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Abstract 
This research introduces an innovative algorithmic framework designed to enhance motion perception and visually guided 
interceptive actions in virtual and augmented reality (VR/AR) environments. By applying harmonic ratios and stimulation 
invariants, the proposed algorithms enable real-time prediction of interception points and improve the responsiveness of 
VR/AR systems. This methodology translates complex theories of visual perception and motion into practical algorithmic 
solutions, providing dynamic prediction capabilities critical for applications such as online gaming, virtual simulations, and 
neurorehabilitation. Our findings underscore the potential of these algorithms to advance interactive systems, improving user 
experiences in immersive virtual environments through more precise and adaptive motion tracking and control. This approach 
is particularly relevant for enhancing the realism and efficiency of VR and AR applications in media, online gaming, and 
other collaborative digital environments.
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1. Introduction
1.1. Research Background
The rapid evolution of virtual and augmented reality (VR and 
AR) technologies is reshaping how users interact with digital 
environments, driven by advances in computational algorithms 
and the accessibility of immersive hardware such as high-
resolution VR headsets and mobile devices [1]. Historically, 
VR/AR systems have been employed in high-stakes training, 
such as in aviation and surgical simulations. However, their 
applications are now extending into broader domains, including 
entertainment, online gaming, social media interactions, and 
therapeutic environments like neurorehabilitation. [2]. Central 
to this technological expansion is the increasing ability of VR/
AR platforms to simulate intricate and dynamic interactions, 
making them relevant for diverse use cases such as collaborative 
virtual spaces, real-time multiplayer gaming, and interactive 
social media networks and therapeutic applications [3,4].

This manuscript builds upon the foundational work by Reed 
and Gibson, in the fields of motion perception and virtual 
environments by integrating advanced mathematical models, 
particularly those involving the "Theory of Screws," to enhance 
the realism and interactivity of VR/AR systems [5,6]. They 
proposed that both action and awareness can be scientifically 
studied and enhanced through virtual environments. Accord-
ingly, this research aims to explore and improve both the 
physical actions (such as movements and responses) and the 

awareness (the perceptual and cognitive understanding) of 
individuals within virtual environments. However, a significant 
limitation has been the lack of explicit mathematical foundations 
in theories of motion perception, particularly those proposed by 
Gibson [6]. Traditional models of motion perception have often 
lacked a strong mathematical foundation, which has limited the 
depth of their applications in virtual spaces. By applying the 
Theory of Screws—a sophisticated mathematical framework 
used to describe the dynamics of motion—we introduce a novel 
approach to modeling visual interception behaviors in virtual 
environments. These models enable more precise simulations of 
movement and interactions, which are crucial for improving user 
engagement in VR applications, such as multiplayer gaming, 
media-rich environments, and virtual col-laborative platforms 
[7].

The integration of advanced motion algorithms into VR/AR 
systems offers new pathways for improving both user interaction 
and system performance. These algorithms are particularly 
relevant for scenarios that require precise coordination and 
motion control, such as real-time multiplayer gaming and 
interactive simulations in digital media. Our approach leverages 
harmonic ratios and stimulation invariants to provide more 
responsive and realistic environments, thus enhancing both the 
user experience and the functional design of virtual sys-tems. 
This study seeks to bridge the gap between theoretical constructs 
in motion perception and their practical application in media-
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rich virtual environments, making significant contributions to 
the fields of VR/AR in gaming, social media, and collaborative 
digital networks [8]. 

1.2. Research Motivations: Invariants and their Applications 
in Motion Perception and VR
The first kind of invariant can be demonstrated by showing 
that whenever a body is moving, there is a unique axis at every 
instant, designated the instantaneous screw axis (ISA), about 
which the body twists with a spe-cific pitch h. Note that every 
point on the body has a velocity vector tangential to the helix that 
passes through it (see Figure 1a). The pattern of these velocity 

vectors is described as a helicoidal vector field. The ISA is often 
referred to as the motion screw [9]. It can, thus, be argued that 
the body in Figure 1b twists at the instant about its motion 
screw. To describe this field, we may imagine that all helices 
of the same pitch as those of the ISA are drawn concentrically 
with the ISA. Theoretically, there must be a helix at every radius 
from zero to infinity, and there must be an infinite number of 
helices at each radius, each displaced from its neighbor at an 
infinitesimal distance in the axial direction [9]. The motion of 
objects produces a helicoidal vector field V1, V2, …, V5, which 
manifests perspective changes in a part of the optic array (Figure 
1b).
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Figure 1. (a) Illustration of the helicoidal velocity field: A twist of pitch /h    about an instantaneous screw axis 
provides a complete description of the velocity of a rigid body. Every point of the body has its velocity vector tangential to 
the helix that passes through it. This velocity vector pattern is a helicoidal velocity field. (b) The helicoidal field of linear 
velocity for any point on a rigid body results from general motion. At any moment, the net velocity Vi (i = 1, …, 5) consists 
of two parts: (1) translational velocity parallel to the screw axis; and (2) tangential velocity representing the rotational 
body motion about the screw axis. 

The second kind of invariant, the motion perspective, may be derived from the movement of an object 
through the use of the moving reference frame. The motion perspective denotes the optical flow pattern in the 
visual field resulting from the observer’s own movement, in fact, the observers’ own locomotion, and its di-
rection [6]. While working on visually guided airplane landings, Gibson identified a perceptual invariant that 
could be observed in animals. An animal moving within its environment will create an optic flow with what 
Gibson termed a ‚perspective transformation of perspective flow structure‛. This structure can be conven-
iently described in a vector field V1, V2, …, V5, [5] (see Figure 2). The point toward which the animal is heading 
is the source of all optical motion vectors, and the point away from which the animal is heading is the sink for 

Figure 1: (a) Illustration of the helicoidal velocity field: A twist of pitch  /h τ ω=  about an instantaneous screw axis provides a 
complete description of the velocity of a rigid body. Every point of the body has its velocity vector tangential to the helix that passes 
through it. This velocity vector pattern is a helicoidal velocity field. (b) The helicoidal field of linear velocity for any point on a rigid 
body results from general motion. At any moment, the net velocity Vi (i = 1, …, 5) consists of two parts: (1) translational velocity 
parallel to the screw axis; and (2) tangential velocity representing the rotational body motion about the screw axis.

The second kind of invariant, the motion perspective, may be 
derived from the movement of an object through the use of 
the moving reference frame. The motion perspective denotes 
the optical flow pattern in the visual field resulting from 
the observer’s own movement, in fact, the observers’ own 
locomotion, and its direction [6]. While working on visually 
guided airplane landings, Gibson identified a perceptual invariant 
that could be observed in animals. An animal moving within its 
environment will create an optic flow with what Gibson termed a 
“perspective transformation of perspective flow structure”. This 

structure can be conveniently de-scribed in a vector field V1, V2, 
…, V5, (see Figure 2) [5]. The point toward which the animal 
is heading is the source of all optical motion vectors, and the 
point away from which the animal is heading is the sink for those 
vectors. This condition results in a pure translation parallel to the 
animal’s heading, with the pitch being infinite (Figure 3). The 
screw theory has numerous points of connection with certain 
geometrical researchers on the linear complex by Plücker and 
Klein [7].
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In the analytical treatment by Descartes of the geometry of space, the point is the fundamental element of 
space. In contrast to Plücker and Klein, it is the line that serves as a space element. If only one condition is 
imposed, the lines that fulfill it are said to form the field lines [10]. Consequently, the field lines in the optic 
array flow are the tangents to a series of helices, with each helix being on a cylinder of radius r and an axis of 
the field lines (see Figure 1a). The axis of the field is conditioned as the ISA. 

 
(a) (b) 

Figure 3. Based on a baseball analogy: (a) Trajectories of a catcher (agent) A attempting to intercept the ball (pop up at 
point B to the infield). There is a point P where the agent catches the ball (B—the interception with the target) via a straight 
line. This observation suggests a unique interception strategy: Run so that the bearing angle β remains constant [11]. (b) 
The first step is to construct harmonic poles C and D so that their ratio is given by the ratio of the agent’s speed λ1 to the 
speed of the target λ2. Next, dropping the new triangle’s internal and external angle bisectors gives the harmonic poles C 
and D. 

A ‘complex of lines’ was discovered independently by Gibson and Jessop: Jessop defined it as the assemblage 
of lines that satisfy one condition [10] while Gibson defined it as the optic flow, whose axis is the line of the dis-

Figure 2: Gibson’s representation of the optic flow at moving points of observation: The center of the flow pattern during the 
animal’s forward movement is the field’s axis. Each vector Vi (i = 1, …, 5) represents the optical motion of the corresponding 
environmental element. All vectors radiate outward from a focus of ex-pansion in relation to the animal’s virtual heading.

