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Abstract
Amyloid self-assembled from amyloid peptides β-40 or β-42 is notorious due to the neurotoxic effects of β- oligomers in 
plaque and neurofibrillary tangles, neuronal dysfunction and diseases of cognitive decline such as Alzheimer’s, or Parkinson’s 
disease. This contrasts with so-called functional amyloids which are non-toxic ordered β-sheet molecular templates amenable 
to applications in tissue engineering. Long and hollow amyloid fibres, flattened tube and spiral ribbons have been used in 
engineering applications. Protein β-sheet core structures display diverse biological functionalities exploitable in futuristic 
self-assembling biomaterials revolutionizing nanotechnological developments in photopharmacology pain research, ultra-
high performance surgical bioadhesives, and our understanding of amyloid fibril assembly. Use of nano-wires cast within 
hollow amyloid fibrils has advanced nano-electronics in next generation computers, biosensors, ultracapacitors, memristors, 
actuators and molecular switches. Amyloid fibrils have been used in photon capture light harvesting technologies in nano-
photoelectronics, and photovoltaic photopharmacology futuristic nano-technological advances. A better understanding of 
amyloid fibril assembly processes may also uncover better ways to control the toxic build up of amyloid in brain tissues in 
diseases of cognitive decline. An innovative survey of over 1 million microbiome metabolites that regulate 300 G-protein 
coupled neuroreceptors and Tau microtubule dynamics show effects on amyloid fibrillogenesis. Some of these metabolites are 
absent in AD individuals prone to cognitive decline demonstrating the importance of the gut-brain axis in neuro-pathobiology. 
With the ever-expanding prevalence of cognitive diseases in ageing global populations a clear and present need exists to treat 
these conditions. A promising number of therapeutic interventions discussed herein warrant further exploration. 
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1. Introduction
This study has examined amyloid assembly processes in 
neurodegeneration to provide insights into how applications might 
be developed using β-sheet rich proteins in innovative assembly 

processes in the development of new generation biomolecular 
functional scaffolds in technological advances in nanobiology 
and in improved therapeutic manipulations of novel therapeutic 
compounds.
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1.1. Definition of Amyloid and Amyloidogenesis
Amyloid is a historic generic term for insoluble misfolded protein 
aggregates with defining β-pleated sheet content that can undergo 
self-assembly through stacking of these β-structures. Amyloid can 
be stained with diazo Congo red dye through intercalation with 
these β-sheet assemblies and these exhibit a characteristic green-
yellow birefringence under polarized light [1-6]. These misfolded 
proteins exhibit specific features that facilitate assembly of 
ordered repeat structures such as β-sheets, resulting in formation 
of insoluble amyloid deposits [1,5,6]. The importance of β-sheet 
secondary structure on the functional properties of β-sheet proteins 
has been evaluated using molecular dynamic simulations [7]. 
Innovative studies have identified that microbiome generated 
metabolites of dietary proteins transported to the brain can regulate 
G-protein coupled receptors (GPCRs) and control microtubule 
structure and hyperphosphorylation of Tau protein leading to its 
release from the microtubule to act as a nucleating factor in βA 
fibrillation dynamics [8]. Raman spectroscopy reveals that photo 
biomodulation can induce a transition of α-helix to β-sheet protein 
structures promoting neurodegenerative changes and development 
of Alzheimer’s disease (AD) demonstrating the importance of 
β-sheet structures in degenerative brain pathology [9]. A greater 
understanding of this transitional process may reveal new 
therapeutic opportunities to treat diseases of cognitive decline.

