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Abstract 
Because the CMBR follows the PLANCK's radiation law more or less exactly, it should, because of the 
indistinguishability  of individual photons, apply to a whatever black emitter. Therefrom arises the guess, that the 
existence of an upper cut- off frequency of the vacuum could be the cause for the decrease in the upper frequency range. 
Since the lower-frequent  share of the curve correlates with the frequency response of an oscillating circuit with the Q-
factor ½, it is examined,  whether it succeeds to approximate the Planck curve by multi-plication of the initial curve with 
the dynamic, time- dependent frequency response of the above-mentioned model. Reason of the time-dependence is the 
expansion of the  universe. This work is based on a model published in [1]. It is shown, that the PLANCK graph can be 
approximated  by application of the cumulative frequency response given by the model, upon the spectrum of an 
oscillatory circuit  with the Q-factor ½. Furthermore, the progression of frequency, energy and entropy is analysed. The 
results point out,  that origin and progression of the CMBR have elapsed in a totally different manner than generally 
assumed. Because  photons behaved like neutrinos immediately after BB they did not interact with other matter then. 
Thus, we can exactly  calculate back to 8.08·10–106s instead of 379,000 years after BB. Section 6 has been reworked.  

Keywords:  Cosmology, Big Bang Cosmology, Physics, Astronomy, Radio Astronomy, Wave Propagation, Expansion, 
Statistics, Thermodynamics, Relativistic Thermodynamics, Thermal Radiation, CMBR, Red-shift, Hubble-Parameter, 
Metrology 

1. Fundamentals

This article is based on a model I published in [1] and later in [7]. The idea stems from Prof. Cornelius 
LANCZOS, outlined in a lecture on the occasion of the EINSTEIN-symposium 1965 in Berlin. The lecture is put in 
front the work in [1]. It defines the expansion of the universe as a consequence of the existence of a metric 
wave-field. The temporal function of that field is based on the hypergeometric function 0F1 = √ , used in 
form of the Hankel-function. The particular qualities of the function lead to an increase of the wavelength. In 
this connection the phase angle 2ω0t = Q0 plays an important role, being identical with the frame of reference, 
affecting all proportions within the system. The value 0 corresponds to the PLANCK frequency. With the metric 
wave-field it‟s about an EM four-legged-field including vortices shaped as HERTZian dipoles arranged in form 
of a (regular) face-centered cubic (fc) crystal with the lattice-constant of the PLANCK-length. I named the 
vortices Metric Line Elements (MLE) and they are genuine physical objects. 

This version considers the correction of a calculating error in [1], effecting the frequency- and phase-response as 
well as the phase- and group delay. Furthermore, an updated value of H0 is used, based on the electron mass 
specified in [6]. In the annex the new Concerted International System of Units from [6] is used, but it doesn‟t 
have any effect to the result except for, that the calculation error is minimized. The model works with variable 
natural »constants«. But most of the resulting variations cancel each other. Only the LORENTZ-share remains. 
Thus, it‟s about a Virtual Relativity Principle. 

A special solution of the MAXWELL equations was found for the Hankel-function with overlaid interference 
function, which describes the wave-propagation in the vacuum and co-includes the expansion. This special 
solution owns an inherent propagation-velocity in reference to the empty space (subspace) which is almost zero 
to the current point of time.  

One conclusion from the model is the existence of an upper cut-off frequency of the vacuum, which could not 
be detected until now, because its value is about magnitudes greater than the technically feasible one. Another 
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conclusion of the model is the supposition that each photon is connected really or/and virtually with an origin at 
Q0 = ½. That is the frequency, at which the excessive energy with the shape of the metric wave-function has been 
coupled into the very same one, as an overlaid wave, where it can be observed until now as cosmic microwave 
background-radiation (CMBR). Furthermore could be determined, that the band-width in the lower frequency 
range exactly matches the one of an oscillatory circuit with the Q-factor ½, which equals the conditions to the 
point of time of the input coupling. An exceptional feature of the model is, that the Q-factor of the oscillatory 
circuit increases continuously equalling the above mentioned phase angle 2ω0t = Q0 exactly. 

 
Hence the intention of this article is, to determine, whether the PLANCK's graph can be approximated by 
application of the frequency response given by the model, upon the spectrum of an oscillatory circuit with the Q-
factor 1/2, furthermore to compare the calculated radiation temperature with the measured one. 

2. Frequency relations 
 

Since the cosmic background-radiation exactly follows the PLANCK's radiation law more or less, it should, 
because of the indistinguishability of individual photons, apply to a whatever black emitter. Therefrom arises the 
guess, that the existence of an upper cut-off frequency of the vacuum could be the cause for the weird curve 
regression in the upper frequency range.  

 
Another aim of this article is, to improve the proceeding any farther in order to make more precise statements. 
With the model attention should be paid to the fact, that with some many exceptions (c, 0, 0, 0, k), most of the 
fundamental physical constants are time- and refe-rence-frame-dependent. They are marked with a tilde (~) 
being simple values while the actual variables are written without. And there is a conductivity of subspace 0 
different from zero. The model is based on the PLANCK units, which can be determined by the locally 
measurable values (e.g. ω0). On the one hand, it suggests the values of the universe as a whole (e.g. H0), on the 
other hand, the values of the so called subspace (e.g. ε0 = const). That‟s the medium the metric wave field is 
propagating in. The proportionality factor is the phase angle of the temporal function Q0 = 20t.  
 
The model is based on the fact, that electromagnetic waves don‟t propagate independently, but as interferences 
(overlaid) of the metric wave field. The wave length of the metric wave field is equal to the PLANCK-length and 
proportional Q. In return, the wave length of overlaid waves is proportional Q3/2. To the frequencies ω0~Q−1 and 
ω~Q−3/2applies. That means, both functions intersect somewhere in the past, both frequencies must have had the 
same value then. The intersection point is at Q = ½, as we can see well at the lower frequent branch of PLANCK‟s 
radiation function being identical to the frequency response of an oscillating circuit with a Q-factor of Q = ½.  

 
We just determined the frequency ω0 extremely accurate. Thus, we also know ω0.5 very precise and reversely, 
we are able to calculate the frequency of the peak value of CMBR and with it, its temperature. Even the 
bandwidth of the LAPLACE-transform of the first maximum suggests a Q-factor of 0.5. This would correspond to 
the conditions at the point of time t1/4 with Q0.5 = ½, ωU = ω0.5 as well as r1/2, just our coupling-length. Then the 
frequency amounts to (new value):  

 

0 1
0.5 1

1 0 0.5

104 13.094082 2 0 s1
Q 1t

 (1) 

 
That doesn't correspond to the value, which results from the impulse-length of the first maximum, but it is in the 
magnitude order. Now the conditions at this time are shaped by a very large uncertainty and a part of the emitted 
frequencies are, because of the large bandwidth, anyway above, others below (1), so that it is well possible that 
the in-coupling of the cosmologic background-radiation takes place right at this point of time with exactly this 
centre frequency.  
 
The following contemplations for the in-coupling especially apply to the CMBR. Maybe it seems to be a little bit 
complicated, but it‟s just a model, which should reflect reality as well as possible, not the other way around. 
Now – up to the moment t1/4 of input coupling, the already emitted energy exists as a free wave. The conditions 
at this point of time are  analyzed in detail in Section 4.6.5.2. of [7] »The aperiodic borderline case«. Now there's 
going to be the construction of the metric lattice and the signal is coupled in. With the input coupling, a 
compression of the wavelength occurs i.e. an increase in frequency about the factor √  due to a rotation of the 
coordinate system about 45°, which we have done in Section 4.3.4.3.3. of [7] (the metric wave moves in r-
direction, the overlaid signals in x-direction).  
 
Furthermore, the metric wave, as well as the energy to be coupled in, exist side by side up to the moment t1/4, 
both with ω0~ωU~t−1/2~Q0

−1. But with the in coupling ωU→ωs the temporal dependence changes into 
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ωs~t−3/4~Q0
−3/2. This results in a transformation corresponding to a multiplication by a factor ⅔, comparable 

with the transition from one medium to another with different refraction indices.  
But there is yet another, additional effect: In Section 4.6.1. of [7] we found, that a cube with the edge length r0 
contains four MLE´s altogether. Hence, the energy must be divided among these four MLE´s. With it, the in-
coupling frequency decreases additionally with the effect, that ωs is smaller than ω1/2 now. The first two effects 
are depicted in Figure 1. The split we have to take into account elsewhere. 
 
Altogether, to the frequency at the moment of in-coupling the following factor is applied ωs = √  ωU 

 √  ω1 = √  1 ≈ 0.4714 1 =  7.29281·10103s–1. With respect to the energy UU = 4 11 only a share 
of 94.28% incorporated, since  is neither rotated, divided, nor transformed, it is a property of the metric wave 
field itself. The split has no effect onto the energy balance. The 94.28% relate to a coefficient of absorption of 
εν = 0.9428 √ . Therefore we are dealing with a gray body [4]. The black body is only a model, which 
doesn‟t exist in nature. The reflected share yields a further decrease of ωs and with it even of ωk. So we also 
have to multiply with εν.  
 
Now to the transfer itself. According to (281 [6]) is the frequency of time-like vectors proportional to  ~ t−3/4. 
That equals  ~ Q−3/2  for the Q-factor. We do the following ansatz: 
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The factor 2√  has nearly the same size as the factor x = 2.8214‟ from WIEN‟s displacement law. See Section 3. 
For the derivation. In Section 5. we will notice that using x instead of 2√ , actually intended as an 
approximation, leads to the only result (136) that is within the error margins of the COBE measurement. Then (4) 
should read as follows: 
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  (5) 

 
This would correspond to a slightly different refractive index and the factor x in (5) does not seem implausible 
either, as it is closely linked to the radiation laws. Apart from that we can see, that it‟s better to relate to 1 or 
U. The components z1b are describing the frequency related, the z2b however the energy related redshift. For k 
(5) we obtain a value of 1.00673·1012s–1.  Curve 1 in Figure 2 corresponds to the signal s redshifted by x Q0

3/2 
with the frequency response of a 1st order filter with the Q-factor Q = ½. Except for the decline in the upper 
frequency range it is identical with k (Curve 6). The conditions before, during and after in-coupling are shown 
in Figure 1. 
 
According to (5), the CMBR redshift has a value of z = 6.79605·1091, which is orders of magnitude higher than 
z = 1100, as »generally« assumed. On the one hand, this is due to the fact that this model works with variable 
natural »constants« whereas the photons behave like neutrinos shortly after BB and vice versa. Due to the 
expansion, i.e. the increase of r0 ~ Q0 (the viewer grows with it) the impression is given, that z is only 
proportional to Q0

1/2. This would correspond to a value of z = 8.14828·1030 and is still well above 1100.  
 
On the other hand, one assumes today that the physical laws shortly after BB did not differ significantly from 
those of today. So the origin of the CMBR is said to be around 3000 K, the recombination temperature of 
hydrogen, at a point in time 379000 years after BB. However, the exact results of the calculation of the CMBR 
temperature in relation to the time t1/4 suggest that we must slowly get used to the idea that it must have been 
different at that time. 
 
Let us now assume that the decline at the higher frequencies is really caused by the existence of a cut-off 
frequency. In any case, such a specific course cannot be achieved with a normal LC-low-pass filter of any order. 
Then the intensity of the cosmological background radiation should have to follow exactly PLANCK‟s radiation 
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formula. We therefore want to see whether PLANCK‟s curve 6 in Figure 2 can be approximated from the original 
curve 1, initially only as an estimate. 
 
 

 
 
Figure 1: In-Coupling Process and Expansion 

 
 

Figure 2: 
Intensity of the cosmologic microwave  
background radiation with estimate  

 
We have already realized that a single MLE owns an 
upper cut-off frequency (147 [7]), which changes 
during expansion. During propagation, only the active-
part A()·cos with  = B() is been transferred (real 
part). Thus we exactly get the value g = 21, it applies 
 =  /(21). With more exact contemplation we can 
see, the cut-off frequency may become effective in the 
first moments of propagation only. 
 
Let‟s have a look at the moment of in-coupling now: 
The signal ωs (curve 1) is multiplied with the 
frequency response A()·cos after in-coupling. As a 
result, we obtain curve 2, which already comes very 
close to the PLANCK-curve.  

 
 
Now the signal is transferred to another MLE, at which point the frequency has decreased to a value of s /√  
within this period. We now re-apply the frequency response to the signal obtaining curve 3 (We considered the 
frequency to be constant at the presentation scaling up the upper cut-off-frequency accordingly instead). Curve 3 
comes even closer to the targeted result. We repeat the entire process twice again obtaining graph 4 (s /1) and 
finally graph 5 (s 

/2), which figures a very good approximation of PLANCK‟s graph. 
 
It could be so just thoroughly that PLANCK‟s radiation-law is really the result of the existence of an upper cut-off 
frequency of the vacuum. In this connection is to be paid attention to the fact, that that, being applied to time-
like vectors emitted directly after Big Bang, must apply to each time-like vector emitted at a later point of time 
(e.g. today) too. With time-like vectors, it is impossible to determine exactly, when and where they have been 
emitted, they are timeless. Since no vector can be marked with respect to a second one, each thermal emission 
must run according to the same legalities (PLANCK‟s radiation-law) then. 
 
After we have been able to confirm our assumption with the estimate, it is appropriate to carry out an exact 
calculation. We will do this in the next section. 

3. The Wien displacement law and the source-function 
 

During the examination of the WIEN displacement law meets the eye, that the displacement happens exactly at 
the lower wing pass of the PLANCK's radiation-function, which coincides with the wing pass of an oscillatory 
circuit with the Q-factor 1/2 in this section. Quite often in publications the curve is shown in another manner. I 
prefer the duplicate logarithmic presentation, then the curve turns into a straight line, which even clearly shows 
the function of the factor ̃, which makes the difference between peak and slope.  

