
  Volume 2 | Issue 2 | 1

Citation: Wijesundara, W. M. T. D., Wanigathunga, T. D., Waas, M. N. C., Hithanadura, R. T., Munasinghek, S. R. (2024). 
Accurate Crop Spraying with RTK and Machine Learning on an Autonomous Field Robot. Int J Bot Hor Res, 2(2), 01-11. 

Accurate Crop Spraying with RTK and Machine Learning on an Autonomous 
Field Robot

Review Article

W. M. T. D. Wijesundara1, T. D. Wanigathunga1, M. N. C. Waas1, R. T. Hithanadura1 and S. R. Munasinghek1,2*

1Department of Electronic and Telecommunication Engineering, 
University of Moratuwa, Sri Lanka

2Department of Global Development, College of Agriculture and 
Life Sciences, Cornell University, Ithaca, NY, USA

*Corresponding Author
S. R. Munasinghek, Department of Electronic and Telecommunication 
Engineering, University of Moratuwa, Sri Lanka.

 Submitted: 2024, Jul 22; Accepted: 2024, Aug 13: Published: 2024, Aug 23

Abstract
The agriculture sector requires a lot of labor and resources. Hence, the farmers are constantly being pressed for technology 
and automation to be cost-effective. In this context, autonomous robots can play a very important role in carrying out 
agricultural tasks such as spraying, sowing, inspection, and even harvesting. This paper presents one such autonomous 
robot that is able to identify plants and spray agro-chemicals precisely. The robot uses machine vision technologies to 
find plants and RTKGPS technology to navigate the robot along a predetermined path. The experiments were conducted 
in a field of potted plants, and successful results have been obtained.
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1. Introduction
In a variety of industries, autonomous robots are used to streamline 
routine and repetitive tasks. Recent years have seen an increase 
in the use of autonomous robots in the agricultural sector for a 
variety of tasks, including watering, spraying, seeding, harvesting, 
etc. Furthermore, autonomous robots are used in crop fields 
to monitor various tasks and also for weed control [1-4]. This 
approach is useful in fields where the crops are planted in parallel 
rows. To carry out desired tasks, robots must be able to navigate 
through these rows accurately. This research project demonstrates 
a spraying robot that uses RTK-GPS for navigation and machine 
vision for plant detection [5].

The RTK technology is popular in the localization and navigation 
of field robots and vehicles. This technology increases the position 
accuracy over the conventional GPS (Global Positioning System) 
technology. With the RTK technology, it is possible to localize 
and guide the robot along a predefined path with centimeter-level 
precision.

One of the project’s primary considerations is robot localization 
and navigation. The robot needs to travel along straight lines 
formed by a set of pre-defined locations such as the start and 

the end of a passage between adjacent plant rows. The GPS path 
can be created by fetching these locations to the mission planner 
[6]. A combination of sensors: RTK, wheel encoders, and an 
inertial measurement unit (IMU) is used to estimate the position 
in real time while the robot is moving. The sensor fusion method 
combines multiple sensors and produces the best estimate. Due 
to the presence of RTK, the estimated position is expected to be 
accurate enough. The following sections will provide a detailed 
explanation of the internal algorithm used to keep the robot 
moving along the planned path as closely as possible. With the 
aid of machine learning, the robot can recognize plants and 
decide how to treat them appropriately. A customized treatment 
process is conceivable with the help of advanced machine vision 
technologies going beyond the basic watering process. Spraying 
can be made cost-effective due to automated plant detection and 
targeted spraying. Machine learning and image processing are 
used to recognize and track the plants using spherical coordinates 
while the robot is moving. The ability to spray the optimal amount 
of fertilizer onto the right spots helps to reduce the over-usage of 
agro-chemicals.

After recognizing a plant in the camera image, the position 
coordinates of the plant are calculated. Then, the plant is localized 
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with respect to the spray nozzle using co-ordinate transformation 
from the camera to the spray nozzle. This process keeps tracking 
the plant as the robot moves, and the two nozzles spray agro-
chemicals right onto the plant. The Robot Operating System (ROS) 
running on a Jetson Nano single board computer was chosen as the 
development platform.

