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Abstract
Bridges are crucial and the most vulnerable element in the infrastructure systems. A major challenge is to maintain bridge 
structures at a sufficient level of safety. Scheduled inspections in these structures are important to prevent any failure. The 
requirement of periodic inspection is urgently needed to maintain the bridges in safe operating condition for the public. Visual 
inspection is currently the main form for the flaw’s inspection. Nevertheless, it is suffering from time consuming and some 
limitations related to subjectivity and uncertainty. Due to the complexity of bridge structure, automatic defect detection is an 
urgent requirement for reinforced concrete bridges. In view of this, the creation and utilization of computer vision method has 
received considerable attention in several applications of civil engineering. Thus, this paper introduces a comprehensive study 
in computer vision-based defect detection related to concrete bridges. In this study, a detailed survey is undertaken to identify 
the research problems and the accomplishments to date in this field. Accordingly, 50 studies between peer-reviewed publications 
and conference papers Scopus found in are reviewed. Through the analysis, the current review divided the image technology 
into three groups based on: 1) image processing; 2) machine learning; and 3) quantifying the severity of defects by identifying 
their parameters. This article highlights the difference and the advantages and disadvantages of applying image processing 
techniques and machine learning. The paper identifies the types of defects detected by image technology in previous studies and 
their shortcomings in determining some parameters related to those defects. Finally, this research addresses issues related to the 
efficiency of detection and the main factors to be considered that may help further research in image-based approaches for defect 
detection effectively in concrete bridges.
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1. Introduction
Systems supporting civil infrastructure gradually deteriorate over 
time. They may be divided into four categories: roads, bridges, 
structures, and water and sewer networks. Steel, reinforced 
concrete, and pre-stressed concrete with supporting and structural 
elements are the types of bridges that may be classified. The bridge 
deck, abutment, foundation, expansion joints, railings, bearings, 
etc. might all be damaged. The fundamental difficulty in bridge 
inspection programs is the variety of elements that influence RC 

bridge degradation and cause various problems [1]. Delamination, 
scaling, spalling, efflorescence, and cracking are various types 
of bridge degradation that have been identified. Determining the 
kind, quantity, breadth, and length of flaws on bridges reveals the 
early stages of deterioration and avoids these kinds of incidents. 
Detecting and evaluating the degree of defect is an important 
process that may affect the structure’s capacity in its current stage 
or in the future [2]. In order to help decision-makers maximize 
the safety, serviceability, and usefulness of bridges while staying 
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within their financial constraints, Bridge Management Systems 
(BMSs) have been created. Any effective BMS would use bridge 
performance measures to assess the current state of the bridge's 
health. In order to prioritize repair or replacement projects for the 
bridges in their inventory, the agencies employ a bridge health or 
condition index as a performance indicator. However, analyzing 
the condition of structures to predict their status is not always 
possible due to a lack of data and inaccurate theoretical models [3].

The majority of existing inspection techniques rely on visual 
examination. The bridge inspection reporting software has 
been explored and used by several asset management software 
developers. Bridge inspection software contains several interactive 
forms designed for several tasks to make the bridge inspection 
documentation intuitive. Recently, Building Information Modeling 
(BIM) proved its ability in inspection and assessment procedures 
for structures. It provides the user with accurate, less confusing, and 
well-organized data to help the decision-maker respond and report 
issues more quickly [4-8]. The previous researches results pointed 
out that visual inspection alone is unreliable and being disable 
to indicate correctly repair priorities [1]. Therefore, automatic 
defect identification is favored for Non-Destructive Technologies 
(NDTs) and has proven to be useful for quick and accurate surface 
defect analysis. NDTs, including infrared and thermal, Ground-
Penetrating Radar (GPR), Ultrasonic Surface Wave (USW), and 
image-based methods, have recently been applied in the inspection 
process to carry out a more precise evaluation of surface and 
subsurface defects [9].  Due to the availability of affordable 
and simple-to-use visual sensor technology, computer vision 
approaches for non-destructive inspection (e.g., digital cameras) 
are growing and developing. Because of the easiness of processing 
images, several image-processing detection approaches have been 
developed [10]. 

As a result, this paper aims to identify the importance of bridge 
visual inspection in condition assessment of reinforced concrete 
bridges and how they evolve based on computer vision to indicate 
its weakness and strength points. The review attempts to assess 
the capabilities of defect identification based on computer vision. 
In this regard, the research tries to describe a number of cutting-
edge computer vision approaches that are used to automate the 
fault identification process in a variety of patterns. It is explained 
how these methods were created, used, tested, and assessed in 
order to identify various flaws in reinforced concrete bridges. 

Extraction of the characteristics of faults in order to gauge their 
severity presents a problem in addition to defect identification. The 
purpose of this work is to address the shortcomings of computer 
vision-based approaches, which are the most popular ones for 
assessing the state of bridges. Additionally, it assists researchers in 
locating and addressing any gaps in the body of existing literature 
as well as in their hunt for new advancements in computer vision-
based techniques. The research methodology, the significance of 
the study, discussions, and limitations, are presented, followed by 
the conclusion. The significance of this article review is related to 
its ability to provide a good understanding of the development of 
computer vision-based methods within the last decade. It identifies 
the shortcomings in the detection procedure for future research.

2. Research Methodology
The paper presents a comprehensive synthesis of the state of the 
art in concrete bridge defect detection and recognition related to 
computer vision-based methods. The first step is to concentrate on 
three questions to be answered through the study:
1. How was the detection based on image technology developed 
within the period 2011–2023?
2. What are the shortcomings of the previous studies?
3. What are the recommended works that should be considered in 
future studies to overcome the previous literature limitations?

Secondly, the inclusion and exclusion criteria are determined to 
build up the research based on them. Keywords, such as visual 
inspection, camera image, concrete bridges, bridge detection, 
image processing, machine vision, and deep learning are used. 
Journal articles, conference papers, and books were only taken into 
consideration in this review. The search period is limited to the 
period between 2011 and 2023. The predefined exception criteria 
such as non-English language articles, duplicate, and nonrelated 
articles to the subject of concern are applied. 

The articles that use images collected by digital cameras, small 
robots, UAVs, or from public datasets such as SDNET2018 or 
ImageNet are only considered in this review. Accordingly, a sample 
of 50 articles is selected for this study. The results are characterized 
by year of publication, country of publication, publication type, 
defect type, and the measurement of defect parameters based on 
image technology. Finally, the limitations and future work are 
discussed at the end of the research.  Figure 1 shows the detailed 
framework of the data-gathering process in this review.
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Figure 1: Framework of the Data Gathering Process  
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2.1. Evaluation of Bridge Defects Based on Visual Inspection 
Technique
Bridge inspections give engineers the opportunity to detect 
small and potential defects areas in bridges before they convert 
into major issues and lead to a catastrophic incident, such as a 
bridge failure or a complete collapse of the bridge. The main 
form of assessing the physical and functional conditions of civil 
infrastructure is the manual visual inspection. The main advantage 
of visual inspection is that it includes an extensive evaluation of 
the entire bridge and is not restricted to the detection or assessment 
of a particular type of damage or a component of the bridge. Its 
cost amount determined based on the characteristics of the bridge 
and the level of inspection details and frequency. The main 
elements of the visual inspection costs are traffic management and 
labor [1]. This technique of inspection is still mainly relying on 
human eye observation. It is required expert maintenance engineer 
to be on the field to decide whether the maintenance condition is 
required. It needs a lot for preparation on both inspection planning 
and expertized identification. Actually, the number of specialists 
in the field is inadequate comparing to the number of bridges to 
be inspected. Thus, it is suffering from many drawbacks that has a 
potential threat on personal safety and caused a lot of accidents. For 
example, the collapse of the I-35W Highway Bridge in Minneapolis 
(Minnesota, USA) in 2007. The National Transportation Safety 
Board reported the major issues related to, the insufficient use of 
technologies for accurately assessing the condition of gusset plates 
on deck truss bridges; and the shorting of inspection guidance for 
conditions of gusset plate distortion [9,11]. Bridge inspection data 
shows 46% of collapsed bridges were structurally deficient before 
the collapse. It gives an indication for requirements of an efficient 
maintenance strategy for detecting the drawbacks of the structure 
[12].

The Canadian infrastructure report card identifies that 26% of 
the bridges are either ‘‘Fair,’’ ‘‘Poor,’’ or ‘‘Very Poor’’ and one 
third of their bridges were reported to have structural or functional 
deficiencies with short remaining service lives. The average age of 
bridges in 2007 was 24.5 years compared with a mean service life 
of 43.3 years, which gives an indication of 56% of the estimated 
service life had already passed. Moreover, the accumulation cost 
of bridge maintenance, rehabilitation, and replacement is estimated 
to be Can$10 billion. The continuous increase in the backlog is a 
remarkable of a significant deterioration in the condition of bridge 
elements. Therefore, an evaluation of the condition of bridge 
decks and other components is an essential to keep them in a safe 
condition and to ensure public safety. It is worth highlighting 
that the condition ratings are susceptible to mistakes since the 
visual inspection-based techniques are heavily dependent on the 
inspectors’ abilities and their experiences [13].

The authorities around the world have a desired to develop solutions 
to periodically inspect their bridges and to support maintenance 
activities. The US and the EU have developed numerous Bridge 
Management Systems (BMSs) to assist engineers in the condition 
assessment and prioritization of maintenance activities. The 
system is consisting of five interconnected modules; a database, 

condition and structural assessment modules, a deterioration 
prediction module, a lifecycle cost module, and a maintenance 
optimization module. The database stores inventory and 
evaluation data. The existing health condition of the bridges is as 
a performance indicator evaluated by the condition assessment 
module. The future condition of bridge components is estimated 
by the deterioration prediction module. The life-cycle cost module 
is responsible for calculating agency and user costs for different 
maintenance choices. The optimization module defines the most 
cost-effective maintenance strategies [14]. Generally, BMS is a 
visual inspection-based decision-support tool would use bridge 
performance measures to assess the current state of the bridge's 
health to prioritize repair or replacement projects for the bridges 
based on their inventory.

Laterally, the inspectors found that onsite inspections require 
closing bridge systems or diagnosing them, due to limited human 
resources. Therefore, several research groups have proposed 
structural health monitoring (SHM) techniques. This technology 
is referred to the process of implementing monitoring systems to 
measure in real-time the structural responses, in order to detect 
anomalies and/ or damage at early stages. Although the SHM 
approach is an effective bridge management tool, it still has several 
challenges for monitoring large-scale civil infrastructures due to 
various uncertainties and nonuniformly distributed environmental 
effects. It requires covering large-scale structures, and dense 
instrumentations, such as fixing numerous sensors, integrating 
data from distributed sources, and consideration of environmental 
effects. In addition, checking the sensing systems and structures 
in person must be done first to confirm whether the collected data 
actually indicate structural damage, sensory system malfunction, 
noisy signals, or a combination of these. Thus, it needs further 
research to be a simple, reliable, and low-cost option to become a 
standard part of BMS [1,15]. 