In the analytical treatment by Descartes of the geometry of 
space, the point is the fundamental element of space. In contrast 
to Plücker and Klein, it is the line that serves as a space element. 
If only one condition is imposed, the lines that fulfill it are said 

to form the field lines [10]. Consequently, the field lines in the 
optic array flow are the tangents to a series of helices, with each 
helix being on a cylinder of radius r and an axis of the field lines 
(see Figure 1a). The axis of the field is conditioned as the ISA.
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Figure 3: Based on a baseball analogy: (a) Trajectories of a catcher (agent) A attempting to intercept the ball (pop up at point B to the 
infield). There is a point P where the agent catches the ball (B—the interception with the target) via a straight line. This observation 
suggests a unique interception strategy: Run so that the bearing angle β remains constant [11]. (b) The first step is to construct 
harmonic poles C and D so that their ratio is given by the ratio of the agent’s speed λ1 to the speed of the target λ2. Next, dropping 
the new triangle’s internal and external angle bisectors gives the harmonic poles C and D.

A ‘complex of lines’ was discovered independently by Gibson 
and Jessop: Jessop defined it as the assemblage of lines that 
satisfy one condition while Gibson defined it as the optic flow, 
whose axis is the line of the displacement of the observer [10]. 
The linear complex of lines represents an essential ensemble 
of lines in the visual perception of space. It is an axisymmetric 
group of lines comprising only a very few of the ∞4 of lines 
that are available in space. Such a shift from particle to field 
descriptions is clearly reflected in Gibson’s constructs, such 
as the optical flow field and its invariant [12]. Moreover, field 
descriptions afford prominence to abstract relations as the 

fundamental basis of causality [13].

When an observer travels on a straight path, a radial optic flow 
pattern is produced, with a focus on the expansion (FOE) in the 
current direction of locomotion or heading. Warren manipulated 
the optic flow by displacing the FOE from the walking direction, 
and measured the virtual heading error between the FOE and 
the goal [14]. In this case, the FOE of optic flow on the target 
and the central axis of the line complex are coincident. These 
virtual headings must be in harmony with the given kinematic 
constraints, and we shall assume that they are reversible, i.e., 
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that the given constraints do not prevent actors from changing an 
arbitrary δRi  into -δRi. If all the lines of a complex are subjected 
to a screw motion of a virtual velocity about the central axis, the 
complex itself remains unaltered. The optic flow of the ambient 
array is rarely perceived as motion; rather, it is experienced 
as kinesthesis or ego locomotion. The movement of the self 
when passing from one position to another, that is, indefinitely 
adjacent, is indistinguishable from the translation about an 
appropriately chosen line by which the same displacement could 
be effectuated. The line about which the actor is translating at 
any instant is referred to as the instantaneous translational axis. 
Therefore, the complex lines are tangent to a series of helices, 
each on a cylinder of radius r and an axis of the complex because 
the velocities of particles in the surfaces of the environment 
are covariant to the axis of the complex as the non-holonomic 
constraint.

Therefore, animals encounter two distinct geometrical 
perspective transformations: (1) as a change in coordinates 
from one perspective system to another, with (x, y, z) and 
(x’, y´, z´) being the coordinates of the same point in the two 
systems (and a moving point of observation ‘A’ with the fixed 
environment as illustrated in Figure 2); and (2) as a perspective 
transformation of points within one coordinate system, with (x, 
y, z) and (x´, y´, z´) being the coordinates of the original point 
and the transformed point, respectively, in the single system 
(and a stationary point of observation at a fixed location ‘A’ 
in an environment as illustrated in Figure 1). The process of 
maintaining different stationary links (shown as ISA in Figure 
1b) of a kinematic chain is referred to as inversion. Since the 
algebra is the same in both cases, it makes no difference whether 
we define a perspective invariant as invariant over perspective 
transformations or as described in the second invariant. In either 
case, continuous perspective transformations can be employed 
as stimuli for perceiving rigid motion in the environment [15]. 

1.3. Research Gaps and the Contributions of the Proposed 
Methods
By simulating realistic interaction dynamics and providing 
controlled adaptable settings for patients, VR and AR can 
significantly advance therapeutic outcomes. The visual 
interception tasks modeled in our study not only demonstrate 
the potential of virtual environments in medical interventions 
but also provide a pathway for broader applications in 
neuropsychology [16].

Moreover, our research delves into the application of these 
mathematical models in the diagnosis and treatment of 
conditions such as Parkinson’s disease within augmented 
environments. By simulating realistic interaction dynamics and 
providing controlled, adaptable settings for patients, VR and 
AR can significantly advance therapeutic outcomes. The visual 
interception tasks modeled in our study not only demonstrate 
the potential of virtual environments in medical interventions, 
but also provide a pathway for broader applications in 
neuropsychology.

The convergence of these historically disparate strands—

Gibson’s perceptual theories and the mathematical modeling 
of dynamic systems—illustrates the multidisciplinary nature of 
contemporary VR and AR applications. Our findings underscore 
the importance of a robust algorithmic foundation that can adapt 
to the complexities of human motion and perception, thereby 
enhancing the capability of virtual systems to serve diverse 
scientific and practical needs. In conclusion, the convergence 
of these historically disparate strands—Gibson’s perceptual 
theories and the mathematical modeling of dynamic systems—
illustrates the multidisciplinary nature of contemporary VR and 
AR applications. Our findings underscore the importance of a 
robust algorithmic foundation that can adapt to the complexities 
of human motion and perception, thereby enhancing the 
capability of virtual systems to serve diverse scientific and 
practical needs.

2. Preliminary
2.1. Theory of Screws
The Theory of Screws, initially proposed by Sir Robert 
Stawell Ball in 1876, provides a comprehensive mathematical 
framework for analyzing the motion and forces in rigid body 
dynamics [17–19]. This theory unifies the concepts of rotation 
and translation into a single theoretical model, which is critical 
for understanding the kinematics and dynamics of mechanical 
systems. It describes the instantaneous motion of a rigid body 
using screw coordinates, representing a combination of angular 
and linear velocity components, thereby offering a detailed 
and precise description of motion and interaction in various 
applications.

In the context of visual perception and optic flow, screw 
theory can be applied to analyze the generation of helicoidal 
fields in the visual field. When an observer moves through a 
scene and intercepts a moving target, the visual perception of 
the environment can be described as a helicoidal field, where 
objects appear to move in a spiral or helical pattern relative to 
the observer’s motion. This helicoidal field is generated by the 
combination of translational motion (movement of the observer) 
and rotational motion (movement of objects in the scene).

By applying screw theory to the generation of helicoidal fields 
in the visual field, one can mathematically describe how the 
translational and rotational components of motion interact to 
create the spiral pattern of optic flow. This framework allows for 
a systematic analysis of the complex motion patterns in the visual 
field during interception tasks, providing a deeper understanding 
of how the brain processes and interprets visual information to 
guide interception movements.

2.2. Optic Flow
Optic flow refers to the pattern of apparent motion of objects, 
surfaces, and edges in a visual scene caused by the relative 
motion between an observer and the scene. First studied by James 
J. Gibson, optic flow is crucial for understanding how organisms 
perceive motion and navigate through their environment. It 
provides vital information about speed, direction of movement, 
relative distance of objects, and environmental structure, which 
is essential for tasks such as navigation, collision avoidance, 
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and interception. In VR and AR, simulating realistic optic flow 
patterns enhances the user’s sense of immersion and interaction 
within the virtual environment [20]. Accurate representation of 
optic flow helps in creating a believable virtual world where 
users can move and interact naturally, thus improving the overall 
experience and effectiveness of VR applications, particularly in 
training and rehabilitation scenarios.

2.3. Ecological Approach to Visual Perception
The ecological approach to visual perception, also pioneered 
by Gibson, emphasizes the role of the environment in shaping 
perception. This approach focuses on the direct pickup of 
information from the environment, termed “affordances”, which 
are the actionable properties directly perceivable by an organism. 
According to this perspective, perception is not a passive process 
of receiving sensory inputs but an active process of exploring the 
environment to obtain necessary information for action.

This approach has profound implications for the design of VR 
and AR systems. It suggests that these systems should provide 
users with rich, meaningful information that supports their 
actions and interactions within the virtual environment [21,22]. 
By incorporating affordances into the design, VR and AR 
applications can become more intuitive and effective, allowing 
users to engage with the virtual world in a way that mirrors real-
life interactions.