A variety of technologies have been used with autonomous systems 
in the field of agriculture. In navigation in crop fields using visual 
markers have been presented, where Bell and Thuilot et al. have 
used GNSS technology to guide the robot through the crop fields 
[7-10]. Multiple sensors, including cameras, laser scanners, GNSS 
receivers, and others have been used for more precise agricultural 
tasks [11,12]. Dong et al. and Chebrolu et al. used a number of 
sensors in conjunction with previously mapped field data to locate 
and steer the robot in a crop field [13,14]. However, they are 
either not very accurate in the aforementioned scenarios or they 
used numerous sensors to make them accurate. In this research, 
the robot uses RTK technology in conjunction with a number of 

other sensors and ensures accurate localization and navigation. In 
localization and navigation are based on a single-position sensor 
[15,16]. Hence, the accuracy and functionality are affected by 
the quality of the measurements and the real-time availability of 
the sensor measurement. In visual-servoing technique, which is 
typically used to control robot manipulators has been tested to find 
row crop fields [17]. The methods presented in Cherubini et al. 
describe how to steer the robot along continuous paths [18,19,20]. 
In this research, precise RTK data is used together with vision data 
in order to maintain high accuracy in localization, navigation, and 
most importantly, in crop spraying.

2. System Overview
This study concerns small to moderate-sized plants that are in a 
structured arrangement. The spraying robot must move along a 
pre-planned path while detecting and spraying plants.

2.1  Robot Design
The spray robot is shown in Figure.1 There are three major

3 

A variety of technologies have been used with autonomous systems in the field of agriculture. In 

navigation in crop fields using visual markers have been presented, where Bell and Thuilot et al. have 

used GNSS technology to guide the robot through the crop fields [7-10]. Multiple sensors, including 

cameras, laser scanners, GNSS receivers, and others have been used for more precise agricultural tasks 

[11,12]. Dong et al. and Chebrolu et al. used a number of sensors in conjunction with previously mapped 

field data to locate and steer the robot in a crop field [13,14]. However, they are either not very accurate in 

the aforementioned scenarios or they used numerous sensors to make them accurate. In this research, the 

robot uses RTK technology in conjunction with a number of other sensors and ensures accurate 

localization and navigation. In localization and navigation are based on a single-position sensor [15,16]. 

Hence, the accuracy and functionality are affected by the quality of the measurements and the real-time 

availability of the sensor measurement. In visual-servoing technique, which is typically used to control 

robot manipulators has been tested to find row crop fields [17]. The methods presented in Cherubini et al. 

describe how to steer the robot along continuous paths [18,19,20]. In this research, precise RTK data is 

used together with vision data in order to maintain high accuracy in localization, navigation, and most 

importantly, in crop spraying. 

 

2. System Overview 

This study concerns small to moderate-sized plants that are in a structured arrangement. The spraying 

robot must move along a pre-planned path while detecting and spraying plants. 

 

2.1  Robot Design 

The spray robot is shown in Figure.1 There are three major 

 
Figure 1: Robot Design 

 

Figure 1: Robot design

hardware layers in the robot platform design. The batteries and 
agro-chemical tank are located in the bottom layer. The capacity 
of the tank is 10ltrs and is located in a 29cm×14cm×24cm space 
in the bottom later. Forty-five plants can be sprayed with one 
full tank assuming 200 ml of liquid per plant. The tank and the 
pressure pump are located at the rear part of the robot closer to 
the rear wheels creating enough separation from the electronic 
system. The central controller is located in the middle layer. This 
is a printed circuit board including the robot motor drives, water 
pump control, the main processor (a Jetson nano), and a low-level 
robot-controlling microcontroller (an Arduino mega). The top 
layer consists of parts that are used to interact with the user and the 
environment. It has two cameras mounted on camera holders, two 
nozzles mounted on two robot arms, an RTK (reach M+) module 
and its antenna, a buzzer, LED indicators, a liquid crystal display, 
and all the switches needed to interact with the user. In order to 

shield other parts of the robot from fertilizer, the two nozzles are 
placed at the farther back end of the robot. Additionally, some 
parts, like two cameras and a reach M+ module, have an additional 
shield to protect them. The robot platform design is shown in 
Figure. 1.

