, G ∈ C1(H1
0 (Ω),R). Thus, J ∈ C1(H1

0 (Ω),R) as well and alsio for every u ∈ H1
0 (Ω)

and ∀ ϕ ∈ H1
0 (Ω),

J ′(u)ϕ =



Ω

∇u∇ϕ−


Ω

|u|p−1uϕ− λ



Ω

uϕ. (3.7)

Which suggests that, if u0 ∈ H1
0 (Ω) with J ′(u0) = 0, then u0 should satisfy (3.6). Hence, it only

suffices to check for critical points of J .

Choose 0 ̸≡ u1 ∈ H1
0 (Ω). Therefore, for any t ∈ R, tu ∈ H1

0 (Ω) as well, and,

J(tu1) =
t2

2



Ω

|∇u1|2 −
tp+1

p+ 1



Ω

|u1|p+1 − λt2

2



Ω

u21.

A priori fromt he fact that, J is unbounded below on H1
0 (Ω), in other words, J(tu1) → −∞

as t → ∞, we conclude that, J does not admit any minimum on H1
0 (Ω).

To find critical points of J , we denote,

A :=


u ∈ H1

0 (Ω) |


Ω

|u|p+1 = 1



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0 (Ω) as well, and,

J(tu1) =
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A priori fromt he fact that, J is unbounded below on H1
0 (Ω), in other words, J(tu1) → −∞

as t → ∞, we conclude that, J does not admit any minimum on H1
0 (Ω).

To find critical points of J , we denote,

A :=



u ∈ H1

0 (Ω) |


Ω

|u|p+1 = 1




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0(Ω) and ∀ ϕ ∈ H1
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Which suggests that, if u0 ∈ H1
0 (Ω) with J′(u0) = 0, then u0 should satisfy (3.6). Hence, it only suffices to check for critical points of J.

Choose 0 ≠ u1 ∈ H1
0 (Ω). Therefore, for any t ∈ ℝ, tu ∈ H1

0 (Ω) as well, and,

A priori fromt he fact that, J is unbounded below on H1
0 (Ω), in other words, J (tu1) → −∞ as t → ∞, we conclude that, J does not admit 

any minimum on H1
0 (Ω).

To find critical points of J, we denote,

and, I : A → ℝ as,

3 WEAK TOPOLOGY ON BANACH SPACES

and, I : A → R as,

I(u) :=
1

2

∫

Ω

|∇u|2 − λ

2

∫

Ω

u2.

As a result, using Theorem (3.2.1), we state our first claim.

Lemma 3.3.5. For any λ ∈ (−∞, λ1(Ω)), I is bounded on A. Further, ∃ uλ ∈ A satisfying,

I(uλ) = min
u∈A

I(u).

On the other hand, considering,

g(u) :=

∫

Ω

|u|p+1 − 1

and, subsequently, we define, A := {u ∈ H1
0 (Ω | g(u) = 0)}. Hence, applying the concepts of

constrained minimization as mentioned in Definition (3.3.1), we can in fact, establish our second

claim.

Lemma 3.3.6. For every λ ∈ (−∞, λ1(Ω)), ∃ cλ > 0 such that,

J ′(cλuλ) = 0.

In this case, we can in fact deduce that, cλ = (µ(p+ 1))1/(p−1), for some µ ∈ R+.

Therefore, ũλ := cλuλ is a weak solution of (3.2). Furthermore, uλ ≥ 0, uλ ̸≡ 0 implying,

ũλ ≥ 0, and the proof is complete.

Remark 3.3.7. For p = (n+2)
(n−2) , the embedding, H1

0 (Ω) → Lp+1(Ω) is not compact. Under this

scenario, the corresponding Dirichlet boundary value problem (3.2) is termed as the problem

with lack of compactness, or, the critical exponent problem. As a result, the set A as

defined above during our second claim need not be weakly sequentially closed, and thus our

desired result is not achieved. In fact, the existence of weak solution in this case depends stricly

on the choice of λ and the geometry of Ω.

Theorem 3.3.8. (Pohozaev’s Identity) A priori given a locally lipschitz function, f : R → R
with, Ω ⊂ Rn being a bounded domain with smooth boundary. Moreover, let u ∈ C2(Ω) ∩ C1(Ω̄)

satisfies,

{
−∆u = f in Ω

u = 0 on ∂Ω
(3.8)
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with lack of compactness, or, the critical exponent problem. As a result, the set A as

defined above during our second claim need not be weakly sequentially closed, and thus our

desired result is not achieved. In fact, the existence of weak solution in this case depends stricly

on the choice of λ and the geometry of Ω.

Theorem 3.3.8. (Pohozaev’s Identity) A priori given a locally lipschitz function, f : R → R
with, Ω ⊂ Rn being a bounded domain with smooth boundary. Moreover, let u ∈ C2(Ω) ∩ C1(Ω̄)

satisfies,

{
−∆u = f in Ω

u = 0 on ∂Ω
(3.8)

Subham De 21 IIT Delhi, India

and, subsequently, we define, A := {u ∈ H1
0(Ω | g(u) = 0)}. Hence, applying the concepts of constrained minimization as mentioned in 

Definition (3.3.1), we can in fact, establish our second claim.

Lemma 3.3.6. For every λ ∈ (−∞, λ1(Ω)), ∃ cλ > 0 such that,

In this case, we can in fact deduce that, cλ = (μ(p + 1))1/(p−1), for some μ ∈ ℝ+.

Therefore, uλ := cλuλ is a weak solution of (3.2). Furthermore, uλ ≥ 0, uλ≠ 0 implying, uλ ≥ 0, and the proof is complete.

Remark 3.3.7. For p =                    , the embedding, H1
0(Ω) ,→ Lp+1(Ω) is not compact. Under this scenario, the corresponding Dirichlet 

boundary value problem (3.2) is termed as the problem with lack of compactness, or, the critical exponent problem. As a result, the set 
A as defined above during our second claim need not be weakly sequentially closed, and thus our desired result is not achieved. In fact, 
the existence of weak solution in this case depends stricly on the choice of λ and the geometry of Ω

Theorem 3.3.8. (Pohozaev’s Identity) A priori given a locally lipschitz function, f : ℝ → ℝ with, Ω ⊂ ℝn being a bounded domain with 
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Define, F(t) :=                    Suppose also that, ν(x) is the unit outward normal at x ∈ ∂Ω and,            = ∇u.ν. Under these assumptions, 

we have the following identity,

3 WEAK TOPOLOGY ON BANACH SPACES

Define, F (t) :=
t
0

f(s)ds. Suppose also that, ν(x) is the unit outward normal at x ∈ ∂Ω and,

∂u
∂ν = ∇u.ν. Under these assumptions, we have the following identity,

2n



Ω

F (u)− (n− 2)



Ω

f(u)u =



∂Ω

x.ν


∂u

∂ν

2

(3.9)

As an important derivation from the above identity, we might infer the following.

Corollary 3.3.9. Assuming, Ω = B(R), the following Dirichlet problem,




−∆u = u
(n+2)
(n−2) + λu in B(R)

u ≥ 0, u ̸≡ 0 in B(R)

u = 0 on ∂B(R)

(3.10)

doesn’t admit any solution in C2(Ω) ∩ C1(Ω̄) for every λ ∈ (−∞, 0].

Theorem 3.3.10. ∃ λ1(Ω) > 0 and, ϕ0 ∈ H1
0 (Ω), ϕ0 ≥ 0, ϕ0 ̸≡ 0 satisfying,

λ1(Ω) =



Ω

|∇ϕ0|2

and,



−∆ϕ0 = λ1(Ω)ϕ0 in Ω

ϕ0 ≥ 0, ϕ0 ̸≡ 0 in Ω

ϕ0 = 0 on ∂Ω

(3.11)

Furthermore, ∀ ϕ ∈ H1
0 (Ω), we must have,

λ1(Ω)



Ω

ϕ2 ≤


Ω

|∇ϕ|2

Proof. We define,

S; =


ϕ ∈ H1

0 (Ω) |


Ω

ϕ2 = 1




Hence,

λ1(Ω) = inf
ϕ∈S





Ω

|∇ϕ|2


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Corollary 3.3.9. Assuming, Ω = B(R), the following Dirichlet problem,




−∆u = u
(n+2)
(n−2) + λu in B(R)

u ≥ 0, u ̸≡ 0 in B(R)

u = 0 on ∂B(R)

(3.10)

doesn’t admit any solution in C2(Ω) ∩ C1(Ω̄) for every λ ∈ (−∞, 0].