The importance of β-sheet structures in Aβ fibril formation has 
been evaluated using molecular dynamics simulations [7]. Raman 
spectroscopy has also demonstrated transitional changes in tubulin 
structure and Tau protein organization that contribute to β-sheet 
and amyloid fibril assembly processes of likely importance in the 
development of AD [9]. Preferential binding of aromatic amino 
acids to Aβ42 occurs through pi or π-π stacking and hydrogen 
bonding. Oligomeric polypeptides (K8Y8, K4Y8, K8W8) 
containing Lys and the aromatic amino acids Trp or Tyr significantly 
decrease Aβ42 aggregation as determined by thioflavin T staining, 
CD spectra and molecular docking studies [10]. Cell viability 
assays with these blocking peptides also confirmed a significant 
reduction in the toxicity of Aβ42 on the SH-SY5Y neuroblastoma 
cell-line which has been used extensively in neurobiology [11]. 
A β-sheet breaker peptide HPYD (His-Lys-Gln-Leu-Pro-Phe-
Tyr-Glu-Glu-Asp) has been designed that disrupts amyloid fibril 
assembly and has also been evaluated in behavioral testing studies 
and by transcriptional profiling [12]. Norepinephrine has also been 
shown to inhibit AD-β peptide aggregation and destabilizes AD-β 
protofibril formation [13]. Several studies have also reported 
on the synthesis of some short synthetic peptides called β-sheet 
breaker peptides which disrupt β-amyloid fibril assembly [14].

1.2. Assembly of Amyloid Fibrils, Plaques and Neurofibrillary 
Tangles
The Aβ peptides which form brain amyloid deposits are assembled 
into dimers, trimers, oligomers and distinctive fibrillar structures 
(Figure 1). All of these amyloid species share a common 
aggregation mechanism independent of the protein primary 
sequence progressing from amyloid monomers to formation of 

metastable soluble amyloid prefibrillar oligomers that eventually 
lead to stable insoluble mature amyloid fibres [15]. It is generally 
accepted that it is these pre-fibrillar amyloid oligomers which 
are primarily responsible for amyloid neurotoxicity in the brain 
rather than the monomers or mature fibres [16]. Generic amyloid 
deposits however can occur in many tissues in the human body, 
these involve a range of small misfolded proteins of variable 
β-sheet content but all lead to organ and tissue dysfunction 
[17,18]. Amyloid accumulation, plaques and neurotangles in the 
aging brain specifically lead to diseases of cognitive decline such 
as AD or Parkinson’s disease (PD) [19-22]. 

1.3. The Deleterious Impact of Amyloid Deposition in Tissues
Amyloid plaques can be viewed using light microscopy employing 
a variety of staining methods including silver stains, Congo red 
diazo dyes, Thioflavin, cresyl violet and periodic acid-Schiff (PAS) 
procedures [17,24]. These stain different components in plaques 
and neurotangles, with variable sensitivity. Immunolocalization 
of amyloid plaques with a range of specific antibodies to Aβ 
epitopes and to other amyloid-associated components has also 
been undertaken [25]. Amyloid fibrils display diverse molecular 
structures, ENTAIL and PARROT are two bioinformatics systems 
that have been developed for the classification of amyloid fibril 
biodiversity. Ultrasensitive, new generation amyloid biosensors 
have also been developed for the detection of amyloid peptides in 
tissues, plasma and cerebrospinal fluid [26-36]. Amyloid plaque 
formation may be linked to trauma of the brain microvascular 
system, chronic brain inflammation and immune dysfunction 
[37-39]. Predictive algorithms have been developed to assess 
peptides with a propensity to form amyloid fibrils in web-based 
software that predicts aggregation-prone protein sequences [40-
42]. AMYLPRED2 (http://biophysics.biol.uoa.gr/AMYLPRED2) 
is a public web predictive tool for amyloidogenic determinants in 
'aggregation-prone' peptide sequences [41]. It should be stressed 
that it is well known that amyloid toxicity is mainly due to the 
amyloid prefibrillar oligomers but not to the amyloid monomers 
or mature fibres [16]. This is due to the disruption of membrane 
integrity by the oligomer pore forming properties that effect Ca2+ 
homeostasis [43-45]. Membrane depolarization in the neuron 
results in activation of voltage gated ion channels and regulated 
control of the influx of Ca2+ resulting in neuron activation. This 
influx of Ca2+ results in mobilization of neurotransmitters contained 
in synaptic vesicles which are transported in a coordinated fashion 
by SV2 proteoglycan to the synaptic gap regulated by Ca2+ 