 
Considering the WIEN displacement law (13) more exactly, the factor ̃ = 2.821439372 attracts attention 
particularly. With an oscillatory circuit of the Q-factor 1/2 rather the factor 2√  would be applicable for this, at 
which point the 2 stems from the source-frequency 21. The expression √  arises from the rotation of the 
coordinate-system about π/4.  
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During an investigation in the Internet, I found a detailed deduction of the WIEN displacement law [2]. The value 
of the proportionality-factor can be obtained by the identification of the maximum of PLANCK's radiation law as 
follows. We start from (406 [7]): 
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e
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3 
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
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3x2(ex 1) x3ex    0            



x3ex
   3x2(ex 1)   (9) 
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

y  x 3 x  3 y   (10) 
 



yey3   yeye3    3      


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

x   3 lx(3e3)    2.821439372     x)xe(lx x      (12) 
 
lx is LAMBERT's W-function (ProductLog[#]). Finally, after insertion into the middle expres-sion WIEN‟s 
displacement law turns out: 
 

ћmax =   ̃ kT  =  2.821439372 kT          WIEN’s displacement law    (13) 
 
On success in doing the same even for the source-function with Q = ½, obtaining the same result, we would be a 
step forward in answer to the question: Is the course of the Planck's radiation-function the result of the existence 
of an upper cut-off frequency of the vacuum? First of all however, we have to bring the output-function into a 
form, suitable for further processing. We start with ([7] 405) with the substitution: 
 



Pv   

Ps
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  
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
s

  
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 (14) 

 
The expression stems from electrotechnics describing the power dissipation Pv of an oscillatory circuit with the 
Q-factor Q and the frequency  (see [3]), v is the detuning. The Q-factor is known and amounts to Q = 1/2 at 
s = 21. The right-hand expression results directly from the sampling-theorem. The cut-off frequency of the 
subspace 1 is the value 0 at Q =1. After substitution, we get the following expressions: 
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  (16) 

 
You can find that expression more often in [1] and [7], among other things even with the group delay TGr 
however for a frequency 1. For a frequency 21 applies for TGr and the energy Wv: 
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  (17) 

 
The factor ¹⁄₆ comes from the splitting of energy onto 4 line-elements, as well as from the multiplication with the 
factor ²⁄₃ because of refraction during the in-coupling into the metric transport lattice. It oftenly occurs in 
thermodynamic relations, which doesn't astonish. Thus, total-energy of the CMBR during input coupling is 
equal to the product of power dissipation and group delay, that is the average time, the wave stays within the 
MLE, but only for what it‟s worth. With the help of (16) we obtain: 
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b is a factor, we want to determine later on. Let's equate it to one at first. We determined the value Ps with the 
help of (394) using the values of the point of time Q = 1/2. Interestingly enough, the HUBBLE-parameter H0 at the 
time t0.5 is greater than 1 and 0. For an individual line-element applies: 
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Expression (18) is very well-suited for the description of the conditions at the signal-source. Here, the power 
makes more sense than the POYNTING-vector Sk. But for a comparison with (382) we just need an expression for 
Sk, quasi a sort of PLANCK's radiation law for technical signals with the bandwidth 21/Q0.5 = 41. Then, this 
would look like this approximately: 
 



dSk    4bA  


12









2

 es  d        (21) 

 
We determine the factor A by a comparison of coefficients (8). We assume, the WIEN displacement law (13) 
would apply and substitute as follows: 
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We put in 2√  1 as initial-frequency into the expression k4T4 That‟s advantageous, as we will already see. This 
frequency is not a metric indeed (x~Q–1), but an overlaid frequency (~Q–3/2). During red-shift of the source-
signal, likewise not the factor 2.821439372 but the factor 2√  becomes effective. Thus applies: 
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Indeed, that submits only the expression without consideration of red-shift. We determine the actual values to 
the point of time of input coupling, in that we apply the values for Q = 1/2 in turn. It applies: 
 

  



A     1
42

1
41

4Q8

1
3Q31

2Q2r1
2Q4    28324

42
1

41
4

1
31

2r1
2    128


1

2

4r1
2

  
    (27)         

 

  



4A   512


11
2

4r1
2

          
  



dSk   512b


11
2

4r1
2 Q7

 


1 2









2

 es  d
 

  (28) 

 
b will be determined later on. It shows, the POYNTING-vector is equal to the quotient of a power Pk resp. Ps and 
the surface of a sphere with the radius R (world-radius), exactly as per definition. Omitting the surface, we 
would get the transmitting-power Pv directly. In the above-mentioned expressions the parametric attenuation of 
1Np/R, which occurs during propagation in space, is unaccounted for. This must be considered separately if 
necessary. 
 
Now we have framed the essential requirements and can dare the next step, the proof of the validity of the WIEN 
displacement law in strong gravitational-fields. The basic-idea was just, that the Planck's radiation law (406 [7]) 
should emerge as the result of the application of the metrics' cut-off frequency (302 [7]) to the function of power 
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dissipation Pv of an oscillatory circuit with the Q-factor Q = 1/2 (18) We proceed on the lines of (7), in that we 
equate the first derivative of the bracketed expression (28) to zero. A substitution like in (6) is not necessary, 
because the expression is already correct. It applies: 

 



d
d


12









2

  2
(12)2 

43

(12)3    2  (12)
(12)3    0

  
   (29) 

 



2  (12)   0       



1  0    Minimum             



2,3  1   Maximum   (30) 
 
The first solution is trivial, the second and third is identical, if we tolerate negative frequencies (incoming and 
outgoing vector). Now, we must only find a substitution for , with which (406 [7]) and (28) come to congru-
ence in the lower range. This would be the displacement law for the source-signal then (27). Since the ascend of 
both functions has the same size in the lower range, there is theoretically an infinite number of superpositions, 
whereat only one of them is useful. Therefore, as another criterion, we introduce, that both maxima should be 
settled at the same frequency. The displacement law for the source-signal would be then as follows: 
 

ћ max  =  a kT          Displacement law source-signal   (31) 
 
at which point we still need to determine the factor a. As turns out, we still have to multiply even the output-
function itself, with a certain factor b, in order to achieve a congruence. The 4 we had already pulled out. We 
apply the value 2√ and 2.821439372 for a one after the other and determine b numerically with the help of the 
relation and the function FindRoot[#] using the substitution 2x = ay: 
 



a y
2 3

ea y
2 1

 4b  

y
2

1 (y
2)2











2

   0   y 10–5 b 2                      for  a  2 2              
b 2.009918917    for  a  2.821439372  

 (32) 

 
The maxima overlap accurately in both cases. The lower value a is equal to the factor in (903 [7]). Thus it seems, 
that with references, except for those to the origin of each wave with 21, multiplied with √ , which is caused 
by the rotation of the coordinate-system about /4, rather the approximative solutions with the factor 2√  apply. 
With lower frequencies, the factor 2.821439372 of the WIEN displacement law applies then again.     
 
But to the exact proof of the validity of the WIEN displacement law in the presence of strong gravitational-fields 
this ansatz is not enough. We must also show that the maximum of the PLANCK's radiation-function behaves 
exactly according to the WIEN displacement law, that means the approximation and the target-function must 
come accurately to the congruence. Since the difference between a factor 2√  and 2.821439372 amounts to 
0.5% after all, we will execute the examination with both values. Only the relations for b = 2√  are depicted. 
Now, we can set about to write down the individual relations: 
 

ћ max  =  2√  kT         Displacement law source-signal   (33) 
 

  



 
1
2
  

1

   
1

2 2

kTk

   
x
a

   
y
2  

    



y    
  

1

       b = 2   (34) 

 

 
 
Figure 3: Planck's Radiation Law and Source-Function 
in the Superposition (Logarithmic, Relative Level) 
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⨘
Q0

½ 

 A(y) cos φ(y) đy dy            (38) 

Thus, we have found our source-function. In y it reads as follows:  

  



dSk  
   16


0

2

4R2  

y
2

1 (y
2)2











2

 es  dy      R  for Q»1      (35) 

 
But we aren't interested in the absolute value but in the relative level only:  



dS1 
  8  

y
2

1 (y
2)2











2

dy         (36) 

 
We want to mark the approximation with dS2. For the target-function dS3 we obtain: 
 



dS3  
  (2.821439 y

2)3

e2.821439 y
2 1

 dy         (37) 

 
The course of the source-function and the PLANCK's graph are presented in Figure 3. 

4. Solution and analysis 
 
Of course, there is no shift-information y(Q) contained in these relations. Since the considered system is a 
minimum phase system, we now have to multiply the source-function dS1 with the amplitude response A(). 
The result is our approximation dS2. It is merely applied to a single line-element, which is traversed by the signal 
in the time r0/c. Thereat r0 is equal to the PLANCK's length and identical to the wavelength of the above-
mentioned metric wave-function. That means, we have to execute the multiplication with A(ω) as often as we 
like, unless the result (almost) no longer changes.  
 
But thereat as well the frequency of the source-function as the cut-off frequency (frequency response) decrease 
continuously. Therefore it's opportune, to take up the displacement (frequency and amplitude) later on with the 
result dS2 (approximation), instead of shifting on and on the location of the source-function. For the proof of our 
hypothesis indeed this last shift is not of interest, so that we won't take up it in this place. 
 
There is another problem with the amplitude response A() and with the phase-angle φ. Since the cut-off 
frequency 0 = ƒ(Q, 1) and the frequency  are varying according to different functions, it causes difficulties to 
formulate a practicable algorithm. Thus we use the fact that there is no difference, whether we reduce the 
frequency of the input-function with constant cut-off frequency or if we shift upward the cut-off frequency with 
constant input-frequency. But this corresponds to a transposition of integration limits. We choose this second 
way incl. the displacement of the approximation at the end of calculation. This all the more, since we would be 
concerned with two time-dependent quantities (input-frequency and cut-off frequency) otherwise. To the 
approximation applies: 
 
 
 
  
Expression (33) looks a little bit strange maybe. It‟s about a so called product integral, i.e. you have to multiply 
instead of summate. Then, the letter đ isn‟t the differential-, but the… let‟s call it divisional-operator. I don‟t 
want to amplify that, because we anyway have to convert expression (33) to continue. We use 
Q0 = 8.34047113224285·1060 from [6] as the updated value of the Q-factor and the phase-angle of the metric 
wave-function. The equality of the Q-factor Q0 and the phase angle 2ω0t is a special property of this function. It 
determines the upper limit of the multiplication resp. summation. Fortunately the frequency response can be 
depicted as e-function, so that the product changes into a sum. We simply have to integrate the exponent quite 
normally then. We obtain the frequency response inclusive phase-correction with the help of the complex 
transfer-function (150) to:  

 
( )A( )   ecos ( ) B( )     Frequency response of a line element  (39) 

 
The fact, that only the real component is transferred, is taken into account by the multiplication of A(ω) with the 
expression cos φ. I used (302) from [1] for Ψ(ω). Unfor-tunately, the expression stated there is wrong, because I 
miscalculated in Section 4.3.2. and I could reveal the error only now. After all the function determined there was 
not referenced in any correspondence table and I was unable to perform the inverse Laplace-transform to the 
verification until then.  
 
The corrected expressions and figures have been published in [7] as well as in a corrigendum. Fortunately I used 
a different approach for the rest of the work, without an error. Only Section 4.3.2. was concerned. With 
ω1= 1/(2t1) = κ0/ε0 expression (140 [1]) reads correctly: 
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2
1

a p 1a adp CCp p p 2pt1

1

C a 1y(p) e e e ep p 2pt
 (140 [7]) 

 
Because of cos(φ) = cos(–φ) we obtain the following corrected expression (302 [1]):  
 

2
2

2 2
1( ) ln 1 lncos arctan1 12

( )     (305 [7]) 

 
As next, we substitute  by y with the help of (34): 
 

   

2 y y2
2 2

y y2 2
2 2

1 y y( ) ln 1 ln cos arctan
2 2 1 2 1

( )
( ) ( )

      (40) 

 
The value  in the numerator of y figures the respective frequency of the cosmic background-radiation, for 
which we just want to determine the amplitude. It is identical to the  in PLANCK's  radiation law. Thereat, it's  
about an overlaid frequency, which is proportional to Q–3/2 in the approximation. The frequency is exactly 
proportional to Q–1.  
 
Instead of the value 1 in the denominator actually the PLANCK's frequency 0 should be written with the 
frequency response. That is also the cut-off frequency for the transfer from one line-element to another. But with 
Q = 1 the value 0 is right equal to 1, at which point 0varies with the time; 1 on the other hand is strictly 
defined by quantities of subspace having an invariable value therefore. It applies 0= 1/Q. That means, that 
even y depends on time, being proportional to Q–1/2. 
 
Now however, we want to freeze the value , at least up to the end of the calculation, with the consequence, that 
we must divide y by a supplementary function , which is proportional to Q1/2. It applies  = cQ1/2 and  

   

y y22 1 1
2 2

y y2 21 1
2 2

1 y 1 y 1( ) ln 1 ln cos arctan
2 2 21 1

( )
( ) ( )

    (41) 

 
The factor c arises from the initial conditions at Q = 1/2 (resonance-frequency 21, cut-off fre-quency 1) to c = 4 
(In the program cc = y/2): 
 



y    
  

0

 ~ 



2– 3
2

2
1
2

   1
4

         



  4 Q     Approximation  (42) 

 
Thus, together with the 2 of y/2, we acquire exactly the same factor 8 as in the source-function (36). Then, the 
approximation dS calculates as follows:  

 

       

0 2y y1 12 2 2
2 2y y1 1

2 2
1 2

Q

1 y 1 y1 1 ln 1 ln cos arctan dy2 22 2 2y 1 1
2

2 y 2
2

dS   8  dy
1 ( ) e     (43) 

 
The negative sign before the integral results from the re-exchange of the integration limits. For the determination 
of the integral, a value of 103 as upper limit suffices indeed. Over and above this, it changes very little. 
Therefore, I worked with an upper limit of 3·103 in the following representations. The integral only can be 
determined numerically, namely with the help of the function NIntegrate[ƒ(Q), Q, 1/2, 3103]. The quotient of 
y/2 and  expression (42) however describes the dependency y(Q) in the approximation only. There is an exact 
solution as well. According to [1] (209), (299) and (509) applies: 
 

 

 

4

4

1a 1 (Q)
b Q (Q) 1 

R
R

       with    1Q
2

            and   (44) 

 
1
2

Q

00

3 dQ(Q) Q
2

R         with    2 2 2
0

41 (1 A B ) (2AB)
2

  (45) 

 
0 2 0 2

2 2
0 0

J (Q)J (Q) Y (Q)Y (Q)A
J (Q) Y (Q)

      2 0 0 2
2 2
0 0

J (Q)Y (Q) J (Q)Y (Q)B
J (Q) Y (Q)

     (46) 
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The factor b arises from the demand, that the exact function  and its approximation should be of the same size 
with larger values of Q. The factor a we will determine later on in turn. The functions in (46) are Bessel 
functions. 
 
Problematic in (45) and (50) is the integral, which can be determined even only by numerical methods. In order 
to avoid the numerical calculation of an integral within the numerical calculation of another integral, it's 
opportune, to replace the integrand by an interpolation-function (BRQ1), and that inclusive the factor B. The 
value r cancels itself because of (44). We choose sampling points with logarithmic spacing: 
 

brq = {{0, 0}};   
For[x = −8; i = 0, x < 25, (++i), x += .1;  
 AppendTo[brq, {10^x, N[BRQP[10^x]/BGN/(2.5070314770581117*10^x) ]}]] 
BRQ0 = Interpolation[brq]; 
BRQ1 = Function[If[# < 10^15, BRQ0[#], Sqrt[#]]]; 

 
The function BRQP is equal to the product of Q, root-expression and integral in the denominator of (50). The 
value BGN is equal to the initial value of the same product at Q = 1/2. You'll find the complete program in the 
appendix. The factor b arises to 2.5(0703). According to (214 [7]), (581 [7]) and (623 [7]) applies further:  



    sin  

sin
    

 

Mc argc arccos sin
c 4

   (48) 

 
 

2 23 1 arg c  arg 1 A B j2AB
4 4 2

(( ) )     Mc c     (49) 

 

 



 

Q

0 0

4–
Q

0 0

4– dQ1Q2
2
3a  dQ1Q

b
a

56408.0
3

      

2
1

2
1

 

   (50) 

 
c is the complex propagation-velocity of the metric wave-field. As next, we want to take up a comparison of the 
two functions Q1/2 and BRQ1 (Figure 4): 
 

 
 
Figure 4: Function BRQ1 Exactly and Approximation 
 
On the basis of the demand, that the result of both functions must be identical with Q»1 we choose the factor a 
to √ . In this connection is to be remarked that the exact value is √ ̅ in fact. But since we finally will not find, 
in any case, an exact fit in the course of both functions, this small „cheating“ in the initial conditions should be 
allowed. The value √  namely leads to the result with the smallest difference, so that we obtain the following 
final relation for :   
















 

Q

0 0

4– dQ1Q2
2
3    

2
1   3cc 2 3.756

2
   (51) 

 
For √ ̅ a value of c = 4 would arise. The bracketed expression corresponds to the factor Q1/2 in the 
approximation. The course of the integral function in (43) as well as of the dynamic cumulative frequency 
response Ages(ω) = e–∫Ψ(ω)dQ you can see in Figure 5 and 6. For your information the amount of the complex 
frequency response |Xn(jω)| of subspace is plotted, that‟s the medium, in which the metric wave field propagates 
(ΩU = Ω).   

n
1 1 1X ( j ) 1
2 1 j 1 j

     Complex spectral function      (52) 

 

(47) 
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That applies to EM−waves propagating simultaneously with the metric wave field but not to the metric wave 
field itself. They achieve the aperiodic borderline case at Q = ½. 
 