Theorem 3.3.10. ∃ λ1(Ω) > 0 and, ϕ0 ∈ H1
0 (Ω), ϕ0 ≥ 0, ϕ0 ̸≡ 0 satisfying,

λ1(Ω) =



Ω

|∇ϕ0|2

and,



−∆ϕ0 = λ1(Ω)ϕ0 in Ω

ϕ0 ≥ 0, ϕ0 ̸≡ 0 in Ω

ϕ0 = 0 on ∂Ω

(3.11)

Furthermore, ∀ ϕ ∈ H1
0 (Ω), we must have,

λ1(Ω)



Ω

ϕ2 ≤


Ω

|∇ϕ|2

Proof. We define,

S; =


ϕ ∈ H1

0 (Ω) |


Ω

ϕ2 = 1




Hence,

λ1(Ω) = inf
ϕ∈S






Ω

|∇ϕ|2



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Applying a result by Poincare, λ1(Ω) > 0. We choose a minimizing sequence ϕn ∈ S, such that,
∫

Ω

|∇ϕn|2 −→ λ1(Ω).

Implying that, ϕn is bounded in H1
0 (Ω). Thus, ∃ a sunsequence, {ϕnk

}∞k=1 of {ϕn}∞n=1 with

ϕnk
⇀ ϕ0 in H1

0 (Ω). From Rellich’s Theorem, H1
0 (Ω) → L2(Ω) is indeed compact. Hence,

ϕnk
→ ϕ0 in L2(Ω), and,

lim
k→∞

∫

Ω

ϕ2
nk

=

∫

Ω

ϕ2
0.

Now, ϕnk
∈ S and,

∫
Ω

ϕ2
0 = 1 =⇒ ϕ0 ∈ S.

Furthermore, ||.||H1
0 (Ω) being weakly sequentially lower semi-continuous implies,

λ1(Ω) ≤
∫

Ω

|∇ϕ0|2 ≤ lim inf
k→∞

∫

Ω

|∇ϕnk
|2 = λ1(Ω).

Therefore, λ1(Ω) =
∫
Ω

|∇ϕ0|2.

Moreover, assuming ϕ0 ≥ 0 , f(u) =
∫
Ω

|∇u|2 and, g(u) =
∫
Ω

u2 − 1, where, u ∈ S, we obtain,

g′(u)u = 2

∫

Ω

u2 = 2 ̸= 0.

A priori from the concepts discussed in the section of Constrained Minimization, we get,
∫

Ω

∇ϕ0∇ϕ = 2µ

∫

Ω

ϕ0ϕ

µ being the Lagrange Multiplier. Setting ϕ = ϕ0 ∈ S, we obtain, λ1(Ω) = 2µ.

Applying (3.11),
∫

Ω

∇ϕ0∇ϕ = λ1(Ω)

∫

Ω

ϕ0ϕ , ∀ ϕ ∈ H1
0 (Ω).

We thus conclude that, λ1(Ω) and ϕ0 indeed solve (3.11).

For any, u ∈ H1
0 (Ω) , u ̸≡ 0, defining, v = u(∫

Ω

u2

)1/2 , it can be observed that, v ∈ S as well,

so by definition of λ1(Ω),

λ1(Ω) ≤
∫

Ω

|∇v|2 =

∫
Ω

|∇u|2

∫
Ω

u2
.
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i.e.,

4 EKELAND VARIATIONAL PRINCIPLE AND ITS APPLICATIONS

i.e.,

λ1(Ω)

∫

Ω

u2 ≤
∫

Ω

|∇u|2 .

And, hence the proof is complete.

4 Ekeland Variational Principle and its Applications

4.1 Variational Principle

Assume, I ∈ C1(X,R) to be bounded below. Ekeland Variational Principle yields a

sequaence of minimizers of I over X with certain conditions, which enables us to conclude that,

in various situations we can derive the infimum of I over X. Especially, this principle is quite

beneficial for problems of minimax type.

Theorem 4.1.1. (Ekeland Variational Principle-Strong Form) Given a complete metric

space (X, d), and a lower semi-continuous function I ∈ C1(X,R) which is bounded below, for

every ϵ > 0 , λ > 0 and, x0 ∈ X satisfying,

I(x0) ≤ inf
X

I + ϵ,

∃ x̄ ∈ X such that, the following conditions hold true:

(1) I(x̄) +
(
ϵ
λ

)
d(x̄, x0) ≤ I(x0).

(2) d(x0, x̄) ≤ λ.

(3) I(x̄) < I(x) +
(
ϵ
λ

)
d(x, x̄), ∀ x ∈ X , x ̸= x̄.

Proof. Suppose, d1(x, y) :=
ϵ
λd(x, y). Then, (X, d1) is complete. Moreover, for x ∈ X, we define,

G(x) := {y ∈ X | I(y) + d1(x, y) ≤ I(x)} .

The above definition yields the following:

(1) x ∈ G(x) and, G(x) is in fact closed.

(2) G(y) ⊂ G(x) if, y ∈ G(x).

(3) For y ∈ G(x), we have, d1(x, y) ≤ I(x)− v(x), where, v(x) := inf
z∈G(x)

I(z).
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The above definition yields the following:
(1) x ∈ G(x) and, G(x) is in fact closed.
(2) G(y) ⊂ G(x) if, y ∈ G(x).
(3) For y ∈ G(x), we have, d1(x, y) ≤ I(x) − v(x), where, v(x) := 

A priori from the fact that, I(.) + d1(x, .) being lower semi-continuous, and by definition, we can assert that, G(x) is indeed closed and, 
x ∈ G(x).

Let, z ∈ G(y) ⇒ I(z) + d1(z, y) ≤ I(y) ⇒ I(y) + d1(y, x) ≤ I(x). Hence, (2) follows from the triangle inequality. Subsequently, we can deduce 
(3) using definitions of G(x) and v(x). Starting from x0, our objective is to construct a sequence, {xn} ⊂ X such that,

4 EKELAND VARIATIONAL PRINCIPLE AND ITS APPLICATIONS

i.e.,

λ1(Ω)

∫

Ω

u2 ≤
∫

Ω

|∇u|2 .

And, hence the proof is complete.

4 Ekeland Variational Principle and its Applications

4.1 Variational Principle

Assume, I ∈ C1(X,R) to be bounded below. Ekeland Variational Principle yields a

sequaence of minimizers of I over X with certain conditions, which enables us to conclude that,

in various situations we can derive the infimum of I over X. Especially, this principle is quite

beneficial for problems of minimax type.

Theorem 4.1.1. (Ekeland Variational Principle-Strong Form) Given a complete metric

space (X, d), and a lower semi-continuous function I ∈ C1(X,R) which is bounded below, for

every ϵ > 0 , λ > 0 and, x0 ∈ X satisfying,

I(x0) ≤ inf
X

I + ϵ,

∃ x̄ ∈ X such that, the following conditions hold true:

(1) I(x̄) +
(
ϵ
λ

)
d(x̄, x0) ≤ I(x0).

(2) d(x0, x̄) ≤ λ.

(3) I(x̄) < I(x) +
(
ϵ
λ

)
d(x, x̄), ∀ x ∈ X , x ̸= x̄.

Proof. Suppose, d1(x, y) :=
ϵ
λd(x, y). Then, (X, d1) is complete. Moreover, for x ∈ X, we define,

G(x) := {y ∈ X | I(y) + d1(x, y) ≤ I(x)} .

The above definition yields the following:

(1) x ∈ G(x) and, G(x) is in fact closed.
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1

2n
for n ≥ 0.

Since, v(x0) = inf
x∈G(x0)

I(x), thus, ∃x1 with,

x1 ∈ G(x0) ∋ I(x1) ≤ v(x0) +
1

2
.

Now, considering v(x1), we obtain x2 and so on. Using the fact that, xn+1 ∈ G(xn) for every

n ≥ 0, and (2),

G(xn) ⊃ G(xn+1) ∀ n ≥ 0.

We can derive that,

diam G(xn+1) = sup {d1(x, y) | x, y ∈ G(xn+1)} −→ 0 as n → ∞.

Now, {G(xn)}n≥0 being a decreasing sequence of closed sets with diameter tending to 0, by

Cantor’s Intersection Theorem, we get,

∞⋂
n=0

G(xn) = {x̄} for some x̄ ∈ X.

We claim that, x̄ is the required pint satisfying all the conditions as described in the statement

of the Theorem.

x̄ ∈ G(x0) =⇒ I(x̄) + d1(x0, x̄) ≤ I(x0). Furthermore,

d1(x̄, x0) ≤ I(x0)− v(x0) ≤ ϵ.

Important to observe that, G(x̄) = {x̄}. Then, for every x ∈ X , x ̸= x̄, we must have, x /∈ G(x̄).

Consequently,

I(x) + d1(x, x̄) > I(x̄).

That completes the proof, a priori using definition, d1 =
ϵ
λd.