sensitive glycoproteins such as the synaptotagmins [46]. Merging 
of the synaptic vesicles with the post-synaptic membrane results 
in release of these neurotransmitters into the synaptic gap where 
they are taken up by adjacent neurons in the neural network and 
neurotransmission occurs [47]. Ca2+ is thus an important cell 
regulator particularly in neural activation and neurotransduction 
in neural networks and in neuron-astrocyte communication. Ca2+ 
modulates calmodulin-dependent protein kinase kinase signal 
transduction and this is a central organiser of synaptic plasticity, 
learning and memory [48,49]. Uncontrolled entry of Ca2+ through 
Ca2+ channels however is also a cell death trigger in neurons and 
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astrocytes thus proper control of this Ca2+ influx is important 
to maintain neuron activity and viability [46,47]. Calcium 
dyshomeostasis drives pathophysiological and neuronal changes 
in neurodegenerative diseases aggravating the symptoms of AD 
through aberrant activation of neuronal networks and dysregulation 
of neuron-astrocyte signaling [50-53]. This results in deleterious 
impacts on synaptic and cognitive processes that contribute to 
neuronal dysfunction and the pathogenesis of AD [54].

Figure 1: Schematic showing the hierarchical organization of 
amyloid microfibrils and how they are assembled into β-pleated 
sheet structures, amyloid plaques and neurotangles. The dominant 
components of amyloid plaques or deposits are amyloid fibrils 
(A, B) formed by close lateral association of protofilaments (C) 
formed by stacking of monomeric subunits (D).

Depiction of in-register cross-β structures (E), two intermolecular 
β-sheets are shown (F). In antiparallel cross-β structures, each 
subunit contributes a single β-strand per β-sheet, but the strand 
direction alternates (G). In multi-layered antiparallel structures, 
each subunit contributes more than one strand per β-sheet (H). In 
β-solenoids such as HET-s, subunits occupy more than one layer 
by coiling in solenoid like orientations, adjacent subunits are 
alternately colored blue and purple.

Schematic depictions of protofilament organizational forms. (I) 
single protofilament, (J) two protofilament twisted ribbon, (K) 
tubular structure formed by association of several protofilaments, 
often with rotational symmetry about the fibril axis (L), or a 
tape-like side-by-side association of protofilaments (M). Figure 
reproduced from under Open Access [23].

1.4. Not all Amyloids Induce Deleterious Functional Impacts 
on Tissues
In nature, amyloids have a range of functions across diverse 
organisms, ranging from mammals, bacteria, fungi and marine 

organisms [55-60]. So-called functional amyloids participate in 
an array of physiological processes such as regulation of pigment 
formation, storage and controlled release of peptide hormones, 
memory, fertilization of oocytes by sperm, antimicrobial responses, 
regulated necrosis, cellular responses to stress. Amyloid fibrils are 
also found as components in marine bioadhesives such as those 
which provide adhesion of barnacles and mussels to substrata. 
These have powerful adhesive properties that have inspired the 
development of tissue adhesives of potential application in highly 
specialized surgical procedures [59-70]. The unique architectural 
assembly processes and exceptional mechanical strength of 
amyloid fibrils makes these structures of interest in innovative 
applications in nano-electronics, and in development of suturing 
materials and vascular and orthopedic implants [71-76].

2. Amyloids as Attractive Candidates in Tissue Engineering 
2.1. Natural Amyloid Fibrils
Functional amyloids are attractive biomaterial candidates for tissue 
engineering applications [77-79]. Amyloid fibrils undergo self-
assembly, forming regularly organised structures with impressive 
biophysical properties and a range of morphologies including 
extended straight filaments, tapes, twisted ribbons, and hollow 
tubes. Fibrils are typically 5–20 nm in diameter with a length in 
the micron size range. 