However, current inspection practices depend on visual 
inspection and basic tools, such as hammer sounding and chain 
drag to determine subsurface defects such as delamination [16]. 
These techniques suffer from some limitations such as time 
consumption, subjectivity, uncertainty, and the inability to detect 
all subsurface defects [17]. Therefore, numerous authorities tend 
to use computer vision-based methods in the inspection process 
to evaluate concrete surface structures. This technology improves 
the inspection process, and speed, and eliminates the need for 
traffic disruption or total lane closure. It is not only used for defect 
detection but also to evaluate their severity [18]. Recently, image 
acquisition applications have been used by expert assistance and 
cameras to capture the image of bridge components and then send 
them to the server of the Department of Highways in order for the 
expert to verify them in the office. Nevertheless, image acquisition 
application still needs human observation to check images one by 
one [11]. In order to automate the process of defect and damage 
identification as well as evaluation, this section seeks to describe 
a number of cutting-edge computer vision approaches to make the 
system become intelligent and automatic.
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2.2.  Defect Detection Image-Based Technology
Methods based on visual inspection assist transportation 
organizations in identifying shortcomings and making decisions 
that are more accurate and objective [9,10].  However, without 
eliminating various types of noise associated with diverse sources, 
such as concrete blebs, stains, uneven contrast, and shading, an 
image-based technique cannot be useful [19,20]. Hence, there 
are three approaches to executing picture-based inspections: raw 
image inspection, image enhancement, and autonomous image 
processing. The term "raw image inspection" refers to the inspector's 
unprocessed evaluation of the images that are taken during the 
inspection process. Depending on a variety of criteria, the total 
number of images captured is typically hundreds or thousands. 
This manual identification takes time, and it frequently results in 
errors because people make mistakes. Performing various image 
processing methods to enhance image inspection makes it simpler 
to spot problems in inspection images. Morphological operations, 
digital image correlation, image binarization, percolation model, 
wavelet transformations, fractal analysis, and edge detection 
methods are used to achieve this task, which significantly improves 
the appearance of fractures inside pictures. Last but not least, 
autonomous image processing is the application of an algorithm 
that finds flaws in images. Using machine learning algorithms or 
other artificial intelligence systems, this process can be precisely 
achieved [21]. To understand the characteristics of flaws, the 
autonomous system for defect identification needs a collection of 
training images. Additionally, a lot of studies demonstrate how to 
integrate image processing methods with artificial neural networks 
[22].

2.3.  Defect Detection Using Image Processing Techniques
On image pre-processing and image segmentation for bridge 
flaws, several researchers established their vision. A method 
based on image processing is put forth by Tong et al., for the 
identification of cracks in concrete bridge bottoms [23]. The 
numerous lights under bridges presented a problem. The model is 
developed to assess whether or not binary pictures could identify 
fractures based on factors including region circularity, aspect 
ratio, perimeter, and area. In order to adjust the average grey-level 
values of a single image, the color images are first transformed 
into red-green-blue (RGB) format. The noise can be eliminated 
by using a Gaussian filter. To ensure the connection between 
crack segments, morphological treatments including dilation and 
thinning are carried out. Then, the segmentation threshold is used 
to turn grayscale images into binary images to represent fractures. 
A comparison with three traditional techniques (Cany, Soble, 
and Fujita's) is conducted, and the accuracy of crack detection is 
improved by 1% to 6% and achieved by 93%.

The crack tree is created by Zou et al., as a completely automated 
technique for locating and identifying fracture curves in pavement 
images. The process for the suggested solution includes a crack 
detection algorithm, a crack seed, and a tensor voting methodology 
to produce a crack probability map in addition to a shadow removal 
algorithm. Images are divided into regular and complicated images 
by Chanda et al [14,24]. Before the characteristics of cracks or non-

cracks are retrieved from the complex images, some pre-processing 
processes are required. In order to isolate image intensity from 
color information, the complex image is first converted from 
RGB format to the Hue Saturation Value (HSV) color space. The 
complicated image is then converted into a comparable greyscale 
image. Wavelet is more accurate than the Gabor filter, according 
to characteristics that are extracted from a comparison of the 
two. For segmentation, Lattanzi and Miller suggest an automated 
clustering technique based on Canny and K-Means to achieve 
high speed and accuracy of fracture identification in a variety 
of environmental situations [25]. As is frequently the case with 
real-world bridges, the significance depends on the capacity to 
train images from various angles and is linked to variations in 
lighting and shading conditions at various points on the bridge. 
Adhikari et al., proposed a comprehensive model based on image 
processing techniques for routine inspection of reinforced concrete 
bridges [26]. The proposed technique was composed of models 
for crack quantification, change detection, neural networks, and 
3D visualization models. The stitching algorithm was adopted to 
extract the invariant features from photos and compare them with 
new images. Segmentation and edge detection algorithms were 
applied for crack detection.

Using a variety of image processing approaches for bridge fracture 
detection and classification, Chen et al. proposed an ascending 
robot model. The collected images are motion-blurred; thus, the 
motion blur is removed using a Wiener filtering technique [27]. 
The Wavelet transform is used to reduce the textural impacts in 
the fracture area. In order to categorize cracks and determine 
their severity, a Support Vector Machine (SVM) is used. A novel 
straightforward technique based on Otsu method for fracture 
identification in concrete buildings was introduced by Talab et 
al., in 2016 [28]. This approach involved the use of many filters, 
including Sobel, Area, and Otsu methods for fracture detection. 
The suggested method performed better than existing binarization 
techniques. Noh et al. suggested utilizing fuzzy C-means 
clustering in segmentation to find 0.3mm fractures in images [29]. 
In this approach, a series of processes including segmentation, 
morphology, and filtering is used to improve the visibility of 
fracture features and eliminate background noise. First, fuzzy 
C-means is used for image segmentation. Second, morphological 
dilation is used to reveal fracture characteristics, after which 
manually calibrated masks for filtering are made. Finally, related 
noise locations are located and removed using a Grassfire search. 
In comparison to existing edge detection-based approaches, it is 
emphasized that the developed method achieves greater recall and 
precision.

Safae et al., developed a tile based on an image-processing 
algorithm to detect pavement cracks [30]. It was suggested to 
use a technique of localized thresholding on each tile to identify 
cracked ones (tiles with cracks) based on the spatial distribution 
of crack pixels. The method showed some problems related to 
detecting low-level cracks in complex patterns. De León et al., 
presented a methodology for crack segmentation based on the 
theory of minimal path selection combined with a region-based 
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approach obtained through the segmentation of texture features 
extracted using Gabor filters [31]. An equalization of brightness 
and shadows is a pre-processing step to improve the detection of 
local minima. To improve the coverage of the cracks, these local 
minimal are constrained by a minimum distance between adjacent 
points. Subsequently, two areas are identified using a region-based 
segmentation technique, which establishes the threshold values 
for rejection. Lastly, a geometrical thresholding step is presented, 
which enables the exclusion of small, isolated cracks and rounded 
areas. Although a number of automated crack detection models 
have been established, they have some drawbacks. While the 
algorithms of the machine and deep learning have shown promise 
in the previous ten years, they have some shortcomings: A "black-
box" design of neural networks and deep learning leaves the 
users blind and prevents them from changing any parameters; 
a significant quantity of labeled data is needed; and lastly, they 
typically take a long time [31]. Dow et al., used image processing 
techniques to establish a novel method for binary noise removal 
and segmentation of noisy concrete crack images [32]. The method 
is based on thinning noisy crack image into skeleton then uses 
morphological reconstruction to eliminate all of the noisy picture's 
features that do not intersect with the skeleton. The obtained recall, 
precision, intersection over union, and F1 score results were 77%, 
91%, 72%, and 84%, respectively.

2.4.  Defect Detection Using Machine Learning Techniques
Machine learning (ML) algorithms have achieved big successes 
to enable computer-aided defect detection through automatic 
classification. The pre-processing of an image is sometimes 
an initial step to extract the features that would be used to train 
the machine learning classifier. Also, it can be used to enhance 
or eliminate properties of the image that could improve the 
performance of the machine learning algorithm. The following 
sections will clarify how various types of machine learning are 
applied for flaw detection and classification.

2.4.1. Artificial Neural Network (ANN)
In order to help inspectors quickly evaluate and see cracks, Moon 
and Kim create an automated crack detection method that utilizes 
a set of image processing techniques [22]. Directly from the source 
images, the cracked and non-aliased images are classified using an 
Artificial Neural Network (ANN). ANN is used in conjunction with 
image processing processes to speed up computation for training 
images that require a lot of data. The first step in image processing 
is to turn a color digital image into a grayscale one. Then, the 
uneven illumination is eliminated from the gray-level image by 
utilizing a median filter and an enhanced subtraction technique. To 
close the minor gap in the crack line and to correct the distortion 
in the crack form, a Gaussian Low-pass filter is used. Without 
consulting professionals, it is possible to adjust parameters such 
as the median filter size, threshold values, Gaussian filter size, and 
the standard deviation of the Gaussian curve using the Taguchi 
approach based on a level with the maximum signal-to-noise ratio. 
As a result, the fracture may effectively be separated from the 
backdrop. In order to label images into cracked and non-cracked 
concrete photographs, an artificial neural network is designed. The 

designed model is able to identify 90% of the cracked images and 
92% of non-cracked images.

2.4.2. Convolutional Neural Network (CNN)
Convolutional Neural Networks-based two-stage crack detection 
methodology is reported by Li et al. in 2018 [33]. To determine 
the likelihood that a pixel is a part of a cracked region, a tiny 
patch centered on each pixel is initially given into the predictor. 
A larger area taken from the first confidence map is created by the 
first predictor and put into the second predictor to create a second 
confidence map constitutes the second stage. The final confidence 
map, which is utilized to improve the cracked area, is created by 
merging the two confidence maps. In terms of accuracy, precision, 
and sensitivity. The newly developed approach outperformed the 
canny edge detector method and the spatially tuned robust multi-
feature (STRUM) method.

2.4.3. Deep Learning Technique
Later, the researchers considered applying deep learning a kind of 
machine learning that is based on deep neural networks with several 
hidden layers to extract and learn high-quality characteristics from 
images [34]. Convolutional neural networks (CNNs), recurrent 
neural networks (RNNs), long short-term memory (LSTM), 
encoder-decoders, and generative adversarial networks (GANs) 
are the most popular deep learning architectures employed by the 
computer vision field. Convolutional neural networks (CNNs) are 
used by Cha et al. to identify concrete fractures without connecting 
Image Processing Techniques (IPTs) for feature extraction [15]. 
The created model considers issues with crack identification such 
as illumination, shadow casting, and blur. The model performance 
is compared with that of the classic Canny and Sobel edge 
detection techniques in a variety of settings, including uniform, 
normal illumination, narrow crack cases, and shadow cases. In 
terms of training and testing accuracy, it fares better than the other 
two approaches with 98.22% and 97.95%, respectively.

Modarres et al., used CNN to detect cracks in concrete surface 
bridges [35]. The CNN model's feasibility is tested using two 
images: a noisy set of textured concrete surfaces with visible 
cracks representing in-service structures in a visual inspection, 
and a clean set of well-controlled surfaces with varied lighting 
conditions representing concrete in new bridges. According to 
the results, the proposed CNN performs better at crack detection 
for both images sets than other machine learning models, such 
as random forest, and SVM with non-linear kernel. Zhu & Song 
enhanced a weakly supervised network for crack detection in 
asphalt concrete bridge decks [36]. The methodology includes an 
autoencoder for data differentiation, and features for unlabeled 
data were highlighted to generate a starting point for convergence. 
Then, K-means clustering was applied for classification. Lastly, 
semantic segmentation under weak supervision was applied on 
the crack image of the bridge deck. Li et al.  adopted the fully 
convolutional network and a Naive Bayes data fusion (NB-FCN) 
model for crack detection in bridge substructure [37]. The model 
considered the different illumination and distance for images taken. 
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Meng et al., used You Only Look Once version 3 (YOLOv3) 
to detect cracks at pixel level [38]. The model is able to locate 
several defects, such as cracks, spalls, exposed tendons, and free 
lime. Chen. improved a convolutional neural network to determine 
whether foundation piles on concrete bridges are unstable [39]. 
The improvement was based on the replacement of the SoftMax 
layer with a support vector machine (SVM). The model achieved 
an average recognition rate of 96.26%. The limitation of this 
method was related to its ability to be applied for different types 
of pile foundations.  Yu introduced a proposed model for crack 
detection based on a Generative Adversarial Network (GAN) [40]. 
The accuracy result was 24.78%, and the recall rate was 19.64%, 
which was lower than other deep learning types.