For the case, λ = 1, we can have a weaker version as follows.
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X

I + ϵ

I(xϵ) < I(x) + ϵ||x− xϵ||, ∀ x ∈ X, x ̸= xϵ. (4.1)

Choose, x = xϵ = ty, t > 0 , y ∈ X , y ̸= 0.

(4.1) yields,

I(xϵ)− I(xϵ + ty) < ϵt||y||.

Thus,

lim
t→0

I(xϵ)− I(xϵ + ty)

t
≤ ϵ||y|| =⇒ −I ′(xϵ)(y) ≤ ϵ||y|| , ∀ y ∈ X

=⇒ I ′(xϵ)(y) ≤ ϵ||y|| , ∀ y ∈ X ( changing y to − y)
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||I ′(xϵ)|| = sup
y∈X
y ̸=0

{
|I ′(xϵ)y|
||y||

}
≤ ϵ.

Now, taking ϵ = 1
n , xϵ = xn, we thus have,

inf
X

I ≤ I(xn) ≤ inf
X

I +
1

n
=⇒ ||I ′(xn)|| ≤

1

n
.

Hence, we conclude our desired result using definition of strong convergence.
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Corollary 4.1.3. Suppose, X be a Banach Space, and, I ∈ C1(X, ℝ) be bounded below. Then, ∃ a sequence, {xn}n≥0 in X satisfying,

Proof. Applying the weak form of Ekeland Variational Principle (Theorem (4.1.2)), a priori given any ϵ > 0, ∃ xϵ ∈ X satisfying,

Choose, x = xϵ = ty, t > 0 , y ∈ X , y ≠ 0.
(4.1) yields,

Thus,

Hence,

Now, taking                                  we thus have,

Hence, we conclude our desired result using definition of strong convergence

4.2 Palais-Smale Condition
We begin with a proper definition of the above.

Definition 4.2.1. Assume X to be a Banach Space, and, I ∈ C1(X, ℝ). For any c ∈ ℝ, we say that, I satisfies the Palais-Smale Condition at 
c ( (PS)c as abbreviation) if, every sequence {xn}n≥0 ⊂ X with, I(xn) → c , I′(xn) → 0 in X∗, has a convergent subsequence.

If in fact, I satisfies (PS)c at every c ∈ ℝ, then, we conclude that, I indeed satisfies the Palais-Smale Condition ((PS) as in short).

Theorem 4.2.1. X be a Banach Space, and, I ∈ C1(X, ℝ) is bounded below. Furthermore, let, I satisfy (PS)c, where, c = inf . Then, ∃ x0 
∈ X satisfying,
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I satisfy (PS)c, where, c = inf
X

I. Then, ∃ x0 ∈ X satisfying,

I(x0) = inf
x∈X

I(x) and, I ′(x0) = 0.

Proof. Corollary (4.1.3) implies that, ∃ a sequence {xn}n≥0 ⊂ X such that, I(xn) → inf
X

I = c

(say), and, I ′(xn) → 0 as n → ∞. Since, I satisfies the (PS)c, ∃ a subsequence, {xnk
}k≥0 of

{xn}n≥0 and x0 ∈ X satisfying, xn → x0 in X.

Now, I ∈ C1(X,R) and I ′ ∈ C(X,X∗) both being continuous, we shall obtain,

I(x0) = lim
k→∞

I(xnk
) = c,

and,

I ′(x0) = lim
k→∞

I ′(xnk
) = 0.

and the result holds true.

Corollary 4.2.2. Suppose, Ω ⊂ Rn be bounded, and, 1 ≤ q < p < (n+2)
(n−2) . For every λ ∈ R, we

define, I : H1
0 (Ω) → R as,

I(u) :=
1

2



Ω

|∇u|2 − 1

p+ 1



Ω

|u|p+1 − λ

2



Ω

|u|q+1 (4.2)

Then, I satisfies the (PS) condition.

Corollary 4.2.3. Let, p = (n+2)
(n−2) , and, I be defined as in (4.2). Then, I satisfies (PS)c for

every c ∈
�
−∞, 1

nS
n/2


, where,

S = inf






Ω

|∇u|2 : u ∈ H1
0 (Ω) and,



Ω

|u|2n/(n−2) = 1



 .

S as defined above is termed as the Best Sobolev Constant. Moreover, I does not satisfy

(PS)c, where, c =
1
nS

n/2.
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Proof. Corollary (4.1.3) implies that, ∃ a sequence {xn}n≥0 ⊂ X such that, I(xn) → inf I = c (say), and, I′(xn) → 0 as n → ∞. Since, I satisfies 
the (PS)c, ∃ a subsequence, {xnk}k≥0 of {xn}n≥0 and x0 ∈ X satisfying, xn → x0 in X.

Now, I ∈ C1(X, ℝ) and I′ ∈ C(X, X*) both being continuous, we shall obtain,

X

X
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We begin with a proper definition of the above.

Definition 4.2.1. Assume X to be a Banach Space, and, I ∈ C1(X,R). For any c ∈ R, we say

that, I satisfies the Palais-Smale Condition at c ( (PS)c as abbreviation) if, every sequence

{xn}n≥0 ⊂ X with, I(xn) → c , I ′(xn) → 0 in X∗, has a convergent subsequence.

If in fact, I satisfies (PS)c at every c ∈ R, then, we conclude that, I indeed satisfies the

Palais-Smale Condition ((PS) as in short).

Theorem 4.2.1. X be a Banach Space, and, I ∈ C1(X,R) is bounded below. Furthermore, let,

I satisfy (PS)c, where, c = inf
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I. Then, ∃ x0 ∈ X satisfying,

I(x0) = inf
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I(x) and, I ′(x0) = 0.
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and,
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Proof. � To prove that I satisfies (PS)c for c <
1
nS

n/2, where S is the Best Sobolev Constant,

we proceed as follows:

Given c < 1
nS

n/2, let {un} ⊂ H1
0 (Ω) be a Palais-Smale sequence at level c. By definition,

this means that I(un) → c and I ′(un) → 0 as n → ∞.

We aim to show that every Palais-Smale sequence at level c has a convergent subsequence.

To do so, we will use the Mountain Pass Theorem.

The Mountain Pass Theorem states that if I satisfies certain conditions, including the

Palais-Smale condition and coercivity, then it possesses a critical point at every level below

the Mountain Pass value.

Now, since c < 1
nS

n/2, it implies that c is below the Mountain Pass value γ. Therefore,

by the Mountain Pass Theorem, every Palais-Smale sequence at level c has a convergent

subsequence converging to a minimum of I.

Hence, I satisfies (PS)c for c <
1
nS

n/2.

� To prove that (PS)c fails for c = 1
nS

n/2, where S is the Best Sobolev Constant, we

construct a Palais-Smale sequence {un} ⊂ H1
0 (Ω) at level c that does not have a convergent

subsequence.

Given c = 1
nS

n/2, we construct a Palais-Smale sequence {un} as follows:

Define,

un(x) =
√

2
λ1(Ω) sin(λnx1) sin(λnx2) · · · sin(λnxn),

where λn is the n-th eigenvalue of −∆ with Dirichlet boundary conditions.

Each function un is an eigenfunction of −∆ with Dirichlet boundary conditions, normalized

such that ∥un∥ = 1. Therefore, I(un) achieves the desired level c = 1
nS

n/2.

By the properties of eigenfunctions, I ′(un) = un − λ1(Ω)un = (1 − λ1(Ω))un. Since

λ1(Ω) > 0, I ′(un) → 0 as n → ∞.

However, the sequence ∥un∥ does not converge, as it remains constant for all n. This lack

of convergence implies that there is no convergent subsequence, violating the Palais-Smale

condition.

Hence, we’ve found a Palais-Smale sequence {un} at level c = 1
nS

n/2 that does not have a

convergent subsequence. Therefore, I fails the Palais-Smale condition at c = 1
nS

n/2.
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where λn is the n-th eigenvalue of −Δ with Dirichlet boundary conditions.

Each function un is an eigenfunction of −Δ with Dirichlet boundary conditions, normalized such that ∥un∥ = 1. Therefore, I (un) achieves 
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By the properties of eigenfunctions, I′ (un) = un − λ1(Ω)un = (1 − λ1(Ω))un. Since λ1(Ω) > 0, I′ (un) → 0 as n → ∞.

However, the sequence ∥un∥ does not converge, as it remains constant for all n. This lack of convergence implies that there is no conver-
gent subsequence, violating the Palais-Smale condition.

Hence, we’ve found a Palais-Smale sequence {un} at level                    that does not have a convergent subsequence. Therefore, I fails 
the Palais-Smale condition at                       .
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where λn is the n-th eigenvalue of −Δ with Dirichlet boundary conditions

Each function un is an eigenfunction of −Δ with Dirichlet boundary conditions, normalized such that ∥un∥ = 1. Therefore, I(un) achieves 
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Given the functional I (u) defined as:

4 EKELAND VARIATIONAL PRINCIPLE AND ITS APPLICATIONS

4.2 Palais-Smale Condition

We begin with a proper definition of the above.

