
J Sen Net Data Comm, 2024 Volume 4 | Issue 2 | 1

Algorithms for Test Suite Split in Multi Machine Setup with Symmetrical and
Asymmetrical Machine Execution Speeds

Research article

Abhinandan H. Patil* and Sangeeta A. Patil

*Corresponding Author
Abhinandan H. Patil, Senior IEEE Member and Fellow IEI, Karnataka, India.

Submitted: 2024, May 31; Accepted: 2024, Jul 01; Published: 2024, Jul 04

Citation: Patil, A. H., Patil, S. A. (2024). Algorithms for Test Suite Split in Multi Machine Setup with Symmetrical and
Asymmetrical Machine Execution Speeds. J Sen Net Data Comm, 4(2), 01-07.

Abstract
Regression test suite study can be on various parameters such as code and requirement coverage, test suite execution time
reduction. The focus of the article is on reduction of test suite execution in multi machine setup. Two cases are possible. Test
setup with symmetrical execution speed of machines and asymmetrical execution speeds. This article proposes four algorithms
for both symmetrical and asymmetrical execution combined. Our previous published article explains the case of identical
split for identical execution speed machines and weighted split for asymmetrical execution speed cases. We build on those two
algorithms and total four algorithms are proposed. Two new algorithms are being proposed in this article. The logic underlying
these algorithms is efficient usage of execution speeds of the machines. Although the article is for regression test suite execution,
the algorithms can be beneficial in all cases where queuing is involved and service time of each entity is known prior. The
algorithm and python version of the code is shared in this article for ready reference. While the algorithms can be beneficial for
the test suite execution reduction for edge cases where order of test cases execution is must these algorithms should not be used.
As mentioned earlier the algorithms can also be used in situations where there are queues involved and serial, fixed time service
takes place for each of the entity being served.

Keywords: Weighted Test Suite Split, Symmetrical Speed Machines, Asymmetrical Speed Machines, Effective Regression Test
Execution Time, Regression Test Suite Time Reduction, Test Suite Execution Time Analysis

Educational Content Creators at 14AISS, Karnataka, India

1. Introduction
Regression test execution study focuses on how to make efficient usage of the lab resources aka hardware resources. This article
assumes multi machine test setup at the disposal of test team. This article addresses the problem definition of splitting the large test
suite across various machines using algorithms. The test suite split algorithm decides which test case should be executed on which
machine. Further these algorithms can be beneficial for cases where historical test execution data is maintained by the test teams.
While we touch upon case of lab with symmetrical execution speeds, three algorithms are dedicated to more realistic case of asymmetrical
execution speed machines. The two algorithms already published are re-referenced for the benefit of the readers and can be skipped if the
reader has already gone through them. However, two new algorithms are introduced for asymmetrical execution speed test setup. The
following sections discuss the algorithms and python version of the algorithms.

Journal of Sensor Networks and Data Communications
ISSN: 2994-6433

J Sen Net Data Comm, 2024 Volume 4 | Issue 2 | 2

Figure 1.Test Suite Parallel Execution

2. Background Study

When there are multiple machines for execution of test suite, it is a good strategy to split the test suite into multiple
sub test suites and execute them on different machines. The idea is to bring down the execution cycle duration by
making use of parallel execution setup. Regression test team can maintain the execution time data of each test case
which will help further activities. Then comes the strategy of splitting the test suite into suitable sub test suites.

3. Methodology and Algorithms

In this paper two algorithms are used:

3.1 Machines with identical execution speeds.

1. Create a two dimensional data structure to hold the test suite execution times. First index is for machine and
second individual test case on that machine.

2. Create a single dimensional data structure to hold the sum of all the test cases execution time for a given
machine.

3. Reverse sort the execution time of all the test cases.
4. Distribute the reverse sorted test cases across the machines using simple modulo logic.
5. Once all the test cases are sorted, find the total execution of a given set for a given machine.
6. Now reverse sort the total execution of a given sets across the machines. The first entity in this reverse

sorted list gives the longest execution of any set on given machines. Hence is the effective execution time of
whole test suite.

3.2 Weighted Test Suite Split for Machines with different execution speeds.

1. Create a two dimensional data structure to hold the test suite execution times. First index is for machine and
second individual test case on that machine.