2.4. Integration of Theories
Incorporating screw theory into the study of optic flow and 
the ecological approach provides a robust framework for 
understanding the underlying mechanisms of visual perception 
and motion processing. By applying screw theory to the 
generation of helicoidal fields in the visual field, researchers can 
mathematically describe how the translational and rotational 
components of motion interact to create the spiral pattern of 
optic flow. This integration allows for a systematic analysis of 
complex motion patterns, providing insights into how the brain 
processes and interprets visual information to guide interception 
movements.

Additionally, by considering the concept of affordances in 
conjunction with the analysis of the cross ratio, individuals 
can optimize their interception strategies and enhance their 
ability to intercept moving objects effectively. The cross ratio, 
an invariant in projective geometry, remains constant under 
projective transformations. For two screws with infinite pitch 
(pure translations) that are parallel to the four rays of a harmonic 
pencil, achieving a cross ratio of -1 indicates a harmonic 
relationship that signifies equilibrium.

This interdisciplinary approach combines principles from 
mathematics, physics, and psychology to enhance our 
understanding of how organisms perceive and interact with 
moving objects in their environment. By leveraging the geometric 
properties of screw theory and projective invariance, we gain 
valuable insights into the dynamics and stability of mechanical 
and virtual systems, offering a comprehensive framework for 
analyzing and improving VR and AR applications.

3. Materials and Methods
3.1. Mathematical Solutions to Terrestrial Interception 
Based on the Geometrical Constraints
First, researchers have exhibited that human interception 
behavior is best accounted for by the constant bearing angle 
(CBA), which refers to the angle between the direction of the 
heading and the agent’s line of sight [23–25]. According to this 
model, an agent adopts a straight path to the target to keep the 
angle β constant, as illustrated in Figure 3a. 

It has been claimed that the agent does not need to adjust 
explicitly or compute the bearing angle β to null the change in 
β, but simply steering a straight path will result in a successful 
interception at a constant angle β [26]. To understand these 
fundamental abilities, Fajen and Warren proposed a mathematical 
model of β, the behavioral dynamics of locomotion, i.e., the 
time evolution of behavior as an agent interacts with the 
environment [27]. This model is consistent with the view that 
the decision-making process, as an integral part of goal-directed 
behavior, is influenced by functional constraints at the scale 
of the environment–performer relationship. Thus, decision-
making behavior emerges from the individual’s interactions 
with environmental constraints over time toward specific goals 
[28]. We argue here that a simple perception of the approaching 
constant rate of change and bearing of the target informs the 
catcher whether they are moving at the right speed and in the 
right direction for the interception [11].
 
At this point, it is proper to recall the Chapman problem to 
determine β: A ballplayer (point A) is running at the right speed 
in the right direction to make the catch (or point B) [11]. In 
which direction should he set off to catch the ball? We have tried 
to show here that a ballplayer solves trigonometric equations to 
catch a ball. The first step of the solution is to construct a pair 
of harmonic poles C and D such that their ratio is given by the 
ratio of the player’s speed λ1 to the ball’s speed λ2, as shown in 
Figure 3b [29]. Note that the agent has two control variables: 
direction and running speed. Adopting a different running speed 
would result in a different angle β. This is shown by computing a 
solution in the harmonic ratio in interceptive walking. 

The first step of the solution is to construct harmonic poles C and 
D so that their length ratio is the ratio of the player’s speed to the 
ball’s speed (Figure 3):

where g ≡ λ2/λ1 is the ratio of the speed of the target to the 
speed of the agent. Starting at points A and B, the next step 
is to construct point P as follows: Draw a circle of radius PA 
around A and draw a circle of radius PB around B so that the 
intersection P of these two circles forms the correct ratio with or 
without any scaling, as needed. Next, dropping the internal and 
external angle bisectors, a line segment dividing the angle APB 
into two equal parts gives the harmonic conjugates C and D. If 
the velocities λ1 and λ2 had opposite signs, then the point would 
have to divide the angle APB externally into the given ratio so 
that they are centered in the system. The coordinates of C and D 
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next step is to construct point P as follows: Draw a circle of radius PA around A and draw a circle of radius PB 
around B so that the intersection P of these two circles forms the correct ratio with or without any scaling, as 
needed. Next, dropping the internal and external angle bisectors, a line segment dividing the angle APB into 
two equal parts gives the harmonic conjugates C and D. If the velocities λ1 and λ2 had opposite signs, then the 
point would have to divide the angle APB externally into the given ratio so that they are centered in the sys-
tem. The coordinates of C and D are treated as a column vector of homogeneous coordinates by augmenting 
one and are given by 
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At the point P, the ray from B (target) intersects a circle with a diameter CD (Figure 3). A straight line drawn to 
this point will intersect it. For example, the Matlab function ‘linecirc’ (MathWorks, Boston MA, USA) can be 
used to find the intersection point of a circle defined by its center and radius in x–y coordinates and a line 
defined by its slope and y-intercept (Appendix A). 
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At the point P, the ray from B (target) intersects a circle with a diameter CD (Figure 3). A straight line drawn to 
this point will intersect it. For example, the Matlab function ‘linecirc’ (MathWorks, Boston MA, USA) can be 
used to find the intersection point of a circle defined by its center and radius in x–y coordinates and a line 
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At the point P, the ray from B (target) intersects a circle with 
a diameter CD (Figure 3). A straight line drawn to this point 
will intersect it. For example, the Matlab function ‘linecirc’ 
(MathWorks, Boston MA, USA) can be used to find the 
intersection point of a circle defined by its center and radius in 
x–y coordinates and a line defined by its slope and y-intercept 
(Appendix A).

This raises a new question: How could an effective bearing angle 
somehow be determined by a locomoting agent [30]? Obviously, 
no agent ever solves synthetic trigonometric equations based 
on the geometries of the constraint to intercept a target [31]. 
Wilson calls this “physics avoidance”, which allows us to avoid 
having to know the constraint they refer to. To determine the 
equilibrium condition of a system, what we need to know is not 
the internal macroscopic mechanism of the system, but merely 
how the internal mechanism constrains the moving components 
of the system [32,33]. 

Coordinating the direction and speed of self-motion when 
intercepting a target moving on a parabolic tra-jectory while 
projected in parallel on the ground plane involves at least three 
separable yet closely related problems: How do we see the 
target in motion? How do we perceive a stable environment? 
And how do we perceive self-motion? In addition, the kinetic 
experience in motion stability and movement involves space 
perception problems [34]. Gibson’s 1954 article on visual 
motion is remarkable in several aspects because the three 
questions above define much of the motion perception field 
as practiced today. This approach has a crucial component of 
the animal–environment link and typically uses large-field 
animation sequences that portray changes in the optic array with 
locomotion [35]. 

Gibson argued that the visual perception of space might be better 
understood in the context of its biological function of guiding 
action, with locomotion as a paradigmatic example [36]. Thus, 
the question can be refined: What kind of concept is “space”? 
A rarely discussed answer is that space is an ecological concept 
[37]. Re-latedly, Reed made an extension of the indissociable 
perception–action coupling as advanced by Gibson, by 
conceiving two modes of activity: exploratory and performatory. 
Without this distinction, action scientists will forever be 
separated by the objective–subjective divide [5]. Reed takes the 
exploration of an actual interceptive action over the infinitesimal 
neighborhood as an exploratory activity. This exploration must 
show that the interception path has a stationary value.

3.2. Canonical Base of the Reference Frame for the 
Interception System
The ecological approach demonstrates how human (and other 
animal) perceptions and actions are continuous with interactions 

between animate and inanimate physical systems [38,39]. 
However, because interactions between inanimate targets and 
animate agents are continuous, there is no need to identify 
the CBA as a sep-arate category that can be incorporated into 
the larger theory. In the following section, we present a case 
of the more general methods of degrees-of-freedom (DOF) 
coordination, by which agents’ interception paths can be 
determined such that the chosen action implies two paths as the 
canonical base of the system. 

The goal-directed actions emerge spontaneously from the 
nonlinear interaction of the system elements under the influence 
of specific agents, tasks, and environmental constraints. Here, 
we discuss how an animal property, degeneracy (i.e., many 
coordinative structures to achieve one function), can help us 
understand how agents functionally adapt perception and action 
to interacting constraints during interceptive activities [40]. As 
such, Bernstein’s degrees-of-freedom (DOF) problem can be 
addressed through dynamics [41]. 