2.2. Synthesis of Amyloid Fibrils in the Laboratory
Fibrils can also be assembled from a diverse range of small 
proteins and polypeptides over a wide range of assembly 
conditions influenced by temperature, pH and solvent conditions 
providing flexibility in the procedures that may be utilised in 
engineering applications to assemble fibrils at the nanoscale level. 
Furthermore, fibrils are assembled from arrangements of amino 
acids amenable to genetic manipulation and a range of biosynthetic 
bacterial protein expression systems are available. Introduction of 
point mutations in fibril proteins can introduce design features 
which vary chemical and electrostatic fibril surface characteristics 
which modulate binding properties and responsiveness to unique 
environmental conditions [80,81]. 

3. The Versatility of Amyloid Fibrillar Forms 
Several classes of engineered amyloid polymers have been 
developed with impressive credentials as biomaterials for 
engineering applications. These include (i) templates for casting of 
silver or gold nanowires used in nanoelectronics, (ii) hydrogels and 
bioscaffolds for delivery of stem cell and therapeutic drugs, (iii) 
light harvesting electron transport biomaterials for biophotonics, 
(iv) biosensors, actuators and molecular switches [82,83].

Hollow ~100 nm nanotubes have been developed using self-
assembly of amyloid-like fibrillar structures to form templates 
within which silver nanowires can be cast of 10-nm width and 
lengths ranging from 60 to 100 microns [84-86]. The central 
nanowire is subsequently recovered by proteolytic digestion of 
the peptide shell. Multi-layered co-axial nano-wire assemblies 
have also been prepared decorated on the exterior of the nanowire 
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with metallic gold as confirmed by TEM and energy dispersive 
X-ray analysis. Gold or silver nanowires with widths of ~100 
nm with demonstrated high conductivities and low resistances 
(~80 Ω) have been applied in nano-electronics revolutionising 
the development of next generation computers and biosensors 
[87,88]. Ultracapacitors have also been developed using an 
external magnetic field to orient horizontal and vertically aligned 
arrangements of nanotubes. These amyloid assemblies display 
enhanced capacitance relative to carbon and carbon nanotube–
modified electrodes [89]. 

3.1. Amyloid Fibril Applications in Nano-Electronics
Silver and gold nano-wires have found application in nano-
electronics in the development of actuators, molecular switches 
and memristors in microcomputing [85-87,89-95]. The memristor 
is a resistor with memory that behaves similarly to biological 
synapses [96]. The low power requirements and ultra-high speed 
signal transmittance capability of memristors is revolutionising 
development of neuromorphic circuits that are used in synthetic 
neural networks, switching devices and low-power sensors 
in microcomputing [97-99]. Nano-wires cast using hollow 
amyloid fibrils as casting templates have been used in bio-
sensing, optoelectronics and photovoltaics and show potential 
in the development of synthetic synapses in highly innovative 
bio-nanotechnological applications [100-102]. Furthermore, 
carbon-nanomaterial-amyloid fibril hybrids have potential uses 
in organic micro-electronics and bio-sensing in biomedicine 
and in structural nano-biomaterials. Amyloid fibrils have been 
used in a number of applications in tissue engineering [78]. 
Photobiomodulation therapy, using near infra-red 700-1400 nm 
low-level laser phototherapy, reduces the deposition of beta-
amyloid in the AD brain, ameliorating neuroinflammation and 
oxidant stress, supporting mitochondrial homeostasis to elicit 
a healing or regenerative response [103]. The surface chemistry 
of engineered amyloid fibrils can be modified depending on 
the amino acids employed and bacterial protein expression 
systems used. Furthermore, amyloid fibrils can be coated with 
chemicals such as, poly(3,4-ethylenedioxythiophene) polystyrene 
sulfonate (PEDOT-S), luminescent polyfluorene (PPF) or 
ammonium pentadecafluorooctanoate (APFO) that modify their 
responsiveness to specific chemical microenvironments [104-
106]. Fibrils can also be coated with gold nanomaterials modified 
with peptides or other chemicals. Gold itself is chemically 
inert but highly conductive and, when modified with additional 
components, can fine-tune the surface interactivity of amyloid 
fibrils. Some chemicals (PEDOT-S, PPF, APFO) can improve the 
light harvesting and electron transfer properties of fibrils which 
can improve the efficiency of photobiomodulation therapy [107]. 
Other amyloid fibrils can display catalytic enzymatic properties 
with hydrolases, esterases, lipases that can be harnessed using the 
fibril as a nanoscaffold for enzyme immobilisation in biosensors or 
to develop enzymatic activities that disassemble insoluble amyloid 
deposits [83,107-109].

