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Abstract 
We investigate the potential parallels between African fractal geometry, particularly in Adobe architecture, and the mathematical 
structures underlying supersymmetry and Calabi-Yau manifolds. Our explorations extend to how the recursive scaling properties 
of African fractals,  described by the power law scaling dimension 𝐷 = 
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1. Introduction 
African fractal geometry has been explored by a few authors 
including Eglashn Mandelbrot and Yau & Nadis among others. In 
this paper, the core research question guiding us is: Can the recursive 
scaling properties of African fractal geometry provide new ways to 
understand the extra dimensions proposed by supersymmetry, and 
how do these fractals align with the recursive properties of Calabi-
Yau manifolds? As Eglash observes, fractals are characterized 
by repetition of similar patterns at ever-diminishing scales [1-3]. 
African fractal geometry presents a striking model of indigenous 
mathematical insight with significant implications for modern 
scientific understanding. Fractals – self-replicating geometric 
structures – exist not only as abstract mathematical entities, 
but as practical frameworks within African cultural practices. 
These fractal characteristics can also be seen in African textiles, 
paintings, sculptures, masks, religious icons, cosmologies and 
social structures [4]. In this paper, we show the potential parallels 
between indigenous African fractal geometry and the mathematical 
structures underlying supersymmetry and Calabi-Yau manifolds. 
We introduce the conceptual and mathematical mapping of these 

African fractals to mirror how Calabi-Yau manifolds compactify 
dimensions. 
 
2. Fractal Geometry 
Fractal geometry, introduced in the 20th century by mathematicians 
such as Mandelbrot, and continued to be improved by a lot 
more capable mathematicians such as Eglash, Okere and more, 
provides a groundbreaking way to understand complex, self-
similar structures that defy the constraints of traditional Euclidean 
geometry. Unlike conventional shapes with integer dimensions 
(1D lines, 2D squares, 3D cubes), fractals occupy fractional, 
or non-integer dimensions, reflecting on their complexity and 
intricacy at multiple scales. This unique property allows fractals to 
model patterns that recur throughout nature, from the branching of 
trees and river networks to the rugged surfaces of mountains and 
coastlines. Fractals serve as a mathematical link between natural 
phenomena and human-made designs, especially those emphasizing 
recursion and self-similarity [5]. A defining feature of fractals is 
self-similarity – a property where parts of a structure resemble 
a whole. For example, the Koch snowflake curve demonstrates 
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this properly by recursively adding triangular segments to each 
side of a triangle, creating infinitely detailed boundary [6]. The 
applications of fractals extend beyond cultural artifacts. They 
provide a framework for visualizing highdimensional spaces. 
Here, fractals model the compactified spaces of Calabi-Yau 
manifolds, which are integral to higher-dimensional theories of 
supersymmetry. These manifolds possess fractal-like properties in 
their recursive, self-similar structures, allowing them to contain 
vast spatial information within bounded dimensions. The power 
law scaling dimension, 𝐷 = 
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, commonly observed in African 

fractal designs can serve as an adaptable tool for analyzing the 
structural properties of high-dimensional spaces. 
 
3. African Fractals and Calabi-Yau Manifolds 
The recursive and self-similar properties of African fractals bear 
remarkable similarities to the structure of Calabi-Yau manifolds. 
These multi-dimensional shapes rely on recursive structures to 
define their geometry in a way that maximizes symmetry and 
minimize curvature [7]. These recursive designs in Calabi-Yau 
spaces also share an aesthetic and mathematical kinship with 
African fractals, particularly in their representation of symmetry 
and scaling across dimensions. Supersymmetry relies on a 
recursive algebra where particle interactions are described by 
self-similar transformations that mirror the nested arrangements 
in fractals [8]. 
 
4. Scaling Law in African Fractals 
In this section, we will use the notion of power law scaling 
dimension to map properties of African fractals to those of Calabi-
Yau manifolds. 

𝐷 = 
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 Calculates fractal dimensions
 
D: the fractal’s scaling dimension representing how the fractal’s 
detail changes with scale 

N: The number of self-similar units, indicating how many smaller, 
identical shapes make up the fractal 

r: the scaling factor, or the ratio by which each dimension of the 
fractal is reduced at each step 

5. Ba-Ila Village Layout 
5.1. Conceptual Mapping 
The patterns found in African architecture like the Ba-ila village 
layouts in Zambia also show this self-similarity. The way these 
patterns repeat themselves at different scales is like how the extra 
dimensions in Calabi-Yau manifolds are curled up. 
 
5.2. Mathematical Mapping 
Assume the village is made up of  N = 16, self-similar huts arranged 
in a grid pattern. The scaling factor r = 4, represents the ratio by 
which the layout is scaled down at each recursive level. 

 1. Take the logarithm of N = 16 
                                          log (16) = 1.20411998266 
2. Take the logarithm of r = 4 
                                                 log (4) = 0.60205999132 
3. Compute scaling dimension (D) 

The result, D = 2, indicates that the Ba-ila village layout exhibits 
self-similarity in two dimensions. This means that the pattern of 
huts repeats itself at different scales, a characteristic of fractal 
structures.  