2.2  Autonomous Crop Spraying Process
First, the path is planned as shown in Figure.2 through the plants. 
The shortest path assuring every plant is attended to is planned. Yet, 
the optimum path planning is not addressed in this research. The 
two cameras mounted on the robot provide a video stream to the 
vision processing system which detects the plants. Once detected, 
the distance and direction to a selected plant are determined and 
sent to the spray control system to control the robot arms, pressure 
pump, and nozzles.
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different levels of controllers allows for the distribution of control over low-level and high-level systems 

and components; a ROS-installed Jetson Nano as the high-level controller and an Arduino board as the 

low-level controller. The robot’s lowlevel components comprise three IR sensors to monitor the obstacles, 

two geared motors to drive the wheels, two servo motors each for the two nozzles of the spray system, and 

a display. The high-level components are a Reach M+ to receive RTK GPS position, and an IMU to read 

the attitude of the robot. 
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nodes with data request scripts and implements the real-time operation. The low-level motor controlling 

node receives the appropriate signals from the navigation node and controls the motor speeds. Tasks such 

as obstacle detection and locating plants are handled by respective nodes and communicated to the main 
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3. System Architecture 

Figure 4 shows the system architecture. The RTK positioning system, which is used for localization and 

navigation is the main component, and the two cameras are used to see the close vicinity of the robot. The 

cameras stream live video to the Jetson Nano single-board computer, which processes the images to 

identify the plants to be sprayed. 
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different levels of controllers allows for the distribution of 
control over low-level and high-level systems and components; 
a ROS-installed Jetson Nano as the high-level controller and an 
Arduino board as the low-level controller. The robot’s lowlevel 
components comprise three IR sensors to monitor the obstacles, 
two geared motors to drive the wheels, two servo motors each for 
the two nozzles of the spray system, and a display. The high-level 
components are a Reach M+ to receive RTK GPS position, and an 
IMU to read the attitude of the robot.

The system was implemented in ROS (robot operating system) 
that is running on the Jetson nano main control board. Each block 
shown is controlled by a ROS node. The main ROS node triggers 
the other nodes with data request scripts and implements the real-
time operation. The low-level motor controlling node receives 
the appropriate signals from the navigation node and controls the 
motor speeds. Tasks such as obstacle detection and locating plants 

are handled by respective nodes and communicated to the main 
ROS node.

3. System Architecture
Figure 4 shows the system architecture. The RTK positioning 
system, which is used for localization and navigation is the main 
component, and the two cameras are used to see the close vicinity 
of the robot. The cameras stream live video to the Jetson Nano 
single-board computer, which processes the images to identify the 
plants to be sprayed.

3.1 RTK Positioning System
Two receiver modules are used in the RTK system- the base station 
(fixed), and the rover (fixed or moving). The base station is located 
at a position where the latitude and longitude coordinates are 
known. In this research, the base station was Emlid RS and the 
rover module was Emlid M+. Both modules were configured using 
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Emlid software. The base station uses GNSS (Global Navigation 
Satellite System) signals and its known position to calculate the 
GNSS position error, which is transmitted to the rover over a 
915MHz RF (Radio Frequency) link. The rover also receives GNSS 
signals and it uses the GNSS position error sent by the base station 
to accurately calculate its position. The RTK system communicates 
the robot’s position to the Jetson nano central processor to localize 
and navigate the robot through the pre-specified path.

3.2 Navigation System
As the robot moves, it tends to deviate from the reference path, 
and corrective control actions are needed to pull the robot back 
to the reference path. Figure 5 illustrates the static reference and 
dynamic reference method as candidate control policies for path 
correction. In the static reference point method, the reference point 
is fixed on the reference path within a period of time, whereas in 
the dynamic reference point method, the reference point moves 
along the reference path as the robot follows it. In this research, 
the dynamic reference point method was used accepting the 

recommendation by Sanghyuk et al. where it shows that this 
method can bring the robot to the reference path and keep it there 
with minimum deviations [21]. The dynamic reference point 
method works as follows: First, the line L1 with an appropriate 
distance that is shown in Figure.6 is decided. Then, the coordinates 
of the reference point P and η the angle between L1 and the robot’s 
heading are determined. A circular arc shown in Figure6 goes 
through the robot along its heading, and the reference point P is 
drawn. This arc is used to generate wheel speeds that will drive the 
robot along the arc. Successive applications of this control policy 
will eventually help keep the robot on the reference path as shown 
in Figure. 6 bottom.