2.4.4. Transfer Learning Technique
Transfer learning is a method for supervised learning that employs 
a pre-trained network as a starting point for additional training to 
alleviate the issue of data collecting and extensive training time 
[41]. In order to find fractures in an old concrete bridge, Kim et 
al. present a technique utilizing a commercial UAV with a high-
resolution vision sensor [42]. In this model, transfer learning and a 
region-based convolutional neural network model are used to scan 
the important area of the picture swiftly. For crack quantification, 
various image processing techniques are also conducted. 
Additionally, the Cifar-10 dataset is used for pre-training the deep 
neural network model. In quantifying cracks, the model obtained a 
relative inaccuracy between 1% and 2%.

A pre-trained deep convolutional neural network dubbed "Halcon" 
is used by Kruachottikul et al., to identify flaws in bridge 
substructure surfaces [11]. They are utilized for pre-processing, 
augmentation, splitting, and overlaying images. After that, 
CNNs are used to classify images. The generated model has a 
total accuracy of 89%. Xu et al., introduce a model based on the 
convolutional neural network for the purpose of detecting cracks 
in bridges [43]. The Atrous convolution is used by the Atrous 
Spatial Pyramid Pooling module is applied to avoid the reduction 
of image resolution and to extract the multi-scale crack feature 
information. Additionally, depth-wise separable convolution is 
used after the convolutional layer to reduce the computational 
complexity and the model parameters. The proposed model gained 
96.37% of accuracy without pre-training and outperforms several 
classic classification models.

In order to identify fractures in concrete, Dorafshan et al., 
compared standard edge detection and DCNN methods [21]. In the 
spatial domain (Roberts, Prewitt, Sobel, and LoG) and frequency 
domain (Butterworth and Gaussian), a total of six edge detection 
techniques are used. Three different modes of the Alex Net DCNN 
architecture are used: fully trained, classifier, and fine-tuned. 
When compared to other approaches, the LoG method has the best 
accuracy (79%) for locating cracks larger than 0.1mm. While the 
transfer learning mode of the DCNN has the best accuracy (86%) 
and could identify fractures larger than 0.04mm. Based on two 
types of Deep Learning Convolutional Neural networks, Dorafshan 
et al. explored the feasibility of employing small Unmanned Aerial 

Systems (sUAS) to monitor concrete decks and structures [44]. 
On the training dataset, a convolutional neural network powered 
by AlexNet is fully trained in the first mode. In the second mode, 
the same architecture that has been previously trained using 
the ImageNet dataset is used for transfer learning. The testing 
dataset is obtained using tiny unmanned aerial systems, whereas 
the training dataset of bridge decks is recorded using a Nikon 
COOLPIX L830 camera. Three datasets serve as the foundation 
for the neural network assessment. The fully trained mode training 
and validation processes took longer to complete than those for 
the transfer learning mode. It is observed that the transfer learning 
outperformed the fully trained network in terms of accuracy. Zhao 
et al. presented an inspection technique for bridge maintenance 
[45]. The first part was built to determine the type of bridges, e.g., 
suspension, and cable-stayed bridges, by using AlexNet. Second, 
a Faster-RCNN is trained to classify the bridge components (e.g., 
tower, deck). Finally, GoogLeNet was used for concrete crack 
detection. Nevertheless, this proposed method suffers from a 
lack of discussions of the connections between the three previous 
components.

In the example of a small dataset, Słoński compares four 
convolutional neural network designs and training approaches 
for identifying fractures in concrete pavements [46]. A tiny 
convolutional network that is built from scratch with and 
without data augmentation, a big pre-trained VGG16 with data 
augmentation, a large, pre-trained VGG16 combined with data 
augmentation, and fine-tuning are the four comparisons that are 
used. The pre-trained VGG16 coupled data augmentation and fine-
tuning is reported to have the greatest performance classification, 
reaching training and validation accuracy of 95% and 93%, 
respectively. A crack detection technique based on a deep fully 
convolutional network was introduced by Dung and Anh in 2019 
[12]. On a public concrete crack dataset used as the encoder of 
the fully convolutional network, three distinct pre-trained models, 
including VGG16, Inception V3, and ResNet, are assessed for 
picture classification. Except for the fully connected and Softmax 
layers, the encoder includes all the VGG16's convolutional and 
pooling layers. For crack image categorization, VGG16 fares 
better than the other two relevant networks. On a subset of 
crack pictures from the same dataset, the encoder-decoder fully 
convolutional neural network architecture is trained end-to-end for 
the segmentation task. On the training, validation, and test sets, the 
proposed segmentation approach achieves a maximum F1 score 
and average accuracy score of almost 90%.

Hüthwohl et al., introduced a three-staged hierarchical structure 
multi-classifier for bridge defects. The model includes fine-tuning 
three independent, pre-trained deep neural networks [47]. However, 
the model couldn’t classify some types of defects because of the 
unavailability of a larger labeled dataset. Zhu & Song enhanced 
the structure of VGG-16 for the purpose of classifying defects 
on concrete bridges [48]. The number of fully connected layers 
was reduced, and seven defect tags on the SoftMax classification 
layer took the place of the SoftMax classifier. The seven groups 
of defects—normal, cracks, fracturing, plate fracturing, corner 
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rupturing, edge/corner exfoliation, skeleton exposure, and 
repairs—were effectively differentiated by the model. Deng et al., 
used a transfer learning model and CNN for bridge defect detection 
[49]. The model classified damage into delamination, rebar 
exposure, and non-damage with an accuracy of 97.8%. In contrast 
to conventional methods, Zhu et al., employ a mix of CNNs and 
transfer learning for the identification of bridge flaws [41]. They 
use the ImageNet-trained Inception-V3 program to automatically 
extract features from images. A transfer learning model is 
trained on images with arbitrary pixel resolutions and sizes. The 
performance of the suggested technique is then investigated 
using SVM and artificial features such as Histogram of Oriented 
Gradient (HOG) and Gray-level co-occurrence matrix (GLCM). 
The selected model encouraged bridge fault identification at an 
intelligent management level.

A self-adaptive hybrid SVD-ENN-IWO approach for the 
automated detection and identification of surface defects is 
developed by Abdelkader et al., in 2021 [13,18]. The output of 
this model reveals whether or not the image has flaws. The result 
for identifying bridge defects is if the image has scaling, spalling, 
or cracking. Using Singular Value Decomposition (SVD), which 
eliminates superfluous characteristics and reduces complexity 
data, it is possible to extract the image key features. The singular 
values of the retrieved feature vector-based images are then 
computed using this method. The Elman Neural Network (ENN) 
then receives this feature vector set as input. The primary goal of 
Invasive Weed Optimization (IWO) is to improve the way that the 
ENNs are trained. The developed model outperforms other models 
such as CONVNET, AlexNet, VGG16, VGG19, and CaffeNet.

For crack detection and recognition in three different forms of 
infrastructure, including bridges, roads, and buildings, Abdelkader 
selects the VGG19-KNN-DE model. In order to eliminate noise 
from images for feature extraction, the Frost filter is used [13,18]. 
After that, VGG19, a pre-trained architecture, is employed for 
the automatic extraction of both local and global contextual data 
at many scales. For the automatic detection and identification 
of surface cracks, the resulting feature vector of pictures is 
utilized as input into the integrated model K-Nearest Neighbors 
and Differential Evolution algorithm (DE). In identifying and 
detecting the fractures, the generated models perform better than 
a group of commonly used machine learning and deep learning 
models. Cardellicchio et al., introduce an approach through 
machine learning for defect detection of reinforced concrete bridge 
elements [50]. The study divided the defects into seven groups: (1) 
corroded/oxidized steel reinforcement, (2) cracks, (3) deteriorated 
concrete, (4) honeycombs, (5) moisture spots, (6) pavement 
degradation, and (7) shrinkage cracks. The neural network was 
trained to classify single defects vs. all defects. InceptionV3 and 
ResNet50V2 as classic models, and DenseNet121, MobileNetV3, 
and NASNetMobile were used for network training. However, the 
approach required to increase and improve the data quality and 
enhance the hyperparameter optimization.

Kruachottikul et al., proposed an approach consisting of 
three components: image acquisition, defect detection, defect 
classification, and finally severity prediction for bridge 
substructure [51]. The study used modified ResNet-50 CNN 
for defect detection. Image processing was applied for defect 
information such as defect size and number of defects. Also, a 
modified ResNet-50 CNN model was used for defect classification 
into cracking, erosion, honeycomb, scaling, and spalling. Finally, 
Artificial Neural Networks (ANN) are used to predict whether 
a defect is severe or not. The limitation was concentrated on a 
shortage of data. Ebenezer et al., proposed three ensemble models 
for crack detection [52]. The ensemble model used customized 
CNN and two transfer learning models: Xception and AlexNet. 
The accuracy of the ensemble transfer learning model achieved 
was 87.1%.

Zoubir et al., improved VGG-16 with transfer learning to detect 
three common concrete defects: cracks, efflorescence, and spalling 
[53]. A VGG16 network was trained using three different transfer 
learning algorithms with different numbers of layers on the 
proposed dataset. The performance of the model was evaluated 
in each learning configuration and achieved an accuracy of 
97.13 %. Li et al.  used three different UAVs for determining the 
best distance for imaging for crack detection by the Faster Region 
Convolutional Neural Network (Fatesr R-CNN) algorithm based 
on VGG16 transfer learning [54]. The method found that the angle 
shooting less than 30 degrees was the maximum distance for crack 
recognition

2.5.  Defect Assessment 
To determine the severity of faults, it is crucial to measure their 
features, such as depth, breadth, and length. As a result, this section 
demonstrates the application of image-based algorithms to analyze 
surface flaws in order to determine the state of bridges.