NB: This is a simplified example to illustrate the concept. Real-
world Ba-ila village might have more complex patterns. 
 
6. Kente Cloth 
6.1. Conceptual Mapping 
The Kente cloth has intricate patterns that repeat at different scales. 
You can see a small pattern; you’ll find smaller versions of the 
same pattern. This self-similarity is a key feature of fractals. 

6.2. Mathematical Mapping 
Assume: 
The number of self-similar units (N).  In a section of a Kente cloth, 
assume 27 self-similar motifs (e.g. diamond shapes repeated in 
pattern). 
 
Scaling factor (r). The size of each motif shrinks by a factor of 3 
when moving from one scale to the next (eg the large diamond 
splits into smaller diamonds, each 1/3 of the size). 
 
Take the logarithm of N = 27 
                                           log (27) = 1.43136376416 
Take the logarithm of 𝑟 = 3 
                                                   log (3) = 0.47712125473 
 
Compute Dimension D 

The scaling dimension of the recursive cube is D=3, proving 
that the fractal pattern now occupies 3D space. This reflects how 
Kente inspired patterns, when mapped recursively onto a 3D cube, 
demonstrate a fractal scaling consistent with 3D geometry. The 
3D fractal structure of the Kente cloth example, with its scaling 
dimension of D = 3, serves as a powerful conceptual model for 
understanding the recursive compactification and symmetry 
inherent in Calabi-Yau manifolds. 
 
7. Conclusion 
These findings suggest that African fractal geometry, with its 
recursive scaling properties, can provide a meaningful lens for 
interpreting the extra dimensions proposed by supersymmetry. By 
aligning the recursive patterns observed in Kente-inspired fractals 

Ba-ila Village Layout 
 
Conceptual Mapping 
 
The patterns found in African architecture like the Ba-ila village layouts in Zambia also show this 
self-similarity. The way these patterns repeat themselves at different scales is like how the extra 
dimensions in Calabi-Yau manifolds are curled up. 
 
Mathematical Mapping 
 
Assume the village is made up of N = 16, self-similar huts arranged in a grid pattern. The 
scaling factor r = 4, represents the ratio by which the layout is scaled down at each recursive 
level. 
 

1. Take the logarithm of N = 16 
log(16) = 1.20411998266 

2. Take the logarithm of r = 4 
log(4) = 0.60205999132 

3. Compute scaling dimension (D) 

D = log(16)
log(4) = 1.20411998266

0.60205999132 = 2 

The result, D = 2, indicates that the Ba-ila village layout exhibits self-similarity in two 
dimensions. This means that the pattern of huts repeats itself at different scales, a 
characteristic of fractal structures.  
 
NB: This is a simplified example to illustrate the concept. Real-world Ba-ila village might have 
more complex patterns. 
 

Kente Cloth 
 
Conceptual Mapping 
 
The Kente cloth has intricate patterns that repeat at different scales. You can see a small 
pattern; you’ll find smaller versions of the same pattern. This self-similarity is a key feature of 
fractals. 
 

Mathematical Mapping 
Assume: 

The number of self-similar units (N).  
In a section of a Kente cloth, assume 27 self-similar motifs (e.g. diamond shapes 
repeated in pattern). 

 
Scaling factor (r) 
The size of each motif shrinks by a factor of 3 when moving from one scale to the next (eg 
the large diamond splits into smaller diamonds, each 1/3 of the size). 
 

1. Take the logarithm of N = 27 
log(27) = 1.43136376416 

2. Take the logarithm of 𝑟𝑟 = 3 
log(3) = 0.47712125473 

 
3. Compute Dimension D 

D = log(27)
log(3) = 1.43136376416

0.47712125473 = 3 

 
The scaling dimension of the recursive cube is D=3, proving that the fractal pattern now 
occupies 3D space. 
This reflects how Kente inspired patterns, when mapped recursively onto a 3D cube, 
demonstrate a fractal scaling consistent with 3D geometry. 
The 3D fractal structure of the Kente cloth example, with its scaling dimension of D =3, serves 
as a powerful conceptual model for understanding the recursive compactification and 
symmetry inherent in Calabi-Yau manifolds. 
 

Conclusion 
These findings suggest that African fractal geometry, with its recursive scaling properties, can 
provide a meaningful lens for interpreting the extra dimensions proposed by supersymmetry. 
By aligning the recursive patterns observed in Kente-inspired fractals and Ba-ila village layouts 
with the properties of Calabi-Yau manifolds, we can successfully bridge cultural mathematics 
and high-energy physics, opening pathways for innovative approaches to understanding higher-
dimensional spaces.  
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and Ba-ila village layouts with the properties of Calabi-Yau 
manifolds, we can successfully bridge cultural mathematics and 
high-energy physics, opening pathways for innovative approaches 
to understanding higherdimensional spaces [9-20].  
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