2. Create a single dimensional data structure to hold the sum of all the test cases execution time for a given
machine.

3. Don’t sort the execution speeds. Perform the weighted split of the test set in proportion of machine speeds.
4. Step 3 is for ensuring the speed machines execute more test cases than slower machines.
5. While calculating the total execution of a given sub test suite on given machine, take the speed of execution

of machine into consideration.

Figure 1: Test Suite Parallel Execution

2. Background Study
When there are multiple machines for execution of test suite, it is
a good strategy to split the test suite into multiple sub test suites
and execute them on different machines. The idea is to bring down
the execution cycle duration by making use of parallel execution
setup. Regression test team can maintain the execution time data
of each test case which will help further activities. Then comes the
strategy of splitting the test suite into suitable sub test suites.

3. Methodology and Algorithms
In this paper two algorithms are used:

3.1. Machines with Identical Execution Speeds
1. Create a two dimensional data structure to hold the test suite
execution times. First index is for machine and second individual
test case on that machine.
2. Create a single dimensional data structure to hold the sum of all
the test cases execution time for a given machine.
3. Reverse sort the execution time of all the test cases.
4. Distribute the reverse sorted test cases across the machines
using simple modulo logic.
5. Once all the test cases are sorted, find the total execution of a
given set for a given machine.
6. Now reverse sort the total execution of a given sets across the
machines. The first entity in this reverse sorted list gives the longest
execution of any set on given machines. Hence is the effective
execution time of whole test suite.

3.2. Weighted Test Suite Split for Machines with Different
Execution Speeds
1. Create a two dimensional data structure to hold the test suite
execution times. First index is for machine and second individual
test case on that machine.
2. Create a single dimensional data structure to hold the sum of all
the test cases execution time for a given machine.
3. Don’t sort the execution speeds. Perform the weighted split of
the test set in proportion of machine speeds.

4. Step 3 is for ensuring the speed machines execute more test
cases than slower machines.
5. While calculating the total execution of a given sub test suite
on given machine, take the speed of execution of machine into
consideration.
6. Now reverse sort the total execution of a given sets across the
machines. The first entity in this reverse sorted list gives the longest
execution of any set on given machines. Hence is the effective
execution time of whole test suite.

3.3. Identical Test Suite Split for Machines with Different
Execution Speeds Followed by Distribution on Machines
Sorted with Respect to Execution Speeds
1. Create a single dimensional data structure to hold the sub suites
post regression test suite split.
2. Create a single dimensional data structure to hold the sum of all
the test cases execution time for a given machine.
3. Sort the test execution time of the test cases so that the long
execution test cases appear at the front of the list meant to hold the
test execution time of all the test cases.
4. Sort the test machines based on their execution speeds.
5. Now split the test suite into identical sub suites with respect to
test cases count.
6. Calculate the total execution time of given sub suite considering
the absolute test execution into consideration.
7. Now reverse sort the total execution of a given sets across the
machines. The first entity in this reverse sorted list gives the longest
execution of any set on given machines. Hence is the effective
execution time of whole test suite.

3.4. Identical Test Suite Split for Machines with Different
Execution Speeds Followed by Round Robin Distribution on
Machines Sorted with Respect to Execution Speeds
1. Create a two dimensional data structure to hold the sub suites
post regression test suite split.
2. Create a single dimensional data structure to hold the sum of all
the test cases execution time for a given machine.

J Sen Net Data Comm, 2024 Volume 4 | Issue 2 | 3

3. Sort the test execution time of the test cases so that the long
execution test cases appear at the front of the list meant to hold the
test execution time of all the test cases.
4. Sort the test machines based on their execution speeds.
5. Now split the test suite into identical sub suites with respect
to test cases count in round robin manner so that test cases with
comparable test execution time are evenly distributed.

6. Calculate the total execution time of given sub suite considering
the absolute test execution into consideration.
7. Now reverse sort the total execution of a given sets across the
machines. The first entity in this reverse sorted list gives the longest
execution of any set on given machines. Hence is the effective
execution time of whole test suite.