2.5.1. Defect Assessment Using Image Processing Techniques
An automated approach for extracting crack parameters such 
as length, direction, maximum width, and average width was 
presented by Zhu et al., in 2011 [55]. To locate crack spots on each 
concrete structural element surface, a percolation-based crack 
detection approach is used. The crack skeletons are retrieved using 
this approach, and the crack parameters are extracted by measuring 
each crack skeleton point to the crack border using a binary image 
thinning algorithm and a Euclidean distance transform. When 
these measurements of the crack characteristics are contrasted 
with hand measurements, the average measurement error for 
orientation is 3.29°, the relative crack length is 2.21%, and the 
relative maximum crack width is 0.35%. Ge et al. use an encircle 
approach and image processing to determine fracture width [56]. 
The approach began with image processing that includes adaptive 
thresholding, morphological closure, and erosion procedures. The 
skeleton points then each acted as a circle center. The circle's radii 
progressively grew larger. Any point in the circle that stepped 
outside the crack caused the iterations to stop. As a result, the 
fracture is encircled by the final circle of the repetition. The 



Ann Civ Eng Manag, 2024 Volume 1 | Issue 1 | 9

diameter of the circle is finally considered as the fracture width 
in a certain skeletal location. After obtaining all the encircles with 
all the skeleton points, the maximum and average width of the 
crack is determined. Adhikari et al. proposed a novel technique 
to extract the width, length, depth, and densities of the crack [26]. 
After detecting cracks based on image processing, skeletonization 
and Euclidean distance algorithms were used to retrieve crack 
properties such as length and width. A neural network was trained 
to predict the depth of a crack based on its width. Also, the 
proposed model offers a novel technique for detecting changes in 
fracture patterns over time by using frequency domain analysis 
Fast Fourier Transform (FFT) of digital photographs. Additionally, 
the digital photos and image textures were projected to create a 3D 
visualization in order to show cracks in different faces to calculate 
its densities.

An automated approach is developed by Jain and Sharma to 
determine the severity of cracks [19]. The pre-processing of the 
images includes contrast boosting and histogram equalization. 
The K-means clustering technique is then used to segment the 
data. The images are segmented using this approach using various 
K-means clustering parameters, and it is discovered that a random 
initialization with Euclidean distance works best. Finally, a crack 
detection technique using fuzzy inference is utilized to provide a 
risk score that displays the proportion of dangerous cracks. Spalling 
became a crucial sign of significant structural element damage. As 
a result, there has not been much progress in the previous 10 years 
in the detection and evaluation of spalling on concrete surfaces. 
A technique to atomically identify spalled spots on the surface of 
reinforced concrete columns and extract their depth and length is 
put forth by German et al [57]. To achieve the identification and 
evaluation of concrete columns, a mixture of image segmentation, 
template-matching, and morphological techniques are used. The 
distance between the severely exposed transverse reinforcing 
bars and the relative length of the amount of spalling along the 
column vertical direction are used to determine the length of the 
spalled region along the column. To create a damage map, a local 
entropy-based thresholding approach is first used. Additionally, by 
using morphological opening and closing processes, the sounds 
are reduced. Second, to identify areas of exposed longitudinal 
reinforcement throughout the damage map, a global adaptive 
thresholding technique in the CMYK color space is combined 
with a template matching algorithm. For a set of 70 test images, 
the findings showed a precision of 81.1% and a recall of 80.2%. 
They advise further research to be done in order to classify the 
findings of spalling properties in more depth. Ong et al., produce a 
hybrid method combining the shortest method and the orthogonal 
projection method to measure pavement crack width with irregular 
boundaries or high curvature [58]. In comparison to the shortest 
technique and the orthogonal projection method, the hybrid 
method yields the highest correlation coefficient (0.956) and the 
least average absolute deviation (1.769).

2.5.2. Defect Assessment Applying Machine Learning 
Techniques
A platform for the automatic identification and severity evaluation 

of spalling in reinforced concrete bridges is introduced by 
Abdelkader et al. in 2020 [59]. The first module dealt with 
the preparation of images. The second module is created to 
automatically identify spalling. With the use of a single-objective 
particle swarm optimization (PSO) model that tries to increase the 
image Tsallis entropy, spalling images are segmented using bi-
level thresholding. This module produces a single threshold T that 
divides the image pixels into the spalling (foreground) and surface 
classes (background). The third module is the feature extraction 
process, which separates the collected images into high pass and 
low pass filters using Daubechies discrete wavelet transform. The 
automatic assessment of spalling severities is the final module. 
With reference to the artificial neural network, the suggested 
produced spalling evaluation model (ANN-PSO) decreases the 
prediction errors by percentages ranging from 71.43% to 76.65%. 
Additionally, in contrast to the created prediction model, the Otsu 
algorithm is unable to discern spalling pixels in the image. Li et 
al. used the fully convolutional network and a Naive Bayes data 
fusion (NB-FCN) for crack detection, followed by a skeletonization 
process to extract crack properties: width and length, with a mean 
error less than 0.03 mm for width and 92.8% for length accuracy 
[37]. Yu et al., used YOLOv5 for the crack detection process [60]. 
The model adopted to increase the connection accuracy suggested 
a connected component search strategy based on the crack trend of 
the area. The model was able to detect cracks wider than 0.15 mm, 
and the crack width error was less than 0.05 mm.

Bae & An established a computer vision-based crack quantification 
algorithm incorporated with the deep semantic segmentation 
network [61]. The crack width is calculated as the range value 
depending on the statistical confidence interval with a normal 
distribution of the maximum width. Two cases of crack area were 
examined to find the maximum width based on the average widths 
measured at each spotted point along the crack area for each image. 
The average difference for each case is, respectively, -41.43% 
and -11.14%. The model fixed the type of structuring element 
used in morphological operations, which cannot be generalized 
because of the different patterns of cracks in several images. Kao 
et al.  used YOLOv4 deep learning, which is the integration of the 
development architecture YOLOv3 for the crack detection process 
[62]. The images were taken by UAV from distance 1 m. Canny 
and morphological edge detectors were applied to extract the crack 
edges. Then, planar marker and measurement feature points were 
used to measure the crack width in images with an accuracy 92%. 
Tran et al., applied You Only Look Once version 7 (YOLOv7), 
a deep learning network, which outperformed both Faster RCNN 
and RetinaNet with both ResNet50 and ResNet101 in speed and 
accuracy [63]. Then, the proposed method is used to measure the 
crack length and width to achieve an average accuracy of 92.38% 
and 91%, respectively.

3. Discussion
The review highlights the significance and range of computer 
vision-based applications and models used to evaluate the state of 
reinforced concrete bridges. The research process used a seven-
step framework for data collection and results, as shown in Figure 



Ann Civ Eng Manag, 2024 Volume 1 | Issue 1 | 10

1. The study begins with establishing questions, followed by 
the definition of conceptual criteria. The research concentrated 
on keywords such as visual inspection, camera image, concrete 
bridges, bridge detection, image processing, machine vision, and 
deep learning. Nondestructive methods that are applied in defect 
detection or other types of structures, except reinforced concrete 
bridges such as dams and tunnels, or others, are excluded from 
this study. In addition, the literature is limited to journal articles, 
conference papers, and books in English published in Scopus 
within the period 2011–2023. A total of 300 articles were first 
identified, and based on the previous criteria, the title and abstract 
were screened to remove any duplicates and nonrelated articles 
to the current subject. After this process, 50 documents are 

discovered using the research approach in the prior time frame. 
Based on Scopus data, results are separated by publication year, 
publishing nation, publication kind, defect detection type based 
on image technology, and defect parameter measurements based 
on image technology. Eighty five percent of all publications are 
press pieces, while fifteen percent are conference papers. The 
literary contributions of several nations are seen in Figure 2. The 
findings indicate that China is the top nation for image screening 
techniques for bridge detection. The number of publications each 
year shown in Figure 3 illustrates the interest in defect detection 
using the image-based approach in 2018. Figure 4 shows that 
only 15% researches related to defect detection based on image 
technology were discussed in conferences.
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The earlier research may be categorized into three groups: (1) 
those that identify imperfections or damage; (2) those that pinpoint 
the imperfections or damaged pixels in the picture to produce a 
"damage map;" and (3) those that concentrate on assessing the 
seriousness of the specific imperfections. As can be seen from Table 
1, the majority of research focuses on crack identification (73%), 
while a small number examined additional kinds such as scaling 
and spalling, as shown in Figure 5. Most of the research focuses 

on creating novel crack detection techniques, while some compare 
the effectiveness of already available techniques. Regarding crack 
identification, it is primarily the work of earlier research that 
led to the development of a machine vision-based technique for 
automatically identifying cracked and untracked areas of concrete 
surfaces. A "crack map" is the result of this machine vision-based 
technology, which also includes the automated determination of 
the position of crack sites within the image.

References Targeted Defect
Tong et al [23] Cracks
Zhu et al [56] Cracks
Moon and kim [22] Cracks
Zou et al [24] Cracks
German et al [58] Spalling
Ge et al [57] Cracks
Adhikari et al [26] Cracks
Chanda et al [14] Cracks
Lattanzi & Miller [25] Cracks
Talab et al [28] Crack
Chen et al [27] Cracks
Cha et al [15] Cracks
Noh et al [29] Cracks
Gopalakrishnan et al [64] Cracks
Li et al [33] Cracks
Kim et al [42] Cracks
Modarres et al [35] Cracks
Dorafshan et al [44] Cracks
Dorafshan et al [21] Cracks
Jain & Sharma [19] Cracks
Zhao et al [45] Cracks
Kruachottikul et al [11] Crack-Spalling-Erosion-Stain
Hüthwohl et al [48] Spalling, cracks, rust staining, efflorescence, scaling, abrasion/wear, exposed 

reinforcement, and general defects
Xu et al [43] Cracks
Dung [12] Cracks
Słoński [46] Cracks
Abdelkader [59] Spalling
Deng et al [49] Delamination, rebar exposure, and non-damage
Li et al [37] Cracks
Zhu et al [41] Spalling- Exposed Rebar- Crack- Pockmark
Zhu & Song [48] Cracks, fracturing, plate fracturing, corner rupturing, edge/corner exfoliation, skeleton 

exposure, and repairs
Zhu & Song [48] Cracks
Abdelkader et al [13] Spalling - Scaling -Cracks
Abdelkader [18] Cracks
Kruachottikul et al [51] Cracks, erosion, honeycomb, scaling, and spalling
Ebenezer et al [52] Cracks
Safae et al [30] Cracks
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Ong et al [58] Cracks
Zoubir et al [53] Cracks, efflorescence, and spalling
Cardellicchio et al [50] 1) corroded/oxidized steel reinforcement, (2) cracks, (3) deteriorated concrete, (4) 

honeycombs, (5) moisture spots, (6) pavement degradation, and (7) shrinkage cracks.
Yu et al [60] Cracks
Li et al [54] Cracks
Bae & An [61] Cracks
Chen [39] Unstable piles
De León et al [31] Cracks
Dow et al [32] Cracks
Kao et al [62] Cracks
Tran et al [63] Cracks
Yu [40] Cracks
Meng et al [38] Cracks

Table 1:  Targeted Defect using Machine Vision-Based Method

Following filtering, the study findings from Scopus within the years 
of (2011–2023) discover certain sorts of flaws (cracks, spalling, 
scaling, erosion, and pockmarks) for identification. Without 
considering additional nondestructive methods such as acoustic, 
electrochemical, electromagnetic, or thermal, the review focuses 
on image-based methods. Due to its effectiveness in overcoming 
challenges such as accessibility issues, traffic closures, and safety 
risks to inspectors and the public, bridge inspection based on an 
Unmanned Aerial System (UAS) has drawn a lot of attention. 
Image processing and machine learning techniques have been 
combined for infrastructure inspection, displacement and structural 
stiffness measurements, and other tasks [21,42]. Additionally, the 
usage of a deep convolutional neural network in the UAS drew 

academics to investigate its advantages and efficacy as well as how 
important it is to employ better cameras on small unmanned aerial 
systems [44]. Many algorithms are used not only to identify flaws 
but also to comprehend their properties such as position, breadth, 
length, and orientation. To properly and fully reflect the defect 
information, and automatic evaluation, it is required to identify 
of the pertinent defect parameters. The measure criteria for cracks 
are length, breadth, density, and direction, as shown in Table (2). 
In contrast, depth and length are used to determine the degree of 
spalling. Figure 6 gives an indication that 52% of studies used 
computer vision technology to measure crack width, while only 
24% for crack length.