This fundamental problem was posed independently by both 
Nicolai Bernstein and James J. Gibson. It replaces mind–matter 
dualism with animal–environment duality (isomorphism)—a 
better-posed scientific problem because commensurability is 
assured [42]. Shaw proposed some features of organized control 
that we found promising. The core idea may be a “coordinative 
structure” or synergy, a complex system that acts as a unit. A 
coordinative structure would be a system with many degrees of 
freedom organized by a system of constraints that allows the 
whole complex to be controlled with one degree of freedom 
[43]. We illustrate that if a target-agent chain is limited by a 
constraint (Figure 6) such that its position can be expressed by a 
single coordinate, then the target-agent chain is said to have one 
degree of freedom. Thus, its possible movements are only those 
that could be accomplished by heading about the instantaneous 
translational axis [7]. 

The general discussion of the quadratic system is a subject of 
interest for both geometrical and ecological approaches [44] 
since the locus of the intersection P forms a circle with a diameter 
CD (Figure 3a). We begin by introducing

which is the homogeneous relation of the circle between two 
coordinates of CP and DP of the paths. These constitute a 
quadratic one-DOF system. Let CP and DP denote any rays 
other than AP and BP and chosen from the enclosing two-DOF 
system from which the rays of the quadratic one-DOF system 
are selected by the condition U = 0.

Then, adopting the fertile method of investigation introduced by 
Joachismthal [7] [45], we substitute λU = 0 for CP and DP the 
respective values

Algorithms 2024, 17, x FOR PEER REVIEW 6 of 20 
 

formations. For two screws with infinite pitch (pure translations) that are parallel to the four rays of a har-
monic pencil, achieving a cross ratio of -1 indicates a harmonic relationship that signifies equilibrium. 

This interdisciplinary approach combines principles from mathematics, physics, and psychology to en-
hance our understanding of how organisms perceive and interact with moving objects in their environment. 
By leveraging the geometric properties of screw theory and projective invariance, we gain valuable insights 
into the dynamics and stability of mechanical and virtual systems, offering a comprehensive framework for 
analyzing and improving VR and AR applications. 

3. Materials and Methods 
3.1. Mathematical Solutions to Terrestrial Interception Based on the Geometrical Constraints 

First, researchers have exhibited that human interception behavior is best accounted for by the constant 
bearing angle (CBA), which refers to the angle between the direction of the heading and the agent’s line of 
sight [23–25]. According to this model, an agent adopts a straight path to the target to keep the angle β con-
stant, as illustrated in Figure 3a.  

It has been claimed that the agent does not need to adjust explicitly or compute the bearing angle β to 
null the change in β, but simply steering a straight path will result in a successful interception at a constant 
angle β [26]. To understand these fundamental abilities, Fajen and Warren proposed a mathematical model of 
β, the behavioral dynamics of locomotion, i.e., the time evolution of behavior as an agent interacts with the 
environment [27]. This model is consistent with the view that the decision-making process, as an integral part 
of goal-directed behavior, is influenced by functional constraints at the scale of the environment–performer 
relationship. Thus, decision-making behavior emerges from the individual’s interactions with environmental 
constraints over time toward specific goals [28]. We argue here that a simple perception of the approaching 
constant rate of change and bearing of the target informs the catcher whether they are moving at the right 
speed and in the right direction for the interception [11].  

At this point, it is proper to recall the Chapman problem to determine β: A ballplayer (point A) is running 
at the right speed in the right direction to make the catch (or point B) [11]. In which direction should he set off 
to catch the ball? We have tried to show here that a ballplayer solves trigonometric equations to catch a ball. 
The first step of the solution is to construct a pair of harmonic poles C and D [29] such that their ratio is given 
by the ratio of the player’s speed λ1 to the ball’s speed λ2, as shown in Figure 3b. Note that the agent has two 
control variables: direction and running speed. Adopting a different running speed would result in a different 
angle β. This is shown by computing a solution in the harmonic ratio in interceptive walking.  

The first step of the solution is to construct harmonic poles C and D so that their length ratio is the ratio of 
the player’s speed to the ball’s speed (Figure 3): 

1AC AD
BC BD g

   (1) 

where g ≡ λ2/λ1 is the ratio of the speed of the target to the speed of the agent. Starting at points A and B, the 
next step is to construct point P as follows: Draw a circle of radius PA around A and draw a circle of radius PB 
around B so that the intersection P of these two circles forms the correct ratio with or without any scaling, as 
needed. Next, dropping the internal and external angle bisectors, a line segment dividing the angle APB into 
two equal parts gives the harmonic conjugates C and D. If the velocities λ1 and λ2 had opposite signs, then the 
point would have to divide the angle APB externally into the given ratio so that they are centered in the sys-
tem. The coordinates of C and D are treated as a column vector of homogeneous coordinates by augmenting 
one and are given by 
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At the point P, the ray from B (target) intersects a circle with a diameter CD (Figure 3). A straight line drawn to 
this point will intersect it. For example, the Matlab function ‘linecirc’ (MathWorks, Boston MA, USA) can be 
used to find the intersection point of a circle defined by its center and radius in x–y coordinates and a line 
defined by its slope and y-intercept (Appendix A). 
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At the point P, the ray from B (target) intersects a circle with a diameter CD (Figure 3). A straight line drawn to 
this point will intersect it. For example, the Matlab function ‘linecirc’ (MathWorks, Boston MA, USA) can be 
used to find the intersection point of a circle defined by its center and radius in x–y coordinates and a line 
defined by its slope and y-intercept (Appendix A). 
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This raises a new question: How could an effective bearing angle somehow be determined by a loco-
moting agent [30]? Obviously, no agent ever solves synthetic trigonometric equations based on the geometries 
of the constraint to intercept a target [31]. Wilson calls this ‚physics avoidance‛ [32], which allows us to avoid 
having to know the constraint they refer to. To determine the equilibrium condition of a system, what we 
need to know is not the internal macroscopic mechanism of the system, but merely how the internal mecha-
nism constrains the moving components of the system [33].  

 Coordinating the direction and speed of self-motion when intercepting a target moving on a para-
bolic trajectory while projected in parallel on the ground plane involves at least three separable yet closely 
related problems: How do we see the target in motion? How do we perceive a stable environment? And how 
do we perceive self-motion? In addition, the kinetic experience in motion stability and movement involves 
space perception problems [34]. Gibson’s 1954 article on visual motion is remarkable in several aspects be-
cause the three questions above define much of the motion perception field as practiced today. This approach 
has a crucial component of the animal–environment link and typically uses large-field animation sequences 
that portray changes in the optic array with locomotion [35].  

Gibson argued that the visual perception of space might be better understood in the context of its bio-
logical function of guiding action, with locomotion as a paradigmatic example [36]. Thus, the question can be 
refined: What kind of concept is ‚space‛? A rarely discussed answer is that space is an ecological concept [37]. 
Relatedly, Reed made an extension of the indissociable perception–action coupling as advanced by Gibson, by 
conceiving two modes of activity: exploratory and performatory. Without this distinction, action scientists will 
forever be separated by the objective–subjective divide [5]. Reed takes the exploration of an actual inter-
ceptive action over the infinitesimal neighborhood as an exploratory activity. This exploration must 
show that the interception path has a stationary value. 

3.2. Canonical Base of the Reference Frame for the Interception System 
The ecological approach demonstrates how human (and other animal) perceptions and actions are con-

tinuous with interactions between animate and inanimate physical systems [38,39]. However, because inter-
actions between inanimate targets and animate agents are continuous, there is no need to identify the CBA as 
a separate category that can be incorporated into the larger theory. In the following section, we present a case 
of the more general methods of degrees-of-freedom (DOF) coordination, by which agents’ interception paths 
can be determined such that the chosen action implies two paths as the canonical base of the system.  

The goal-directed actions emerge spontaneously from the nonlinear interaction of the system elements 
under the influence of specific agents, tasks, and environmental constraints. Here, we discuss how an animal 
property, degeneracy (i.e., many coordinative structures to achieve one function), can help us understand how 
agents functionally adapt perception and action to interacting constraints during interceptive activities [40]. 
As such, Bernstein’s degrees-of-freedom (DOF) problem can be addressed through dynamics [41].  

This fundamental problem was posed independently by both Nicolai Bernstein and James J. Gibson. It 
replaces mind–matter dualism with animal–environment duality (isomorphism)—a better-posed scientific 
problem because commensurability is assured [42]. Shaw proposed some features of organized control that 
we found promising. The core idea may be a ‚coordinative structure‛ or synergy, a complex system that acts 
as a unit. A coordinative structure would be a system with many degrees of freedom organized by a system of 
constraints that allows the whole complex to be controlled with one degree of freedom [43]. We illustrate that 
if a target-agent chain is limited by a constraint (Figure 6) such that its position can be expressed by a single 
coordinate, then the target-agent chain is said to have one degree of freedom. Thus, its possible movements 
are only those that could be accomplished by heading about the instantaneous translational axis [7].  