 
 
Figure 5: Bild 4 
Course of the Integrals Ψ(ω) in (43) 
for the Approximation and Exact Function ξ 

 
 
Figure 6: 
Cumulative Frequency Response Ages(ω) and 
|Xn(jω)| of the Metric Wave Field and Subspace 

 
Thus, all requirements are filled and we are able to demonstrate the course of the approximation (43) in 
comparison with the target-function (37) and that as well for the approximation as for the exact function ξ. We 
use a logarithmic scale with the unit decibel [dB] and, because it‟s about power per surface, with the factor 10. 
 

 
 
Figure 7: 
PLANCK‟s Radiation Law and Approximation  
with Approximation for the Function ξ (Relative Level) 
 
Figure 7 shows the shape of the approximation using the approximation (42) for the function  (c = 4). The figure 
shows a phantom branch at the right side due to the down-limited decimal resolution by sign-change according 
to e1/±0. It will be removed in the following presentations. Furthermore we can see, both curves doesn‟t match 
exactly. The maximum frequency Ω⋔ is downshifted by 18.28% (0.81721). The maximum deviation of the 
amplitude Δ A⩞⩞ is with –1.78 dB, the difference between both maxima Δ A  +0.42886 dB (+10.38% resp. 
1.1038). Altogether the function resembles the shape, shown in [7] Section 4.6.4.2.3., obtained by multiplication 
of the source-function with only 4 choosed values of the frequency response. But there are disparities in the 
declining branch with higher frequencies. 
 
Figure 8 presents the course of the approximation under application of the exact function  (51) for c = 3.756. 
With it, the best fit (without group delay correction) turns out (With  c = 4, there is only a minor difference to 
Figure 7). But both functions don't overlap exactly neither in this place. Once again, the maximum frequency Ω⋔ 
is downshifted by 13.61 % (0.86386) The maximum deviation of amplitude Δ A ⩞⩞ is about +1.33 dB, between 
both maxima Δ A  at +0.75834 dB (+19.07%).  
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The course of deviation (logarithm of the quotient of approximation and PLANCK‟s radiation law) as a function 
of y is shown in Figure 9. One sees, from ca. 10  on the relative deviation between both functions is strongly 
growing. But since the absolute level in this range is already microscopic (−54dB at the third zero), nobody will 
take notice of it. Even there it seems rather to be about a small frequency shift, than about a deformation of the 
envelope.  

 
 
Figure 8: 
PLANCK‟s Radiation Law and Approximation under 
Application of the Exact Function ξ (Relative Level) 
 
In any case, the form of the approximation-graph doesn't correspond to that of a black emitter and the value is 
too high. But during the COBE-experiment, they just have been ascertained, that the spectrum of the CMBR is 
exactly? black. Therefore, more forces are required in order to change the form in such a manner, that it equals 
that of a black emitter. In the next section we will see, which influences may come into consideration for that 
purpose.  
 
As further considerations [6] show, the above mentioned deviation is less because of the curve shape, but 
because of the value of the HUBBLE-parameter, determined in [1]. With the value from [6] and [7] the 
calculation exactly fits the limits of the measuring tolerance of the COBE/WMAP-satellite. Read Section 5 for 
details. 
 
In Figure 9 we can see that we yield an improvement if we use the exact function . Never-theless a certain left-
over difference remains. If we take a look at the course in the 2nd quadrant, we can see a »gap« where an 
already known function, multiplied with the factor ½,  could slot right in there. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
Figure 9: 
Relative Offset Between   
Approximation and Radia-
tion Law in Dependence of 
the Function ξ Used 
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That‟s the group delay TGr of the metric wave field of [7] Section 4.3.2. Whereas the phase response affects the 
form of the carrier frequency (ω1 resp. ω0), the group response affects the shape of the envelope curve. It reads: 

22

Gr 2
1 1

2 θdT B( ) 21d
 (53) 

 
With Ω=ω/ω1. The factor 2 cancels out, since it‟s about a spin2-system, with which all temporal constants are 2T 
instead of T (double phase-/group-velocity). Whereas the group response is constantly equal to zero across 
nearly all decades, it is not the case close to ω1 resp. ω0 nowadays. A frequency dependent group response 
always leads to a distortion of the envelope curve. 
 
As we can see, the group response is negative. That happens in technology too and is not a violation of causality. 
See [8] for details. So far we have taken into account the frequency response A(ω) and the phase response B(ω), 
only the group delay correction Θ(ω) = ½ ω1Tgr, is missing, implemented by the function gdc[ω]: 
 

1
1 Gr

21 T =
2 12  

2 2

2 2=1 1
       (54)  

 
2 2 2

2 2 2
1 Gr

lge 0,1 1 1434294T( ) e e 10 10      (55) 
 
The decimal power is important, if we want to calculate with dB. The group delay correction Θ(ω) on dS2 is 
applied only once:   

 

       

0 2y y1 12 2 2
1 Gr2 2y y1 1

2 2
1 2

Q

1 y 1 y 11 1 ln 1 ln cos arctan dy T222 2 2 2y 1 1
2

2 y 2
2

dS   8  dy
1 ( ) e       (56) 

 
The resulting functions with group delay correction for both ξ are shown in Figure 10 and 11. There is already a 
better fit of both graphs in Figure 10, as we can see. Now the maximum Ω⋔ of the frequency is downshifted 
about 12.52% (0.87476). The maximum deviation of amplitude Δ A ⩞⩞ amounts to +0.42061 dB. The deviation 
between both peaks Δ A  is –0.40484 dB or –1.45%. 
 

 
 
Figure 10: 
PLANCK‟s Radiation Law and Approximation 
With Group Delay Correction With Approxi- 
mation of the Function ξ (Relative Level) 
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A nearly perfect result we have got for the case exact ξ with group delay correction (Figure 11). Now the 
maximum frequency Ω⋔ is downshifted about –7.00% (0.93003) only. That value is far in excess of the –2.36% 
deviation between measured and calculated CMBR-temperature. The maximum amplitude deviation Δ A ⩞⩞ is at 
about –0.58954 dB, between both maxima Δ A  is at –0.02762 dB (–0.64%). Of particular interest is the 
extremely high correlation coefficient of 0.999835 between both curves. 
 

 
 
Figure 11: 
PLANCK‟s Radiation Law and Approximation 
With Group Delay Correction under Application 
of the Exact Function ξ (Relative Level) 
 
 

  
Figure 12: 
PLANCK‟s Radiation Law and Approximation 
With Group Delay Correction under Application of 
the Exact Function ξ (Relative Level) High Resolution 
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To the better clarity, the last case is depicted in Figure 12 with higher resolution. You can find the exact results 
in Table 1. Figure 13 shows a summary of the relative deviations of all solutions in comparison with the course 
of the absolute value of the complex frequency response |Xn(jω)| of subspace. 
 

Figure 13:  
Relative deviation between approximation and  
radiation law according to the function ξ used 
without and with group delay correction 
 

 
 

Value 
 

Ω⋔ Δ Ω⋔ A  Δ A  Ω⩞⩞ Δ A ⩞⩞ Ω⩞⩞ ΔA ⩞⩞ 

 [1] [%] [dB] [dB] [1] [dB] [1] [dB] 
Planck    1.00000 ± 0.00 +1.52727 ±0.00000 −− −− −− −− 
Figure  7 0.81721 −18.28 +1.95613 +0.42886 0.41944 +1.20008 2.88334 –1.78499 
Figure  8 0.86386 −13.61 +2.28561 +0.75834 0.46495 +1.29392 5.55922 +1.32996 
Figure 10 0.87476 −12.52 +1.12244 –0.40484 0.14776 +0.42061 –– –– 
Figure 11 0.93003 − 7.00 +1.49965 –0.02762 0.15421 +0.43171 1.95909 –0.58954 

 
Table 1: 

Extreme Values of PLANCK‟s Radiation-Function and 
Approximation According to the Function ξ used 

Without and With Group Delay Correction 

5. The Wien displacement 
 

The solution according to Figure 11 seems to fit to the best the observations. As we can see in figure 11, the 
curve oscillates around the nominal value near the upper cut-off-frequency, a behaviour, as we even know from 
technical minimum-phase low-pass filters (overshoot). Usually it is being suppressed by an attenuator and there 
is the parametric damping. Aside from that the level at the third null is already with –50dB, the rest disappears 
in noise. 
 
Let‟s suppose, that the +1.5

 –0.5 dB are »healed up« during the many billion years or have been »ironed out« by other 
influences not considered here – at the end, we must carry out, as promised, a WIEN-displacement. Evidently the 
WIEN displacement law applies then. Most publications do not explain why it is called displacement law. 
Usually a graphic of nested curves for the wavelength λ is shown in a linear presentation. It should also be noted 
that the usual formula λ = c/ν cannot be used for the conversion ωmax → λmax for thermal spectra. The reason is 
the different radiation distribution. According to [10] applies λmax = 0.6 c/νmax. 
 
The name can only be properly understood in double logarithmic representation, e.g. in dB. Then you can see 
that the curves are really down-shifted along the left slope as tempe-rature/frequency decreases (Figure 14). This 
can be achieved in a graphics program by moving the top right corner of the curve to the bottom left while 
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holding down the Shift key. This results in a simultaneous reduction in frequency and amplitude. However, the 
prerequisite is that the aspect ratio is equal to 1. Then the factor x describes exactly the distance between the 
peak value and the edge. 

 
In principle, an explicit peak value is assigned to each peak frequency, including to the integral of the intensity 
over the entire frequency range, i.e. to the POYNTING vector ̅ . Before calculating the value ̅ , we first 
determine ̅  by extrapolating ̅ . The values of Q0, ω1 and Tk are known or can be calculated exactly. 
However, one peculiarity of the CMBR should be noted: 

 
 
 The cosmological background radiation CMBR is subject to the parametric damping, 
 but not to the geometric damping. 
 

 
The reason is that the entire universe is permeated by the radiation affecting the observer from all sides (state of 
equilibrium). We calculate the value ̅  using the STEFAN-BOLTZMANN radiation law (409). 
 

 
Figure 14:     
The WIEN Displacement Law 
Schematic Presentation 
 
However, this requires an exact determination of Tk. Of course we could use the COBE value for it, but we want 
to set up an accurate relation to Q0 indeed. Therefore, at first, we will deal with Tk in the next section. All 
relevant frequencies are listed in Table 2, the values for H0 >70  are for information only.  
 
 Emission frequency  (H0=68.6) U 3.09408·10104 s–1 fe 4.92438·10103Hz 
 Immission frequency  (H0=68.6) s 6.85874·10103s–1 fs 1.09160·10103Hz 
 CMBR-frequency  (H0=75.9) k 1.12584·1012s–1 fk 179.18259 GHz 
 CMBR-frequency  (H0=72.0) k 1.09639·1012s–1 fk 174.49511 GHz 
 CMBR-frequency (62)  (H0=68.6) k 1.00673·1012s–1 fk 160.22630 GHz 
 CMBR-frequency  (COBE) k 1.00675·1012s–1 fk 160.23±0.1GHz 

 
Table 2: 

Frequencies of the cosmologic 
background radiation 
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6. The temperature of the CMBR 
 

With the help  of the expressions given in [7] Section 4.6.4.2.5., we are able to calculate the temperature of the 
CMBR to compare it with the COBE-measuring. Indeed, it is hard to believe, that we can actually calculate back 
until a point of time before the phase jump at Q = 1. But the contemplations conducted in [6] turned out, that 
both, photons – these behaved like neutrinos in the beginning – and electrons and protons, had had different 
properties shortly after BB, banish the usual notions of this period to the realm of imagination.  
 
Albeit with a different value for H0 (71.9845 km s–1Mpc–1), I succeeded in [1], to calculate a CMBR-temperature 
of 2.79146K with the model. This was close to the 2.72548K ±0.00057K (±2.09137∙10−4), determined by the 
COBE-satellite. What works in one direction, naturally also works in the other direction. So the 2.72548K of 
COBE using the values from [1] match an H0 in the amount of 68.6072 km s–1Mpc–1. Indeed, that‟s less than I 
calculated. Now, based on the electron, I determined, a new H0 with an amount of  68.6241km s–1Mpc–1 in this 
work. And I was not a little surprised, that it was extremely close to the COBE-value. So I assume, that the new 
value must be more accurate, than the one calculated in [1]. Now to the calculation. 
 
Whereas the temperature of the metric wave field is equal to zero (see below), it‟s not the case with the CMBR. 
Since it‟s about almost black radiation (εν = 0.9428 √ ), we are able to calculate the black temperature 
indeed, but we want to work-on with the grey temperature. By transposing the WIEN displacement rule with the 
energetic redshift z22 = 12 εν Q0

5/2 of (4) we obtain for U = 21:  
– –1 1 1 1k
0 0

5 5
2 2

2.821439372 Exactly

2 2 Approx.
   Q 0.055693 Q

k 6k kk x =T
x x


 

     (57)
  

– –1 1 1 1k
0 0

5 5
2 2 Exactly0.94048   3

1  Q Q
k 3 6k 18kk

x=T
x

 


    (58) 

 
That‟s the temperature of the cosmologic background radiation in consideration of the frequency response. The 
temporal course is shown in Figure 15 and 16a-b. There are similarities to the energy density. The presentation 
of the spatial dependency should be omitted here.  
 

 
Figure 15: 
Temporal Dependence of the Radiation-  
Temperature of the CMBR (Linearly) 
 
I already offered expression (58) as an approximation in [1], since the value ̃ = 3 + lx (−3e−3) is only 0.25% 
below √ , see also Section 3. With it, we get an extremely simple expression, which corresponds to a value 
εν = ̃/3. That would be 4× the 3 in one expression and the subspace slightly greyer, as thought. Since we want to 
know exactly, we will verify even this approach.  

 
 

–1 1
0

5
2 2

31.002476662335245 Q 2
18kk =T


 
(59) 
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–1 1
0

5
20.997209201884998 Q

18kk =T
  (60) 

 
  

–1 1
0

5
2 1.0028147796674221.000016126070630 Q

18kk =T
  (61) 

 
The third, artificially created case for a »wonder« turns out the 2.72548K exactly. Table 3 shows all possible 
solutions once again including the accuracy limits of the COBE data. 
 

  
Table 3: 

Calculated and Measured CMBR-Temperature in 
Comparison With the Values of the HUBBLE-Parameter 

 
The Q0- and H0-values for the COBE-satellite have been determined with the help of (58). The upper and the 
lower limits of the COBE-values are yellow highlighted. As we can see, the approximation (58) is very good. 
The value from [1] is much too high and (59) is outside the measuring precision of COBE. Expression (62) is out 
of question, since its value is below the measured one. Moreover it‟s not related to the model. That also applies 
to (61). The approximation (58) in contrast, seems to hit the nail on the had. Whether that‟s true, further, more 
precise measurements will prove. Thus, we define: 
 

–1 10
0 0

5
51

2 2 Q Q 2.725 1.6436049K =
18k 1

1
8k

258 10kT


 
(62) 

  
The calculated value is within the accuracy limits of the value 2.72548K ±0.00057K mea-sured by the COBE-
satellite and is reference frame dependent (~ Q0

–5/2). For the choose of the correct relation to the calculation of TK 
I leave the reader room for his own interpretations.  
 