4. Python Version of Algorithms with Execution Results

import math
import pandas
import os

def

identical_split_of_test_exec_time_list_assymetrical_speed_round_robin_post_sort(original_test_exec_time_list,
absolute_machine_speeds):

 print('identical_split_test_exec_time_list_assymetrical_speed_round_robin_post_sort at work')
 machine_i_test_set = []
 machine_i_test_set_exec_time = []
 original_test_exec_time_list = sorted(original_test_exec_time_list, reverse=True)
 absolute_machine_speeds = sorted(absolute_machine_speeds, reverse=True)

 n = len(absolute_machine_speeds)

 for i in range(n):
 machine_i_test_set.append([])

 for i in range(len(original_test_exec_time_list)):
 machine_i_test_set[i % n].append(original_test_exec_time_list[i])

 for i in range(len(absolute_machine_speeds)):
 machine_i_test_set_exec_time.append(
 sum(machine_i_test_set[i])/absolute_machine_speeds[i])

 print(machine_i_test_set)
 for i in range(len(absolute_machine_speeds)):
 print("Machine",i,"Will execute the following test

cases",machine_i_test_set[i],"in",machine_i_test_set_exec_time[i],"unit time")

 local_sorted_execution_time_on_machines = sorted(machine_i_test_set_exec_time,reverse=True)
 print("Longest time is", local_sorted_execution_time_on_machines[0],"Which is effective execution time")

 print("All Machines will put together will be busy for",sum(machine_i_test_set_exec_time))

def identical_split_of_test_exec_time_list_assymetrical_speed(original_test_exec_time_list,

absolute_machine_speeds):
 print('identical_split_test_exec_time_list_assymetrical_speed at work')
 machine_i_test_set = []
 machine_i_test_set_exec_time = []
 prev_index = 0
 original_test_exec_time_list = sorted(original_test_exec_time_list, reverse=True)
 absolute_machine_speeds = sorted(absolute_machine_speeds, reverse=True)

 for i in range(len(absolute_machine_speeds)):
 next_index = prev_index + len(original_test_exec_time_list) // len(absolute_machine_speeds)
 machine_i_test_set.append(original_test_exec_time_list[prev_index: next_index])
 prev_index = next_index

 for i in range(len(absolute_machine_speeds)):
 machine_i_test_set_exec_time.append(
 sum(machine_i_test_set[i])/absolute_machine_speeds[i])

J Sen Net Data Comm, 2024 Volume 4 | Issue 2 | 4

• Vj
i : Lj

i → AP j
i is a valuation function for atomic propositions AP j

i on agent

Agtji at local state Lj
i .

Definition 7(Concrete Environment) a concrete environment is a tuple ε = (Le, ιe, acte, prote, tre),

where

• Le = LE

• ιe is the initial value.

• tre : Le × act11 × act22 × act
n(1)
1 × · · · actn(k)k × acte → Le is the transition for the

concrete environment.

Definition 8(Homogeneous Neural Concurrent Game Structure, HNCGS) HNCGS

is a tuple

Sk(n) =< (T1, T2 · · ·Tk)
(n(1),n(2)···n(k)), ε, S, Act, R,AP, lb, tr, V >

where

• The structure (T1, T2 · · ·Tk)
(n(1),n(2)···n(k)) is comprised of n(1) neural agents of

T1 through n(k) neural agents of Tk running in parallel asynchronously, where Ti

represents the neural agent template of role i .

• S is the non-empty set of global states, where S =
∏

r∈R
∏

j∈n.i L
j
r

• Act is the non-empty set of joint action, where Act =
∏

r∈R
∏

j∈n.i act
j
r and

Actr(S) is the set of actions for r at s, Act(S) =
∏

r∈R Actr(S) is the set of

actions for all the roles at s.

• R is a non-empty set of roles. We use |R| to denote the number of roles, here

|R| = k.

13

import math
import pandas
import os

def

identical_split_of_test_exec_time_list_assymetrical_speed_round_robin_post_sort(original_test_exec_time_list,
absolute_machine_speeds):

 print('identical_split_test_exec_time_list_assymetrical_speed_round_robin_post_sort at work')
 machine_i_test_set = []
 machine_i_test_set_exec_time = []
 original_test_exec_time_list = sorted(original_test_exec_time_list, reverse=True)
 absolute_machine_speeds = sorted(absolute_machine_speeds, reverse=True)

 n = len(absolute_machine_speeds)

 for i in range(n):
 machine_i_test_set.append([])

 for i in range(len(original_test_exec_time_list)):
 machine_i_test_set[i % n].append(original_test_exec_time_list[i])