The general discussion of the quadratic system is a subject of interest for both geometrical and ecological 
approaches [44] since the locus of the intersection P forms a circle with a diameter CD (Figure 3a). We begin by 
introducing 

𝑈𝑈(𝐶𝐶𝐶𝐶, 𝐷𝐷𝐷𝐷) = 𝐶𝐶𝑃𝑃2 + 𝐷𝐷𝑃𝑃2 − 𝐶𝐶𝐷𝐷2 = 0 (3) 

which is the homogeneous relation of the circle between two coordinates of CP and DP of the paths. These 
constitute a quadratic one-DOF system. Let CP and DP denote any rays other than AP and BP and chosen 
from the enclosing two-DOF system from which the rays of the quadratic one-DOF system are selected by the 
condition U = 0. 
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then the roots of the quadratic are equal, but with opposite signs.  
If the condition UBP,AP = 0 is satisfied by the coordinates of two rays, AP and BP, which belong to the en-

closing two-DOF system, then these two rays and the other two rays lying on the pencil of (AP, BP), which 
also belong to the quadratic one-DOF system U = 0, will be parallel to the four rays of a harmonic pencil. An 
inspection of Equation (7) reveals that there is a linearly dependent ray along each of the CP- and DP-axes 
(Figure 3a), corresponding to λ1 — λ2 = 0 and λ1 + λ2 = 0, respectively. 

Because CP and DP are centrally located in the system and have other unique properties, Ball [7] called 
them the principal screws (rays) of the system. It is evident that the principal rays exploring the infinitesimal 
neighborhood must have the same value (to the first order), which means that the virtual displacements are 
reversible and symmetric, i.e., the given constraints of the rays CP and DP do not prevent us from changing an 
arbitrary δAP into –δAP [46].  
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If the condition UBP,AP = 0 is satisfied by the coordinates of 
two rays, AP and BP, which belong to the en-closing two-
DOF system, then these two rays and the other two rays lying 
on the pencil of (AP, BP), which also belong to the quadratic 
one-DOF system U = 0, will be parallel to the four rays of a 
harmonic pencil. An inspection of Equation (7) reveals that 
there is a linearly dependent ray along each of the CP- and DP-
axes (Figure 3a), corresponding to λ1 — λ2 = 0 and λ1 + λ2 = 0, 
respectively.

Because CP and DP are centrally located in the system and have 
other unique properties, Ball called them the principal screws 
(rays) of the system. It is evident that the principal rays exploring 
the infinitesimal neigh-borhood must have the same value (to 
the first order), which means that the virtual displacements are 
reversible and symmetric, i.e., the given constraints of the rays 
CP and DP do not prevent us from changing an arbitrary δAP 
into –δAP [7,46]. 
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which all the distinctive properties of projective figures can be 
expressed [47]. Shape constancy depends on perspective, and the 
visual system operates on the projective principle of perspective. 
For James Gibson, the equality of cross ratios implies shape 
constancy [48]. Followers of James Gibson have proposed that 
the cross ratio, a projective invariant for four collinear points, 
underlies the perception of objects in motion [49]. According to 
the seminal discovery of projective geometry, if we have four 
points A, C, B, and D on a straight line and project them onto A´, 
B´, C´, and D´ on another line, then there is a specific property 

of the four points, called the cross ratio, which retains its value 
under the projection. The cross ratio is neither a length nor the 
ratio of two lengths but the ratio of two such ratios. For instance, 
for two ratios, AC/BC and AD/BD, the cross ratio is given by 

where the sign of a length is taken appropriately after fixing a 
specific orientation of the line. If a straight line CD is divided 
internally at B and externally at A in the same ratio {A,B;C,D} 
, then the segment CD is said to be harmonically divided at A 
and B, and each of the points A and B is called the harmonic 
conjugate of the other, with respect to the pair C and D. The 
harmonic division symmetry is a remarkable property. Namely, 
if C and D divide AB harmonically, then A and B also divide CD 
harmonically, reinforcing each other. 

The problem of intercepting a target that moves in the horizontal 
plane is conceived as the cross ratio of four coplanar (i.e., lying 
in a common plane) and concurrent straight lines PA, PB, PC, 
and PD, namely, the four points of intersection cross ratio of 
these lines with another straight line lying in the same plane 
(Figure 4). For an arbitrary point P and a harmonic range [23], 
the lines PA, PB, PC, PD are said to form a harmonic pencil, a 
linear line space where paths are centrally placed at the point P. 
Line space denotes a set where linear com-binations also locate 
lines in the set [50]. 

Equivalent to Equation (8) is the definition

where the cross ratio depends only on the angles subtended 
by the connecting segments A, B, C, and D at P. Since these 
angles are the same for any four points A´, B´, C´, and D´ into 
which A, B, C, and D can be pro-jected from P, it follows that 
the cross ratio remains invariant by projection. The problem 
of intercepting a target moving parallel to the ground plane 
is ubiquitous in animal locomotion. It involves at least three 
separable phenomenal motions, called transformations. The 
first (translation along the line of sight) is called expansion or 
contraction; the second is translation to the right or left; and 
the third is rotation about a vertical axis (indicated by arrows in 
Figure 4) [15]. The coordination of the self-motion direction and 
speed when intercepting a target moving parallel to the ground 
plane can be modeled as a plane pencil of screws, a typical line 
space (Figure 4).
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inspection of Equation (7) reveals that there is a linearly dependent ray along each of the CP- and DP-axes 
(Figure 3a), corresponding to λ1 — λ2 = 0 and λ1 + λ2 = 0, respectively. 

Because CP and DP are centrally located in the system and have other unique properties, Ball [7] called 
them the principal screws (rays) of the system. It is evident that the principal rays exploring the infinitesimal 
neighborhood must have the same value (to the first order), which means that the virtual displacements are 
reversible and symmetric, i.e., the given constraints of the rays CP and DP do not prevent us from changing an 
arbitrary δAP into –δAP [46].  

3.3. Harmonic Cross ratio Model with Constant Ratios and Proportions 
Just as the length of a line segment is the key to metric geometry, there is a fundamental concept of pro-

jective geometry in which all the distinctive properties of projective figures can be expressed [47]. Shape con-
stancy depends on perspective, and the visual system operates on the projective principle of perspective. For 
James Gibson, the equality of cross ratios implies shape constancy [48]. Followers of James Gibson have pro-
posed that the cross ratio, a projective invariant for four collinear points, underlies the perception of objects in 
motion [49]. According to the seminal discovery of projective geometry, if we have four points A, C, B, and D 
on a straight line and project them onto A´, B´, C´, and D´ on another line, then there is a specific property of 
the four points, called the cross ratio, which retains its value under the projection. The cross ratio is neither a 
length nor the ratio of two lengths but the ratio of two such ratios. For instance, for two ratios, AC/BC and 
AD/BD, the cross ratio is given by  

 A, B; C, D AC BD
BC AD





 (8) 

where the sign of a length is taken appropriately after fixing a specific orientation of the line. If a straight line 

CD is divided internally at B and externally at A in the same ratio  , ; , 1A B C D   , then the segment CD is 
said to be harmonically divided at A and B, and each of the points A and B is called the harmonic conjugate of 
the other, with respect to the pair C and D. The harmonic division symmetry is a remarkable property. 
Namely, if C and D divide AB harmonically, then A and B also divide CD harmonically, reinforcing each other.  

The problem of intercepting a target that moves in the horizontal plane is conceived as the cross ratio of 
four coplanar (i.e., lying in a common plane) and concurrent straight lines PA, PB, PC, and PD, namely, the four 
points of intersection cross ratio of these lines with another straight line lying in the same plane (Figure 4). For 
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an arbitrary point P and a harmonic range [23], the lines PA, PB, PC, PD are said to form a harmonic pencil, a 
linear line space where paths are centrally placed at the point P. Line space denotes a set where linear com-
binations also locate lines in the set [50].  

Equivalent to Equation (8) is the definition 

  sin APC sin BPDA, B; C, D
sin APD sin BPC

 
 

 
 (9) 

where the cross ratio depends only on the angles subtended by the connecting segments A, B, C, and D at P. 
Since these angles are the same for any four points A´, B´, C´, and D´ into which A, B, C, and D can be pro-
jected from P, it follows that the cross ratio remains invariant by projection. The problem of intercepting a 
target moving parallel to the ground plane is ubiquitous in animal locomotion. It involves at least three sep-
arable phenomenal motions, called transformations. The first (translation along the line of sight) is called ex-
pansion or contraction; the second is translation to the right or left; and the third is rotation about a vertical 
axis (indicated by arrows in Figure 4) [15]. The coordination of the self-motion direction and speed when in-
tercepting a target moving parallel to the ground plane can be modeled as a plane pencil of screws, a typical 
line space (Figure 4).  