3.2. Use of Amyloid Fibrillar Assemblies in Neuromorphic 
Computing
Quantum computers offer the computational power required 
to drive neuromorphic hardware in neural network dynamic 
simulations [110]. Machine learning and artificial intelligence 
algorithms running on neuromorphic hardware are being 
developed to assist in data analysis in artificial synapse modular 
supercomputing developments. Self-assembling amyloid fibrillar 
structures can be modeled to provide neuromorphic hardware 
due to varied fibril surface chemistry and their responsiveness to 
specific electrochemical microenvironments. This may be useful 
in the development of electrochemical random-access memory 
using ionic neurotransistors, leading to neuromorphic computing 
networks that drive sensory intelligent perception systems 
[111,112]. Application of AI methodology in brain-interface 
technologies offers particularly exciting possibilities in the 
improvement of real-time bidirectional control systems between 
living brains and actuators in motor and sensory neuromorphic 
applications and have already had notable clinical success in the 
treatment of paralyzed patients’ and expanded the mobility of 
disabled patients [113].

3.3. Development of Suturing Material and Vascular and 
Orthopedic Implants Using Amyloid Polymers
The mechanical strength of amyloid fibrils Amyloid fibrils possess 
a Young’s Modulus in the GPa scale and a strength comparable 
to steel. High-resolution data gathered from X-ray diffraction and 
NMR experiments, demonstrate an extensive cross β-sheet content 
within the core of the fibril forming an expansive hydrogen-bonding 
network spanning the length of the fibril. It is this cooperative 
intermolecular hydrogen-bonding network which confers stability 
and unique material properties to amyloid fibrils [114,115]. Amyloid 
fibrils have similar mechanical properties to dragline spider silk, 
which is one of the strongest and most rigid biomaterials in nature 
[71]. Silk and amyloid fibrils both contain expansive hydrogen-
bonded β-sheet networks. The material properties of amyloid fibres 
and β-sheet rich silk proteins makes them attractive candidates for 
the development of suturing materials and orthopedic and vascular 
implants for tissue repair. The β-sheet content of structural 
proteins produces very stable structures through lateral inter-chain 
hydrogen bonding. Silk fibroin is a good example of a block co-
polymer structure with β-sheet content which provides high tensile 
strength (0.5~1.3 GPa) and toughness (6 x 104~16 x 104 J/Kg) and 
is responsible for the strength of spider web drag-line silk [72-76]. 
Elucidation of the hierarchical structural organisation of silk fibers 
shows these are similar to amyloid fibrils and illustrates how silks 
unique mechanical features are achieved and how silk outperforms 
animal horn material in terms of strength and toughness [116,117]. 
High strength hydrogels can also be prepared using silk fibroin 
as a scaffolding material [118]. Vascular patch implants based on 
silk have also been developed and functionalized with perlecan, 
an angiogenic proteoglycan to improve vascular biointegration 
[119,120].
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3.4. Customised Amyloid Fibrils Made in the Laboratory
While natural self-assembled amyloids are nanometer-sized 
fibrillar biomaterials, it is now possible using in-vitro methods 
to assemble large 10-20 α m diameter amyloid fibers several mm 
in length [121]. Using a short, hydrophobic director α-helical 
template peptide and mixtures of peptides it is possible to self-
assemble large amyloid fibers, encoded by micron-sized self-
assembled structures at the genetic level, with tailored rectangular 
or cylindrical cross-sectional morphologies and robust material 
properties (modulus 0.1-2.5 GPa) [122-123]. 