Definition 4.2.1. Assume X to be a Banach Space, and, I ∈ C1(X,R). For any c ∈ R, we say

that, I satisfies the Palais-Smale Condition at c ( (PS)c as abbreviation) if, every sequence
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If in fact, I satisfies (PS)c at every c ∈ R, then, we conclude that, I indeed satisfies the
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where λ1(Ω) is the first Dirichlet eigenvalue of −Δ on Ω, we aim to derive the Best Sobolev Constant S, defined as:
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where λ1(Ω) is the first Dirichlet eigenvalue of −∆ on Ω, we aim to derive the Best Sobolev

Constant S, defined as:

S = inf
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0 (Ω),

∫
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|u|2n/(n−2) = 1

}

Consider the functional J(u) =
∫
Ω |∇u|2 subject to the constraint

∫
Ω |u|2n/(n−2) = 1. By

the Euler-Lagrange equation, the critical points of J(u) subject to the constraint

satisfy:

−∆u+ λ|u|2n/(n−2)−2u = 0

where λ is a Lagrange multiplier. Let u be a nontrivial solution of the above equation. By

scaling, we may assume that ∥u∥L2n/(n−2) = 1. Then, by the variational characterization

of λ1(Ω), we have:

λ1(Ω) =

∫
Ω |∇u|2∫
Ω |u|2

Since ∥u∥L2n/(n−2) = 1, we have
∫
Ω |u|2n/(n−2) = 1, implying that

∫
Ω |u|2 achieves its

maximum. Thus, λ1(Ω) is the smallest eigenvalue. Therefore, the Best Sobolev Constant

S is equal to the first Dirichlet eigenvalue λ1(Ω) of −∆ on Ω.

Hence, S = λ1(Ω). This completes the proof.

Proposition 4.2.4. Suppose, λ1(Ω) be the first Dirichlet Eigenvalue of −∆. Define, I :

H1
0 (Ω) −→ R as,
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Consider the functional J (u) = ∫Ω |∇u|2 subject to the constraint ∫Ω |u|2n / (n−2) = 1. By the Euler-Lagrange equation, the critical points of 
J(u) subject to the constraint satisfy:

where λ is a Lagrange multiplier. Let u be a nontrivial solution of the above equation. By scaling, we may assume that ∥u∥L2n/(n−2) = 1. 
Then, by the variational characterization of λ1(Ω), we have:

Since ∥u∥L2n/(n−2) = 1, we have ∫Ω |u|2n/(n−2) = 1, implying that ∫Ω |u|2 achieves its maximum. Thus, λ1(Ω) is the smallest eigenvalue. There-
fore, the Best Sobolev Constant S is equal to the first Dirichlet eigenvalue λ1(Ω) of −Δ on Ω.

Hence, S = λ1(Ω). This completes the proof.

Proposition 4.2.4. Suppose, λ1(Ω) be the first Dirichlet Eigenvalue of −Δ. Define, I : H1
0 (Ω) −→ ℝ as,
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Proof. Given the functional I (u) defined as:
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Proof. Given the functional I(u) defined as:

I(u) =
1

2

∫

Ω
|∇u|2 − λ1(Ω)

2

∫

Ω
u2

where λ1(Ω) is the first Dirichlet eigenvalue of −∆ on Ω, we aim to demonstrate that I does

not satisfy the Palais-Smale condition at the point 0.

To do so, we construct a sequence {un} ⊂ H1
0 (Ω) such that I(un) → 0, ∥un∥ → ∞, and

I ′(un) → 0 as n → ∞.

Consider the function,

un(x) =
(√

2
λ1(Ω)

) 1
n
sin(λnx1) sin(λnx2) · · · sin(λnxn),

where x = (x1, x2, . . . , xn) represents the spatial coordinates in Ω, and λn is the n-th eigenvalue

of −∆ with Dirichlet boundary conditions.

Now, let’s justify the properties:

� Convergence of I(un) → 0: Substituting un into I(u), we have:

I(un) =
1

2
λn − λ1(Ω)

2
→ 0

as n → ∞, since λn is the n-th eigenvalue and λ1(Ω) is the first eigenvalue of −∆ on Ω.

� Divergence of ∥un∥ → ∞: The norm of un is given by:

∥un∥ =

(√
2

λ1(Ω)

) 1
n

→ ∞

as n → ∞.

� Convergence of I ′(un) → 0: The derivative of I(u) at un is given by:

I ′(un) = (1− λ1(Ω))un → 0

as n → ∞, since λ1(Ω) > 0.

Therefore, the sequence {un} satisfies the conditions for the Palais-Smale condition to fail at

the point 0. Thus, the functional I does not satisfy (PS)0.

Lemma 4.2.5. Consider a Banach Space X and, I ∈ C1(X,R). Assume, α = lim
||u||→∞

I(u) ∈ R.

Then, ∃ a sequence, {un}n≥0 ⊂ X satisfying, ||un|| → ∞ , I(un) → α and, I ′(un) → 0.
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as n → ∞, since λn is the n-th eigenvalue and λ1(Ω) is the first eigenvalue of −Δ on Ω.

• Divergence of ∥un∥ → ∞: The norm of un is given by:
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Convergence of I′ (un) → 0: The derivative of I (u) at un is given by:

as n → ∞, since λ1(Ω) > 0.

Therefore, the sequence {un} satisfies the conditions for the Palais-Smale condition to fail at the point 0. Thus, the functional I does not 
satisfy (PS)0.

Lemma 4.2.5. Consider a Banach Space X and, I ∈ C1(X, ℝ). Assume, α = lim  I(u) ∈ ℝ. Then, ∃ a sequence, {un}n≥0 ⊂ X satisfying, ||un|| 
→ ∞ , I (un) → α and, I′ (un) → 0.

Proof. A priori it is given to us that, I ∈ C1(X, ℝ) on the Banach space X, with α = lim I(u) ∈ ℝ.

||u||→∞

||u||→∞
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Let ϵ > 0 and u0 ∈ X. Then, Ekeland’s Variational Principle says that ∃ u ∈ X such that:
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Proof. A priori it is given to us that, I ∈ C1(X,R) on the Banach space X, with α =

lim
||u||→∞

I(u) ∈ R.

Let ϵ > 0 and u0 ∈ X. Then, Ekeland’s Variational Principle says that ∃ u ∈ X such that:

1. I(u) ≤ I(u0),

2. ||u− u0|| < ϵ,

3. I(u) < I(v) + 1
2ϵ ||u− v||2 for all v ̸= u.

Now, we try to construct a sequence {un} which’ll satisfy the desired conditions. Choose

u0 ∈ X arbitrarily and ϵ = 1. By Ekeland’s Variational Principle, there exists u1 ∈ X satisfying

conditions (1), (2), and (3) with ϵ = 1.

Now, recursively construct the sequence {un} as follows: For n ≥ 2, apply Ekeland’s Principle

with ϵ = 1
n and u0 = un−1. This gives us un satisfying conditions (1), (2), and (3) with ϵ = 1

n .

By our construction, the sequence {un} satisfies the following properties:

� I(un) ≤ I(un−1) for all n, implying that {I(un)} is a decreasing sequence.

� ||un − un−1|| < 1
n for all n, so {un} is a Cauchy sequence.

� By the completeness of X, {un} converges to some u ∈ X.

Furthermore, since {I(un)} is decreasing and bounded below by α, it converges to α. Also, since

I is continuously differentiable, I ′(un) converges to I ′(u) = 0 as n → ∞.

Assume if possible that, ||un|| ↛ ∞. Then, there exists M > 0 such that ||un|| ≤ M for all

n. But then limn→∞ I(un) = −∞, contradicting the assumption that α is finite. Thus, ||un||
must tend to infinity.

Therefore, we have constructed a sequence {un} satisfying all the desired properties using

Ekeland’s Variational Principle. Thus the proof is complete.

As a consequence of Lemma (4.2.5), we can conclude the following.

Proposition 4.2.6. If I ∈ C1(X,R) is bounded below, and satisfies the (PS) condition, then, I

is coercive.
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proof is complete.

As a consequence of Lemma (4.2.5), we can conclude the following.

Proposition 4.2.6. If  I ∈ C1(X, ℝ) is bounded below, and satisfies the (PS) condition, then, I is coercive.

4.3 Applications
We can in fact observe an application of Ekeland Variational Principle to derive critical point(s) at the minimax level.

Theorem 4.3.1. (Brezis Theorem) Given a Banach Space X and, I ∈ C1(X, ℝ), assume K to be a compact metric space. Moreover, let, K0 
⊂ K be a closed set, and, p0 : K0 → X be a continuous function.