A plane pencil of four 
rays

 
Figure 4. Cross ratio of coaxial planes for the problem of intercepting a target that moves in a horizontal plane. Patterns of 
optic flow by translation along the line of sight are called expansion or contraction; second, the translation right or left; 
and the rotation around a vertical axis. Three are indicated: translation along the line of sight (BC represented by the red 
arrow), translation right or left (BB´ represented by the green arrow on plane 3), and rotation around a vertical axis rep-
resented by the blue arrow [15]. 

3.4. Cross Ratios at Infinity  
Cross ratios at infinity provide a pivotal framework for understanding perspective and motion in dy-

namic environments. Drawing on the behavior of a dragonfly that uses a fixed visual reference to intercept 
prey, we explore how cross ratios can define and enhance our understanding of motion perception in more 
complex settings [14]. For instance, maintaining a consistent trajectory in human navigation requires com-
pensation for body motion, typically through visible landmarks or internal sensory feedback [26].  

The concept of a motion perspective offers a sophisticated means of describing the optic array from a 
moving viewpoint. This perspective is crucial when analyzing objects aligned along a common visual path, 
where the cross ratio—the projective invariant—becomes essential. It allows us to distinguish between dif-
ferent perspectives by maintaining consistent geometric relations despite changes in the observer’s position. 

When we come to a figure consisting of collinear tetrads, {A,B;C,D}, we have for the first time a metric 
characteristic, the cross ratio of the points, which is a projective invariant enabling us to discriminate in per-
spective, as shown in Figure 4. However, the motion perspective has been analyzed for an optic array at an 
unoccupied observation point, marked as the perception of two rays, CP and DP.  
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3.4. Cross Ratios at Infinity 
Cross ratios at infinity provide a pivotal framework for 
understanding perspective and motion in dynamic environments. 
Drawing on the behavior of a dragonfly that uses a fixed visual 
reference to intercept prey, we explore how cross ratios can 
define and enhance our understanding of motion perception 
in more complex settings [14]. For instance, maintaining a 
consistent trajectory in human navigation requires compensation 
for body motion, typically through visible landmarks or internal 
sensory feedback [26]. 

The concept of a motion perspective offers a sophisticated 
means of describing the optic array from a moving viewpoint. 
This perspective is crucial when analyzing objects aligned along 
a common visual path, where the cross ratio—the projective 
invariant—becomes essential. It allows us to distinguish between 
different per-spectives by maintaining consistent geometric 
relations despite changes in the observer’s position.

When we come to a figure consisting of collinear tetrads, 
{A,B;C,D}, we have for the first time a metric characteristic, 
the cross ratio of the points, which is a projective invariant 
enabling us to discriminate in per-spective, as shown in Figure 
4. However, the motion perspective has been analyzed for an 
optic array at an unoccupied observation point, marked as the 
perception of two rays, CP and DP. 

One critical method for capturing accurate motion perspectives 
involves utilizing the vanishing limit, an advanced technique 
in which all parallel lines within the optic array converge. This 
approach not only aids in navigation and orientation but also 
ensures that the perceived environment remains stable and 
consistent, regardless of the observer’s motion [6]. For example, 
eye movements or head movements do not alter this basic 
pattern but merely superimpose a certain amount of flow around 
the equator or a vanishing limit. 

Therefore, cross ratios involving elements at infinity should 
be considered. By perceiving geometric figures as capable of 
continuous variation, we can make them less sharp in the following 
ways. This phenomenon is illustrated in Figure 5, where the 
theoretical intersection disappears if line l becomes parallel to 
line AB, challenging our perception of space and motion. Cross 
ratios involving elements at infinity are particularly valuable in 
scenarios where geometric elements extend beyond the visible 
landscape, such as in urban planning or astronomy simulations. 
By understanding how these ratios function, particularly in how 
they cause distant objects to interact perceptually, designers can 
create more realistic and engaging virtual environments. 

In practical terms, as one line intersects another and gradually 
adjusts to become parallel, the intersection point recedes 
toward infinity, illustrating the continuous nature of space 
and perception [29]. Figure 5 also shows how the cross ratio 
adjusts as elements reach infinity, altering our perception of 
distance and orientation. This has profound implications for VR 
systems, where understanding and manipulating these ratios can 
significantly enhance the user’s experience by providing a more 
stable and coherent visual field. 

We have mentioned that the point pairs (A, B) and (C, D) 
are harmonic if {A,B;C,D} = -1. This means that there exists an 
invariant representation in which the four points have parameters 

{ }1, 1;0,− ∞   in Figure 5. Let the symbol ∞ mark the infinity point 
on a straight line l. If A, B, and C are three ordinary points on l, 
we can assign a value to their ratio in the following way: Choose 
a point D on l; then  {A,B;C,D} should be the limit approached by   
as D recedes to infinity along l. If {A,B;C,∞} = -1 , then C is the 
midpoint of the segment AB (Figure 5). The midpoint and the 
infinity point in the direction of a segment divide the segment 
harmonically [10].
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Figure 5. Cross ratio with elements at infinity, where one pole reaches infinity. The interceptor uses two sources of infor-
mation: optical flow generated by taking the path AD  and optical flow generated by taking the route CMP. The percep-
tion with covariation is different from either of the two information sources without covariation [52]. 

To refer to the flow pattern that informs about a stable environment, take the point at infinity as a point of 
the cross ratio reference. The arrangement shown in Figure 6, where elements such as CP and the line l form 
the principal axes of a system, illustrates how dynamic adjustments based on cross ratios can facilitate com-
plex interactions within a controlled environment. These configurations allow for precise control over the 
movement and interaction of objects in virtual spaces, optimizing both the aesthetic and functional aspects of 
the environment.  

In essence, the role of cross ratios at infinity is not merely theoretical, but of substantial practical appli-
cation in enhancing how we interact with and perceive VR and AR. By exploiting these projective invariants, 
we can create more immersive and navigable environments that closely mimic the real world or offer new 
ways of experiencing space that are not possible in physical settings. The interception paths are synthesized 
by a four-bar link connected by a slider–pin joint model. The dynamical link (equations of constraint) selec-
tively reduces the number of independently controlled DOFs, allowing a rich set of trajectories[53]. The con-
figuration allows link l to move only parallel to the agent’s line of sight, since it is equal to the line l defined in 

Figure 5: Cross ratio with elements at infinity, where one pole reaches infinity. The interceptor uses two sources of information: 
optical flow generated by taking the path  AD∞ and optical flow generated by taking the route CMP. The perception with covariation 
is different from either of the two information sources without covariation [52].

To refer to the flow pattern that informs about a stable 
environment, take the point at infinity as a point of the cross ratio 
reference. The arrangement shown in Figure 6, where elements 
such as CP and the line l form the principal axes of a system, 
illustrates how dynamic adjustments based on cross ratios can 
facilitate complex interactions within a controlled environment. 
These configurations allow for precise control over the movement 
and interaction of objects in virtual spaces, optimizing both the 
aesthetic and functional aspects of the environment. 

In essence, the role of cross ratios at infinity is not merely 
theoretical, but of substantial practical application in enhancing 
how we interact with and perceive VR and AR. By exploiting 
these projective invariants, we can create more immersive 
and navigable environments that closely mimic the real world 
or offer new ways of experiencing space that are not possible 
in physical settings. The interception paths are synthesized 
by a four-bar link connected by a slider–pin joint model. The 
dynamical link (equations of constraint) selectively reduces 
the number of independently controlled DOFs, allowing a rich 
set of trajectories[53]. The configuration allows link l to move 
only parallel to the agent’s line of sight, since it is equal to the 
line l defined in Figure 5. The configuration shows a trapezoid 
AA´B´B, where AB is parallel to A´B´. If C and C´ are the 
midpoints of AB and A´B,´, respectively, the lines AA,´ CC,´ 
and BB´ are all coincident at P. It is necessary to displace the 
agent along with the desired path CC´ without disturbing the 
path AB approach mapping (Figure 6). Displacements around 
the two rays of the principal screws achieve this. Perception 
with covariation is different from either source of information 
without covariation [52].

As noted already, CP and the line l are called the principal 
screws (rays). Inspection of equation (5) reveals that there is a 
linearly dependent screw along each of the x- and y-axes (Figure 
6), corresponding, respectively, to

Equation (10) shows that the corresponding velocity of the agent, 
along with CC´ is equal to the target. In contrast, the velocity of 
the agent along AB is equal and opposite to the target. Then, 
let the axis of the optic flow used by the agent’s line of sight 
be considered as the central line for the flow pattern during the 
agent’s approach to the target object. The flow pattern is now 
referred to as two rays, CP and AB, of origin P, i.e., the principal 
screws (rays) of the system, and the four-bar linkages meet at a 
common point P, the interception point. 