Even if the CMBR temperature used to be higher, it never exceeded the PLANCK-temperature. I would like to 
point out that although a PLANCK-temperature can be defined, it is by no means identical to the temperature of 
the metric wave field (0K). Rather, it represents the maximum possible temperature of a system without 
violating any physical laws e.g. vrot>c. It is generally assumed that this is a value, firmly defined at 
Tk0 = 1,416784·1032K. And it should equal the temperature of the metric wave field, to be correct even divided 
by 8π. But that‟s not the case. According to [4] this results from the GIBBS fundamental equation: 
  

T0 dS0 =  d(mc2) − ωdL            
T0 dS0 =  d(m0 c2) – ħω0 dL  =   0 T0  ≡ 0K            

 
because of ω0 ≠ const. That well fits the observations. Thus, the famous expression mc2

 = ħω is nothing other 
than a special case of the GIBBS fundamental equation for T0 = 0 at the level of the metric wave field. It thermally 
speaking, does not make an appearance – otherwise we would have been vaporised long ago. For the case L= 0 
the temperature would be expression (64) divided by 8π. Thus, the correct PLANCK-temperature T0 is equal to 
zero. 
 
In fact, according to this model, the CMBR initially would have been above the PLANCK-temperature with all the 
resulting questions. However, it is generally assumed that the universe – not the CMBR – should have had this 
temperature shortly after BB. However, according to the prevailing world view, the CMBR only came into being 
“a few hundred thousand years later”, which is unfortunately wrong. 

(63) 
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Figure 16a: 
Temporal Course of the CMBR Radiation-Temperature in Compa- 
rison With the PLANCK-Temperature from Incoupling until Now 
 

 
 
Figure 16b: 
Temporal Course of the Radiation-Temperature of the CMBR 
in Comparison With the PLANCK-Temperature Shortly after BB 
 
This model is based on the assumption that most of the so-called natural constants, including the PLANCK-
quantities, depend on space and time and may thus vary over time. Of course the same should also apply to the 
PLANCK-temperature. Then, the value Tk0 would not be as fixed as expected. To document the temporal 
dependency, we use the definition in [55] as a starting point. Since there are further masses additionally to m0, as 
well as G1 and G2, we can also define two further temperatures. See [7] section 6.2.4. With the help of (824) 
ibidem we get: 
  

2 5
0m c 1 c
k k Gp0T   

2 5
1

1

M c 1 c
k k Gp1T   

2 5
2 1

2

M c 1 c
k k Gp2T    (64)  

 1.416784486973612·1032
 K 1.181665011421290·1093

 K 9.855642915740686·10153
 K  

 
 
It applies m0 |×Q0 → M1 |×Q0 → M2 as well as G |×Q0 

2 → G1 |×Q0 → G2. Then, the following relationships exist 
between the individual temperatures Tp0 |×Q0 → Tp1 |×Q0 → Tp2. While the first value is valid at the event horizon 
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directly at the observer, the second one is determined for the particle horizon. It rather depends on distance. The 
third value applies to the moment t1 shortly after BB with Q0 = 1. Now we can set about specifying the relations 
Tp0 =ƒ(Q0) =ƒ(t)  and Tk0 =ƒ(Q0) =ƒ(t):  

2
22 1
0

M c 1Q
k 2 ktpT 

    
         (65a) 

5
45/21 1 1 1

0
1

tQ
18k 18k tkT  

 
        (65b) 

 
Figure 16 was generated using the following program:  

Plot[{ 
   Log10[TpST[10^t44]](*Planck*), 
   Log10[TkST[10^t44]](*CMBR*)}, {t44, -105, 20}, 
 AxesOrigin -> {0, 0}, PlotStyle -> { 
    {Thickness[0.0035], CMYKColor[0.5, 0.5, 0.08, 0.21]}, 
    {Thickness[0.0035], Red}}]; 
Show[%, 
 GV[Log10[T], -11, 300],  
 GV[Log10[5.91654] - 100, -11, 300], GV[Log10[8.07995] - 106, -11, 300],  
 GH[Log10[1.41678448] + 32, -110, 20], GH[Log10[1.44598] + 146, -110, 20],  
 GH[Log10[2.72543604], -110, 20], GH[Log10[3.09733] + 153, -110, -75], 
 ImageSize -> Full,  LabelStyle -> {FontFamily -> "Chicago", 12, Black}]  

The analysis shows, the CMBR never had a temperature higher than the PLANCK-temperature. This removes all 
doubt. However, the variable PLANCK-temperature also means that the prevailing models of CMBR formation 
are incorrect, since the recombination temperature of hydrogen changes too. In addition, the photons initially 
had a much larger rest mass than the electrons and protons. 
 
In addition, we want to calculate the corresponding frequencies for the technicians too. With the help of WIEN‟s 
displacement rule and (62) we get the following relations:  

– –
max 1 0 max 1 0

12 1
3 3
2 21.0067316 10 s1 1 Q  Q 160.2263GHz

18 36
x x   (66) 

 
The factor ζ of the STEFAN-BOLTZMANN Sk = ζT 

4
 es is also a function of Q0, see (89) in the next 

section for details. In [11] also the existence of a background field with neutrinos is postulated, which is said to 
have a temperature of approx. 1.9 K. Dividing Tk by √  a value of 1.92717 K turns out, which fits well the idea 
underlying this model that neutrinos propagate rectangularly to photons. 

7. Energy and entropy of the CMBR 
 
By this we mean at first the POYNTING Sk, but also the energy density wk over the entire frequency range. 
As said, the calculation is done with the help of the STEFAN-BOLTZMANN radiation law (409). We do not know 
the values Sk0.5 Sk1, wk0.5 and wk1 shortly after Big Bang, but we want to calculate them. However, the current 
value of the energy density is given in [12], amounting to wk0 = 4.17·10–14

 J/m3. That corresponds to a number of 
411 photons/cm3. With it we can first calculate Sk0. We are only interested in the amount: 
 

14 3 2 2
k04.17 10 Jm S c 12.5013µWm [71dBpWm ]k0 k0w w    (67) 

 
Now we substitute Tk in (409 [7]) with (62) obtaining the following expression: 
 

4 4
3 101

2 4 2 4

2 3 2
1

k 0 03 4 4
1

S Q Q
60c 6 1 k0c 8

k k4 4
4 4k k

k k
T TT T 
 

     (68) 

 
However, the expression on the left is only valid for a single MLE. However, we consider a cube with the edge 
length r0, which contains a total of 4 pcs. Therefore we need to multiply by 4 obtaining: 
 

4 2
7

2 2

2
71 1 1 1

k 0 02
1

4S
6298560 1574

Q
c 640

Q
r

        (69) 

 
It is better to use /Q0

4/Q0
3 instead of 4Q0

–7 in the calculation, otherwise an underflow of values may occur. 
Interestingly enough, the BOLTZMANN constant k cancels out. That means that it cannot be calculated from other 
values. Also, it is the only constant which contains the Kelvin. That means, it‟s really fundamental and can be 
fixedly defined as how it happened. 

TpSQ = Function[M2 c^2/k/#^2]; 
TpST = Function[hb1/2/k/#]; 
 

TkSQ = Function[hb1 Om1/18/k/#^2.5]; 
TkST = Function[hb1 Om1 t1^1.25/18/k/#^1.25]; 

 

(65c) 

Ann Comp Phy Material Sci, 2024



 

 21 

Now in principle, we could calculate the value Sk1 by setting Q0 in (69) equal to one. However, the expression is 
not yet complete. As already noted, the CMBR is subject to the parametric attenuation. Regardless of the 
reference frame, the damping factor  is always equal to –1/R, at which point R varies.  affects both, E and H, 
so we need to multiply (69) by e–2r/R. Since the CMBR has always covered the maximum time-like distance 
r = R = 2cT, the expression simplifies to e–2. We expand the fraction by e2: 
 

2 2
2 7

2 2
1 1

k
2 71 1

0 02 2
1 1

1S e Q e Q
1574640 r 21592 r

e  

 
[21591.9850214238]   (70) 

 
Because of the imprecise value of (67), we can work with the approximation with a clear conscience (Δ = –
6.94·10–7). With the bracketed expression Sk1 is actually already defined, but we must check whether it‟s correct. 
 

2

2
21 1

k1 2
422

1

[4344. W1 dB p m ]4
1 2.596200S

215
10

2
m

r9
W

   (71) 
 

31 1 k1

1

4 3
3

1S Jm1 8.6
r

5 10999
21592 ck1w   [8.85872·10418 w1 metrics]     (72) 

 
For comparison, the energy density w1 of the metrics. Here S1 must be divided by cM[1] and multiplied by 4. The 
value wk1 is orders of magnitude below w1. Attention, both Sk1 and wk1 are the values the CMBR would have, if 
the curve and thus the distribution were the same as today. As can be seen in Figure 2, the dynamic frequency 
response at Q0 = 1 is not yet ready with its work. There is no PLANCK-distribution, but curve 4. This is quite 
similar to the target function curve 6, but not completely. However, Sk1 and wk1 are very well suited as fixed 
reference points.  
 
Now we can use (70) to calculate the actual values and compare them with the measured ones (67):  

2
7 2 7 5 21 1

k0 0 k1 02
1

1S Q S e Q 1.25145 10 Wm
159544 r

  [12.5013µW–2]  (73) 

7 2 7 31
0

4
03

1

11 Q1 4.174e 4
159

Q 1
r4

Jm
5 4

0k0 k1w w

 
[4.17·10–14 J m–3]  (74) 

 
That results in the local density of the CMBR background (r ≤ 0,01R):  

7 31
0

4
22 3

1

31 Q kg1 4.64465
159544 r

1 dm0
c c

k0
k0

w  [4.64·10–34 kg dm–3] (75) 

 
The values in square brackets are those given in [12]. The deviation of –1.06·10–3 is less due to a calculation 
error than to the fact that the comparative values are only given with two decimal places. Rather, the calculated 
values are accurate and actually much more accurate: wk0 = 4.174403405098·10–14J m–3, but only under the 
assumption that the CMBR has not interacted with other matter losing energy in the process. Since the deviation 
is a maximum of 0.1%, it does not appear to be the case. Because the model can be used to calculate back to 
Q0 = ½ exactly, we can confidently shelve the idea of the CMBR origin 379,000 years after Big Bang. Then any 
thermal radiation would only be a narrow spectral line. 
 
However, since in-coupling did not take place at Q0 = 1 but at Q0 = ½, there are 4 additional values of 
interest: Sk05, wk05 SkU as well as wkU. The first two are again the values immedia-tely after in-coupling, 
assuming a PLANCK distribution. To the calculation we use (73) and (74) by setting Q0 =½, e2 is already 
contained Sk1.   

2

2
21 1

k05 k12
1

424 [4365.21 W ]d mB p
16 3.32S 128 10313

2
S Wm

699 r
    (76) 

 
4 3161 1

3
1

128 1.10848 J116
2

0 m
r699k05 k1w w  [8.85872·10418 w1 metrics]   (77) 

 
In reality, the values are much larger, since the curve has not yet been clipped at this point of time still matching 
the shape of a resonant circuit with the Q-factor ½. The later POYNTING vector Sk results from the area ratio of 
the PLANCK-curve (11) and of the source curve ST (1). I determined this by numerical integration. 

 
Sk  =  0.5503 ST          (78) 

 
Thus, if we want to determine the real in-coupling values SkU and wkU, we have to divide by this value. We get: 
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2

2
21 1

kU k
42

12
1

4 [4367.8 W1dB p m ]
1 6.S 232 038.6S Wm

92.83 r
10    (79) 

 
31 4161

3
1

232.6 2.014 Jm
92.83 r

101
kU k1w w  [8.85872·10418 w1 metrics]   (80) 

 
I have reduced the accuracy here because the area method does not necessarily reflect the actual conditions. I 
don‟t want to go back before the point t1/4 (aperiodic borderline case), since there was no real wave propagation 
before. However, it is possible to determine the total energy that was used to build the CMBR. For this we need 
the real world radius at time t1/4 (Q0 =½). This means that the volume is known and the total energy WU can be 
calculated. We have already determined the exact world radius with the help of (45) lhs plus expansion 
implemented as the function BRQ1[Q] multiplied by Q3/2. There all angular and speed ratios are taken into 
account: 

3
2

Q

1
3/2

1
0

U
0

3 dQR r Q Q BRQ1[Q]r
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            (81) 
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U 1
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1
U 1

3
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   (82) 

 
The course of the exact world radius is shown in Figure 17/18: 
 

  
 
Figure 17: 
Exact World Radius ƒ(Q) Linear   
 
Therefrom, the following volumina arise (spheric): 
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   (83) 

 
Important for the calculation of Wk05 is the answer to the question: How many line elements fit into the universe 
in actual fact. Regardless of whether we consider a sphere or a cube, because the factor 4/3π as well as r1

3 cancel 
out, we get the following values with r0(Q) = Q r1:  

3 U3
U

U

/2 1.71367

780.4

N (0.5) 3
N Q BRQ1

9
[Q]

N 1(1)
     (84) 

 
At the point of time t1/4 (Q0 =½), the aperiodic borderline case, just one single line element fits into the universe, 
that‟s not a contradiction, while at Q0 = 1 already 780 of them fit in. However, the number decreases to 180 at 
Q0 = 2,295 in order to re-increase later approaching the function NU = Q0

3. Then, from 103 on the approximation 
applies, but not for long. For R≫103 r1, r0 decreases towards the edge and (362 [7]) from Section 4.6.1 of applies. 
  

33
30

0

Λr2 d 2 2N π π πΛ
3 3 r 3  (362 [7]) 

Figure 18: 
Exact World Radius ƒ(Q) log10 
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Λ is the constant wave count vector. This means that the line elements are arranged in a different packing at the 
beginning. At Q0 =1 there is a phase jump in the propagation function and thus a rearrangement towards fc. The 
course of NU exactly and approximation is shown in Figure 19. 
 
Depending on your point of view, the universe begins with a negative entropy or with zero if we consider the 
state at Q < ½ as a feasible degree of freedom. Therefore, when calculating the immission energy WkU we must 
decide whether we want to multiply the energy density wkU by the volume of an MLE or that of the entire 
universe (83), and whether we want to choose a sphere or a cube. According to expression (84), a cube with the 
edge length r1 also fits in, in its interior a line element with the radius r = r1/2. 
 

 
 
Figure 19: 
Maximum Possible Number of Line Elements N  
in the Universe at the Beginning of Expansion 
 
Since we determined the other values using a cube, we choose the (inner) cube obtaining the volume 
V⚀ = 7.2771·10–288m3. The outer sphere has a volume of V⚆ = 1.97988·10–287m3. For Wk1 we choose the 
approximation because it‟s used as a fixed reference for larger values of Q0 and also the cube with an edge 
length of r1. With it, the following values turn out: 
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     (85) 

 
This definition of Wk1 has the advantage, that the value divided by 0.5503·2–7 gives exactly the value of WkU. 
With this we can now even calculate the costs of generating the CMBR. After the last price increase from  
my electricity provider, the kWh costs € 0.3560. That equals US$ 0.39. Converted WkU  amounts to 
4.07177·10122kWh, the costs to US$ 1.588·10122 including 19% VAT, a bargain compared to the costs of the 
metric wave field. This as a little fun by the way. 
 
We now want to investigate whether we are able to derive an estimate of the current boson/fermion ratio from 
these values. It should also be possible to calculate the mean matter density, see Table 4. The photon number 
density at in-coupling looks very high but it applies per m3. If you multiply by the real volume r1

3, you get 0.01 
only. Since in fact only integer n can occur, we should get used to round-up to the next integer (Ceiling[#]), then 
it‟ll be fine. Please find the calculation further down. 
 