Define,
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4.3 Applications

We can in fact observe an application of Ekeland Variational Principle to derive critical point(s)

at the minimax level.

Theorem 4.3.1. (Brezis Theorem) Given a Banach Space X and, I ∈ C1(X,R), assume K

to be a compact metric space. Moreover, let, K0 ⊂ K be a closed set, and, p0 : K0 → X be a

continuous function.

Define,

Γ := {p ∈ C(K,X) ∋ p|K0 = p0}

and,

c := inf
p∈Γ

max
ξ∈K

I(p(ξ)) = inf
p∈Γ

max
x∈p(K)

I(x). (4.3)

ALso, suppose that,

max
ξ∈K

I(p(ξ)) > max
ξ∈K0

I(p0(ξ)) ∀ p ∈ Γ. (4.4)

Then, ∃ a sequence, {xn}n≥0 ⊂ X satisfying, I(xn) → c and, I ′(xn) → 0 in X∗ as n → ∞.

Furthermore, if I satisfies (PS)c, then, ∃ x0 ∈ X with, i(x0) = c and, I ′(x0) = 0.

Important to mention that, the proof mainly hinges upon the following result.

Lemma 4.3.2. (Pseudo-Gradient Lemma) Assume any metric space Y , and X to be a

Banach Space with, F ∈ C(Y,X∗). Given any σ > 0, ∃ a function, h : Y → X, locally Lipschitz

such that, ∀ y ∈ Y ,

� ||h(y)||X ≤ 1.

� ⟨F (y), h(y)⟩ ≥ ||F (y)||X∗ − σ.

Brezis Theorem can also be considered as a generalization of the Mountain-Pass Theorem

introduced by Ambrosetti and Rabinowitz.

Theorem 4.3.3. (Mountain Pass Theorem) A priori under the assumptions that, X be a

Banach Space and, I ∈ C1(X,R) satisfies (PS). Moreover, we consider the following condition,

∃ R > 0 and, e ∈ X such that, ||e|| > R and, b = inf
x∈∂BR(0)

I(x) > max{I(0), I(e)}. (4.5)
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Then, ∃ a sequence, {xn}n ≥ 0 ⊂ X satisfying, I (xn) → c and, I′ (xn) → 0 in X * as n → ∞. Furthermore, if I satisfies (PS)c, then, ∃ x0 ∈ X 
with, i(x0) = c and, I′ (x0) = 0.

Important to mention that, the proof mainly hinges upon the following result.

Lemma 4.3.2. (Pseudo-Gradient Lemma) Assume any metric space Y , and X to be a Banach Space with, F ∈ C(Y, X *). Given any σ > 
0, ∃ a function, h : Y → X, locally Lipschitz such that, ∀ y ∈ Y ,

Brezis Theorem can also be considered as a generalization of the Mountain-Pass Theorem introduced by Ambrosetti and Rabinowitz.

Theorem 4.3.3. (Mountain Pass Theorem) A priori under the assumptions that, X be a Banach Space and, I ∈ C 1(X, ℝ) satisfies (PS). 
Moreover, we consider the following condition,

Then, ∃ x0 ∈ X satisfying, I′ (x0) = 0 and, I (x0) = c ≥ b, where, we can in fact characterize c as,
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Then, ∃ x0 ∈ X satisfying, I ′(x0) = 0 and, I(x0) = c ≥ b, where, we can in fact characterize c

as,

c = inf
p∈Γ

max
t∈[0,1]

I(p(t)).

such that,

Γ = {p ∈ C((0, 1] , X) : p(0) = 0 , p(1) = e} .

Proof. A priori from the definition, we have, c < ∞. Thus, for every p ∈ Γ, p([0, 1])∩∂BR(0) ̸= ϕ.

As a result,

max
t∈[0,1]

I(p(t)) = max
x∈p[0,1]

I(x) ≥ inf
x∈∂BR(0)

I(x) = b (4.6)

Therefore, c ≥ b. To establish the existence of critical point, we need to utilize the hypothesis of

Brezis Theorem. Let, K = [0, 1] , K0 = {0, 1} , p0(0) = 0 and, p0(1) = e.

Now then it remains for us to verify the condition (4.4). Although, from (5.1), we obtain,

max
t∈[0,1]

I(p(t)) ≥ inf
x∈∂BR(0)

I(x) = b > max{I(0), I(e)}.

Applying Brezis Theorem, we conclude that, ∃ x0 ∈ X satisfying, I(x0) = c and, I ′(x0) = 0.

This completes the proof.

Remark 4.3.4. The statement of the Mountain Pass Theorem need not be true in case if I

does not satisfies (PS).

For example, we can look into the function, I ∈ C1(R2,R) defined as,

I(x, y) := x2 − (x− 1)3y2.

SInce, I(0) = 0 and, 0 is in fact a local minima, we can choose R > 0 small enough such that,

b = inf
x∈∂BR(0)

I(x) > 0. Furthermore, given e ∈ R2 with, |e| > R and, I(e) < 0. It can be

observed that, all the conditions of the Mountain Pass Theorem are satisfied, except that, I

satisfies (PS).

Also, since I(0) = 0 and, 0 is indeed the only critical point of I, there ∄ any x0 ∈ R2 satifying,

I(x0) ≥ b > 0 and, I ′(x0) = 0.

Remark 4.3.5. Geometrically speaking, Mountain Pass Theorem implies that, if a pair of points

in the graph of a function I are indeed separated by a mountain range, then ∃ a mountain pass

containing a critical point of I.
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Therefore, c ≥ b. To establish the existence of critical point, we need to utilize the hypothesis of

Brezis Theorem. Let, K = [0, 1] , K0 = {0, 1} , p0(0) = 0 and, p0(1) = e.

Now then it remains for us to verify the condition (4.4). Although, from (5.1), we obtain,

max
t∈[0,1]

I(p(t)) ≥ inf
x∈∂BR(0)

I(x) = b > max{I(0), I(e)}.

Applying Brezis Theorem, we conclude that, ∃ x0 ∈ X satisfying, I(x0) = c and, I ′(x0) = 0.

This completes the proof.

Remark 4.3.4. The statement of the Mountain Pass Theorem need not be true in case if I

does not satisfies (PS).

For example, we can look into the function, I ∈ C1(R2,R) defined as,

I(x, y) := x2 − (x− 1)3y2.

SInce, I(0) = 0 and, 0 is in fact a local minima, we can choose R > 0 small enough such that,

b = inf
x∈∂BR(0)

I(x) > 0. Furthermore, given e ∈ R2 with, |e| > R and, I(e) < 0. It can be

observed that, all the conditions of the Mountain Pass Theorem are satisfied, except that, I

satisfies (PS).

Also, since I(0) = 0 and, 0 is indeed the only critical point of I, there ∄ any x0 ∈ R2 satifying,

I(x0) ≥ b > 0 and, I ′(x0) = 0.

Remark 4.3.5. Geometrically speaking, Mountain Pass Theorem implies that, if a pair of points

in the graph of a function I are indeed separated by a mountain range, then ∃ a mountain pass

containing a critical point of I.
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such that,

Proof. A priori from the definition, we have, c < ∞. Thus, for every p ∈ Γ, p([0, 1])∩∂BR(0)  ≠ ϕ. As a result,

Therefore, c ≥ b. To establish the existence of critical point, we need to utilize the hypothesis of Brezis Theorem. Let, K = [0, 1] , K0 = 
{0, 1} , p0(0) = 0 and, p0(1) = e.

Now then it remains for us to verify the condition (4.4). Although, from (5.1), we obtain,

Applying Brezis Theorem, we conclude that, ∃ x0 ∈ X satisfying, I (x0) = c and, I′(x0) = 0. This completes the proof.

Remark 4.3.4. The statement of the Mountain Pass Theorem need not be true in case if I does not satisfies (PS).

For example, we can look into the function, I ∈ C1 (ℝ2, ℝ) defined as,

SInce, I (0) = 0 and, 0 is in fact a local minima, we can choose R > 0 small enough such that, b = inf    I(x) > 0. Furthermore, given e ∈ 
ℝ2 with, |e| > ℝ and, I(e) < 0. It can be observed that, all the conditions of the Mountain Pass Theorem are satisfied, except that, I satisfies 
(PS).

x∈∂BR(0)
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Also, since I (0) = 0 and, 0 is indeed the only critical point of I, there ∄ any x0 ∈ ℝ2 satifying, I(x0) ≥ b > 0 and, I′(x0) = 0.

Remark 4.3.5. Geometrically speaking, Mountain Pass Theorem implies that, if a pair of points in the graph of a function I are indeed 
separated by a mountain range, then ∃ a mountain pass containing a critical point of I.