3.3 Dead Reckoning for Self-Localization
The robot’s motion within a small time interval is shown in 
Figure. 7. At time step k the left and right wheels travel lk = Rkδθk 
and rk = δθk(Rk +w) distances. The heading changes δθk and the 
instantaneous radius of curvature Rk of the motion are determined 
as follows.
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RTK-GPS positioning is expected to be very accurate despite 
its slow update rate (5Hz), and intermittent outages or drops in 
accuracy due to cloud cover. Hence, RTK-GPS is used to correct 
the wheel-encoder-based position update (xk+1,yk+1). Similarly, the 
IMU sensor is used to correct the wheel encoder-based heading 
update θk+1. Both RTK-GPS and IMU are absolute sensors unlike 
the wheel-encoder, which is a relative sensor.

A ROS node receives GPS data from the GNSS and also the real-
time GPS error from the RTK base station through an RF (radio 
frequency) link. Then, it determines the correct GPS location of 
the robot. The GPS coordinates are in LLH (Lattitude, longitude, 

height) format, hence it is transformed into Cartesian XYZ 
(Cartesian) format before combining with the wheel encoder data. 
This transformation is carried out using the ROS navsat transform 
node [23]. Then, the transformed RTK data, Wheel encoder data, 
and IMU data are fetched into the Extended Kalman Filter in the 
ROS navigation stack to get the accurate position and heading 
estimated. The extended Kalman filter and the position correction 
are shown in Figure 8. [24]

3.5 Vision System
The robot’s vision system, which consists of two RaspberryPI 
cameras and an NVIDIA Jetson Nano, detects the plants on either 
side as it moves. The object detector used was the SSD-Mobilenet, 
which is computationally less complex so that a higher speed 
(FPS-frames per second) compared to other object detectors is 
possible [25]. In order to make the input images compatible with 
the SSD-Mobilenet and to speed up inference, they are resized 
from 1080x720 to 224x224. In the SSD-Mobilenet model, non-
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maximum suppression is used to reduce the overlapping detections 
into a single bounding box with a 0.45 IoU (Intersection over 
Union) threshold. 
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Figure 5: Above: Static Reference Point Method,  Below: Dynamic Reference Point Method

Transfer learning was used for a pre-trained SSD-Mobilenet model 
on the COCO dataset to train the SSD-MobileNet object detector 
model, and the batch size was set to 4 [26]. This model had an initial 
learning rate of 0.01 and a momentum of 0.9. The specifications 
of the vision system are as follows. The vision system was able to 
correctly detect objects at a substantially high speed of 19-24 FPS 
once implemented the Tensor RT default Jetson nano library. The 
machine vision system then split into two distinct ROS nodes and 

used those nodes to transfer the coordinate information that should 
be necessary for the calculations of the Plant Localization and 
Spray Control mechanism. In addition, the horizontal and vertical 
angles are calculated in relation to the camera’s focal plane. Only 
the first instance of the detected plant passing the camera’s center 
is used for the calculations. Lastly, the calculated angles will be 
sent to the plant localizing algorithm.
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4. Plant Localization and Spray Control
When the vision system detects a plant in the image, the 
coordinates of the plant with respect to the camera frame {C} 
are determined and then the homogeneous transformation of the 
nozzle with respect to the camera CNH is used to determine the 
plant coordinates with respect to the nozzle {N}. Figure 9 shows 

an instance where the robot shows a pitch θ and a roll ϕ along with 
the camera {C}, spray nozzle {N}, image frame {I} and a plant 
and its image. Using the pixel coordinates (cpx,

c py) of the plant, the 
two spherical coordinates of the plant with respect to the camera 
can be determined using the 10 
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where d is the distance to the plant. The nozzle frame at its home position is aligned with the camera frame 

{C} and is located at (20,0,10)Tcm with respect to the camera. Hence, the homogeneous transformation 
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Figure 7: Position and heading difference over a small time interval
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Figure 10 shows the camera, nozzle, and the two angles of the 
nozzle to point it to the plant. The two servo motors along y and 
z axes of the frame {N} turn the nozzle around y axis by  αN

y and 
around z axis by αN

z starting off the home position of {N} and point 
the nozzle towards the plant.