3.5. The Versatility of Amyloid Hydrogels and Bioscaffolds
The ECM has important instructive properties over cells encoded in 
peptide epitopes of structural and signaling ECM components that 
act as molecular directors of cellular activity [124]. Peptide epitopes 
can be incorporated into synthetic amyloid biomatrices to mimic 
the specific communication that occurs between cells and tissues 
to control cell adhesion, differentiation, immunomodulation and 
ECM turnover to achieve tissue homeostasis [125]. Cell adhesion 
on amyloid fibrils occurs despite a lack of integrin recognition 
motifs, biomatrices have also been prepared containing RGD cell 
attachment motifs to further improve cell attachment providing 
versatile biomaterials for tissue engineering applications including 
the culture of neurons and to develop a model of AD [126-133]. 
Amyloid fibril bioscaffolds have been used to culture neural 
progenitor cells to assess if an Aβ β-sheet environment guided 
differentiation of cultured neural progenitor cells simulating 
conditions found in brain tissues in which amyloid deposition 
occurs. Aβ β-sheet bioscaffolds produced neural progenitor cells 
of a phenotype similar to that induced by amyloidosis in AD 
tissues [134].

4. Innovative Biotherapeutic Applications of β-Sheet Proteins 
in Biomedicine
4.1. Developments in Light Harvesting Technology in Photo-
pharmacology
Amyloid fibrils have Ultraviolet–visible–near-infrared optical light 
capture properties and have been applied to study the mechanism 
of amyloid fibril formation and in healthcare applications [135-
136]. Light capture technologies have also been applied in the 
activation of photoswitchable drugs in the regulation of neural 
pain generation. A problem of systemic pharmacotherapeutic 
neuroinhibitory medications like antiseizure drugs, which are used 
to treat epilepsy and neuropathic pain is off-target activity, which 
can cause unwanted side-effects. There is an urgent need for drugs 
that effectively inhibit nerve signals locally to alleviate pain without 
unwanted side-effects. Photopharmacology uses light-activated 
drugs illuminated locally at specific tissue target sites to provide 
specificity of action. Photoswitchable derivatives (carbazopine-1, 
carbadiazocine) of the antiseizure drug carbamazepine (tegretol) 
have been developed to treat tonic-clonic seizures and bipolar 
disorder and to relieve the intense, stabbing, electric shock-like pain 
caused by trigeminal neuralgia (douloureux, Fothergill disease). 
Carbadiazocine can be photoswitched between 400-590nm using 
light emitting semi-conductor diodes (LEDs) to activate specific 

analgesic mechanical and thermal pain relief profiles in a rat model 
of neuropathic pain [137]. Engineering of amyloid fibril optical 
biosensors using smart Trojan-horse technology can potentially 
improve light delivery precision in tissues to photoactivatable 
drugs offering innovative light harvesting technology solutions 
in photomedicine [136,138-142]. These types of drugs have also 
been examined for the detection and eradication of β-amyloid 
fibril deposits in tissues [143]. 