Another version of the famous Mountain Pass Theorem can be found in [15].

Theorem 4.3.6. Given a Banach Space X, and I : X → ℝ be a C1 functional which indeed satisfies the (PS) condition. Suppose, S be a 
closed subset of X which disconnects X. Furthermore, given x0, x1 ∈ X which belong to distinct connected components of X \ S, if I is 
bounded below in S, and in fact, the following condition is verified:

5 APPLICATIONS TO THE CRITICAL POINT THEORY

Another version of the famous Mountain Pass Theorem can be found in [15].

Theorem 4.3.6. Given a Banach Space X, and I : X → R be a C1 functional which indeed

satisfies the (PS) condition. Suppose, S be a closed subset of X which disconnects X. Further-

more, given x0, x1 ∈ X which belong to distinct connected components of X \ S, if I is bounded

below in S, and in fact, the following condition is verified:

inf
S

I ≥ b and max {I(x0), I(x1)} < b (4.7)

Also, let,

Γ = {f ∈ C((0, 1] , X) : f(0) = x0 , f(1) = x1} .

Then, we shall have,

c = inf
f∈Γ

max
t∈[0,1]

I(f(t)) > −∞ (4.8)

will be a critical value. In other words, ∃ x0 ∈ X satisfying,

I(x0) = c , I ′(x0) = 0.

Remark 4.3.7. The connectedness referred above is in fact arc-wise connectedness. Thus, X \ S
is indeed a union of open arcwise connected components (ref. [16, Pg-116]). Hence, x0 and x1

being in distinct components implies that, any arc in X connecting x0 and x1 intercept S.

For example, one can in fact consider X to be a hyperplane in X or, the boundary of an

open set [in particular, the boundary of a ball].

5 Applications to the Critical Point Theory

Theorem 5.0.1. Suppose, 1 < q ≤ p < (n+2)
(n−2) , and, λ ∈ R. Also, we consider Ω ⊂ Rn to be a

bounded domain. Then ∃ u0 ∈ H1
0 (Ω) which is in fact a weak solution of the problem,




−∆u = |u|p−1u+ λ|u|q−1u in Ω

u = 0 on ∂Ω

u ̸≡ 0 in Ω

(5.1)

in the sense that,



Ω

∇u0∇ϕ =



Ω

|u0|p−1u0ϕ+ λ



Ω

|u0|q−1u0ϕ ∀ ϕ ∈ D(Ω). (5.2)
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5 Applications to the Critical Point Theory

Theorem 5.0.1. Suppose, 1 < q ≤ p < (n+2)
(n−2) , and, λ ∈ R. Also, we consider Ω ⊂ Rn to be a

bounded domain. Then ∃ u0 ∈ H1
0 (Ω) which is in fact a weak solution of the problem,




−∆u = |u|p−1u+ λ|u|q−1u in Ω

u = 0 on ∂Ω

u ̸≡ 0 in Ω

(5.1)

in the sense that,



Ω

∇u0∇ϕ =



Ω

|u0|p−1u0ϕ+ λ



Ω

|u0|q−1u0ϕ ∀ ϕ ∈ D(Ω). (5.2)
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
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|∇u|2 − 1

p+ 1



Ω

|u|p+1 − λ

q + 1



Ω

|u|q+1.

Clearly, we can verify that, I satisfies (PS). Next we check the conditions for the Mountain

Pass Theorem. We obtain,

I(0) = 0.

SInce, H1
0 (Ω) → Lp+1(Ω) , H1

0 (Ω) → Lq+1(Ω), hence,


Ω

|u|p+1 ≤ c||u||p+1 ,



Ω

|u|q+1 ≤ c||u||q+1

for some c > 0. Therefore,

I(u) ≥ 1

2
||u||2 − c

p+ 1
||u||p+1 − c

q + 1
λ||u||q+1 =


1

2
||u|| − c1||u||p − c2λ||u||q


||u||

For ||u|| = R, we have,

I(u) ≥

1

2
R− c1R

p − c2R
q


R

Since, p, q > 1, thus choosing R small enough such that,

I(u) > a, on ||u|| = R for some a > 0.

Let us take any u1 ∈ H1
0 (Ω). Thus, tu1 ∈ H1

0 (Ω) for any t ∈ R. Now, from the fact that,

I(tu1) −→ −∞ as t → ∞.

Choosing t large enough such that, ||t0u1|| = |t0|.||u1|| > R and, I(t0u1) < 0, and, e = t0u, and

applying the Mountain Pass Theorem, we can assert that, ∃ u0 ∈ H1
0 (Ω) ∋ I ′(u0) = 0 and,

I(u0) ≥ a.

It can also be derived that, u0 ̸= 0, as, a > 0, and the proof is thus complete.

On the other hand, Brezis and Nirenberg [28] has developed signifcant results in observing

the model problem:



−∆u = up + λu in Ω

u = 0 on ∂Ω

u > 0 in Ω

(5.3)

When p = (n+2)
(n−2) , n ≥ 3 and, λ be any real constant. We can consider the following cases.
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Let us take any u1 ∈ H1
0 (Ω). Thus, tu1 ∈ H1

0 (Ω) for any t ∈ R. Now, from the fact that,

I(tu1) −→ −∞ as t → ∞.

Choosing t large enough such that, ||t0u1|| = |t0|.||u1|| > R and, I(t0u1) < 0, and, e = t0u, and

applying the Mountain Pass Theorem, we can assert that, ∃ u0 ∈ H1
0 (Ω) ∋ I ′(u0) = 0 and,

I(u0) ≥ a.

It can also be derived that, u0 ̸= 0, as, a > 0, and the proof is thus complete.

On the other hand, Brezis and Nirenberg [28] has developed signifcant results in observing

the model problem:



−∆u = up + λu in Ω

u = 0 on ∂Ω

u > 0 in Ω

(5.3)

When p = (n+2)
(n−2) , n ≥ 3 and, λ be any real constant. We can consider the following cases.
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5 APPLICATIONS TO THE CRITICAL POINT THEORY

Theorem 5.0.2. In case when, n ≥ 4, the problem (5.3) indeed has a solution for every

λ ∈ (0, λ1), where, λ1 denotes the first eigenvalue of −∆.

Moreover, the problem does not admit any solution if λ /∈ (0, λ1) and, λ is starshaped.

Theorem 5.0.3. For n = 3, the problem (5.3) turns out to be much more delicate. In this

scenario, a complte solution exists only if Ω is a ball. Subsequently, we shall have that, (5.3)

yields a solution iff λ ∈
�
1
4λ1, λ1


, λ1 being the first eigenvalue of −∆.

Remark 5.0.4. In case when p > (n+2)
(n−2) , Brezis and Nirenberg [28] discusses the concept of

commenting on the results related to existence of solutions to (5.3) using the notion of general

Bifurcation Theory. For example, as mentioned by Rabinowitz [29], the problem (5.3) possesses

a component C of solutions (λ, u), which meets (λ1, 0) and which is unbounded in R× L∞(Ω).

Furthermore, if p = (n+2)
(n−2) and n ≥ 4, applying the result in Theorem (5.0.2), we can conclude

that, the projection of C on the λ-axis does in fact contain the interval (0, λ1) (with appropriate

modifications being done when n = 3 , p = 5).

As in another scenario when, p > (n+2)
(n−2) and Ω is star-shaped, then the problem (5.3) has

no solution for λ ≤ λ∗, λ∗ being some positive constant depending on Ω and p. This was

explicitly derived by Rabinowitz [30] for the case when, n = 3 , p = 7. One can in fact use

similar argument in the general case by applying Pohozaev’s Identity.

In greater generality as compared to the Dirichlet boundary value problem (5.3), Brezis and

Nirenberg [28] also have dealt with the following problem in detail:





−∆u = up + λuq in Ω

u = 0 on ∂Ω

u > 0 in Ω

(5.4)

Where, p = (n+2)
(n−2) and, 1 < q < p, λ > 0 being a constant. Considering different cases for n, we

can conclude about the existence of solution (if any) for (5.4) in the manner as described below.

Theorem 5.0.5. For n ≥ 4, the problem (5.4) indeed admits of a solution for every λ > 0.

Theorem 5.0.6. In case when n = 3 and consequently, p = 5, we can assert the following about

existence of solution to the DIrichlet problem (5.4):

(i) If 3 < q < 5, ∃ solution to the problem for every λ > 0.

(ii) For 1 < q ≤ 3, solution does exists only for sufficiently large values of λ.
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Furthermore, if p =             and n ≥ 4, applying the result in Theorem (5.0.2), we can conclude that, the projection of C on the λ-axis does 

in fact contain the interval (0, λ1) (with appropriate modifications being done when n = 3 , p = 5).