Defects Parameters
References Cracks Spalling
Zhu et al [55] Length, orientation, maximum and average 

width
-

German [57] - Depth & length
Ge et al [56] Width -
Adhikari et al [26] Width, length, depth, and density
Chanda et al [14] Width -
Kim et al [42] Width and length -
Dung [12] Density -
Li et al [37] Width and length
Yu et al [60] Width
Ong et al [58] Width -
Bae & An [61] Width -
Kao et al [62] Width
Tran et al [63] Width and length

Table 2:  Parameters to Measure Matrix

The majority of earlier studies focus only on the length and breadth of the fractures. It could require specialized non-destructive tools. 
Furthermore, the case studies are applied to bridge deck surfaces or to columns that are only flat or curved surfaces
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Without complicated geometry, such as joints, seals, or bearings, 
or that have several sub-components and typically have a wide 
range of material compositions. According to the investigations, 
image processing techniques (IPTs) are insufficient to distinguish 
between samples with identical properties, such as cracks versus 
illumination spots, shadows, and edges. As a result, the feature 
extractor's capabilities are limited by using just conventional IPTs, 
and manually extracting features from images is time-consuming. 
In order to overcome IPTs' limitations in extracting and learning 
high-quality features, the researchers consider using deep learning 
techniques.

The biggest barrier to the effective deployment of DCNNs is the 
unavailability of huge datasets required to train large DCNNs from 
scratch [46].  Therefore, a pre-trained network is generally used on 
a large-scale picture classification assignment to address this issue. 
This strategy demonstrates the efficacy of deep learning on modest 
datasets for a variety of computer vision issues. AlexNet, VGG16, 
InceptionV3, and Resnet50 are popular deep convolutional neural 
networks that have been built. These networks are often trained on 
huge image datasets, such as ImageNet dataset [12]. AlexNet is 
utilized by Dorafshan et al. to study its viability in the inspection 
of concrete decks, and they suggest combining it with other 
designs such as ResNet to enhance network performance [44]. 
After that, VGG16 outperforms InceptionV3 and ResNet for crack 
picture classification, according to Dung & Anh [12]. In order to 
extract image features, Abdelkader opts to utilize VGG19 rather 
than VGG16 since training VGG19 requires more computational 

work than training VGG16, which has 16 trainable layers [13,18]. 
As a result, VGG19 performs better in crack fault detection and 
identification than both Alexnet and VGG16 [13,18]. Transfer 
learning and deep the convolutional neural networks influenced by 
VGGnet architectures have demonstrated their efficacy in handling 
challenging image classification tasks and sizable annotated 
datasets in this regard. Their great ability to extract and acquire 
deep learning features to distinguish between picture classes—
even in computer vision issues when there are classes that are 
expressly distinct from the original dataset is used to train the pre-
trained model [64,65]. It is noteworthy that the crack detection 
method based on Convolutional Neural Networks outperforms the 
other edge detectors [15,33]. Additionally, DCNN outperforms 
edge detection techniques including Roberts, Prewitt, Sobel, 
Laplacian of Gaussian, Butterworth, and Gaussian in terms of 
spotting fractures bigger than 0.04 mm [21]. However, the DCNN 
needs an enormous amount of training data, which consumes a 
huge computational cost.

3.1. Gaps in Previous Research
Based on the literature review conducted, there are some short 
comings in the computer vision-based methods for detection and 
assessment. Scaling and spalling are two further sorts of flaws that 
are not thoroughly inspected. To gauge the severity of a bridging 
fault, phrases such as "defect" and "no defect" or "crack" and "no 
crack" are insufficient. Models seldom demonstrate their capacity 
for assessing flaws in breadth, depth, and length. A few research 
efforts have concentrated on enhancing the automatic method 
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identification based on computer vision-based approaches for 
scaling and spalling flaws, in spite of their significance in the 
assessment of concrete surface problems. The majority of models 
do not consider environmental factors that might impact the 
stability and safety of unmanned aerial vehicles (UAVs) as well as 
the quality of the images that are acquired, such as fog, different 
lighting, and wind speed [22,66]. Also, the flight altitude and signal 
delay of the GPS are two factors that influence the use of UAVs 
to be considered in the image detection method. The distance for 
capturing images by UAV needs to be considered in the model 
accuracy. Additionally, due to how the surrounding environment, 
such as shadows and sunlight intensity, influenced image 
processing algorithms for defect quantification, certain systems 
encounter considerable difficulties in quantifying particular faults 
[42]. As a result, it is necessary to assess the suggested method 
in a number of application domains. Additionally, the algorithm 
accuracy needs to be increased. To find the ideal parameters needed 
for image processing, a variety of optimization techniques can be 
used. Also, the other parameters of cracks to be extracted, such 
as orientation and depth, need more studies. Finally, the previous 
modules cannot be generalized to detect all types of defects for 
all types of surfaces (walls, asphalts, decks…etc.). Therefore, 
multi-technology systems must be applied in inspection process to 
overcome these challenges.

4. Conclusions
Visual inspection is a major component in bridge condition 
assessment procedures. The quality and reliability of visual 
inspection results not only rely on the qualifications and experience 
of those leading bridge inspections but also on the motivation 
and equipment of those conducting such inspections. The article 
shows several models based on computer vision to contribute in 
maximizing the safety and serviceability of bridges. In remote and 
up-close images of bridges, various faults, and damage patterns 
may be found and measured using a variety of approaches. Based 
on the image-based methodologies, three primary groupings 
are explored in the papers. While the second group depends on 
machine learning for automatic detection, the first group mainly 
depends on image processing techniques. The last group is 
interested in quantifying the severity of faults by identifying their 
dimensions, including their length, breadth, area, and perimeter. 
The study gathered the key problems that will be important for 
future studies on image-based approaches. To expand the storage 
capacity of the bridge database, it is hoped that future research 
will raise recognition speed and accuracy to recognize real-time 
identification. To create a trained machine-learning classifier that 
successfully categorizes inspection images, a broad variety of 
variables in images, including changes in lighting, texture, debris, 
staining, and contrast should be considered. Finally, future studies 
should focus on applying image technology not only on cracks, 
but also on other defects (spalls, scale, delamination…etc.) and 
concentrating on extracting the defect features such as depth, 
orientation, and densities [67].

References
1.	 Omar, T., & Nehdi, M. L. (2018). Condition assessment of 

reinforced concrete bridges: Current practice and research 
challenges. Infrastructures, 3(3), 36.

2.	 Abdelalim, A. M. (2012, May). Quantitive assessment of 
deteriorated RC structures due to reinforcing steel corrosion. 
In The International Conference on Civil and Architecture 
Engineering (Vol. 9, No. 9th International Conference on Civil 
and Architecture Engineering, pp. 1-12). Military Technical 
College.

3.	 Abdelalim, A. M. (2019). A novel diagnostic prognostic 
approach for rehabilitated RC structures based on integrated 
probabilistic deterioration models. International Journal of 
Decision Sciences, Risk and Management, 8(3), 119-134.

4.	 Abdelalim, A. M., & Abo. elsaud, Y. (2019). Integrating BIM-
based simulation technique for sustainable building design. In 
Project Management and BIM for Sustainable Modern Cities: 
Proceedings of the 2nd GeoMEast International Congress and 
Exhibition on Sustainable Civil Infrastructures, Egypt 2018–
The Official International Congress of the Soil-Structure 
Interaction Group in Egypt (SSIGE) (pp. 209-238). Springer 
International Publishing.

5.	 Ali Mohamed, N., Mohammed Abdel-Alim, A., Hamdy Ghith, 
H., & Gamal Sherif, A. (2020). Assessment and prediction 
planning of RC structures using BIM technology. Engineering 
Research Journal, 167, 394-403. 

6.	 Abdelalim, A. M., & Said, S. O. M. (2021). Dynamic labor 
tracking system in construction project using bim technology. 
Int. J. Civ. Struct. Eng. Res, 9(20).

7.	 Shehab, A., & Abdelalim, A. M. Utilization BIM for 
Integrating Cost Estimation and Cost Control Using BIM in 
Construction Projects.2023.

8.	 Shawky, K. A., Abdelalim, A. M., & Sherif, A. G. (2024). 
Standardization of BIM Execution Plans (BEP’s) for Mega 
Construction Projects: A Comparative and Scientometric 
Study. Trans. Mach. Learn. Artif. Intell, 12(1), 103-129.

9.	 Abdelkhalek, S., & Zayed, T. (2020). Comprehensive 
inspection system for concrete bridge deck application: 
Current situation and future needs. Journal of Performance of 
Constructed Facilities, 34(5), 03120001.

10.	 Morgenthal, G., Hallermann, N., Kersten, J., Taraben, J., 
Debus, P., Helmrich, M., & Rodehorst, V. (2019). Framework 
for automated UAS-based structural condition assessment of 
bridges. Automation in Construction, 97, 77-95.

11.	 Kruachottikul, P., Cooharojananone, N., Phanomchoeng, 
G., Chavarnakul, T., Kovitanggoon, K., Trakulwaranont, 
D., & Atchariyachanvanich, K. (2019, October). Bridge sub 
structure defect inspection assistance by using deep learning. 
In 2019 IEEE 10th International Conference on Awareness 
Science and Technology (iCAST) (pp. 1-6). IEEE.

12.	 Dung, C. V. (2019). Autonomous concrete crack detection 
using deep fully convolutional neural network. Automation in 
Construction, 99, 52-58.

13.	 Mohammed Abdelkader, E. (2022). On the hybridization of 
pre-trained deep learning and differential evolution algorithms 
for semantic crack detection and recognition in ensemble of 
infrastructures. Smart and Sustainable Built Environment, 
11(3), 740-764.