Denoting the velocity components parallel and perpendicular to 
the line of the sight l as VA/l and VA/n , re-spectively, we have 
the bearing angle β of the pattern given by the ratio of the two 
components:

Thus, for the flow pattern, β takes the same value, called the 
chief parameter of the flow pattern (Figure 6). A motor action 
normally produces both CP and AB. Together, they have a 
different meaning than the simple motion of CP and AB, and 
the particular invariant β, the unity between them, specifies a 
particular external configuration of the intercept space [52].
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Thus, for the flow pattern, β takes the same value, called the chief parameter of the flow pattern (Figure 
6). A motor action normally produces both CP and AB. Together, they have a different meaning than the 
simple motion of CP and AB, and the particular invariant β, the unity between them, specifies a particular 
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Figure 6. Virtual heading chains in a four-bar linkage system. This diagram displays the configuration of virtual heading 
chains featuring links and a slider pin joint model, with CP and line l centrally positioned at point P. The arrangement 
demonstrates how dynamic motion and heading are controlled within a virtual environment. The diagram highlights the 
paths of rays CP and AB, representing the principal screws of the system, and shows how they meet at a common inter-
ception point, P. The paths are designed to illustrate how adjustments are made to the agent’s trajectory to maintain a 
constant bearing angle β, which is crucial for precise object interception in simulated environments. This setup exempli-
fies the practical application of cross ratios at infinity, showing how geometric and kinematic constraints are managed to 
ensure stable and accurate navigational outcomes in virtual reality systems. 

4. Results 
4.1. Perception and Action Coupling in Virtual Environments 
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4. Results
4.1. Perception and Action Coupling in Virtual Environments
Our study validates the intricate coupling of perception and action 
as outlined by Gibson’s theory, within virtual environments. 
D’Alembert’s principle, addressing virtual displacements within 
a system, played a crucial role in our analysis. This principle 
states that although the displacement is potential and theoretical, 
it effectively contributes to maintaining the equilibrium of 
the interception system where both pursuer and fugitive 
remain stationary relative to each other at any specific instant. 
Consequently, at such instants, the actual motion of the agent 
is disregarded, aligning with theoretical considerations (see 
Figure 7a below). This foundational understanding guided our 
experimental validations [46].

We utilized previously published datasets to validate our model, 
which simulates the perception dynamics within a four-ray pencil 
during interception tasks. The experimental setup demonstrated 
that perception in virtual environments is inherently tied to 
possible actions. Experiments were conducted in the Virtual Envi-
ronment Navigation Lab (VENLab) at Brown University, where 
participants navigated a 12 m × 12 m area within an immersive 
virtual environment designed by WorldViz, Santa Barbara CA, 
USA. This environment was crafted to elicit nuanced postural 
responses and directional headings [26]. Adjustments were 
made to the head-mounted display (HMD) to accommodate the 
interocular distances of the participants, ensuring accurate data 
capture of the x and z positions as the participants interacted with 
the virtual targets, designated as room posts. 
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4.2. Action Shaping Perception
The actions taken by participants continuously shaped their 
perceptual experience within the virtual environment. As they 
moved, the feedback provided by the environment refined their 
perception of affordances. Walking paths and trajectories for 
two agents were meticulously recorded (see Figures 8 and 9). 
A quiver plot was employed to display the velocity vectors at 
various points, illustrating both the actual path taken by the 
agents and the theoretical path predicted by the model using 
principal screws (MathWorks, MA USA).

From the initial conditions, unique bearing angles β were 
essential for intercepting targets directly. Alternative angles 
resulted in spiral paths, suggesting a dynamic interaction 
between the agents and their environment. This interaction was 
cyclic and rapid, indicative of exploratory behavior that adjusts 
until the optimal path is identified based on visual perception 
maintaining a constant bearing angle β.
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Figure 7: (a) For the interception and virtual trajectory at a position S1(t) and time t1. The virtual displacement is designated as δS. 
The initial and final positions for both trajectories are at t1 and t2, respectively. Lagrange’s ingenious idea was to introduce a unique 
symbol δ for the process of variations to emphasize its virtual character [46]. The analogy to d recalls that both symbols refer to 
infinitesimal changes. However, dS refers to an actual change whereas δS refers to a virtual change. In problems involving the 
variation in definite paths, both types of change should be considered simultaneously, as the distinction between them is vital. (b) 
The trajectory of Figure 8a is extended until 0.2 s. The behavioral dynamics dictate that the actual displacements approach the virtual 
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Figure 8: (a) Agent 1’s walking paths and model trajectories. (b) The affordance of interception is quantified by the invariant unity 
of β, reflecting the effectiveness of the interception path as aligned with theoretical predictions.
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The paths and bearing angles closely matched the model 
predictions except for minor deviations during the initial stages 
of motion exploration. These deviations highlight the agents’ 
adjustments to perceive and align with the principal rays of 
the field, steering through complex paths towards optimal 
interception routes. This supports the idea that action shapes 
perception, as the continuous interaction with the environment 
allows the agents to refine their perceptual strategies.

This experimental setup confirmed that while agents do not 
always follow straight paths, their movements adjust based on 
the structured affordances (i.e., action possibilities or actionable 
properties offered by the environment to an animal, Gibson 
1979) provided by the virtual environment. These affordances, 
defined by the coordinating screws of the system, dictate possible 
behaviors that emerge from the interactions within the system 
[6]. As theorized by Michael T. Turvey, behaviors manifest when 
the system’s structures allow, high-lighting the interdependence 
of system design and agent interaction [54].

According to D’Alembert’s principle, the criterion for the 
equilibrium of an arbitrary system of forces is that the total virtual 
work of all forces vanishes. This criterion involves virtual, not 
actual, displacement and is thus equally applicable to VR or AR. 
Since virtual displacement involves a possible (exploratory) 
movement, but is purely a mathematical experiment, it can be 
implemented algorithmically in VR environments.

4.3. Kinematical Possibilities of Interception: Virtual vs. 
Actual Directional Heading
The concept of affordance is concerned with potential behavior, 
rather than actual realization, such as fol-lowing a straight path. 

As noted by Lanczos, possible displacements within this context 
are designated as “virtual displacements” (see Figure 7a) [46]. 
These are intentional displacements that occur within the limits 
of kinematics and are employed in theoretical models to probe 
dynamical systems.

Our theoretical framework posits that an interceptor must 
maintain a consistent pattern within the optic array while 
transforming this array relative to the substrate, as described 
by Gibson [55]. For example, consider the following scenario 
of connecting two hypothetical paths, CP and DP, with any 
possible trajectory. This chosen path, represented as an arbitrary 
continuous curve, generally does not align with the interceptor’s 
actual motion path. Over time, through iterative adjustments, the 
model path may converge towards the actual motion path, as 
depicted in Figure 7b.

The distinction between virtual and actual displacements 
highlights the core concept of affordance, where virtual 
displacements represent small, theoretical shifts in position 
termed “variations” of the position. These variations affect the 
bearing angle, β, according to the function described in Equation 
(11). Consequently, while we control the variation in position, the 
resultant change in the function β must be derived independently. 
In practice, we attempt to align tentative variations in the path, 
such as ray AP, with the actual displacements that occur over 
time dt. This alignment process, inspired by Gibson’s notion 
of an organism’s perceptual system resonating to invariants, 
involves reinforcing perceptual data to enhance system accuracy 
[6]. However, the initial application of these variations—applied 
instantaneously—assumes infinite velocity, which contrasts 
with the finite velocity of actual movements [46].
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These exploratory adjustments facilitate the perceiver’s 
navigation from disequilibrium toward equilibrium, from a state 
of perceptual blur to clarity. Gibson characterizes this as a “self-
tuning system” that actively seeks informational resonance, 
enhancing clarity and thus the value of the perceptual experience 
[52]. This process is crucial for the differentiation of invariant 
aspects of the environment from those that vary, thus ensuring 
accurate interaction within virtual settings.

This discussion integrates theoretical constructs with practical 
implications, elucidating how virtual envi-ronments can be 
meticulously designed to enhance the accuracy and realism 
of user interactions by leveraging the dynamics of virtual and 
actual displacements.