The value ρk0 (75) agrees very well with that given in [12], even if the formula stated there is completely 
unsuitable for calculation, since essential components have been omitted as »usual«. The same applies to the 
photon number density. Here the conditions are even more complicated.  
 
The value 411/cm3 specified there is plausible. I‟ve been trying to find a formula that calculates this. With [12] 
you get a totally wrong result of 5 photons per K3. A unit of length does not appear there. Still best of all one 
fares with [11]. On p. 197 in the continuous text nγ = 0.37 b k–1Tγ3 is given. 
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VVaalluuee  

  
  PPooyynnttiinngg  vveeccttoorr  

  
ddBB  

  
EEnneerrggyy  ddeennssiittyy  

  
SSyymmbb..  

  
DDeeffiinniittiioonn  

  
NNuummbbeerr//mm33  

Beginning 6.0380 .10424Wm–2 4367.81  2.014.10416  J m–3 wkU Immission   1.30.10284 
Target now  1.25145.10–5Wm–2 70.9742  4.1744.10–14 J m–3 wk0 Bosons target   4.245.108 
Actual now 1.25013.10–5Wm–2 70.9696  4.17?? .10–14 J m–3 nγ Bosons actual   4.105.108 
Density Target now local ρk0 —  4.645.10–34g cm–3 nM Fermions 45.81948 
Density Target now local ρG0 —  7.410.10–29g cm–3 nγ ∕nM Ratio   8.958.106 

 
Table 4: 
Field Strength and Energy Density of the 
Cosmologic Background Radiation (H0=68,6) 

 
Here k is the BOLTZMANN constant and b should be the STEFAN-BOLTZMANN-constant ζ, which of course is 
defined differently again, so that the text formula has to be adapted. Then, with the COBE value we get: 
 

3 38n 1.48 410.466 cm 4.10466 10 m
k c

3
k0T       (86) 

 
That‟s actually only 410 photons, but we always wanted to round up in future. So I tried to figure out how to get 
to 0.37 to increase accuracy and failed miserably. After studying various sources, I do not refer to erroneous 
publications, it has been shown that the factor amounts to 2ζ(3)/π2. It results from the solution of an integral, ζ(x) 
is Riemann‟s zeta function. But I don‟t get a correct result with it. Rather it should be 4ζ(3)/π =1.53. There is 
probably a third, different definition of ζ. We use the CODATA2018 definition. With it, we obtain the correct 
expression: 

3 38424.4n 4 cm 10 m
k

73(3)
c

4.244733
k0T      (87) 

 
But now, with the COBE value of Tk, it are not 411, but 425 photons. What that means I leave open here. It‟s 
possible that one solution applies to the frequency, the other to the wavelength. Since both Tk0 (62) and ζ 
(409 [7]) depend on the reference frame, it should be possible to describe the photon number density of the 
CMBR as a function of Q0 and thus even of t. Expression (62) is already correct, still ζ remains. It contains –3. 
We define: 

2 4
191 4

1 3 2
1

2k 9.773258655978905 10
c

const Wm K
60

      (88) 

 
2 4

8 4
1

3 2
03 2 5.6703666738854964k 10Q Wm K

0 c6 
     (89) 

 
This of course eliminates the fixation of ζ, which passes over to ζ1, just like with . Using (409 [7]) and (62) we 
get then for the photon number density: 
 

9/2 9/2
0

3
31 1

0n 1.48 Q Q [m ]
23955.6

r
k c

3
k1T             (90) 

 
Now we only used the photons of the cosmic background radiation to determine the photon number density. In 
reality, of course, there are also photons that have nothing to do with it, that originate from interaction processes 
or were created during the annihilation of matter and antimatter. A large part of the cosmic radiation spectrum 
comes e.g. from supernova explosions. So we have to correct the photon number slightly upwards. The 
graphical presentation follows further down together with the nucleon number density nM in Figure 23. 
However, before we are able to determine nM,  we need to have a look at entropy again. 
 
Since the letter S is already heavily overburden, we must exercise special caution here. We had already used Sb, 
S0 and S1 for the entropy of the metric wave field, and S0, S1 a Sk0/1/U for the POYNTING vectors. Now we still 
need an expression for the specific entropy per nucleon.  
 
In [11] the expression Sγ is used for this. Since the letters U and M can also appear in this con-text, we use Sγ 
instead. According to [11] “the specific entropy Sγ /M or – as a dimensionless quantity – its entropy per nucleon  
Sγ measured in natural entropy units, Sγ ≡ ma4k–1 Sγ /M ... provides us with extraordinarily important information 
about the early days of the universe”. The third power is used there too, M = ρG R3 is the total mass of the 
fermionic matter, ma the nucleon mass, i.e. the atomic mass unit. We have to convert the formula given there for 
the calculation of Sγ again: 
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21 1 3

G
G

am16S 2.4562 10 kgdm
3 kc

3
kT  (4.101 [11]) 

 
To determine the matter density ρG we need the rest mass M of the incoherent matter of the entire universe. For 
this purpose, counts in the starry sky and estimates were carried out in the past, or one relied on a world model. I 
would like to expressly refrain from the calculation according to [11], since it uses the standard model, which 
this model is guaranteed not based on. Actually, we only need one mass and which one is the most suitable for 
this purpose? The MACH-mass M1 = μ0κ0 from Section 6.2.4.1. of [7]. This already represents the average rele-
vant for the observer. It applies M1 = ρG R3. This gives us the current value for ρG0:  

3 29 3
G0 1M R 7.41028 10 kgdm        (91) 

 
The value of ρG is based on the cube and agrees reasonably with the value ρG ≈10–30 g/cm3 given in [11]. Other 
publications indicate values of 0.3...1.1·10–30 kg/dm3 for the density. However, these are only estimates. The 
entropy per nucleon Sγ0 (2.4·10–9) differs signifi-cantly. The cause is the outdated value of H0 in the amount of 
55 km s–1

 Mpc–1 and the standard model used there. 
 

 
 

Figure 20:  
Correction Factor δ and Reciprocal of the Fine-Structure- 
Constant α as a Function of Time After BB and of the Phase Angle Q 
 
For Sγ0 we use (409 [7]) and (62) once more and we first replace ma by me. Since the ratio mp/me has been 
proven to be constant [13], the same applies to ma/me and Sγ0 too. By rear-ranging (806 [7]) with 
M1 = 9 π  

2√  δ  me  Q 0    we can now substitute me by M1 and we get for the approximation: 
 

1 1/6 1/6
0 0 03

G

am16 16 1822.8884862 1S Q Q
3 kc 3 60 429.18 9 2 638496677

3
kT    (92) 

 
The value of δ is defined by (806 [7]) as δ = 4π /α me /mp= const for all generic cases and as variable functions 
deltaF[Q] using alphaF[Q] immediately after BB with Q ≤ 103, that‟s an age of T ≤ 2.13·10–97s (Definition see 
Appendix). 
 
In fact, all constants can be eliminated and only one constant factor and Q0 remain. Here, the dependency on Q0 
is only considered for ζ. To R(Q) the approximation R = Q0

2
 r1 applies and to ma the linear approximation 1822.9 

me′  from Figure 15. If we want to use the exact functions, we need the function BRQ1[Q] for the exact world 
radius, the function deltaF[Q], and expression (806 [7]). Then, the exact expression reads: 
 

71 4/33
0 0 0 0S BRQ1[Q ] de1

458.10754347
ltaF[Q ] Q 3.31458 10

7
   (93) 

4/3 
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All non-linearities in the world radius and the nucleon mass shortly after Big Bang are taken into account here. 
The results of (92) and (93) for Q0 are identical since Q0≫1.  
 

 
 
Figure 21: 
Entropy per Nucleon and Photon/Nucleon- 
Ratio of the CMBR Large Scale 
 
Now we can also calculate the nucleon number density nM. According to [11] the quotient nγ /nM is proportional  
Sγ. It applies:  

M

36
M

M
8.95833 10n nS 3.7 n 45.8n 195 mn

 (4.102 [11]) 

 
3 3

1 119/6 14/33
M 0 0 0 0n BRQ1[Q ] deltaF[r r

14.133123 15.0696
Q ] Q Q

23
    (94) 

 
Now we have determined the current values. Thus, we can calculate the course of Sγ for larger and smaller 
values as a function of Q. It is shown in Figure 21 and 22. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

 
 
Figure 22: 
Entropy per Nucleon of 
the CMBR Small Scale 
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Now there is the well-known initial entropy problem with the standard model, i.e. it is assumed that the universe 
was in thermodynamic equilibrium at BB, a state of maximum entropy. However then, at the origin of the CMBR 
at 3000K the entropy must have been lower in order for it to increase over time, since a decrease without energy 
addition is physically forbidden. After the BB, however, there was no more energy supply. Therefore, most 
people blame it on the influence of gravity. 
 
Now I had thought that this problem does not exist with my model, since the CMBR here is related to the point 
Q = ½, i.e. much earlier. If you take a closer look at Figure 22, however, you can see that there is also a section 
where the entropy decreases. The question is now, is there such a problem with my model too? The answer is: 
No. In reality, it is a statistical problem. 

 

 
 
Figure 23: 
Photon-Number-Density in Comparison to the 
Nucleon-Number-Density of the CMBR per m3 

 
Even if the mass, photon- and nucleon-number density assumes impressively high valuesshortly after BB, the 
number of particles involved is very small, since the world radius is extremely small at this time. Since entropy 
is a statistical variable, but statistics requires a minimum number of possible degrees of freedom (particles) in 
order to generate relevant results, the results are not relevant if this number is not reached, nor violations of 
physical principles. I assumed the minimum value to be 32 and marked it in picture 80. There are two different 
values, one for nucleons (Q =112), the other for photons (Q = 8238), after that, i.e. from 2.13·10–97s after BB on, 
there were no more violations and therefore no problem. Before that, quantum effects predominated, which defy 
any statistics. 
 
Therefrom follows that it is generally sufficient to use the approximation formulas. Figure 23 shows the photon- 
(90) and the exact nucleon-number density (94) as a function of Q. As you can see, there were initially more 
nucleons than photons. The parity was reached at the point of time 8.42·10–67s after BB.  
 
Today there are more photons than nucleons. So we live in a largely radiation-dominated universe. How do we 
get the time data? Very easy, it applies t = Q2t1. In the logarithmic pre-sentation the x-axis has to be multiplied 
by 2 only. In contrast to the impressively high values, Figure 24 shows the actual number of CMBR photons and 
nucleons in the entire universe. 
 
So today there are 1.19674·1080 nucleons in the universe. This value corresponds almost exactly to the square of 
the value C (1038 [7]) described by EDDINGTON, which he already assumed to correspond to the total number of 
nucleons in the universe, see Section 7.5.1. of [7]. So it seems that the number of photons and nucleons is 
closely linked to the reference frame and thus to the age of the universe. So the universe requires the presence of 
a certain number of particles at a certain point of time. This is ensured by a certain number of particles decaying 
into several others, as well as by virtual pairing/annihilation processes. 
 
These processes are triggered by entropy. For example, you can assign a certain entropy to an isotope. The 
larger the value, the shorter the half-life. Because of (708 [7]) entropy also depends on the velocity. Thus atoms 
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Figure 24: 
Real Number of CMBR-Photons 
and Nucleons in the Whole Universe 
 
at high velocities not only decay more slowly because time passes more slowly, but also because the entropy is 
lower. Both statements describe the same fact and are equivalent. 
 

21 12
3 32

0 0 2

t 2r vQ Q 1 1
T R c


 

 (708 [7]) 

 

 
 
Figure 25: 
Dependence of the Incoherent Matter Density  
Considered from the Time of In-Coupling on 
 
The only thing missing is the density of the incoherent matter ρG, which is also a function of time and space. The 
course is shown in Figure 25 and 26. The density is defined as follows: 
 

11/2 72 23
3 3
1

G 0 0 0
1

M M
r

BRQ1[Q ] Q Q
r

       (95) 
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In contrast to (91), the value M2 (fixed) is used here instead of M1, since M1 also depends on the reference frame 
and thus on time. It applies M1 = M2/Q0. 
 

 
 

Figure 26: 
Spatial dependence of the incoherent matter 

 density to the point of time T (nowadays) 
 
Since all previous values are dependent on Q0, one can also show the dependence on other quantities using 
(708 [7]). Figure 26 shows the dependency on the distance r using the example of incoherent matter density. The 
further away we observe, the older the condition we observe. However, it is relevant for us because even 
delayed effects are effects. 
 
Thus, most of the mass is located at the edge for each observer, evenly distributed over the particle horizon 
(repulsion!), so that the forces cancel each other. However, when accelerating, one leaves the center and must 
exert a force F = m·a. With it, the MACH mass M1 is the cause of the inertial mass, exactly as postulated by 
MACH. For antimatter a different equivalence principle applies mi = –mg, so that it is attracted by the particle 
horizon. 

8. Summary 
 
In the course of this article, according to the model in [7], we succeeded in approximating the envelope-curve of 
PLANCK„s radiation law as a function of a dynamic frequency response under application of a phase- and group-
delay-correction with a residual deviation of  +1,5

–0,5 dB. Furthermore it was shown, that the temperature calculated 
in [1] is in the proximity of the value measured by the COBE-satellite. With the help of the updated values of H0 
and Q0, determined in [6] and [7] a more recent CMBR-temperature could be calculated, which well fits the 
accuracy limits of the radiation temperature, measured by the COBE/WMAP-satellite. 
 
The results of this work point out, that origin and progression of the CMBR have elapsed in a totally different 
manner than generally assumed. Because photons behaved like neutrinos at that time they did not interact with 
other matter shortly after BB. Thus, the model can be used to calculate back to Q0 = ½ exactly and we can 
confidently shelve the idea of the CMBR origin 379,000 years after Big Bang. Otherwise it would be a discrete, 
very narrow spectral-line. 

9. Affidavit 
 
Herewith, I declare that I created this work off my own bat having used no other aids as stated. If this work is 
published in German, a transcription according to the rules of the new German orthography (from 1999 on) is 
not permitted. Inclusive language must not be used in this work, neither in any extracts or translations thereof. 
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10. Notes on the Appendix 
 
With the help of the model in [7], it was possible to calculate a series of natural constants associated with the 
electron, the proton and the 1H atom via their relationship to the reference system Q0 and this exactly. The 
maximum deviation of ±1.0·10–9 for the THOMSON cross section ζe corresponds to the standard deviation of the 
numerical value given in Table 5.  
 
In fact, most values are not true constants. At the same time, the value of H0 could be specified more precisely, 
as well as the value of κ0, the specific conductivity of the vacuum, on which this model is based. Since we have 
uncovered the relations between the individual fundamental constants, it is appropriate to develop a program 
with which these are recalculated on the spot each time according to the reference system and to use it instead of 
a list of values determined independently of one another in different laboratories. With regard to the list, this 
would also have the advantage that the errors would not add up. 
 
The model is based on the fundamentals of subspace, which are fixed values and independent of the frame of 
reference. At this point it suffices to define only five genuine constants (0, c, 0, 1 and k) as fixed basic values 
plus a so-called magic value, here me, in order to identify the reference frame Q0. 
 
The formulae and definitions used in this work, and the programs to the calculation of the values in column 3 of 
Table 5 as well as for rendering the graphics are shown in the Appendix. It‟s about the source code for 
Mathematica. If you dispose of a pdf-version of this article, you are able to convert the data into a text file 
(UTF8), which can be opened directly. The data is presented as a single cell then. However, it is not 
advantageous to evaluate the entire source code in one single cell. To split, use the Cell/Divide Cell function 
(Ctrl/Shift/d). However, with this procedure there may be problems with special characters, not correctly 
transferred (e.g. ε, ϵ) or even lead to the conversion being aborted. 
 