 for i in range(len(absolute_machine_speeds)):
 machine_i_test_set_exec_time.append(
 sum(machine_i_test_set[i])/absolute_machine_speeds[i])

 print(machine_i_test_set)
 for i in range(len(absolute_machine_speeds)):
 print("Machine",i,"Will execute the following test

cases",machine_i_test_set[i],"in",machine_i_test_set_exec_time[i],"unit time")

 local_sorted_execution_time_on_machines = sorted(machine_i_test_set_exec_time,reverse=True)
 print("Longest time is", local_sorted_execution_time_on_machines[0],"Which is effective execution time")

 print("All Machines will put together will be busy for",sum(machine_i_test_set_exec_time))

def identical_split_of_test_exec_time_list_assymetrical_speed(original_test_exec_time_list,

absolute_machine_speeds):
 print('identical_split_test_exec_time_list_assymetrical_speed at work')
 machine_i_test_set = []
 machine_i_test_set_exec_time = []
 prev_index = 0
 original_test_exec_time_list = sorted(original_test_exec_time_list, reverse=True)
 absolute_machine_speeds = sorted(absolute_machine_speeds, reverse=True)

 for i in range(len(absolute_machine_speeds)):
 next_index = prev_index + len(original_test_exec_time_list) // len(absolute_machine_speeds)
 machine_i_test_set.append(original_test_exec_time_list[prev_index: next_index])
 prev_index = next_index

 for i in range(len(absolute_machine_speeds)):
 machine_i_test_set_exec_time.append(
 sum(machine_i_test_set[i])/absolute_machine_speeds[i])

 print(machine_i_test_set)
 for i in range(len(absolute_machine_speeds)):
 print("Machine",i,"Will execute the following test

cases",machine_i_test_set[i],"in",machine_i_test_set_exec_time[i],"unit time")

 local_sorted_execution_time_on_machines = sorted(machine_i_test_set_exec_time,reverse=True)
 print("Longest time is", local_sorted_execution_time_on_machines[0],"Which is effective execution time")

 print("All Machines will put together will be busy for",sum(machine_i_test_set_exec_time))

def weighted_split_of_test_exec_time_list_assymetrical_speed(original_test_exec_time_list, weight_list,

absolute_machine_speeds):
 print('weighted_split_test_exec_time_list_assymetrical_speed at work')
 machine_i_test_set = []
 machine_i_test_set_exec_time = []
 prev_index = 0

 for weight in weight_list:
 next_index = prev_index + math.ceil((len(original_test_exec_time_list) * weight))
 machine_i_test_set.append(original_test_exec_time_list[prev_index: next_index])
 prev_index = next_index

 for i in range(len(weight_list)):
 machine_i_test_set_exec_time.append(
 sum(machine_i_test_set[i])/absolute_machine_speeds[i])

 print(machine_i_test_set)
 for i in range(len(weight_list)):
 print("Machine",i,"Will execute the following test

cases",machine_i_test_set[i],"in",machine_i_test_set_exec_time[i],"unit time")

 local_sorted_execution_time_on_machines = sorted(machine_i_test_set_exec_time,reverse=True)
 print("Longest time is", local_sorted_execution_time_on_machines[0],"Which is effective execution time")

 print("All Machines will put together will be busy for",sum(machine_i_test_set_exec_time))

def identical_split_of_test_exec_time_list_symetrical_speed(x, n):
 print('identical_split_test_exec_time_list_symetrical_speed at work')
 machine_i_test_set = []
 machine_i_test_set_exec_time = []
 x = sorted(x, reverse=True)

 for i in range(n):
 machine_i_test_set.append([])

 for i in range(len(x)):
 machine_i_test_set[i % n].append(x[i])

 for i in range(n):
 machine_i_test_set_exec_time.append(sum(machine_i_test_set[i]))

 #print(machine_i_test_set)