5. Discussion
The present study demonstrates that kinematic invariants, 
such as the screw theory, play a crucial role in understanding 
movement within virtual environments. At each instant of an 
agent’s movement, a unique axis can be identified, suggesting 
that the motion is characterized by a continuous twist around a 
screw. This concept aligns not only with the kinematic variables 
described by Nikolai Bernstein, but also with ecological 
dynamics, which emphasizes the interaction between an agent 
and its environment through perception and action [28,46,56]. 

In our study, we compared our findings with those of Fajen 
and Warren (2004) and Ceyte et al. (2021), fo-cusing on the 
locomotor paths observed under different target eccentricity 
conditions. Both studies showed that participants systematically 
steered ahead of the moving target, providing complementary 
evidence for an interception strategy based on nulling changes 
in the bearing angle of a target. Our results were consistent with 
these previous studies, reinforcing the broader applicability of 
this strategy under various experimental con-ditions [26,57].

The superior performance of our algorithms was demonstrated 
through a direct comparison with the conven-tional methods used 
by Fajen and Warren and Casanova al. [26,57]. Our approach 
showed improved accuracy in predicting interception points 
and real-time perception–action capabilities, which are crucial 
for applications in neurorehabilitation and VR. This superiority 
was validated by quantitative improvements in interception 
paths and steering actions, highlighting the effectiveness of our 
algorithms over traditional strategies based on nulling changes 
in target-heading angle [57].

Bernstein defined coordination as mastering the many degrees 
of freedom of a particular movement by re-ducing the number of 
variables to control. His idea of reducing the degrees of freedom 
in movement to master complex actions has been extended in 
our model to include the interaction dynamics of virtual entities. 
Our approach models the interception of a moving target along 
a ground plane as the interaction of four rays within that plane, 
introducing a non-equilibrium state that challenges traditional 
physicalist perspectives. This model suggests that all elements, 
whether they are part of a mechanical system or a living 
ecosystem, possess equal reality and concreteness.

In our research, we have explored how theoretical constructs 
manifest in practical scenarios, particularly through understanding 
dynamic movements in virtual environments. By examining the 
movements of a baseball fielder to intercept a fly ball, we can 
gain insight into how environmental affordances shape and direct 
human actions. This observation shifts our perspective from a 
simple analysis of particle dynamics to a broader examination 
of field dynamics [13]. Such insights are invaluable in designing 
virtual environments that focus on facilitating action rather than 
merely passive perception. Moreover, our findings suggest that 
replacing one type of optic flow with another of appropriate 
speed does not alter the interception dynamics as long as the path 
involves only a single degree of freedom. This underpins the 
flexible yet controlled design of interactive virtual simulations, 
which is essential for immersive experiences [58].

The principle of d’Alembert, integrated with screw theory, 
enriches our understanding of virtual displacement, offering a 
valuable educational tool for students exploring the theory of 
affordances. This principle helps clarify how virtual environments 
can be designed to enhance the experiential reality by aligning 
with functional rather than merely visual aspects [51]. 

Our study leverages the mathematical constructs of harmonic 
ratios and stimulation invariants to simulate and predict visually 
controlled interceptions with unprecedented precision. These 
mathematical tools are crucial for developing algorithms that 
not only enhance the realism of virtual environments, but also 
ensure their functional utility in applications such as sports 
training, military simulations, and medical rehabilitation. The 
ecological approach further allows these environments to be more 
adaptable and sensitive to the perceptual and motor capabilities 
of individual users, promoting an effective learning and 
interaction system that is grounded in the ecological dynamics 
of the real world. This study proposes the implementation of 
mathematical models with algorithms to enhance the analysis of 
visual perception and motor action. However, it does not suggest 
that perception and action are inherently algorithmic in nature.

To clarify, we distinguish between Algorithmic Implementation 
and Algorithmic Nature:
Algorithmic Implementation: This involves the practical use of 
algorithms to simulate, predict, and analyze phenomena. In this 
context, mathematical models and algorithms serve as tools to 
help us understand and process data related to visual perception 
and motor action.

Algorithmic Nature: This implies that perception and action 
themselves are driven by algorithmic processes, which can be 
an oversimplification. Perception and action are often emergent 
properties of complex biological systems that involve both 
deterministic and stochastic elements.

6. Conclusions
This study presents a novel algorithmic framework for 
enhancing motion perception and visually guided interceptive 
actions in virtual and augmented reality (VR/AR) environments. 
By applying the mathematical constructs of harmonic ratios 
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and stimulation invariants, our algorithms significantly 
improve the accuracy and responsiveness of VR/AR systems, 
offering practical solutions for real-time motion prediction. 
These advancements are particularly beneficial for interactive 
digital platforms such as multiplayer gaming, immersive media 
applications, and collaborative virtual environments, where real-
time action and precision are essential.

Our research demonstrates that integrating advanced 
mathematical models, such as the Theory of Screws, into VR/
AR systems enhances the realism and effectiveness of user 
interactions. This interdisciplinary approach bridges theoretical 
constructs in motion dynamics with practical applications in 
virtual environments, creating opportunities for the development 
of more immersive and functionally robust systems. The ability 
to simulate complex motion patterns and improve interception 
tasks has direct implications for the fields of social media, online 
gaming, and collaborative digital spaces, where interactive and 
dynamic user experiences are paramount.

Furthermore, this work underscores the potential for these 
algorithmic innovations to be applied in other emerging digital 
platforms, including interactive media systems and virtual 
training environments. As VR/AR technologies continue to 
evolve, the integration of advanced computational models will 
play a critical role in shaping the future of digital interaction and 
user engagement in multimedia communications, gaming, and 
beyond.
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Appendix A
Matlab script: Implementation of t harmonic cross ratio model 
for interceptive paths.
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Matlab 
% DYNAMIC FILTERING AND BEARING ANGLE ANALYSIS (MATLAB) 
% Based on Ying Ning's Dynamic Filtering Algorithm 
% (Original script by W Kim 05/23/2016) 
 
clear all; Coords = xlsread('sub32.xlsx');  [m,n] = size(Coords); b = 
2; 
 
%% Apollonius Intersection Calculation 
for i = 1:m 
    A = [Coords(i,1); Coords(i,2)]; AV = [Coords(i,5); Coords(i,6)]; 
    B = [Coords(i,3); Coords(i,4)]; BV = [Coords(i,7); Coords(i,8)]; 
 
    ratio = norm(BV) / norm(AV); slope = BV(2) / BV(1); 
    intercpt = B(2) - slope * B(1); 
     
    C = norm(BV) * [A; 1] + norm(AV) * [B; 1]; 
    D = -norm(BV) * [A; 1] + norm(AV) * [B; 1]; 
    center = C + D; 
    radius = norm(center(1:2)/center(3) - C(1:2)/C(3)); 
 
    [xout, yout] = linecirc(slope, intercpt, center(1)/center(3), 
center(2)/center(3), radius); 
    inter = [xout; yout]; inter1 = inter - [A, A]; 
 
    if inter1(1,1) > 0 
        Coords(i,10:11) = inter1(:,1)'; 
    else 
        Coords(i,10:11) = inter1(:,2)'; 
    end 
 
    CV = [Coords(i,10); Coords(i,11)] / norm([Coords(i,10); 
Coords(i,11)]); 
    CVN = norm(AV) * CV; Coords(i,10:11) = CVN'; 
end 
 
%% Bearing Angle Calculation and Visualization 
headingA = zeros(1, m); headingM = zeros(1, m); linesight = zeros(1, 
m); CBM = zeros(2, m); 
for i = 1:m 
    headingA(i) = atan2(Coords(i,5), Coords(i,6)); 
    headingM(i) = atan2(Coords(i,10), Coords(i,11)); 
    acoord = [Coords(i,1), Coords(i,2)]; tcoord = [Coords(i,3), 
Coords(i,4)];  
    los = (tcoord - acoord); linesight(i) = atan2(los(2), los(1)); 
    CBM(1,i) = rad2deg(headingA(i) - linesight(i)); 
    CBM(2,i) = rad2deg(headingM(i) - linesight(i)); 
end 
 
%% Plotting 
time = 0:0.01:(m-1)*0.01; 
figure; 
 
subplot(1,2,1); 
quiver(Coords(1:b:m,3), Coords(1:b:m,4), Coords(1:b:m,7), 
Coords(1:b:m,8], 'b', 'DisplayName', 'Target Velocity');  
hold on; 
quiver(Coords(1:b:m,1), Coords(1:b:m,2), Coords(1:b:m,5), 
Coords(1:b:m,6), 'r', 'DisplayName', 'Agent Velocity'); 
quiver(Coords(1:b:m,1), Coords(1:b:m,2), Coords(1:b:m,10), 
Coords(1:b:m,11), 'g', 'DisplayName', 'Filtered Velocity'); 
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