https://doi.org/10.3390/infrastructures3030036
https://doi.org/10.3390/infrastructures3030036
https://doi.org/10.3390/infrastructures3030036
https://journals.ekb.eg/article_44258_4a3aae196e71fadf08a13adfa17f1711.pdf
https://journals.ekb.eg/article_44258_4a3aae196e71fadf08a13adfa17f1711.pdf
https://journals.ekb.eg/article_44258_4a3aae196e71fadf08a13adfa17f1711.pdf
https://journals.ekb.eg/article_44258_4a3aae196e71fadf08a13adfa17f1711.pdf
https://journals.ekb.eg/article_44258_4a3aae196e71fadf08a13adfa17f1711.pdf
https://journals.ekb.eg/article_44258_4a3aae196e71fadf08a13adfa17f1711.pdf
https://doi.org/10.1504/IJDSRM.2019.099677
https://doi.org/10.1504/IJDSRM.2019.099677
https://doi.org/10.1504/IJDSRM.2019.099677
https://doi.org/10.1504/IJDSRM.2019.099677
https://doi.org/10.1007/978-3-030-01905-1_12
https://doi.org/10.1007/978-3-030-01905-1_12
https://doi.org/10.1007/978-3-030-01905-1_12
https://doi.org/10.1007/978-3-030-01905-1_12
https://doi.org/10.1007/978-3-030-01905-1_12
https://doi.org/10.1007/978-3-030-01905-1_12
https://doi.org/10.1007/978-3-030-01905-1_12
https://doi.org/10.1007/978-3-030-01905-1_12
https://erj.journals.ekb.eg/article_145845.html
https://erj.journals.ekb.eg/article_145845.html
https://erj.journals.ekb.eg/article_145845.html
https://erj.journals.ekb.eg/article_145845.html
https://www.researchgate.net/publication/361402008_DYNAMIC_LABOR_TRACKING_SYSTEM_IN_CONSTRUCTION_PROJECT_USING_BIM_TECHNOLOGY
https://www.researchgate.net/publication/361402008_DYNAMIC_LABOR_TRACKING_SYSTEM_IN_CONSTRUCTION_PROJECT_USING_BIM_TECHNOLOGY
https://www.researchgate.net/publication/361402008_DYNAMIC_LABOR_TRACKING_SYSTEM_IN_CONSTRUCTION_PROJECT_USING_BIM_TECHNOLOGY
https://doi.org/10.5281/zenodo.7923308
https://doi.org/10.5281/zenodo.7923308
https://doi.org/10.5281/zenodo.7923308
http://dx.doi.org/10.14738/tecs.121.16270
http://dx.doi.org/10.14738/tecs.121.16270
http://dx.doi.org/10.14738/tecs.121.16270
http://dx.doi.org/10.14738/tecs.121.16270
https://doi.org/10.1061/(ASCE)CF.1943-5509.0001484
https://doi.org/10.1061/(ASCE)CF.1943-5509.0001484
https://doi.org/10.1061/(ASCE)CF.1943-5509.0001484
https://doi.org/10.1061/(ASCE)CF.1943-5509.0001484
https://doi.org/10.1016/j.autcon.2018.10.006
https://doi.org/10.1016/j.autcon.2018.10.006
https://doi.org/10.1016/j.autcon.2018.10.006
https://doi.org/10.1016/j.autcon.2018.10.006
https://doi.org/10.1109/ICAwST.2019.8923507
https://doi.org/10.1109/ICAwST.2019.8923507
https://doi.org/10.1109/ICAwST.2019.8923507
https://doi.org/10.1109/ICAwST.2019.8923507
https://doi.org/10.1109/ICAwST.2019.8923507
https://doi.org/10.1109/ICAwST.2019.8923507
https://doi.org/10.1016/j.autcon.2018.11.028
https://doi.org/10.1016/j.autcon.2018.11.028
https://doi.org/10.1016/j.autcon.2018.11.028
https://doi.org/10.1108/SASBE-01-2021-0010
https://doi.org/10.1108/SASBE-01-2021-0010
https://doi.org/10.1108/SASBE-01-2021-0010
https://doi.org/10.1108/SASBE-01-2021-0010
https://doi.org/10.1108/SASBE-01-2021-0010


Ann Civ Eng Manag, 2024 Volume 1 | Issue 1 | 15

14.	 Chanda, S., Bu, G., Guan, H., Jo, J., Pal, U., Loo, Y. C., & 
Blumenstein, M. (2014). Automatic bridge crack detection–a 
texture analysis-based approach. In Artificial Neural Networks 
in Pattern Recognition: 6th IAPR TC 3 International 
Workshop, ANNPR 2014, Montreal, QC, Canada, October 
6-8, 2014. Proceedings 6 (pp. 193-203). Springer International 
Publishing.

15.	 Cha, Y. J., Choi, W., & Büyüköztürk, O. (2017). Deep 
learning‐based crack damage detection using convolutional 
neural networks. Computer‐Aided Civil and Infrastructure 
Engineering, 32(5), 361-378.

16.	 Agdas, D., Rice, J. A., Martinez, J. R., & Lasa, I. R. (2016). 
Comparison of visual inspection and structural-health 
monitoring as bridge condition assessment methods. Journal 
of Performance of Constructed Facilities, 30(3), 04015049.

17.	 Abdelkader, E. M., Moselhi, O., Marzouk, M., & Zayed, 
T. (2020). Evaluation of spalling in bridges using machine 
vision method. In ISARC. Proceedings of the International 
Symposium on Automation and Robotics in Construction (Vol. 
37, pp. 1136-1143). IAARC Publications.

18.	 Mohammed Abdelkader, E., Moselhi, O., Marzouk, M., 
& Zayed, T. (2021). Hybrid Elman neural network and 
an invasive weed optimization method for bridge defect 
recognition. Transportation Research Record, 2675(3), 167-
199.

19.	 Jain, R., & Sharma, R. S. (2018, July). Predicting Severity of 
Cracks in Concrete using Fuzzy Logic. In 2018 International 
Conference on Recent Innovations in Electrical, Electronics 
& Communication Engineering (ICRIEECE) (pp. 2976-
2976). IEEE.

20.	 Mohan, A., & Poobal, S. (2018). Crack detection using 
image processing: A critical review and analysis. alexandria 
engineering journal, 57(2), 787-798.

21.	 Dorafshan, S., Thomas, R. J., & Maguire, M. (2018). 
Comparison of deep convolutional neural networks and 
edge detectors for image-based crack detection in concrete. 
Construction and Building Materials, 186, 1031-1045.

22.	 Moon, H. G., & Kim, J. H. (2011). Intelligent crack detecting 
algorithm on the concrete crack image using neural network. 
Proceedings of the 28th ISARC, 2011, 1461-1467.

23.	 Tong, X., Guo, J., Ling, Y., & Yin, Z. (2011, October). A 
new image-based method for concrete bridge bottom crack 
detection. In 2011 international conference on image analysis 
and signal processing (pp. 568-571). IEEE.

24.	 Zou, Q., Cao, Y., Li, Q., Mao, Q., & Wang, S. (2012). 
CrackTree: Automatic crack detection from pavement images. 
Pattern Recognition Letters, 33(3), 227-238.

25.	 Lattanzi, D., & Miller, G. R. (2014). Robust automated 
concrete damage detection algorithms for field applications. 
Journal of Computing in Civil Engineering, 28(2), 253-262.

26.	 Adhikari, R. S., Moselhi, O., & Bagchi, A. (2014). Image-
based retrieval of concrete crack properties for bridge 
inspection. Automation in construction, 39, 180-194.

27.	 Chen, Y., Mei, T., Wang, X., & Li, F. (2016, July). A bridge 
crack image detection and classification method based on 
climbing robot. In 2016 35th Chinese Control Conference 

(CCC) (pp. 4037-4042). IEEE.
28.	 Talab, A. M. A., Huang, Z., Xi, F., & HaiMing, L. (2016). 

Detection crack in image using Otsu method and multiple 
filtering in image processing techniques. Optik, 127(3), 1030-
1033.

29.	 Noh, Y., Koo, D., Kang, Y. M., Park, D., & Lee, D. (2017, 
May). Automatic crack detection on concrete images 
using segmentation via fuzzy C-means clustering. In 2017 
International conference on applied system innovation 
(ICASI) (pp. 877-880). IEEE.

30.	 Safaei, N., Smadi, O., Masoud, A., & Safaei, B. (2022). An 
automatic image processing algorithm based on crack pixel 
density for pavement crack detection and classification. 
International Journal of Pavement Research and Technology, 
15(1), 159-172.

31.	 de León, G., Fiorentini, N., Leandri, P., & Losa, M. (2023). A 
new region-based minimal path selection algorithm for crack 
detection and ground truth labeling exploiting Gabor filters. 
Remote Sensing, 15(11), 2722.

32.	 Dow, H., Perry, M., McAlorum, J., Pennada, S., & Dobie, 
G. (2023). Skeleton-based noise removal algorithm for 
binary concrete crack image segmentation. Automation in 
Construction, 151, 104867.

33.	 Li, Y., Zhao, W., Zhang, X., & Zhou, Q. (2018). A two-
stage crack detection method for concrete bridges using 
Convolutional Neural Networks. IEICE TRANSACTIONS on 
Information and Systems, 101(12), 3249-3252.

34.	 Mohtasham Khani, M., Vahidnia, S., Ghasemzadeh, L., 
Ozturk, Y. E., Yuvalaklioglu, M., Akin, S., & Ure, N. K. (2020). 
Deep-learning-based crack detection with applications for the 
structural health monitoring of gas turbines. Structural Health 
Monitoring, 19(5), 1440-1452.

35.	 Modarres, C., Astorga, N., Droguett, E. L., & Meruane, V. 
(2018). Convolutional neural networks for automated damage 
recognition and damage type identification. Structural Control 
and Health Monitoring, 25(10), e2230.

36.	 Zhu, J., Zhang, C., Qi, H., & Lu, Z. (2020). Vision-based 
defects detection for bridges using transfer learning and 
convolutional neural networks. Structure and Infrastructure 
Engineering, 16(7), 1037-1049.

37.	 Li, G., Liu, Q., Zhao, S., Qiao, W., & Ren, X. (2020). 
Automatic crack recognition for concrete bridges using a fully 
convolutional neural network and naive Bayes data fusion 
based on a visual detection system. Measurement Science and 
Technology, 31(7), 075403.

38.	 Meng, Q., Yang, J., Zhang, Y., Yang, Y., Song, J., & Wang, 
J. (2023). A Robot System for Rapid and Intelligent Bridge 
Damage Inspection Based on Deep-Learning Algorithms. 
Journal of Performance of Constructed Facilities, 37(6), 
04023052.

39.	 Chen, A. (2023). Analysis of bridge foundation pile detection 
based on convolutional neural network model. Applied 
Mathematics and Nonlinear Sciences, 8(2), 2085-2094.

40.	 Yu, H. (2023, June). Research on Bridge Condition Monitoring 
Based on Image Processing Technology and Bridge Crack 
Detection Algorithm. In 2023 2nd International Conference 