4.2. Development of Innovative High Performance Surgical 
Adhesives Based on β-Sheet Block Co-Polymer Proteins
Surgical wound closure has traditionally been undertaken using 
suturing techniques. However, some wound margins in very soft 
tissues are not mechanically strong enough to adequately support 
such a closure method. Biological adhesives or glues represent 
an alternative closure method and have added advantages since 
the absence of suture sites removes potential sites of biological 
infection or regions of point loading which may lead to tissue 
tearing and sites of infection in very soft tissues [61]. Catechol 
block co-polymer chemistry in marine (mussel, barnacle) 
adhesives and insect structural proteins have shown great potential 
in the development of ultra-strong wet-set tissue adhesives and 
these proteins only illicit a mild immune response [144-148]. 
Pvfp-5β folds as a β-sheet-rich protein which stacks in a catechol 
based repeat co-polymer resembling amyloid β-fold stacked 
protein structures [149,150]. Silk fibroin also displays similar 
block co-polymer organization in ultra-strong insect proteins such 
as spider-web drag-line silk [151]. Pvfp-5β folds as a β-sheet-rich 
protein containing repeat EGF-like modules and this polymer has 
strong adhesive properties on glass and plastic and no cyto-toxic 
side-effects [149,150]. Engineering of mussel adhesive proteins 
containing L-3,4-dihydroxyphenylalanine (DOPA) cross-linked 
with lysine can increase their β-sheet contents providing polymers 
with improved gradual silver release properties and toughness 
[152]. These polymers have excellent antibacterial properties 
against Gram-positive Staphylococcus aureus and Gram-negative 
Escherichia coli further improving the performance of such 
polymers in surgical procedures. Furthermore, anti-bacterial silk-
fibroin scaffolds containing silver nanoparticles increase osteoblast 
proliferation and human mesenchymal stem cell differentiation 
and have been used in bone regenerative procedures [153-155]. 
Bioadhesive protein polymers with programmable material 
properties can be engineered in the laboratory. Increasing the silk 
amyloid content of these polymers enhances the β-sheet content 
and toughness of such polymers [156]. The wet adhesive properties 
of such polymers are also tunable through defined molecular 
interactions [157-159]. Furthermore, an engineered biocompatible 
hydrophobic light-activated adhesive has been developed based 
on mussel DOPA adhesive [160]. The powerful adhesion this 
polymer provides to wet tissue within seconds of light application 
has been applied to high-pressure large blood vessels and cardiac 
wall defects [161,162]. Interventricular adhesive patches have 
been used in a beating porcine heart with sufficient adhesive 
strength to resist supraphysiologic pressures for 24 h providing 
immediate hemostatic repair of vascular surgical defects and offer 
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instantaneous adhesion. This adhesive has impressive credentials 
in tissue closure in demanding areas of surgical intervention.

Amyloid fibrils have also been observed in adherent marine 
organism adhesive compounds that contribute to their astonishing 
adhesive strength, tenacity of binding and very rapid adhesive 
properties under adverse environmental binding conditions 
[55,115,163,164]. Such polymers in barnacles and mussels have 
been de-engineered and new polymers created, inspiring the 
development of a new generation of high-performance surgical 
adhesives. These may obviate the need for sutures in demanding 
surgical procedures in very soft tissues where sutures may not hold 
adequately and may be a potential site where tearing of suture sites 
can increase the likelihood of microbial infection [61,165,166]. 
Surgical bioadhesives based on amyloid are non-immunogenic and 
may obviate the need for sutures altogether, providing improved 
healing responses in cardiac surgery and can even be used directly 
on the beating heart where their rapid, exceptional tissue adhesive 
properties are an important innovative surgical application [167].

Amyloid fibrils also occur in high performance structural 
insect proteins. Spider-web drag-line and aquatic silk fibroin 
copolymers in silk-moth (Bombyx mori), caddis-fly larvae (order 
Trichoptera) and sandcastle worms (Phragmatopoma californica) 
have assembly properties similar to those in brain amyloid fibril 
formation based on modular silk-homology repeat motifs and 
β-sheet formations which promote formation of block co-polymers 
[79,168]. Silk proteins have found application as suturing material 
and the preparation of engineered composite constructs used in 
biomedicine [61].