It is more advantageous to copy and paste data page by page into the text file via clipboard. However, then each 
line is present as a separate cell. With the command Cell/Merge (Ctrl/Shift/m) the cells belonging together can 
be merged, ideally in blocks between the headings. Expressions within (*…*) are comments for better 
understanding. 
 
If you want to calculate only some values and not the graphics, you can delete the notebook below the point 
“End of Metric System Definition”. Then, the values shown in column 3 are available for own calculations. The 
program to calculate the whole table can be found in [7]. 
 

Symbol Variable Calculated (CA) 

So
ur

ce
  

CODATA2018 (CD) 
© COBE Data       ± Accuracy Δy (CA/CD–1)        Unit 

c c 2.99792458              ·108 S 2.99792458              ·108 defined defined m s–1 
ε0 ep0 8.854187817620390·10–12 S 8.854187817620390·10–12 defined defined As V–1m–1 
κ0 ka0 1.369777663190222·1093 S n.a. n.a. defined A V–1m–1 
μ0 my0 1.256637061435917·10–6 S 1.256637061435917·10–6 exactly exactly Vs A–1m–1 
k k 1.3806485279          ·10–23 S 1.380649                  ·10–23 statistic +3.41941·10–7   J K–1 

ħ1 hb1 8.795625796565460·1026 S n.a. n.a. defined J s 
ħ hb0 1.054571817000010·10–34 C 1.054571817·10–34 defined +8.88178·10–15 J s 
Q0 Q0 8.340471132242850·1060 C 8.3415·1060                    © 3.3742·10–2 –1.23343·10–4   1 
Z0 Z0  376.7303134617700 F 376.73031366857 1.5·10–10 –5.48932·10–10 Ω 
G G0  6.674301499999827·10–11 C 6.674301499999999·10–11 2.2·10–5   –5.48932·10–10 m3kg–1s–2 
G1 G1  9.594550966819210·10–133 C n.a. n.a. unusual m3kg–1s–2 
G2 G2  1.150360790738584·10–193 F n.a. n.a. unusual m3kg–1s–2 
M2 M2 1.514002834704114·10114 F n.a. n.a. unusual kg 
M1 M1 1.815248576128075·1053 C n.a. n.a. unusual kg 
mp mp 1.6726219236951    ·10–27 C 1.6726219236951    ·10–27 1.1·10–5   –2.22045·10–16 kg 
me me 9.109383701528      ·10–31 M 9.109383701528      ·10–31 3.0·10–10 magic ±0 kg 
m0 m0 2.176434097482374·10–8 C 2.176434097482336·10–8 calculated +1.70974·10–14 kg 
MH MH 2.609485798792167·10–69 C n.a. n.a. unusual kg 
me/mp mep 5.446170214846793·10–4 F 5.4461702148733     ·10–4 6.0·10–11 –4.867·10–12 1 
Tp2 Tp2 9.855642915740690·10153 C n.a. n.a. unusual K 
Tp1 Tp1 1.181665011421291·1093 C n.a. n.a. unusual K 
Tp0 Tp0 1.416784486973613·1032 C 1.416784486973588 ·1032 1.1·10–5   +1.75415·10–14 K 
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Symbol Variable Calculated (CA) 

So
ur

ce
  

CODATA2018 (CD) 
© COBE Data       ± Accuracy Δy (CA/CD–1)        Unit 

Tk1 Tk1 5.475357175411492·10152 C n.a. n.a. unusual K 
Tk0 Tk0 2.725436049425770 C 2.72548                          © 4.3951∙10−5   –1.61258·10–5   K 
r1 r1 1.937846411698606·10–96 F n.a. n.a. unusual m 
r0 r0 1.616255205549261·10–35 C 1.616255205549274·10–35 calculated –8.21565·10–15 m 
re re 2.817940324662071·10–15 C 2.817940326213      ·10–15 4.5·10–10 –5.50377·10–10 m 
C ΛbarC 3.861592677230890·10–13 C 3.861592679612      ·10–13 3.0·10–10 –6.16614·10–10 m 
C ΛC 2.426310237188940·10–12 C 2.4263102386773    ·10–12 3.0·10–10 –6.13425·10–10 m 
a0 a0 5.291772105440689·10–11 C 5.291772109038      ·10–11 1.5·10–10 –6.79793·10–10 m 
R R 1.348032988422084·1026 C n.a. at issue at issue m 
R RR 4.368617335409830 C n.a. at issue at issue Gpc 
t1 2 t1 6.463959849512312·10–105 F n.a. n.a. unusual s 
t0 2 t0 5.391247052483426·10–44 C 5.391247052483470·10–44 calculated –8.43769·10–15 s 
T 2 T 4.496554040802734·1017 C 4.497663485280829·1017 1.1385·10–3   –2.46671·10–4   s 
T 2 T 1.424902426903056·1010 C 1.425253996152531·1010 1.1385·10–3   –2.46671·10–4   a 
R∞ R∞  1.097373157632934·107 C 1.097373156816021·107 1.9·10–12 +7.44426·10–10 m–1 

ω1 Om1 1.547039312249824·10104 F n.a. n.a. unusual s–1 

ω0 Om0 1.854858421929227·1043 C 1.854858421929212·1043 calculated +8.65974·10–15 s–1 
ωR∞ OmR∞  2.067068668297942·1016 C 2.067068666759112·1016 1.9·10–12 +7.44451·10–10 s–1 
cR∞ cR∞  3.289841962699988·1015 C 3.289841960250864·1015 1.9·10–12 +7.44450·10–10 Hz 
H0 H0 2.223925234581364·10–18 C 2.223376656062923·10–18 1.1385·10–3   +2.46732·10–4   s–1 
H0 HPC[Q0] 68.62410574852400 C 68.6071781514648←↑© 1.1385·10–3   +2.46732·10–4   km s–1Mpc–1 

q1 q1 1.527981474087040·1012 F n.a. n.a. unusual As 
q0 q0 5.290817689717126·10–19 C 5.2908176897171    ·10–19 calculated +4.44089·10–15 As 
e qe 1.602176634000007·10–19 C 1.602176634            ·10–19 exactly +4.44089·10–15 As 
U1 U1 8.698608435529670·1087 F n.a. n.a. unusual V 
U0 U0 1.042939697003725·1027 C 1.042939697286845·1027 calculated –2.71463·10–10 V 
W1 W1 1.360717888312544·10131 F n.a. n.a. unusual J 
W0 W0 1.956081416291675·109 C 1.956081416291641·109 calculated +1.73195·10–14 J 
Wk1 Wk1 6.301953910302633·10126 C n.a.                  k→CMBR n.a. unusual J 
S1 S1 5.605711433987692·10426 F n.a. n.a. unusual W m–2 

S0 S0 1.388921881877266·10122 C n.a. n.a. unusual W m–2 
Sk1 Sk1 2.596200130940090·10422 C n.a.                  k→CMBR n.a. unusual W m–2 
Sk0 Sk0 1.251454657497949·10–5 C 1.25013                    ·10–5 +1.0596·10–3   calculated [59] W m–2 
ζe ζe 6.652458724888907·10–29 C 6.6524587321600    ·10–29 9.1·10–10 –1.09299·10–9   m2 

ae ae 1.159652181281556·10–3 C 1.1596521812818    ·10–3 1.5·10–10 –2.10054·10–13 1 
ge ge –2.00231930436256 C –2.00231930436256 1.7·10–13 –2.22045·10–16 1 
γe γe 1.760859630228709·1011 C 1.7608596302353    ·1011 3.0·10–10 –3.74278·10–12 s–1T–1 

µe µe –9.28476469866128·10–24 C –9.284764704328    ·10–24 3.0·10–10 –6.10325·10–10 J T–1 

µB µB –9.27401007265130·10–24 C –9.274010078328    ·10–24 3.0·10–10 –6.12109·10–10 J T–1 
µN µN 5.050783742986264·10–27 C 5.0507837461150    ·10–27 3.1·10–10 –6.19456·10–10 J T–1 
Φ0 Φ0 2.067833847194937·10–15 C 2.067833848 ……..  ·10–15 exactly –3.89327·10–10 Wb 
G0 GQ0 7.748091734611053·10–5 C 7.748091729000002·10–5 exactly +7.24185·10–10 S 
KJ KJ 4.835978487132911·1014 C 4.835978484 ……..   ·1014 exactly +6.47834·10–10 Hz V–1 

RK RK 2.581280744348851·104 C 2.581280745 ……..   ·104 exactly –2.52258·10–10 Ω 
α  alpha 7.297352569776440·10–3 F 7.297352569311       ·10–3 1.5·10–10 +6.37821·10–11 1 
δ  delta 9.378551014802563·10–1 F 9.378551009654370·10–1 1.5·10–10 +5.48932·10–10 1 
x~ xtilde 2.821439372122070` F 2.821439372 ……..  mathematical real number 1 
ζ1  ζ1  9.773258655978905·10–191 F n.a. calculated unusual W m–2

 K –4 
ζ  ζ  5.670366673885496·10–8 C 5.670366673885496·10–8 exactly exactly W m–2

 K –4 

 
S   Subspace value (const) M   Magic value                      MachinePrecision  →  ±2.22045·10–16 
F   Fixed value (invariable) C   Calculated (calculated)                
 
Table 5: 
Universal natural constants 
Concerted International System of Units 
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" 11. Envelope Curve Approximation " 

 
" Declarations" 

 
Off[General::spell] 
Off[General::spell1] 
Off[InterpolatingFunction::dmval] 
Off[FindMaximum::lstol] 
Off[FindRoot::nlnum] 
 

" Units " 
 
km = 1000; 
pc = 3.08572*10^16; 
Mpc = 3.08572*10^19 km; 
minute = 60; 
hour = 60 minute; 
day = 24*hour; 
year = 365.24219879*day; 
Mo = 1.98840*10^30  (*Sun mass kg*); 
Ro = 6.96342*10^8  (*Sun radius m*); 
ME = 5.9722*10^24  (*Earth mass kg*); 
RE = 6.371000785*10^6  (*Earth radius m*); 
F0 = 2.51*10^-8  (*Zero flux brightness Wm^-2*); 
L0 = 3.09*10^28  (*Zero luminosity W*); 
L1a= 6.40949*10^35  (*Standard candle SNIa W*); 
 

" Basic Values " 
 
c=2.99792458*10^8;  (*Speed of light*); 
my0=4 Pi 10^-7;    (*Permeability of vacuum*);  
ka0=1.3697776631902217*10^93;    (*Conductivity of vacuum*);  
hb1=8.795625796565464*10^26;    (*Planck constant slashed init*);  
k=1.3806485279*10^-23;    (*Boltzmann constant*);  
me=9.109383701528*10^-31;    (*Electron rest mass with Q0 Magic value 1*);  
mp=1.6726219236951*10^-27;    (*Proton rest mass Magic value 2*); 
 

" Auxilliary Values " 
 
mep=SetPrecision[me/mp,20];  (*Mass ratio e/p*); 
ma=1822.8884862171988 me;  (*Atomic mass unit*); 
ϵ=ArcSin[0.3028221208819742993334500624769134447]-3Pi/4;  (*RnB angle ϵ null(fix)*); 
γ=Pi/4-ϵ; (*RnB angle γ nullvector*); 
ζ=1/(36Pi^3)(3Sqrt[2])^(-1/3)/mep; (*re-correction factor*); 
xtilde=xtilde=3+N[ProductLog[-3E^-3]]; (*Wien displacement law constant (ν)*); 
alpha=Sin[Pi/4-\[Epsilon]]^2/(4Pi); (*Correction factor QED \[Alpha](Q0)*); 
delta=4Pi/alpha*mep; (*Correction factor QED \[Delta](Q0)*); 

(*Q0=(9Pi^2 Sqrt[2]delta me/my0/ka0/hb0SI)^(-3/4) (*Phase Q0=2ω0t during calibration*);*) 
Q0=(9 Pi^2 Sqrt[2]delta me/my0/ka0/hb1)^(-3/7); (*Phase Q0=2ω0t after calibration*); 
 

" Composed Expressions " 
 
Z0=my0 c;  (*Field wave impedance of vacuum*); 
ep0=1/(my0 c^2)  (* Permittivity of vacuum*); 
R∞=1/(72 Pi^3)/r1 Sqrt[2] alpha^2 /delta Q0^(-4/3);  (*Rydberg constant*); 
Om1=ka0/ep0;  (*Cutoff frequency of subspace*); 
Om0=Om1/Q0;  (*Planck’s frequency*); 
OmR∞=2 Pi c R∞;  (*Rydberg angular frequency*); 
cR∞=c R∞;  (*Rydberg frequency*); 
H0=Om1/Q0^2;  (*Hubble parameter local*); 
H1=3/2*H0;  (*Hubble parameter whole universe*); 
r1=1/(ka0 Z0);  (*Planck’s length subspace*); 
a0=9Pi^2 r1 Sqrt[2] delta/alpha Q0^(4/3);  (*Bohr radius*); 
ΛbarC=a0 alpha;  (*Reduced Compton wavelength*); 
ΛC=2 Pi ΛbarC;  (*Compton wavelength electron*); 
re= r1 (2/3)^(1/3)/ζ Q0^(4/3);  (*Classic electron radius*); 
r0= r1 Q0;  (*Planck’s length vac*); 
R= r1 Q0^2;  (*World radius*); 
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RR=R/Mpc/1000;  (*World radius Gpc*); 
t1=1/(2 Om1);  (*Planck time subspace*); 
t0=1/(2 Om0);  (*Planck time vacuum*); 
T=1/(2 H0);  (*World time constant*); 
TT=2T/year;  (*The Age*); 
hb0=hb1/Q0;  (*Planck constant slashed*); 
h0=2Pi*hb0;  (*Planck constant unslashed*); 
q1=Sqrt[hb1/Z0];  (*Universe charge*); 
q0=Sqrt[hb1/Q0/Z0];  (*or qe/Sin[π/4-ε] Planck charge*); 
qe=q0 Sin[Pi/4-ε];  (*Elementary charge e*); 
M2=my0 ka0 hb1;  (*Total mass with Q=1*); 
M1=M2/Q0;  (*Mach mass*); 
m0=M2/Q0^2;  (*Planck mass downwardly*); 

(*m0=(9Pi^2Sqrt[2]*delta*me)^.75*(my0*ka0*hb0SI)^.25;  (*Planck mass upwardly*);*) 
mp=4Pi me/alpha/delta;  (*Proton rest mass with Q0*); 