https://doi.org/10.1007/978-3-319-11656-3_18
https://doi.org/10.1007/978-3-319-11656-3_18
https://doi.org/10.1007/978-3-319-11656-3_18
https://doi.org/10.1007/978-3-319-11656-3_18
https://doi.org/10.1007/978-3-319-11656-3_18
https://doi.org/10.1007/978-3-319-11656-3_18
https://doi.org/10.1007/978-3-319-11656-3_18
https://doi.org/10.1111/mice.12263
https://doi.org/10.1111/mice.12263
https://doi.org/10.1111/mice.12263
https://doi.org/10.1111/mice.12263
https://doi.org/10.1061/(ASCE)CF.1943-5509.0000802
https://doi.org/10.1061/(ASCE)CF.1943-5509.0000802
https://doi.org/10.1061/(ASCE)CF.1943-5509.0000802
https://doi.org/10.1061/(ASCE)CF.1943-5509.0000802
https://doi.org/10.1061/(ASCE)CF.1943-5509.0000802
https://doi.org/10.1061/(ASCE)CF.1943-5509.0000802
https://doi.org/10.1061/(ASCE)CF.1943-5509.0000802
https://doi.org/10.1061/(ASCE)CF.1943-5509.0000802
https://doi.org/10.1061/(ASCE)CF.1943-5509.0000802
https://doi.org/10.1177/0361198120967943
https://doi.org/10.1177/0361198120967943
https://doi.org/10.1177/0361198120967943
https://doi.org/10.1177/0361198120967943
https://doi.org/10.1177/0361198120967943
https://doi.org/10.1109/ICRIEECE44171.2018.9008622
https://doi.org/10.1109/ICRIEECE44171.2018.9008622
https://doi.org/10.1109/ICRIEECE44171.2018.9008622
https://doi.org/10.1109/ICRIEECE44171.2018.9008622
https://doi.org/10.1109/ICRIEECE44171.2018.9008622
https://doi.org/10.1016/j.aej.2017.01.020
https://doi.org/10.1016/j.aej.2017.01.020
https://doi.org/10.1016/j.aej.2017.01.020
https://doi.org/10.1016/j.conbuildmat.2018.08.011
https://doi.org/10.1016/j.conbuildmat.2018.08.011
https://doi.org/10.1016/j.conbuildmat.2018.08.011
https://doi.org/10.1016/j.conbuildmat.2018.08.011
https://d1wqtxts1xzle7.cloudfront.net/32968230/P2-20.pdf?1392107408=&response-content-disposition=inline%3B+filename%3DINTELIGENT_CRACK_DETECTING_ALGORITHM_ON.pdf&Expires=1731572601&Signature=NOqUTqe~HqlBTv~AA429MJD8EUAFtYIsR6C~66KAoMFbPi4~iwQcjIp3EP02ZsNfKFmNxIAFCISEJlZiMJBZ1ksC~bKtNnZLKRfDGtJzVkpNxwvYUGcjJImJwDwSnHHwWxJJUQCUY1VaN7JZXnWHA8IgSmxY7hPX9sWQiwGohu0ZDaMdqNiXoacnNsjzWQWZ-7huoCOuK-RLptIYrIbiu~p7CugwSUvX0GrjhjVfx1UWsVN~Q~SaJvjaeNDnimZv3iBq-lHVttgpNZOtUwxfEpxpjysJys23BCVaQJt11XHOpdTPHI~vXBp88~y8z6Ksu~oY7dqZTS2ygtUPNk0bNw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/32968230/P2-20.pdf?1392107408=&response-content-disposition=inline%3B+filename%3DINTELIGENT_CRACK_DETECTING_ALGORITHM_ON.pdf&Expires=1731572601&Signature=NOqUTqe~HqlBTv~AA429MJD8EUAFtYIsR6C~66KAoMFbPi4~iwQcjIp3EP02ZsNfKFmNxIAFCISEJlZiMJBZ1ksC~bKtNnZLKRfDGtJzVkpNxwvYUGcjJImJwDwSnHHwWxJJUQCUY1VaN7JZXnWHA8IgSmxY7hPX9sWQiwGohu0ZDaMdqNiXoacnNsjzWQWZ-7huoCOuK-RLptIYrIbiu~p7CugwSUvX0GrjhjVfx1UWsVN~Q~SaJvjaeNDnimZv3iBq-lHVttgpNZOtUwxfEpxpjysJys23BCVaQJt11XHOpdTPHI~vXBp88~y8z6Ksu~oY7dqZTS2ygtUPNk0bNw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/32968230/P2-20.pdf?1392107408=&response-content-disposition=inline%3B+filename%3DINTELIGENT_CRACK_DETECTING_ALGORITHM_ON.pdf&Expires=1731572601&Signature=NOqUTqe~HqlBTv~AA429MJD8EUAFtYIsR6C~66KAoMFbPi4~iwQcjIp3EP02ZsNfKFmNxIAFCISEJlZiMJBZ1ksC~bKtNnZLKRfDGtJzVkpNxwvYUGcjJImJwDwSnHHwWxJJUQCUY1VaN7JZXnWHA8IgSmxY7hPX9sWQiwGohu0ZDaMdqNiXoacnNsjzWQWZ-7huoCOuK-RLptIYrIbiu~p7CugwSUvX0GrjhjVfx1UWsVN~Q~SaJvjaeNDnimZv3iBq-lHVttgpNZOtUwxfEpxpjysJys23BCVaQJt11XHOpdTPHI~vXBp88~y8z6Ksu~oY7dqZTS2ygtUPNk0bNw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://doi.org/10.1109/IASP.2011.6109108
https://doi.org/10.1109/IASP.2011.6109108
https://doi.org/10.1109/IASP.2011.6109108
https://doi.org/10.1109/IASP.2011.6109108
https://doi.org/10.1016/j.patrec.2011.11.004
https://doi.org/10.1016/j.patrec.2011.11.004
https://doi.org/10.1016/j.patrec.2011.11.004
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000257
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000257
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000257
https://doi.org/10.1016/j.autcon.2013.06.011
https://doi.org/10.1016/j.autcon.2013.06.011
https://doi.org/10.1016/j.autcon.2013.06.011
https://doi.org/10.1109/ChiCC.2016.7553984
https://doi.org/10.1109/ChiCC.2016.7553984
https://doi.org/10.1109/ChiCC.2016.7553984
https://doi.org/10.1109/ChiCC.2016.7553984
https://doi.org/10.1016/j.ijleo.2015.09.147
https://doi.org/10.1016/j.ijleo.2015.09.147
https://doi.org/10.1016/j.ijleo.2015.09.147
https://doi.org/10.1016/j.ijleo.2015.09.147
https://doi.org/10.1109/ICASI.2017.7988574
https://doi.org/10.1109/ICASI.2017.7988574
https://doi.org/10.1109/ICASI.2017.7988574
https://doi.org/10.1109/ICASI.2017.7988574
https://doi.org/10.1109/ICASI.2017.7988574
https://link.springer.com/article/10.1007/s42947-021-00006-4
https://link.springer.com/article/10.1007/s42947-021-00006-4
https://link.springer.com/article/10.1007/s42947-021-00006-4
https://link.springer.com/article/10.1007/s42947-021-00006-4
https://link.springer.com/article/10.1007/s42947-021-00006-4
https://doi.org/10.3390/rs15112722
https://doi.org/10.3390/rs15112722
https://doi.org/10.3390/rs15112722
https://doi.org/10.3390/rs15112722
https://doi.org/10.1016/j.autcon.2023.104867
https://doi.org/10.1016/j.autcon.2023.104867
https://doi.org/10.1016/j.autcon.2023.104867
https://doi.org/10.1016/j.autcon.2023.104867
https://search.ieice.org/bin/summary.php?id=e101-d_12_3249
https://search.ieice.org/bin/summary.php?id=e101-d_12_3249
https://search.ieice.org/bin/summary.php?id=e101-d_12_3249
https://search.ieice.org/bin/summary.php?id=e101-d_12_3249
https://doi.org/10.1177/1475921719883202
https://doi.org/10.1177/1475921719883202
https://doi.org/10.1177/1475921719883202
https://doi.org/10.1177/1475921719883202
https://doi.org/10.1177/1475921719883202
https://doi.org/10.1002/stc.2230
https://doi.org/10.1002/stc.2230
https://doi.org/10.1002/stc.2230
https://doi.org/10.1002/stc.2230
https://doi.org/10.1080/15732479.2019.1680709
https://doi.org/10.1080/15732479.2019.1680709
https://doi.org/10.1080/15732479.2019.1680709
https://doi.org/10.1080/15732479.2019.1680709
https://iopscience.iop.org/article/10.1088/1361-6501/ab79c8/meta
https://iopscience.iop.org/article/10.1088/1361-6501/ab79c8/meta
https://iopscience.iop.org/article/10.1088/1361-6501/ab79c8/meta
https://iopscience.iop.org/article/10.1088/1361-6501/ab79c8/meta
https://iopscience.iop.org/article/10.1088/1361-6501/ab79c8/meta
https://doi.org/10.1061/JPCFEV.CFENG-4433
https://doi.org/10.1061/JPCFEV.CFENG-4433
https://doi.org/10.1061/JPCFEV.CFENG-4433
https://doi.org/10.1061/JPCFEV.CFENG-4433
https://doi.org/10.1061/JPCFEV.CFENG-4433
https://doi.org/10.2478/amns.2023.1.00313
https://doi.org/10.2478/amns.2023.1.00313
https://doi.org/10.2478/amns.2023.1.00313
https://doi.org/10.1109/ICDIIME59043.2023.00085
https://doi.org/10.1109/ICDIIME59043.2023.00085
https://doi.org/10.1109/ICDIIME59043.2023.00085


Ann Civ Eng Manag, 2024 Volume 1 | Issue 1 | 16

on 3D Immersion, Interaction and Multi-sensory Experiences 
(ICDIIME) (pp. 412-416). IEEE.

41.	 Zhu, J., & Song, J. (2020). An intelligent classification model 
for surface defects on cement concrete bridges. Applied 
sciences, 10(3), 972.

42.	 Kim, I. H., Jeon, H., Baek, S. C., Hong, W. H., & Jung, H. 
J. (2018). Application of crack identification techniques for 
an aging concrete bridge inspection using an unmanned aerial 
vehicle. Sensors, 18(6), 1881.

43.	 Xu, H., Su, X., Wang, Y., Cai, H., Cui, K., & Chen, X. (2019). 
Automatic bridge crack detection using a convolutional neural 
network. Applied Sciences, 9(14), 2867.

44.	 Dorafshan, S., Thomas, R. J., Coopmans, C., & Maguire, 
M. (2018, June). Deep learning neural networks for sUAS-
assisted structural inspections: Feasibility and application. In 
2018 international conference on unmanned aircraft systems 
(ICUAS) (pp. 874-882). IEEE.

45.	 Zhao, X., Li, S., Su, H., Zhou, L., & Loh, K. J. (2018, 
September). Image-based comprehensive maintenance and 
inspection method for bridges using deep learning. In Smart 
Materials, Adaptive Structures and Intelligent Systems (Vol. 
51951, p. V002T05A017). American Society of Mechanical 
Engineers.

46.	 Słoński, M. (2019). A comparison of deep convolutional 
neural networks for image-based detection of concrete 
surface cracks. Computer assisted methods in Engineering 
and Science, 26(2), 105-112.

47.	 Hüthwohl, P., Lu, R., & Brilakis, I. (2019). Multi-classifier 
for reinforced concrete bridge defects. Automation in 
Construction, 105, 102824.

48.	 Zhu, J., & Song, J. (2020). Weakly supervised network based 
intelligent identification of cracks in asphalt concrete bridge 
deck. Alexandria Engineering Journal, 59(3), 1307-1317.

49.	 Deng, W., Mou, Y., Kashiwa, T., Escalera, S., Nagai, K., 
Nakayama, K., ... & Prendinger, H. (2020). Vision based 
pixel-level bridge structural damage detection using a link 
ASPP network. Automation in Construction, 110, 102973.

50.	 Cardellicchio, A., Ruggieri, S., Nettis, A., Patruno, C., Uva, 
G., & Renò, V. (2022, May). Deep learning approaches for 
image-based detection and classification of structural defects 
in bridges. In International Conference on Image Analysis 
and Processing (pp. 269-279). Cham: Springer International 
Publishing.

51.	 Kruachottikul, P., Cooharojananone, N., Phanomchoeng, 
G., Chavarnakul, T., Kovitanggoon, K., & Trakulwaranont, 
D. (2021). Deep learning-based visual defect-inspection 
system for reinforced concrete bridge substructure: a case of 
Thailand’s department of highways. Journal of Civil Structural 
Health Monitoring, 11(4), 949-965.

52.	 Shamila Ebenezer, A., Deepa Kanmani, S., Sheela, V., 
Ramalakshmi, K., Chandran, V., Sumithra, M. G., ... & 
Murugesan, B. (2021). Identification of Civil Infrastructure 
Damage Using Ensemble Transfer Learning Model. Advances 
in Civil Engineering, 2021(1), 5589688.