J Sen Net Data Comm, 2024 Volume 4 | Issue 2 | 5

 print(machine_i_test_set)
 for i in range(len(absolute_machine_speeds)):
 print("Machine",i,"Will execute the following test

cases",machine_i_test_set[i],"in",machine_i_test_set_exec_time[i],"unit time")

 local_sorted_execution_time_on_machines = sorted(machine_i_test_set_exec_time,reverse=True)
 print("Longest time is", local_sorted_execution_time_on_machines[0],"Which is effective execution time")

 print("All Machines will put together will be busy for",sum(machine_i_test_set_exec_time))

def weighted_split_of_test_exec_time_list_assymetrical_speed(original_test_exec_time_list, weight_list,

absolute_machine_speeds):
 print('weighted_split_test_exec_time_list_assymetrical_speed at work')
 machine_i_test_set = []
 machine_i_test_set_exec_time = []
 prev_index = 0

 for weight in weight_list:
 next_index = prev_index + math.ceil((len(original_test_exec_time_list) * weight))
 machine_i_test_set.append(original_test_exec_time_list[prev_index: next_index])
 prev_index = next_index

 for i in range(len(weight_list)):
 machine_i_test_set_exec_time.append(
 sum(machine_i_test_set[i])/absolute_machine_speeds[i])

 print(machine_i_test_set)
 for i in range(len(weight_list)):
 print("Machine",i,"Will execute the following test

cases",machine_i_test_set[i],"in",machine_i_test_set_exec_time[i],"unit time")

 local_sorted_execution_time_on_machines = sorted(machine_i_test_set_exec_time,reverse=True)
 print("Longest time is", local_sorted_execution_time_on_machines[0],"Which is effective execution time")

 print("All Machines will put together will be busy for",sum(machine_i_test_set_exec_time))

def identical_split_of_test_exec_time_list_symetrical_speed(x, n):
 print('identical_split_test_exec_time_list_symetrical_speed at work')
 machine_i_test_set = []
 machine_i_test_set_exec_time = []
 x = sorted(x, reverse=True)

 for i in range(n):
 machine_i_test_set.append([])

 for i in range(len(x)):
 machine_i_test_set[i % n].append(x[i])

 for i in range(n):
 machine_i_test_set_exec_time.append(sum(machine_i_test_set[i]))

 #print(machine_i_test_set)
 for i in range(n):
 print("Machine",i,"Will execute the following test

cases",machine_i_test_set[i],"in",machine_i_test_set_exec_time[i],"unit time")
 #print("Test Suite on Machine", i, "Will run for", machine_i_test_set_exec_time[i],"Units of Time")

 local_sorted_execution_time_on_machines = sorted(machine_i_test_set_exec_time,reverse=True)
 print("Longest time is", local_sorted_execution_time_on_machines[0],"Which is effective execution time")

 print("All Machines will put together will be busy for",sum(machine_i_test_set_exec_time))

def main():
 df = pandas.read_csv(os.path.join(os.getcwd(), "Algorithms\\testexecutiondata.csv"),
 sep=',')

 data_set = df["execution_time"].to_list()

 print("Data set is",data_set)

 absolute_machine_speeds = [1, 2, 2, 1]
 weighted_machine_speeds = [.16, .32, .32, .16]
 identical_machine_speeds = [1, 1, 1, 1]

 identical_split_of_test_exec_time_list_symetrical_speed(data_set, len(identical_machine_speeds))

 weighted_split_of_test_exec_time_list_assymetrical_speed(data_set, weighted_machine_speeds,

absolute_machine_speeds)
 identical_split_of_test_exec_time_list_assymetrical_speed(data_set, absolute_machine_speeds)
 identical_split_of_test_exec_time_list_assymetrical_speed_round_robin_post_sort(data_set,

absolute_machine_speeds)

main()
To this Code Supply the Following Data:
test_case_no,execution_time
T1,20.1
T2,30
T3,40
T4,50
T5,13
T6,10
T7,12
T8,60
T9,15
T10,20.2
T11,24
T12,20.3