(*me=Sqrt[hb1/Q0/Z0]*Sin[Pi/4-ε];  (*if using Q0 as Magic value*);*) 
MH=M2/Q0^3;  (*Hubble mass*); 
G0=c^2*r0/m0; (*hb0*c/m0^2*)  (*Gravity constant local*); 
G1=G0/Q0^2;  (*Gravity constant Mach*); 
G2=G0/Q0^3;  (*Gravity constant Init*); 
U0=Sqrt[c^4/4/Pi/ep0/G0];  (*Planck voltage generic*); 
U1=U0*Q0;  (*Planck voltage Mach*); 
W1=Sqrt[hb1 c^5/G2];  (*Energy with Q=1*); 
W0=W1/Q0^2;  (*Planck energy*); 
S1=hb1 Om1^2/r1^2;  (*Poynting vector metric with Q=1*); 
S0=S1/Q0^5;  (*Poynting vector metric actual*); 
Sk1=4Pi^2*E^2/18^4/60*hb1*Om1^2/r1^2;                   (*Poyntingvec CMBR 
initial*); 
Sk0=Sk1/Q0^4/Q0^3/E^2;                                   (*Poyntingvec CMBR 
actual*); 
wk1=Sk1/c ;                                          (*Energy density CMBR 
initial*); 
wk0=Sk0/c ;                                           (*Energy density CMBR 
actual*); 
Wk1=wk1*r1^3;                                                (*Energy CMBR 
initial*);  
µB=-9/2Pi^2 Sqrt[2 hb1/Z0]delta Sin[γ]/my0/ka0 Q0^(5/6);  (*Bohr magneton*); 
µN=-µB*mep;  (*Nuclear magneton*); 
µe=1.0011596521812818 µB  (*Electron magnetic moment*); 
Tk1=hb1 Om1/18/k;  (*CMBR-temperature Q=1*); 
Tk0=Tk1/Q0^(5/2);  (*CMBR-temperature*); 
Tp0=Sqrt[hb0 c^5/G0]/k; Tp1=Tp0*Q0; Tp2=Tp0*Q0^2; (*Planck-temperature*); 
Φ0=Pi Sqrt[hb1 Z0/Q0 ]/Sin[Pi/4-ε];  (*Magnetic flux quantum Pi ħ/e)*); 
GQ0=1/Pi/Z0*Sin[Pi/4-ε]^2;  (*Conductance quantum e^2/Pi ħ*); 
KJ=2q0 Sin[Pi/4-ε]/h0;  (*Josephson constant 2e/h*); 
RK=.5 my0 c/alpha;  (*von Klitzing constant µ0c/2α*); 
σe=8Pi/3 re^2;  (*Thomson cross section (8Pi/3)re^2*); 
ae=SetPrecision[µe/µB,20]-1;  (*Electron magnetic moment anomaly*); 
ge=-2(1+ae);  (*electron g-factor*); 
γe=2 Q0 Abs[µe]/hb1;  (*electron gyromagnetic ratio*); 
σ1= SetPrecision[Pi^2/60 k^4/c^2/hb1^3, 16];  (*Stefan-Boltzmann constant initial*); 
σ=σ1*Q0^3;   (*Stefan-Boltzmann constant*); 
 

" Basic Functions " 
 
cMc=Function[-2 I/#/Sqrt[1-(HankelH1[2,#]/HankelH1[0,#])^2]]; 
Qr=Function[#1/Q0/2/#2]; 
PhiQ=Function[If[#>10^4,-Pi/4-3/4/#,                                                       
Arg[1/Sqrt[1-(HankelH1[2,#]/HankelH1[0,#])^2]]-Pi/2]];  (*Angle of c arg θ(Q)*); 
PhiR=Function[PhiQ[Qr[#1,#2]]]; 
RhoQ=Function[If[#<10^4,N[2/#/Abs[Sqrt[1-
(HankelH1[2,#]/HankelH1[0,#])^2]]],1/Sqrt[#]]];  
RhoR=Function[RhoQ[Qr[#1,#2]]]; 
AlphaQ=Function[Pi/4-PhiQ[#]];  (*Angle α*); 
AlphaR=Function[N[Pi/4-PhiR[#1,#2]]]; 
BetaQ=Function[Sqrt[#1]*((#2)^2+#1^2*(1-(#2)^2)^2)^(-.25)]; 
GammaPQ=Function[N[PhiQ[#]+ArcCos[RhoQ[#]*Sin[AlphaQ[#]]]+Pi/4]]; 
HPC=Function[Om1/#^2/km*Mpc]; (*H0=ƒ(Q0)[km*s-1*Mpc-1]*); 
rq={{0,0}}; 
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For[x=-8;i=0,x<4,++i,x+=.01;AppendTo[rq,{10^x,N[10^x*RhoQ[10^x]]}]]; 
RhoQ1=Interpolation[rq]; 
RhoQQ1=Function[If[#<10^3,RhoQ1[#],Sqrt[#]]];  (*Interpolation RhoQ*); 
Rk=Function[If[#<10^5,3/2*Sqrt[#]*NIntegrate[RhoQQ1[x],{x,0,#}],6#]]; 
Rn=Function[Abs[3/2*Sqrt[#]*NIntegrate[RhoQQ1[x]*Exp[I*(PhiQ[x])],{x,0,#}]]]; 
RnB=Function[Arg[NIntegrate[RhoQQ1[x]*Exp[I*(PhiQ[x])],{x,0,#}]]];  
alphaF=Function[Sin[Pi/2+ϵ-(*RNBP*)RnB[#]]^2 /(4Pi)];  (*RNBP def further below*); 
deltaF=Function[4Pi/alphaF[#]*mep];     (*Correction factor QED ΔQ)*); 
 

" End of Metric System Definition " 
____________________________________________________________________________________________________ 
 

" Functions Used for Calculations in Articles " 
 
GV=Function[Graphics[Line[{{#1,#2},{#1,#3}}]]];         (*Graphics help function*); 
GH=Function[Graphics[Line[{{#2,#1},{#3,#1}}]]];      (*Graphics help function*); 
Xline=Function[10^33*(#1-#2)]; (*Value_x vertical line*); 
Expp=Function[If[#<0,1/Exp[-#],Exp[#]]];    (*To avoid calculation errors*); 
FG = Function[.5/(1 + I*#)*(1 + 1/(1 + I*#))]; 
Pom = Function[Print[StringJoin["x = ",  
     ToString[10^Chop[First[xx /. Rest[%]], 10^-7]], " Om1", 
     "  (", ToString[.5*10^Chop[First[xx /. Rest[#]], 10^-7]],  
     " OmU)"]]]; 
Pol = Function[Print["y = " <> ToString[First[#]] <> " dB   (" <> 
          If[First[#] - zzz > 0, "+", ""] <> ToString[First[#] - zzz] <>  
     " dB)"]]; 
 
BRQP = Function[Rk[#]  Sqrt[(Sin [AlphaQ[#]]/Sin[GammaPQ[#]])^4 - 1]];  
BGN  = Sqrt[2]*BRQP[.5]/3;  
BRQ0 = Function[BRQP[#]/BGN/(2.5070314770581117*#)];  (*Faster redefinition later*); 
BRQ1 = If[#1 < 8*10^4, BRQ0[#1], Sqrt[#1]] & ;  
 
gdc = Function[10^(Log10[E]*(-1) (1*#)^2/(1 + 1*#^2)^2)]; (*Group Delay Correction*); 
cc = xtilde^2;  
b = xtilde; 
s1 = 8*(#1/(2*((#1/2)^2 + 1)))^2 & ;   
s2 =  (b*(#1/2))^3/(Expp [b*(#1/2)] - 1) & ;  
Psi1 = NIntegrate[(1/2)*Log[1 +  (#1/(cc*Sqrt[Q]))^2] -   
             ((#1/(cc*Sqrt[Q]))^2)/(1 +  (#1/(cc*Sqrt[Q]))^2) -   
            Log[Cos[-ArcTan[#1/(cc*Sqrt[Q])] +   
                  #1/(cc*Sqrt[Q])/(1 +  (#1/(cc*Sqrt[Q]))^2)]],   
          {Q, 0.5, 3000}] & ;   (*Approximation*);  
Psi2 = NIntegrate[(1/2)*Log[1 +  (#1/(cc*BRQ1[Q]))^2] -   
             ((#1/(cc*BRQ1[Q]))^2)/(1 +  (#1/(cc*BRQ1[Q]))^2) -   
            Log[Cos[-ArcTan[#1/(cc*BRQ1[Q])] +   
                  #1/(cc*BRQ1[Q])/(1 +  (#1/(cc*BRQ1[Q]))^2)]],   
          {Q, 0.5, 3000}] & ;  (*Exact ξ*);  
HPC = Function[Om1/#^2/km*Mpc];               (*H0=ƒ(Q0)[km*s-1*Mpc-1]*); 
ff = 4/3/18^3/9/15/Sqrt[2]/delta ma/me;  
fff = 4/3/18^3/9/15/Sqrt[2] ma/me; 
gg = N[1.48 Pi^2/60/18^3]; 
ngN = Function[gg/r1^3/#^4.5]; 
nmN = Function[3.7 (gg/r1^3/#^4.5)/(fff*#^(1/6))]; 
Gmin = qqq /.  
   FindRoot[ 
    N[ngN[qqq]]*N[r1^3 (qqq)^4.5 BRQ1[qqq]^3] - 32 == 0, {qqq, 1, 100}]; 

 
Helpful Interpolations " 

 
"Not really needed. Evaluate only once the lines below the upper lines, then store data in e.g. rs={data} and close the cells. Evaluation can take a while.  
 Don’ t delete but always evaluate them. Disable evaluation for the lines below the upper line until Interpolation line then. Save notebook." 
____________________________________________________________________________________________________ 
 
brq={"Insert output from below"}; 
brq={{0,0}};  
For[x=(-8);i=0,x<50,++i,x+=0.05;  
AppendTo[brq,{10^x, N[BRQP[10^x]/BGN/(2.5070314770581117*10^x)]}]] 
brq 
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BRQ0 = Interpolation[brq]; (*Faster redefinition*); 
 
 
rs={"Insert output from below"}; 
rs={}; 
For[x=(-3); i=0,x<3,(++i),x+=.025; 
AppendTo[rs,{10^x,NIntegrate[RhoQQ1[z],{z,0,10^x}]/Abs[NIntegrate[RhoQQ1[z]* 
Exp[I/2*ArgThetaQ[z]],{z,0,10^x}]]}]] 
rs  
RS=Interpolation[rs];   (*Relation rk/rn*); 
RS1=Function[1/RS[#]]; 
 
 
rnb={"Insert output from below"}; 
rnb={}; 
For[d=-6.01; i=0,d<6.01,(++i),d+=.05; AppendTo[rnb,{d,RnB[10^d]/Pi}]] 
rnb 
RNB1=Interpolation[rnb];  (*RnB angle ϵ nullvector from Q*); 
RNB=Function[If[#<10^-8,Null,If[#<10^6,RNB1[Log10[#]],-.25]]]; 
RNBP=Function[If[#<10^-8,Null,If[#<10^6,Pi RNB1[Log10[#]],-Pi/4]]]; 
alphaF=Function[Sin[Pi/2+ϵ-RNBP[#]]^2/(4 Pi)]; (* Faster redefinition *); 
 
 
qq1={"Insert output from below"}; 
qq1={}; 
For[xy=(-17); i=0,xy<5,(++i),xy+=.05; AppendTo[qq1,{10^xy,N[Sin[(Pi/2-
RnB[10^xy]+ϵ)]]}]] 
qq1 
QQ0=Interpolation[qq1];  (*Relation qe/q0*); 
QQ=Function[If[#<10^5,QQ0[#],0.3028223504900885]]; 
QQ1=Function[If[#<10^5,1/QQ0[#],3.3022661582990733]]; 
 
 
inb={"Insert output from below"}; 
inb={}; 
For[d=-6.01; i=0,d<6.01,(++i),d+=.05; AppendTo[inb,{RnB[10^d]/Pi,d}]] 
inb 
INB1=Interpolation[inb];   (*InvRnB Q from angle ϵ nullvector*); 
INB=Function[Which[-1<#<0,INB1[#],#==0,3/2Pi Q0^.25,#>0,Null]]; 
INBP=Function[Which[-Pi<#<0,INB1[#/Pi],#==0,3/2 Q0^.25,#>0,Null]]; 
 

" 
" Approximation" 
 
(*b = xtilde; Figure3 *) 
Plot[{ 
Log10[(b*.5*10^y)^3/(Expp[b*.5*10^y]-1)], 
Log10[ 8*(.5*10^y/((.5*10^y)^2+1))^2], 
Xline[y,Log10[2]]},{y, -5, 3},PlotRange->{-10.1,.45}] 
 

" Expansion" 
 
Plot[{(*Log10[BRQP[10^qqq]/BGN/(2.5070314770581117×10^qqq)], Figure4a *) 
Log10[BRQ1[10^qqq]], Log10[Sqrt[10^qqq]]}, {qqq, -1, 10}] 
Plot[{(*BRQP[qqq]/BGN/(2.5070314770581117×qqq), Figure4b *) 
BRQ1[qqq], Sqrt[qqq]}, {qqq, 0, 10}, PlotRange -> {-0.3, 9.6}] 
 

" Integral" 
 
cc=8; (*Factor 8 approx ξ Figure5 *) 
Plot[{Psi1[y],Psi2[y]},{y,0.001,10}, 
PlotStyle->RGBColor[0.91,0.15,0.25], 
PlotLabel->None,LabelStyle->{FontFamily->"Chicago",10,Black}] 
 
cc=8; (*Factor 8 approx ξ Figure6 *) 
b3=Plot[{10Log10[Expp[Psi1[10^y]]],10 Log10[Expp[Psi2[10^y]]]},{y,-3,2}, 
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PlotRange->{-88,2},LabelStyle->{FontFamily->"Chicago",12,Black}]; 
 
b4=Plot[{10 Log10[Abs[FG[10^y]]]},{y,-3,2},PlotRange->{-88,2},PlotLabel->None, 
PlotStyle->RGBColor[0,0,0],LabelStyle->{FontFamily-
>"Chicago",10,Black,PlotRangeClipping->True}]; 
 
Show[b3,b4] 

" Approximation 1" 
 
cc=8; (* Factor 8 approximated BGN exact Figure7 *) 
Plot[{10 Log10[s2[10^y]],10 (Log10[s1[10^y]*Expp[Psi1[10^y]]]),Xline[y,Log10[2]]}, 
{y,-3,3},PlotRange->{-51,10.5},ImageSize->Full,LabelStyle->{FontFamily-
>"Chicago",10,Black}] (* Exact exact exact error max +1.3dB *) 
 
cc=7.519884824; (* Sqrt[π] exact ξ Figure8 *) 
Plot[{10 Log10[s2[10^y]],10 
(Log10[s1[10^y]]+Log10[E]*Psi2[10^y]),Xline[y,Log10[2]]},{y,-3,3}, 
PlotRange->{-51,4.5},ImageSize->Full,LabelStyle->{FontFamily->"Chicago",10, 
Black}] (* Exact exact exact error max +1.3dB *) 
 

" Extrema 1" 
 
u=FindMaximum[10 Log10[s2[10^xx]],{xx, 0}]; 
(* Planck's curve *) 
Print[StringJoin["x = ",ToString[(10^First[xx/.Rest[u]])]," Om1        (1.000000 
OmU)"]] 
Print[StringJoin["y = ",ToString[zzz = First[u]]," dB    (±0.000000 dB)"]] 
 
FindMaximum[10 (Log10[s1[10^xx]*Expp[Psi1[10^xx]]])-10Log10[s2[10^xx]],{xx,0}] ; 
(* Maximum deviation 1 Psi1 *) 
Pom[%] 
Pol[%%]  
 
FindMinimum[10 (Log10[s1[10^xx]*Expp[Psi1[10^xx]]/s2[10^xx]]),{xx,2}] ; 
(* Maximum deviation 2 Psi1 *) 
Pom[%] 
Pol[%%]  
 
FindMaximum[10 (Log10[s1[10^xx]*Expp[Psi2[10^xx]]])-10Log10[s2[10^xx]],{xx,0}]; 
(* Maximum deviation 1 Psi2 *) 
Pom[%] 
Pol[%%] 
 
FindMaximum[10 (Log10[s1[10^xx]*Expp[Psi2[10^xx]]])-10Log10[s2[10^xx]],{xx,1}]; 
(* Maximum deviation 2 Psi2 *) 
Pom[%] 
Pol[%%]  
FindMaximum[10 (Log10[s1[10^xx]]+Log10[E]*Psi1[10^xx]),{xx,0}]; 
(* Deviation between maxima Psi1*) 
Pom[%] 
Pol[%%] 
 