53.	 Zoubir, H., Rguig, M., El Aroussi, M., Chehri, A., Saadane, R., 
& Jeon, G. (2022). Concrete bridge defects identification and 

localization based on classification deep convolutional neural 
networks and transfer learning. Remote sensing, 14(19), 4882.

54.	 Li, R., Yu, J., Li, F., Yang, R., Wang, Y., & Peng, Z. (2023). 
Automatic bridge crack detection using Unmanned aerial 
vehicle and Faster R-CNN. Construction and Building 
Materials, 362, 129659.

55.	 Zhu, Z., German, S., & Brilakis, I. (2011). Visual retrieval 
of concrete crack properties for automated post-earthquake 
structural safety evaluation. Automation in Construction, 
20(7), 874-883.

56.	 Ge, B. Z., Luo, Q. J., Ma, B., Wei, Y. J., Chen, B., & Jiang, S. 
Z. (2013). The algorithm to measure crack width with incircle. 
Advanced Materials Research, 684, 481-485.

57.	 German, S., Brilakis, I., & DesRoches, R. (2012). Rapid 
entropy-based detection and properties measurement of 
concrete spalling with machine vision for post-earthquake 
safety assessments. Advanced Engineering Informatics, 
26(4), 846-858.

58.	 Ong, J. C., Ismadi, M. Z. P., & Wang, X. (2022). A hybrid 
method for pavement crack width measurement. Measurement, 
197, 111260.

59.	 Abdelalim, A.M., Nahla Ali Mohamed fahmy, Hatem Hamdy 
Ghith, Alaa Gamal sheriff (2020). Condition Assessment 
and Deterioration Prediction of RC Structures, International 
Journal of Civil and Structural Engineering Research, 8(1), 
173-181.

60.	 Yu, L., He, S., Liu, X., Jiang, S., & Xiang, S. (2022). Intelligent 
Crack Detection and Quantification in the Concrete Bridge: 
A Deep Learning‐Assisted Image Processing Approach. 
Advances in Civil Engineering, 2022(1), 1813821.

61.	 Bae, H., & An, Y. K. (2023). Computer vision-based statistical 
crack quantification for concrete structures. Measurement, 
211, 112632.

62.	 Kao, S. P., Chang, Y. C., & Wang, F. L. (2023). Combining the 
YOLOv4 deep learning model with UAV imagery processing 
technology in the extraction and quantization of cracks in 
bridges. Sensors, 23(5), 2572.

63.	 Tran, T. S., Nguyen, S. D., Lee, H. J., & Tran, V. P. (2023). 
Advanced crack detection and segmentation on bridge decks 
using deep learning. Construction and Building Materials, 
400, 132839.

64.	 Gopalakrishnan, K., Khaitan, S. K., Choudhary, A., & 
Agrawal, A. (2017). Deep convolutional neural networks 
with transfer learning for computer vision-based data-driven 
pavement distress detection. Construction and building 
materials, 157, 322-330.

65.	 Yang, Q., Shi, W., Chen, J., & Lin, W. (2020). Deep convolution 
neural network-based transfer learning method for civil 
infrastructure crack detection. Automation in Construction, 
116, 103199.

66.	 Hiasa, S., Karaaslan, E., Shattenkirk, W., Mildner, C., & 
Catbas, F. N. (2018, April). Bridge inspection and condition 
assessment using image-based technologies with UAVs. 
In Structures Congress 2018 (pp. 217-228). Reston, VA: 
American Society of Civil Engineers

https://doi.org/10.1109/ICDIIME59043.2023.00085
https://doi.org/10.1109/ICDIIME59043.2023.00085
https://doi.org/10.3390/app10030972
https://doi.org/10.3390/app10030972
https://doi.org/10.3390/app10030972
https://doi.org/10.3390/s18061881
https://doi.org/10.3390/s18061881
https://doi.org/10.3390/s18061881
https://doi.org/10.3390/s18061881
https://doi.org/10.3390/app9142867
https://doi.org/10.3390/app9142867
https://doi.org/10.3390/app9142867
https://doi.org/10.1109/ICUAS.2018.8453409
https://doi.org/10.1109/ICUAS.2018.8453409
https://doi.org/10.1109/ICUAS.2018.8453409
https://doi.org/10.1109/ICUAS.2018.8453409
https://doi.org/10.1109/ICUAS.2018.8453409
http://Zhao, X., Li, S., Su, H., Zhou, L., & Loh, K. J. (2018, September). Image-based comprehensive mainte
http://Zhao, X., Li, S., Su, H., Zhou, L., & Loh, K. J. (2018, September). Image-based comprehensive mainte
http://Zhao, X., Li, S., Su, H., Zhou, L., & Loh, K. J. (2018, September). Image-based comprehensive mainte
http://Zhao, X., Li, S., Su, H., Zhou, L., & Loh, K. J. (2018, September). Image-based comprehensive mainte
http://Zhao, X., Li, S., Su, H., Zhou, L., & Loh, K. J. (2018, September). Image-based comprehensive mainte
http://Zhao, X., Li, S., Su, H., Zhou, L., & Loh, K. J. (2018, September). Image-based comprehensive mainte
http://dx.doi.org/10.24423/cames.267
http://dx.doi.org/10.24423/cames.267
http://dx.doi.org/10.24423/cames.267
http://dx.doi.org/10.24423/cames.267
https://doi.org/10.1016/j.autcon.2019.04.019
https://doi.org/10.1016/j.autcon.2019.04.019
https://doi.org/10.1016/j.autcon.2019.04.019
https://doi.org/10.1016/j.aej.2020.02.027
https://doi.org/10.1016/j.aej.2020.02.027
https://doi.org/10.1016/j.aej.2020.02.027
https://doi.org/10.1016/j.aej.2020.02.027
https://doi.org/10.1016/j.aej.2020.02.027
https://doi.org/10.1016/j.aej.2020.02.027
https://doi.org/10.1016/j.aej.2020.02.027
https://doi.org/10.3390/data7010004
https://doi.org/10.3390/data7010004
https://doi.org/10.3390/data7010004
https://doi.org/10.3390/data7010004
https://doi.org/10.3390/data7010004
https://doi.org/10.3390/data7010004
https://link.springer.com/article/10.1007/s13349-021-00490-z
https://link.springer.com/article/10.1007/s13349-021-00490-z
https://link.springer.com/article/10.1007/s13349-021-00490-z
https://link.springer.com/article/10.1007/s13349-021-00490-z
https://link.springer.com/article/10.1007/s13349-021-00490-z
https://link.springer.com/article/10.1007/s13349-021-00490-z
https://doi.org/10.1155/2021/5589688
https://doi.org/10.1155/2021/5589688
https://doi.org/10.1155/2021/5589688
https://doi.org/10.1155/2021/5589688
https://doi.org/10.1155/2021/5589688
https://doi.org/10.3390/rs14194882
https://doi.org/10.3390/rs14194882
https://doi.org/10.3390/rs14194882
https://doi.org/10.3390/rs14194882
https://doi.org/10.1016/j.conbuildmat.2022.129659
https://doi.org/10.1016/j.conbuildmat.2022.129659
https://doi.org/10.1016/j.conbuildmat.2022.129659
https://doi.org/10.1016/j.conbuildmat.2022.129659
https://doi.org/10.1016/j.autcon.2011.03.004
https://doi.org/10.1016/j.autcon.2011.03.004
https://doi.org/10.1016/j.autcon.2011.03.004
https://doi.org/10.1016/j.autcon.2011.03.004
https://doi.org/10.4028/www.scientific.net/AMR.684.481
https://doi.org/10.4028/www.scientific.net/AMR.684.481
https://doi.org/10.4028/www.scientific.net/AMR.684.481
https://doi.org/10.1016/j.aei.2012.06.005
https://doi.org/10.1016/j.aei.2012.06.005
https://doi.org/10.1016/j.aei.2012.06.005
https://doi.org/10.1016/j.aei.2012.06.005
https://doi.org/10.1016/j.aei.2012.06.005
https://doi.org/10.1016/j.measurement.2022.111260
https://doi.org/10.1016/j.measurement.2022.111260
https://doi.org/10.1016/j.measurement.2022.111260
https://www.researchpublish.com/papers/condition-assessment-and-deterioration-prediction-of-rc-structures
https://www.researchpublish.com/papers/condition-assessment-and-deterioration-prediction-of-rc-structures
https://www.researchpublish.com/papers/condition-assessment-and-deterioration-prediction-of-rc-structures
https://www.researchpublish.com/papers/condition-assessment-and-deterioration-prediction-of-rc-structures
https://www.researchpublish.com/papers/condition-assessment-and-deterioration-prediction-of-rc-structures
https://doi.org/10.1155/2022/1813821
https://doi.org/10.1155/2022/1813821
https://doi.org/10.1155/2022/1813821
https://doi.org/10.1155/2022/1813821
C:\Opast PDF\Divya.M\ACEM\ACEM-24-10\Bae, H., & An, Y. K. (2023). Computer vision-based statistical crack quantification for concrete structures. Measurement, 211, 112632
C:\Opast PDF\Divya.M\ACEM\ACEM-24-10\Bae, H., & An, Y. K. (2023). Computer vision-based statistical crack quantification for concrete structures. Measurement, 211, 112632
C:\Opast PDF\Divya.M\ACEM\ACEM-24-10\Bae, H., & An, Y. K. (2023). Computer vision-based statistical crack quantification for concrete structures. Measurement, 211, 112632
https://doi.org/10.3390/s23052572
https://doi.org/10.3390/s23052572
https://doi.org/10.3390/s23052572
https://doi.org/10.3390/s23052572
https://doi.org/10.1016/j.conbuildmat.2023.132839
https://doi.org/10.1016/j.conbuildmat.2023.132839
https://doi.org/10.1016/j.conbuildmat.2023.132839
https://doi.org/10.1016/j.conbuildmat.2023.132839
https://doi.org/10.1016/j.conbuildmat.2017.09.110
https://doi.org/10.1016/j.conbuildmat.2017.09.110
https://doi.org/10.1016/j.conbuildmat.2017.09.110
https://doi.org/10.1016/j.conbuildmat.2017.09.110
https://doi.org/10.1016/j.conbuildmat.2017.09.110
https://doi.org/10.1016/j.autcon.2020.103199
https://doi.org/10.1016/j.autcon.2020.103199
https://doi.org/10.1016/j.autcon.2020.103199
https://doi.org/10.1016/j.autcon.2020.103199
https://ascelibrary.org/doi/abs/10.1061/9780784481332.020
https://ascelibrary.org/doi/abs/10.1061/9780784481332.020
https://ascelibrary.org/doi/abs/10.1061/9780784481332.020
https://ascelibrary.org/doi/abs/10.1061/9780784481332.020
https://ascelibrary.org/doi/abs/10.1061/9780784481332.020
https://ascelibrary.org/doi/abs/10.1061/9780784481332.020


Ann Civ Eng Manag, 2024 Volume 1 | Issue 1 | 17

Copyright: ©2024 Ahmed Mohammed Abdelalim, et al.. This is an open-
access article distributed under the terms of the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in 
any medium, provided the original author and source are credited.

https://opastpublishers.com/

67.	 Elbehairy, H. (2007). Bridge management system with 
integrated life cycle cost optimization.

https://uwspace.uwaterloo.ca/items/7994fc88-3b4f-4b5f-94dc-ac4e808bc56f
https://uwspace.uwaterloo.ca/items/7994fc88-3b4f-4b5f-94dc-ac4e808bc56f