In continuous spraying the nozzle does not have to start off at the 
home position for each plant, instead, incremental angle adjustments 
from the previous plant to the next plant are determined as follows.
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where n = 1,2,3... is the plant index. The flow rate of the nozzle is 
10l/min. Assuming each plant needs 200ml it takes 1.2s to spray a 
plant. During the spray time, the robot moves by 24cm given the 
average speed of 12m/s. In this research, this displacement is not 
considered an issue.

5. Results
The performance of subsystems has been tested as follows:

5.1 RTK Positioning Accuracy
A few known locations were used to test RTK accuracy. The robot 
was positioned at these locations and the real time coordinates it 
received after implementing the correction from the RTK base 
station were observed. Table I shows the converted position 
coordinates in XYZ format.

Table 1: Actual and observed coordinates

5.2 Path Tracking Accuracy
Figure 11 shows the motion in the RVIZ visualizer while the robot 
was moving on the ground. The mean and variance of the robot’s 
path were calculated as 7cm and 25cm respectively. The fact that 

the motion shows a larger variance compared to the mean error is 
expected because of the free swinging of the front caster wheels. 
These two caster wheels quickly move when they go over ground 
imperfections, causing a higher variance in the path error.
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Actual 

Coordinates 

Observed 

Coordinates 

Actual 

Coordinates 

Observed 

Coordinates 

x(m) 1110825.867 1110825.87085 1110706.361 1110706.36502 

y(m) 6235329.584 6235329.55216 6235347.832 6235347.89016 

z(m) 750012.164 750012.098407 750033.936 750033.982406 

The error for the two points are 3.2cm and 5.8cm, respectively. Hence the mean error is 4.5cm. 
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and variance of the robot’s path were calculated as 7cm and 25cm respectively. The fact that the motion 

shows a larger variance compared to the mean error is expected because of the free swinging of the front 

caster wheels. These two caster wheels quickly move when they go over ground imperfections, causing a 

higher variance in the path error. 

 
Figure 9: Coordinate System Figure 9: Coordinate system

Direction Point l Point2
Actual 

Coordinates
Observed

Coordinates
Actual

Coordinates
Observed

Coordinates
x(m) 1 110825.87 1110825.87 1 110706.36 1110706.37
y(m) 6235329.58 6235329.55 6235347.83 6235347.89
z(m) 750012.16 750012.10 750033.94 750033.98
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The deep neural network was trained using the Tensorrt inference library and was able to maintain a real-

time processing speed of 19 24 FPS with very high accuracy. Figure.12 shows plant identification by the 

trained deep neural network. It can be verified that the SSD-MobileNet model performs better in terms of 

speed and accuracy. The bounding boxes of the identified plant are used in determining the pixel 

coordinates cpx and cpy. 
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5.3 Plant Identification Accuracy
The deep neural network was trained using the Tensorrt inference 
library and was able to maintain a real-time processing speed 
of 19 24 FPS with very high accuracy. Figure.12 shows plant 
identification by the trained deep neural network. It can be verified 
that the SSD-MobileNet model performs better in terms of speed 
and accuracy. The bounding boxes of the identified plant are used 
in determining the pixel coordinates cpx and cpy.

6. Conclusion
This research demonstrates a fully functional autonomous plant 
spraying robot. The navigation system was designed using RTK-
GPS, wheel encoders, and an IMU, whereas the spraying system 
works on a trained deep neural network for plant identification and 
a pan-tilt robot mechanism to

Figure 11: Real-time feedback of the robot in the physical environment as seen in Rviz

control the spray nozzle direction towards the selected plant. 
Accurate path following, plant detection, and accurate spraying 
have been demonstrated. This robot sprays the right amount of 
agro-chemicals onto the plant, and its operational time can be 
extended by replacing the battery with a small gasoline-powered 

engine. Hence, the outcome of this research has the potential of 
becoming a smart agri-technology in the future.
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