J Sen Net Data Comm, 2024 Volume 4 | Issue 2 | 6

Results of Execution are as Follows:
Data set is [20.1, 30.0, 40.0, 50.0, 13.0, 10.0, 12.0, 60.0, 15.0, 20.2, 24.0, 20.3]
identical_split_test_exec_time_list_symetrical_speed at work
Machine 0 Will execute the following test cases [60.0, 24.0, 15.0] in 99.0 unit time
Machine 1 Will execute the following test cases [50.0, 20.3, 13.0] in 83.3 unit time
Machine 2 Will execute the following test cases [40.0, 20.2, 12.0] in 72.2 unit time
Machine 3 Will execute the following test cases [30.0, 20.1, 10.0] in 60.1 unit time
Longest time is 99.0 Which is effective execution time
All Machines will put together will be busy for 314.6
weighted_split_test_exec_time_list_assymetrical_speed at work
[[20.1, 30.0], [40.0, 50.0, 13.0, 10.0], [12.0, 60.0, 15.0, 20.2], [24.0, 20.3]]
Machine 0 Will execute the following test cases [20.1, 30.0] in 50.1 unit time
Machine 1 Will execute the following test cases [40.0, 50.0, 13.0, 10.0] in 56.5 unit time
Machine 2 Will execute the following test cases [12.0, 60.0, 15.0, 20.2] in 53.6 unit time
Machine 3 Will execute the following test cases [24.0, 20.3] in 44.3 unit time
Longest time is 56.5 Which is effective execution time
All Machines will put together will be busy for 204.5
identical_split_test_exec_time_list_assymetrical_speed at work
[[60.0, 50.0, 40.0], [30.0, 24.0, 20.3], [20.2, 20.1, 15.0], [13.0, 12.0, 10.0]]
Machine 0 Will execute the following test cases [60.0, 50.0, 40.0] in 75.0 unit time
Machine 1 Will execute the following test cases [30.0, 24.0, 20.3] in 37.15 unit time
Machine 2 Will execute the following test cases [20.2, 20.1, 15.0] in 55.3 unit time
Machine 3 Will execute the following test cases [13.0, 12.0, 10.0] in 35.0 unit time
Longest time is 75.0 Which is effective execution time
All Machines will put together will be busy for 202.45
identical_split_test_exec_time_list_assymetrical_speed_round_robin_post_sort at work
[[60.0, 24.0, 15.0], [50.0, 20.3, 13.0], [40.0, 20.2, 12.0], [30.0, 20.1, 10.0]]
Machine 0 Will execute the following test cases [60.0, 24.0, 15.0] in 49.5 unit time
Machine 1 Will execute the following test cases [50.0, 20.3, 13.0] in 41.65 unit time
Machine 2 Will execute the following test cases [40.0, 20.2, 12.0] in 72.2 unit time
Machine 3 Will execute the following test cases [30.0, 20.1, 10.0] in 60.1 unit time
Longest time is 72.2 Which is effective execution time

All Machines will put together will be busy for 223.45000000000002

Data set is [20.1, 30.0, 40.0, 50.0, 13.0, 10.0, 12.0, 60.0, 15.0, 20.2, 24.0, 20.3]
identical_split_test_exec_time_list_symetrical_speed at work
Machine 0 Will execute the following test cases [60.0, 24.0, 15.0] in 99.0 unit time
Machine 1 Will execute the following test cases [50.0, 20.3, 13.0] in 83.3 unit time
Machine 2 Will execute the following test cases [40.0, 20.2, 12.0] in 72.2 unit time
Machine 3 Will execute the following test cases [30.0, 20.1, 10.0] in 60.1 unit time
Longest time is 99.0 Which is effective execution time
All Machines will put together will be busy for 314.6
weighted_split_test_exec_time_list_assymetrical_speed at work
[[20.1, 30.0], [40.0, 50.0, 13.0, 10.0], [12.0, 60.0, 15.0, 20.2], [24.0, 20.3]]
Machine 0 Will execute the following test cases [20.1, 30.0] in 50.1 unit time
Machine 1 Will execute the following test cases [40.0, 50.0, 13.0, 10.0] in 56.5 unit time
Machine 2 Will execute the following test cases [12.0, 60.0, 15.0, 20.2] in 53.6 unit time
Machine 3 Will execute the following test cases [24.0, 20.3] in 44.3 unit time
Longest time is 56.5 Which is effective execution time
All Machines will put together will be busy for 204.5
identical_split_test_exec_time_list_assymetrical_speed at work
[[60.0, 50.0, 40.0], [30.0, 24.0, 20.3], [20.2, 20.1, 15.0], [13.0, 12.0, 10.0]]
Machine 0 Will execute the following test cases [60.0, 50.0, 40.0] in 75.0 unit time
Machine 1 Will execute the following test cases [30.0, 24.0, 20.3] in 37.15 unit time
Machine 2 Will execute the following test cases [20.2, 20.1, 15.0] in 55.3 unit time
Machine 3 Will execute the following test cases [13.0, 12.0, 10.0] in 35.0 unit time
Longest time is 75.0 Which is effective execution time
All Machines will put together will be busy for 202.45
identical_split_test_exec_time_list_assymetrical_speed_round_robin_post_sort at work
[[60.0, 24.0, 15.0], [50.0, 20.3, 13.0], [40.0, 20.2, 12.0], [30.0, 20.1, 10.0]]
Machine 0 Will execute the following test cases [60.0, 24.0, 15.0] in 49.5 unit time
Machine 1 Will execute the following test cases [50.0, 20.3, 13.0] in 41.65 unit time
Machine 2 Will execute the following test cases [40.0, 20.2, 12.0] in 72.2 unit time
Machine 3 Will execute the following test cases [30.0, 20.1, 10.0] in 60.1 unit time
Longest time is 72.2 Which is effective execution time