As in another scenario when, p >                  and Ω is star-shaped, then the problem (5.3) has no solution for λ ≤ λ∗, λ* being some posi-
tive constant depending on Ω and p. This was explicitly derived by Rabinowitz [30] for the case when, n = 3 , p = 7. One can in fact use 
similar argument in the general case by applying Pohozaev’s Identity.

In greater generality as compared to the Dirichlet boundary value problem (5.3), Brezis and Nirenberg [28] also have dealt with the 
following problem in detail:

5 APPLICATIONS TO THE CRITICAL POINT THEORY

Proof. We define, I ∈ C1(H1
0 (Ω),R) as,

I(u) :=
1

2



Ω

|∇u|2 − 1

p+ 1



Ω

|u|p+1 − λ

q + 1



Ω

|u|q+1.

Clearly, we can verify that, I satisfies (PS). Next we check the conditions for the Mountain

Pass Theorem. We obtain,

I(0) = 0.

SInce, H1
0 (Ω) → Lp+1(Ω) , H1

0 (Ω) → Lq+1(Ω), hence,


Ω

|u|p+1 ≤ c||u||p+1 ,



Ω

|u|q+1 ≤ c||u||q+1

for some c > 0. Therefore,
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p+ 1
||u||p+1 − c

q + 1
λ||u||q+1 =


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2
||u|| − c1||u||p − c2λ||u||q


||u||

For ||u|| = R, we have,

I(u) ≥

1

2
R− c1R

p − c2R
q


R

Since, p, q > 1, thus choosing R small enough such that,

I(u) > a, on ||u|| = R for some a > 0.

Let us take any u1 ∈ H1
0 (Ω). Thus, tu1 ∈ H1

0 (Ω) for any t ∈ R. Now, from the fact that,

I(tu1) −→ −∞ as t → ∞.

Choosing t large enough such that, ||t0u1|| = |t0|.||u1|| > R and, I(t0u1) < 0, and, e = t0u, and

applying the Mountain Pass Theorem, we can assert that, ∃ u0 ∈ H1
0 (Ω) ∋ I ′(u0) = 0 and,

I(u0) ≥ a.

It can also be derived that, u0 ̸= 0, as, a > 0, and the proof is thus complete.

On the other hand, Brezis and Nirenberg [28] has developed signifcant results in observing

the model problem:



−∆u = up + λu in Ω

u = 0 on ∂Ω

u > 0 in Ω

(5.3)

When p = (n+2)
(n−2) , n ≥ 3 and, λ be any real constant. We can consider the following cases.
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Where, p =             and, 1 < q < p, λ > 0 being a constant. Considering different cases for n, we can conclude about the existence of 
solution (if any) for (5.4) in the manner as described below.

Theorem 5.0.5. For n ≥ 4, the problem (5.4) indeed admits of a solution for every λ > 0.

Theorem 5.0.6. In case when n = 3 and consequently, p = 5, we can assert the following about existence of solution to the DIrichlet 
problem (5.4):

(i) If 3 < q < 5, ∃ solution to the problem for every λ > 0.
(ii) For 1 < q ≤ 3, solution does exists only for sufficiently large values of λ.

Brezis Theorem allows us to conclude that, for any function I ∈ C1(X, ℝ) which is bounded below, and satisfy (PS), ∃ u0 ∈ X satisfying, 
I′ (u0) = 0.

As for another application of Theorem (4.3.1), we next justify the existence of a critical point for I in case it is bounded below on a finite 
dimensional subspace of X.

Theorem 5.0.7. (Saddle Point Theorem (Rabinowitz) [1]) Assume X to be a Banach Space and, I ∈ C1(X, ℝ) satisfies (PS). Also suppose, 
V  ≠  0 be a finite dimensional subspace of X and, X = V ⊕ E. Furthermore, we consider that, ∃ R > 0 , α, β ∈ ℝ such that,
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As for another application of Theorem (4.3.1), we next justify the existence of a critical

point for I in case it is bounded below on a finite dimensional subspace of X.

Theorem 5.0.7. (Saddle Point Theorem (Rabinowitz) [1]) Assume X to be a Banach

Space and, I ∈ C1(X,R) satisfies (PS). Also suppose, V ̸= 0 be a finite dimensional subspace

of X and, X = V ⊕ E. Furthermore, we consider that, ∃ R > 0 , α, β ∈ R such that,

max
x∈∂BV

R (0)
I(x) ≤ α < β ≤ inf

x∈E
I(x). (5.5)

Where,

BV
R (0) = {x ∈ V : ||x|| ≤ R} and, ∂BV

R = {x ∈ V : ||x|| = R} .

Then, ∃ x0 ∈ X satisfying, I ′(x0) = 0. Moreover, the critical value, c = I(x0) ≥ β, which in

fact, can be characterized as,

c = inf
S∈Γ

max
u∈S

I(u). (5.6)

Where,

Γ :=

S = ϕ(B̄V

R (0)) : ϕ ∈ C
�
B̄V

R (0), X

and, ϕ|∂BV

R
= id



Proof of the above Rabinowitz Theorem requires an application of the Topological Degree in

Rn.

Definition 5.0.1. (Topological Degree) Suppose, Ω ⊂ Rn be a bounded and open set. Given

φ ∈ C(Ω̄) and, p ∈ Rn \ φ(∂Ω), the topological degree (or, Brouwer Degree), d(φ,Ω, p) is

defined to be an integer satisfying the following properties:

(I)

d(id,Ω, p) =



1 if p ∈ Ω,

0 if p /∈ Ω̄.

(II) d(φ,Ω, p) ̸= 0 =⇒ ∃ q ∈ Ω such that, φ(q) = p.

(III) d(φ,Ω, p) = 0 if, p /∈ φ(Ω̄).

(IV ) (Addition-Excision Property) If Ω1,Ω2 ⊂ Ω are open with Ω1 ∩ Ω2 = ϕ and, p /∈
φ(Ω̄ \ (Ω1 ∪ Ω2)), then,

d(φ,Ω, p) = d(φ,Ω1, p) + d(φ,Ω2, p).
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Definition 5.0.1. (Topological Degree) Suppose, Ω ⊂ ℝn be a bounded and open set. Given φ ∈ C (Ω) and, p ∈ ℝn \ φ(∂Ω), the topological 
degree (or, Brouwer Degree), d(φ, Ω,  p) is defined to be an integer satisfying the following properties:

_

(I)

(II) d (φ, Ω, p)  ≠ 0 = ⇒ ∃ q ∈ Ω such that, φ(q) = p.

(III) d(φ, Ω, p) = 0 if, p ∉ φ(Ω).

(IV ) (Addition-Excision Property) If Ω1, Ω2 ⊂ Ω are open with Ω1 ∩ Ω2 = ϕ and, p ∉ φ(Ω \ (Ω1 ∪ Ω2)), then,

¯

¯

¯(V ) If φ : [0, 1] × Ω → ℝ and, p : [0, 1] → ℝn be continuous, and moreover, p(t) ∉ φ(t, ∂Ω) ∀ t ∈ [0, 1], then, d(φ(t, .),Ω, p(t)) is inde-
pendent of t.

(VI) d(φ1, Ω, p) = d(φ2, Ω, p) whenever, φ1|∂Ω = φ2|∂Ω.

(VII) (Product Property) If Ωj ’s are bounded open sets in ℝnj for every j = 1, 2, and, φj and pj are such that, pj ∈ ℝnj \ φj (∂Ωj ), j = 1, 2. Then,

5 APPLICATIONS TO THE CRITICAL POINT THEORY

(V ) If φ : [0, 1] × Ω̄ → R and, p : [0, 1] → Rn be continuous, and moreover, p(t) /∈
φ(t, ∂Ω) ∀ t ∈ [0, 1], then, d(φ(t, .),Ω, p(t)) is independent of t.

(V I) d(φ1,Ω, p) = d(φ2,Ω, p) whenever, φ1|∂Ω = φ2|∂Ω.

(V II) (Product Property) If Ωj ’s are bounded open sets in Rnj for every j = 1, 2, and, φj and

pj are such that, pj ∈ Rnj \ φj(∂Ωj), j = 1, 2. Then,

d(φ1 × φ2,Ω1 × Ω2, (p1, p2)) = d(φ1,Ω1, p1)d(φ@,Ω2, p2)

Remark 5.0.8. Given Ω ⊂ Rn to be bounded and open, φ ∈ C1(Ω̄,Rn) and, p ∈ Rn \ φ(∂Ω),
we can relate the theory of the Brouwer Degree with the existence and multiplicity of solutions

of the equation,

φ(q) = p (5.7)

Assuming φ′(q) to be non-singular whenever (5.7) holds true. Then, the Inverse Function

Theorem yields, (5.7) can have only a finite number of solutions in Ω. In this so called ”nice”

case, the corresponding Brouwer Degree of φ with respect to Ω and p, denoted by d(φ,Ω, p) has

the following expression,

d(φ,Ω, p) =
∑

q∈φ−1(p)∩Ω

sgn{detφ′(q)},

where, detA denotes the determinant of a square matrix A.