4.3. Microbiome Metabolites with GPCR Instructive Roles 
Promoting Tau Protein Release from Microtubules 
Innovative gut microbiome research has shown how microbiome 
generated metabolites can regulate GPCRs influencing Tau 
protein aggregate assembly processes that affect development of 
Alzheimer’s disease. The gut microbiome is an innovative area 
of intense investigation that provides insightful clues into how 
amyloid assembly processes and neurosignaling may be influenced 
by dietary components processed by gut microbes and which can 
be transported by the vagus nerve of the gut-brain axis to the brain 
through the blood-brain-barrier [169-176]. These metabolites can 
modulate the development of protein aggregates assembled by 
neurons that mediate the pathogenesis of AD and offer potential 
novel opportunities to treat this condition [19,177-179]. Roles for 
the gut brain axis have been established in the potential regulation 
of neurodegenerative processes [8,180]. Metabolites generated by 
several members of the gut microbiota can efficiently activate host 
GPCRs and influence host physiological processes [181]. Many 
bioactive metabolites act through the engagement of GPCRs 
[182]. A highly multiplexed bioactivity screening technology 
has been developed to construct a GPCR interactome based on 
>300 GPCRs and 1,041 human microbiome generated metabolites 
from 435 microbiome populations [183]. GPCRs control neuronal 
excitability, synaptic transmission and plasticity, and cellular 

behavior through spatiotemporally controlled precise initiation of 
a variety of cell-signaling pathways. Astrocytes, oligodendrocytes, 
neurons and cerebrovascular endothelial cells all express A1 
and A2A GPCRs and these can also participate in heteromeric 
interactions with adenosine A1, dopamine D2, or cannabinoid 
CB1 receptors [184]. Individuals with AD harbor different gut 
microbiomes compared to healthy people [8,180] and often lack 
bacterial species, such as Eubacterium rectale and Ruminococcus 
and consequently lack bacterial molecules produced by these 
microbes that are commonly found in healthy patients [8]. 
Computational modeling of potential interactions between one 
million microbiome generated metabolites and a number of neural 
receptors such as GPCRs has identified microbiome metabolites 
that reduce phosphorylated tau levels in AD neurons in healthy 
individuals [185-189]. Tau normally stabilizes the cytoskeleton 
that controls cell shape but in AD abnormal phosphorylation 
of tau results in its dissociation from microtubules, resulting in 
destabilization of microtubules and alteration in cellular activity. 
Furthermore, release of tau peptides can seed assembly processes 
for insoluble pathological amyloid protein aggregates in the brain 
[189]. N-acetylated and C-amidated AcPHF6 tau hexapeptide can 
cause significant acceleration in Aβ40 and Aβ42 fibril growth 
so it is important to better understand and control microtubule 
dynamics and this may facilitate development of more efficient 
inhibitory peptides that control fibril dis-assembly processes [190]. 
By combining machine learning and multi-omics the relationship 
between gut metabolites and GPCRs has been established and a 
GPCRome AD database has been constructed. This computational 
method and AI is a powerful systems biology approach that has been 
applied to identify microbiome directed personalized therapies by 
targeting the GPCRome and the contribution of β-sheet proteins in 
the pathogenesis of AD [8].

5. Conclusion
This review has shown that functional amyloids can be used to form 
versatile cell attachment matrices and hydrogels for cell delivery 
in tissue repair strategies and in innovative nano-electronics, 
bio-sensors, memristors and light harvesting technologies in 
photovoltaics and in photopharmacology. Ultra high performance 
β-sheet protein adhesive polymers have also been developed for 
specific highly demanding surgical applications. New developments 
show gut microbiome processing of dietary components produce 
metabolites with the ability to regulate GPCRs in the brain which 
regulate a range of physiological processes including the release 
of Tau protein peptides from microtubules with the potential to 
influence amyloid assembly processes and pathogenesis of diseases 
of cognitive decline. This opens a new potential therapeutic avenue 
for the treatment of these disabling conditions.
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