All Machines will put together will be busy for 223.45000000000002

5. Execution Results Analysis
Test cases and their execution time can be maintained in comma
separated value files. This historical data can be maintained
between successive test executions. For generating the data
programming language features can be used with execution start
and end time stamps. The test execution time is the difference
between end time and start time. For the first hypothetical case
involving identical execution speeds, test team has four identical
speed test machines. For the asymmetrical case, there are four
machines. Two machines are twice as speed as the rest of the two
machines. Therefore, the weighted speed data is assigned the
weights weighted_machine_speeds = [.16, .32, .32, .16] according
to the setup. As can be seen from the results in the identical test
execution speed case, test cases with long execution time are
evenly distributed across all the four machines. In asymmetrical
test execution speed setup, we employ three different algorithms
viz. weighted split, identical split, identical split with round robin
distributions. The observed results are very much supplied data
specific. However, they demonstrate the working of algorithms for
small set of test cases data supplied. When the test cases count is
in excess of 1000, the methodology can be still employed as long
as proper comma separated values are maintained properly. Using

file read and write operation, additional value can be maintained
in the comma separated value file which will tell which machine
the test case is being assigned and then the test case suite can be
split according to the additional field in the comma separated file.
However, this methodology assumes there is no preset execution
order of the test cases. If there is a particular order of test case
execution, the test suite cannot be split using the algorithms just
mentioned in the paper.

6. Conclusion and Future Works
The Algorithms are able to achieve the intended functionality
for both the cases viz. Symmetrical speed execution setup and
asymmetrical speed execution setups involving more than one
execution machines. Although the Algorithms are being proposed
for test execution, in general the Algorithms can be used for
any queueing scenario where service time is known apriori. The
proposed Algorithms can be used in Industrial setups. As part of
the future work the Algorithms will be proposed to appropriate
Industry counterparts and feedback will be incorporated
appropriately [1-11].

J Sen Net Data Comm, 2024 Volume 4 | Issue 2 | 7

Copyright: ©2024 Abhinandan H. Patil, et al. This is an
open-access article distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the
original author and source are credited.

https://opastpublishers.com/

References
1.	 https://github.com/Abhinandan1414/Parallel Execution

Machines Setup Algorithms For Regression Testing
2.	 Patil, A. H., & Patil, S. A. (2024). Quantification of Regression

Test Suite Execution Time in Parallel Execution Setup
with Weighted Test Suite Split Algorithm. J Sen Net Data
Comm, 4(1), 01-04.

3.	 Patil, A. H. (2020). Computer System Performance Analysis
an Informal Approach. Text Book.

4.	 Patil, A. H. (2020). Mathematics Part 6: Mathematics Learning
with Aid of Software. Text Book.

5.	 Patil, A. H. (2020). Learning Python Through LAB Based
Approach. Text Book.

6.	 Patil, A. H. (2020). Regression Testing in Era of Internet of

Things and Machine Learning. Lulu. com.
7.	 Anthony Croft et al. (2021). Engineering Mathematics. Text

Book.
8.	 Bird, J. (2018). Bird's comprehensive engineering

mathematics. Routledge.
9.	 Van Rossum, G., & Drake Jr, F. L. (1995). Python tutorial.
10.	 Test Environment Management Best Practices = http://

www.softwaretestinghelp.com/test-bed-testenvironment-
management-best-practices/

11.	 Patil, A. H., Goveas, N., & Rangarajan, K. (2016). Regression
Test Suite Execution Time Analysis using Statistical
Techniques. IJ Education and Management Engineering, 6(3),
33-41.