Remark 5.0.9. The notion of the Brouwer Degree can also be extended from ”regular” to

”singular” values of C2-functions, and then to continuous functions on Rn [ref. [27]].

Remark 5.0.10. The definition of topological degree as provided above as well as its properties can

in fact be extended to an infinite dimensional space, in which case it is kown as Leray-Schauder

Degree [ref. [27]].

Proof of Theorem (5.0.7):

Proof. For any c ∈ R and I ∈ C1(X,R), we define the following sets,

K :=
{
x ∈ X : I ′(x) = 0

}

and,

Kc := {x ∈ K : I(x) = c} .
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Remark 5.0.10. The definition of topological degree as provided above as well as its properties can

in fact be extended to an infinite dimensional space, in which case it is kown as Leray-Schauder

Degree [ref. [27]].

Proof of Theorem (5.0.7):

Proof. For any c ∈ R and I ∈ C1(X,R), we define the following sets,

K :=
{
x ∈ X : I ′(x) = 0

}

and,

Kc := {x ∈ K : I(x) = c} .
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First, we intend to prove that, Kc ̸= ϕ for c as mentioned in (5.6). Assume if possible that,

Kc = ϕ in this case. We choose ϵ as,

0 < ϵ <
1

4
(β − α) (5.8)

and, consider S ∈ Γ such that,

max
x∈S

I(x) < c+ ϵ. (5.9)

Such that, (PS)c condition is satisfied under these assumptions. Let, η : [0, 1]×X → X be a

I-decreasing homotopy (ref. Corollary (1.7) [25, Pg. 27]) satisfying the following conditions,

� η(t, x) = x if, |I(x)− c| ≥ 2ϵ.

� η(1, Ic+ϵ) ⊂ Ic−ϵ, where, Ic := {x ∈ X : I(x) ≤ c}.

We denote, S1 = η(1, S). If S1 ∈ Γ, then by (5.9) we derive,

max
x∈S1

I(x) ≤ c− ϵ

which contradicts the definition of c.

Let us establish that, S1 ∈ Γ. Consider ϕ ∈ C(B̄V
R (0), X) such that, ϕ|∂BV

R (0) = id and,

S = ϕ(B̄V
R (0)). We thus have, ϕ1 = η(1, ϕ) ∈ C(B̄V

R (0), X) and, S1 = ϕ1(B̄
V
R (0)). Hence, S1 ∈ Γ

if, ϕ1(x) = x, ∀ x ∈ ∂BV
R (0).

We claim that,

c ≥ β. (5.10)

If (5.10) does hold true, then, for x ∈ ∂BV
R (0), using (5.5) and (5.8),

I(x) ≤ α < α+ 2ϵ < β − 2ϵ ≤ c− 2ϵ.

This helps us assert that, ϕ1(x) = x.

Therefore, it only suffices to show (5.10). Wednote P1 and P2 to be the projections of X onto

V and E respectively. Furthermore, we identify V with Rn for some n. For ϕ ∈ C(B̄V
R (0), X),

ϕ = id on ∂BV
R (0). Hence, by properties (I) and (V I) in the definition (5.0.1) of the Topological

Degree, we obtain,

d(P1ϕ,B
V
R (0), 0) = d(id, BV

R (0), 0) = 1.
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I(x) < c+ ϵ. (5.9)

Such that, (PS)c condition is satisfied under these assumptions. Let, η : [0, 1]×X → X be a

I-decreasing homotopy (ref. Corollary (1.7) [25, Pg. 27]) satisfying the following conditions,

� η(t, x) = x if, |I(x)− c| ≥ 2ϵ.

� η(1, Ic+ϵ) ⊂ Ic−ϵ, where, Ic := {x ∈ X : I(x) ≤ c}.

We denote, S1 = η(1, S). If S1 ∈ Γ, then by (5.9) we derive,

max
x∈S1

I(x) ≤ c− ϵ

which contradicts the definition of c.

Let us establish that, S1 ∈ Γ. Consider ϕ ∈ C(B̄V
R (0), X) such that, ϕ|∂BV

R (0) = id and,

S = ϕ(B̄V
R (0)). We thus have, ϕ1 = η(1, ϕ) ∈ C(B̄V

R (0), X) and, S1 = ϕ1(B̄
V
R (0)). Hence, S1 ∈ Γ

if, ϕ1(x) = x, ∀ x ∈ ∂BV
R (0).

We claim that,

c ≥ β. (5.10)

If (5.10) does hold true, then, for x ∈ ∂BV
R (0), using (5.5) and (5.8),

I(x) ≤ α < α+ 2ϵ < β − 2ϵ ≤ c− 2ϵ.

This helps us assert that, ϕ1(x) = x.

Therefore, it only suffices to show (5.10). Wednote P1 and P2 to be the projections of X onto

V and E respectively. Furthermore, we identify V with Rn for some n. For ϕ ∈ C(B̄V
R (0), X),

ϕ = id on ∂BV
R (0). Hence, by properties (I) and (V I) in the definition (5.0.1) of the Topological

Degree, we obtain,

d(P1ϕ,B
V
R (0), 0) = d(id, BV

R (0), 0) = 1.
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Such that, (PS)c condition is satisfied under these assumptions. Let, η : [0, 1] × X → X be a I-decreasing homotopy (ref. Corollary (1.7) 
[25, Pg. 27]) satisfying the following conditions,

We denote, S1 = η(1, S). If S1 ∈ Γ, then by (5.9) we derive,

which contradicts the definition of c.

We claim that,

5 APPLICATIONS TO THE CRITICAL POINT THEORY

Applying property (II) in definition (5.0.1), ∃ x0 ∈ BV
R (0) satisfying, P1ϕ(x0) = 0. Consequently,

for each S = ϕ(B̄V
R (0)) ∈ Γ, ∃ x0 ∈ BV

R (0) such that,

ϕ(x0) = P2ϕ(x0) ∈ E.

On the other hand, from (5.5), we can conclude,

max
x∈B̄V

R (0)
I(ϕ(x)) ≥ I(ϕ(x0)) ≥ β.

Using (5.6), it follows that, c ≥ β, and the proof is thus complete.

Remark 5.0.11. Heuristically speaking, in the above Theorem (5.0.7), c is the minimax of I

over all surfaces modelled on BV
R (0), sharing the same boundary. Unlike the Mountain-Pass

Theorem, in applications of the Saddle Point Theorem, in general, no critical points of I are

known initially. Important to note that, the condition (5.5) are satisfied if I is convex on E,

concave on V , and appropriately coercive.

Another version of the Rabinowitz Saddle Point Theorem (Theorem (5.0.7)) can be found in

[26].

Theorem 5.0.12. Given a real Banach Space X having the following direct sum decomposition,

X = V ⊕ E, where V and E are closed subspaces with dimV < ∞. Suppose, I ∈ C1(X,R)
satisfy (PS) condition, and,

I(x) −→ −∞ as ||x|| → ∞ for x ∈ X (5.11)

and,

inf
y∈E

I(x) = d > −∞ (5.12)

Define, D := {x ∈ V : ||x|| ≤ R} with R is chosen so large that, x ∈ V and ||x|| = R =⇒
I(x) < d.

If,

Γ := {ϕ ∈ C(D,X) : ϕ|∂D = id} (5.13)

Then,

c = inf
ϕ∈Γ

max
x∈D

I(ϕ(x)) > −∞ (5.14)

and, ∃ u0 ∈ X satisfying, I(u0) = c and, I ′(u0) = 0.
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and,

Then

Remark 5.0.13. For other versions of proof of Theorem (5.0.7) and, other important applications of the Mountain Pass Theorem, one can 
refer to [1-25].

Remark 5.0.14. Theorem (5.0.7) essentially states that under certain conditions, a functional (a function of functions) will have at least one 
critical point that is a saddle point. This critical point is where the functional doesn’t increase or decrease, representing a sort of equilibrium.

To put it in a more formal geometric context, consider a functional defined on an infinitedimensional space. The space can be thought of 
as a “landscape” of all possible functions. The functional assigns a “height” (or value) to each function in this landscape. Rabinowitz’s 
theorem guarantees that there’s at least one function in this landscape that has a saddle point: it’s not the highest or lowest point, but it’s a 
point of balance between different “directions” in the function space. This geometric interpretation is quite abstract because we’re dealing 
with spaces that are not easy to visualize. However, the concept of a saddle point as a point of equilibrium remains a powerful image to 
understand the essence of the theorem.
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