FindMaximum[10 (Log10[s1[10^xx]]+Log10[E]*Psi2[10^xx]),{xx,0}]; 
(* Deviation between maxima Psi2 *) 
Pom[%] 
Pol[%%]  
 

" Deviation 1" 
 
cc=8; (*Factor 8 approx ξ Figure9 *) 
b71=Plot[{10 Log10[s1[10^y]*Expp[Psi1[10^y]]/s2[10^y]],Xline[y,Log10[2]]}, 
{y,-3,2},PlotRange->{-3.02,1.42},ImageSize->Full,LabelStyle->{FontFamily-> 
"Chicago",10,Black}]; 
 
cc=7.519884824; (* Sqrt[π] exact ξ *) 
b72=Plot[{10 Log10[s1[10^y]*Expp[Psi2[10^y]]/s2[10^y]]},{y,-3,2},ImageSize->Full, 
LabelStyle->{FontFamily->"Chicago",10,Black}]; 
b73=Plot[{-10 Log10[gdc[10^x]]},{x,-3,2.2},PlotRange->{-3.02,1.42}, 
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PlotStyle->RGBColor[0.06,0.52,0.]]; 
 
Show[b71,b72,b73,ImageSize->Full,LabelStyle->{FontFamily->"Chicago",12,Black}] 
 

" Approximation 2" 
 
cc=8; (* Factor 8 approximated BGN exact Figure10 *) 
Plot[{10 Log10[s2[10^y]],10 (Log10[s1[10^y]*Expp[Psi1[10^y]]])+ 
10Log10[gdc[10^y]],Xline[y,Log10[2]]},{y,-3,3},PlotRange->{-51,4.5}, 
ImageSize->Full,LabelStyle->{FontFamily->"Chicago",10,Black}]  
(* Exact exact exact error max +1.3dB *) 
 
cc=7.519884824; (* Sqrt[π] exact ξ Figure11 *) 
Plot[{10 Log10[s2[10^y]],10 (Log10[s1[10^y]]+Log10[E]*Psi2[10^y])+ 
10Log10[gdc[10^y]],Xline[y,Log10[2]]},{y,-3,3},PlotRange->{-51,4.5}, 
ImageSize->Full,LabelStyle->{FontFamily->"Chicago",10,Black}]  
(* Exact exact exact deviation max +1dB *) 
 

" Extrema 2" 
 
v=FindMaximum[10 Log10[s2[10^xx]],{xx, 0}]; 
(* Planck's curve *) 
Print[StringJoin["x = ",ToString[(10^First[xx/.Rest[v]])]," Om1        (1.000000 
OmU)"]] 
Print[StringJoin["y = ",ToString[zzz = First[v]]," dB    (±0.000000 dB)"]] 
 
FindMaximum[10 Log10[(s1[10^xx]*Expp[Psi1[10^xx]]*gdc[10^xx])/s2[10^xx]],{xx,0}]; 
(* Maximum deviation 1 Psi1 *) 
Pom[%] 
Pol[%%]  
 
FindMaximum[10 Log10[(s1[10^xx]*Expp[Psi2[10^xx]]*gdc[10^xx])/s2[10^xx]],{xx,0}]; 
(* Maximum deviation 1 Psi2 *) 
Pom[%] 
Pol[%%]  
 FindMinimum[10 Log10[(s1[10^xx]*Expp[Psi2[10^xx]]*gdc[10^xx])/s2[10^xx]],{xx,.5}]; 
(* Maximum deviation 2 Psi2 *) 
Pom[%] 
Pol[%%] 
 
FindMaximum[10 Log10[(s1[10^xx]*Expp[Psi2[10^xx]]*gdc[10^xx])/s2[10^xx]],{xx,1}]; 
(* Maximum deviation 3 Psi2 *) 
Pom[%] 
Pol[%%]  
 
FindMaximum[10 Log10[s1[10^xx]*Expp[Psi1[10^xx]]*gdc[10^xx]],{xx,0}]; 
(* Deviation between maxima Psi1 *) 
Pom[%] 
Pol[%%] 
 
FindMaximum[10 Log10[s1[10^xx]*Expp[Psi2[10^xx]]*gdc[10^xx]],{xx,0}]; 
(* Deviation between maxima Psi2 *) 
Pom[%] 
Pol[%%] 
 
Plot[{(* Figure12 *) 
  10 Log10[s1[10^y]], 
  10 Log10[s2[10^y]], 
  10(Log10[s1[10^y]]+Log10[E]*Psi2[10^y]), 
  10 (Log10[s1[10^y]]+Log10[E]*Psi2[10^y]+Log10[gdc[10^y]]), 
  Xline[y,Log10[2]] 
},{y,-0.8,1.4},PlotRange->{-11,4.5},PlotLabel->None,ImageSize->Full,LabelStyle-
>{FontFamily->"Chicago",10,Black}] 
 

" Deviation 2" 
 
cc=7.519884824; (* Sqrt[π] exact ξ Figure13 *) 
b11= 
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 Plot[{10 Log10[s1[10^y]*Expp[Psi1[10^y]]/s2[10^y]]+10Log10[gdc[10^y]], 
    10 Log10[s1[10^y]*Expp[Psi2[10^y]]/s2[10^y]]+10Log10[gdc[10^y]]},{y, 
    -3,2},ImageSize->Full,LabelStyle->{FontFamily->"Chicago",10,Black}]; 
Show[b11,b71,b72,b4,PlotRange->{-3.02,1.42}] 
 

" Nulls" 
 
n1=y/.FindRoot[10 (Log10[s1[10^y]]+Log10[E]*Psi2[10^y])+ 
   10Log10[gdc[10^y]]-10Log10[s2[10^y]]==0,{y,0}] 
 
n2=y/.FindRoot[10 (Log10[s1[10^y]]+Log10[E]*Psi2[10^y])+ 
   10Log10[gdc[10^y]]-10Log10[s2[10^y]]==0,{y,.75}] 
 
n3=y/.FindRoot[10 (Log10[s1[10^y]]+Log10[E]*Psi2[10^y])+ 
   10Log10[gdc[10^y]]-10Log10[s2[10^y]]==0,{y,1.1}] 
 
N[10^n1]    (* Level at 1st null *) 
ToString[10 Log10[s2[%]]]<>" dB" 
 
N[10^n2]    (* Level at 2nd null *) 
ToString[10 Log10[s2[%]]]<>" dB" 
 
N[10^n3]    (* Level at 3rd null *) 
ToString[10 Log10[s2[%]]]<>" dB" 
 
N[10^1.4142]    (* Level after 3rd null *) 
ToString[10 Log10[s2[%]]]<>" dB" 
 

" Correlation" 
 
FindRoot[10 Log10[s2[10^yy]]+50==0,{yy,1.15,1.18}] 
cc=8; (* Factor 8 approximated BGN exact Figure7 *) 
cc=7.519884824; (* Sqrt[π] exact ξ Figure8 *) 
F2={}; 
For[y=-3; 
  i=0,y<1.16415,++i,y+=.001; 
  AppendTo[F2,N[10 Log10[s2[10^y]]]]]; 
cc=8; (* Factor 8 approximated BGN exact Figure7 *) 
F5={}; 
For[y=-3; 
  i=0,y<1.16415,++i,y+=.001; 
  AppendTo[F5,N[10 (Log10[s1[10^y]*Expp[Psi1[10^y]]])]]]; 
cc=7.519884824; (* Sqrt[π] exact ξ Figure8 *) 
F6={}; 
For[y=-3; 
  i=0,y<1.16415,++i,y+=.001; 
  AppendTo[F6,N[10 (Log10[s1[10^y]]+Log10[E]*Psi2[10^y])]]]; 
cc=8; (* Factor 8 approximated BGN exact Figure10 *) 
F8={}; 
For[y=-3; 
  i=0,y<1.16415,++i,y+=.001; 
  AppendTo[F8, 
  N[10 (Log10[s1[10^y]*Expp[Psi1[10^y]]])+10Log10[gdc[10^y]]]]]; 
cc=7.519884824; (* Sqrt[π] exact ξ Figure11 *) 
F9={}; 
For[y=-3; 
  i=0,y<1.16415,++i,y+=.001; 
  AppendTo[F9,N[10 (Log10[s1[10^y]]+Log10[E]*Psi2[10^y])+10Log10[gdc[10^y]]]]]; 
{Correlation[F5,F2],Correlation[F6,F2],Correlation[F8,F2],Correlation[F9,F2]} 
 

" Displacement line" 
 
b = xtilde;  
b14=Plot[{(* Figure14 *) 
Log10[s2[10^y]], Log10[s1[10^y]],Xline[y,Log10[2]],  
  2*y + Log10[2], 2*y - Log10[xtilde]}, {y, -3.05, 3.05},  
  PlotRange -> {0.55, -5.05}, ImageSize -> Full,  
  LabelStyle -> {FontFamily -> "Chicago", 10, Black}] 
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 "Temperature CMBR" 
 
krz0 = qqq/.FindRoot[N[3.7ngN[qqq]]/ 
  N[fff*N[qqq]^(-4/3)*BRQ1[qqq]^3/deltaF[qqq]]* 
N[r1 (qqq)^1.5 BRQ1[qqq]]^3-32==0,{qqq,1,1.1}]; 
krz1 = qqq /.  
  FindRoot[Log10[3.7 ngN[10^qqq]] - Log10[fff*N[10^qqq]^(-4/3)* 
  BRQ1[10^qqq]^3/deltaF[10^qqq]] - Log10[ngN[10^qqq]] == 0, {qqq, 10, 20}]; 
krz2 = Log10[ngN[10^krz1]]; 
krz3 = Log10[nmN[10^krz1]] + 6 Log10[Sqrt[r1] N[10^krz1]]; 
krz4 = Log10[nmN[Q0]] + 6 Log10[Sqrt[r1] N[Q0]]; 
krz5 = Log10[ngN[Q0]] + 6 Log10[Sqrt[r1] N[Q0]]; 
xmin=Log10[krz0]; 
ymin=N[Log10[32]]; 
 
b15 = Plot[(* Figure15 *) {hb1 Om1/18/k/(2 T (1 + y) ka0/ep0)^1.25},  
  {y, -0.52, 2},PlotRange -> {0.4, 7.18}, AxesOrigin -> {0, 0.6903},  
  ImageSize -> Full, PlotStyle -> Thickness[0.0038],  
  LabelStyle -> {FontFamily -> "Chicago", 10, Black}] 
b16 = Plot[(* Figure16 *) {Log10[hb1 Om1/18/k/(2*10^y ka0/ep0)^1.25]},  
  {y, -107.5, 30}, PlotStyle -> {Thickness[0.004],  
  RGBColor[0.5, 0.68, 0.37]}, PlotRange -> {-10, 168},  
  ImageSize -> Full, AxesOrigin -> {0, 03},  
  LabelStyle -> {FontFamily -> "Chicago", 10, Black}]; 
Show[b16, 
  GH[Log10[1.41678] + 32, -107.5, 30], 
  GV[Log10[9.53138*10^-9], -10, 168], 
  GV[Log10[T], -10, 168], 
  GV[Log10[t1/4], -10, 168]] 
 

" Exact world radius" 
 
b17a=Plot[{(* Figure17 *) 
  qqq^1.5 BRQ1[qqq]},{qqq, 0, 3}, 
  LabelStyle->{FontFamily->"Chicago",13,Black},ImageSize->Full, 
  PlotStyle->{RGBColor[0.27,0.39,0.54],Thickness[0.0035]}]; 
b17b=Plot[{(* Figure17 *) 
  qqq^2},{qqq, 0, 3}, 
  LabelStyle->{FontFamily->"Chicago",13,Black},ImageSize->Full, 
  PlotStyle->{RGBColor[1,0,.4],Thickness[0.0035]}]; 
Show[b17a,b17b,GV[0.5,-2,19]] 
 
b18a=Plot[{(* Figure18 *) 
  Log10[(10^qqq)^1.5 BRQ1[10^qqq]]},{qqq,-1,3}, 
  LabelStyle->{FontFamily->"Chicago",14,Black},ImageSize->Full,PlotRange->{-
4.2,6.6}, 
  PlotStyle->{RGBColor[0.27,0.39,0.54],Thickness[0.0035]}]; 
b18b=Plot[{(* Figure18 *) 
  Log10[N[10^qqq]^2]},{qqq,-1,3}, 
  LabelStyle->{FontFamily->"Chicago",14,Black},ImageSize->Full,PlotRange->{-
4.2,6.6}, 
  PlotStyle->{RGBColor[1,0,.4],Thickness[0.0035]}]; 
Show[b18a,b18b,GV[Log10[.5],-4.2,6.6]] 
 

" Maximum possible number of Line elements" 
 
b19a=Plot[{(* Figure19 *) 
  (qqq^0.5 BRQ1[qqq])^3}, {qqq, 0, 1.3}, PlotRange->{0,2.04}, 
  PlotStyle->{RGBColor[0.77,0.27,0.5],Thickness[0.0036]}]; 
b19b=Plot[{(* Figure19 *) 
  (qqq^-1 N[qqq]^2)^3}, {qqq, 0, 1.3}, PlotRange->{0,2.04}, 
  PlotStyle->{RGBColor[0.45,0.58,0.27],Thickness[0.0036]}]; 
Show[b19a,b19b,GV[N[.5],-6,18],GV[N[1],-6,18], 
  GH[N[1],-6,18],GH[N[1.71454],-6,18], 
  LabelStyle->{FontFamily->"Chicago",14,Black},ImageSize->Full] 
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" alphaF(Q,T) and deltaF(Q,T) immediately after BB" 
 
b20a=Plot[(* Figure20 *){deltaF[(10^(t10)/t1)^.5]}, 
  {t10,(Log10[t1]-16),(Log10[t1]+16)},ImageSize->Full, 
  PlotLabel->None,LabelStyle->{FontFamily->"Chicago",12,Black}, 
  AxesOrigin->{(Log10[t1]-15),1}, PlotRange->{0,1.03}, 
  PlotStyle->{RGBColor[0.51,0.25,0.5],Thickness[0.0035]}]; 
b20b=Plot[{1/alphaF[10^t10]},{t10,-8,8},ImageSize->Full, 
  PlotLabel->None,LabelStyle->{FontFamily->"Chicago",12,Black}, 
  AxesOrigin->{8,0}, PlotRange->{0,150.4}, 
  PlotStyle->{RGBColor[0.51,0.25,0.5],Thickness[0.0035]}]; 
b20c=Show[b20b,GV[-0.18257004098843227,-8,145],GV[0,-8,145], 
  GH[12.566378870075917,-8,8],GH[137.0357912660098,-8,8], 
  GH[59.15105929915021,-8,8]]; 
Overlay[{b20a,b20c}] 
 
b21a=Plot[(* Figure21 *) Log10[fff*N[10^qqq]^(-4/3)*BRQ1[10^qqq]^3/deltaF[10^qqq]], 
  {qqq,-.4,Log10[100Q0]},PlotStyle->{RGBColor[0.27,0.4,0.51],Thickness[0.0035]}, 
  LabelStyle->{FontFamily->"Chicago",12,Black},ImageSize->Full]; 
b21b=Plot[(* Figure21 *) 
Log10[ff*N[10^qqq]^(1/6)],{qqq,-.4,Log10[100Q0]}, 
  PlotStyle->{RGBColor[1,0.21,0.38],Thickness[0.0035]}, 
  LabelStyle->{FontFamily->"Chicago",12,Black},ImageSize->Full]; 
Show[b21a,b21b,GV[Log10[Q0],-8,80],GV[xmin,-5,10], 
  GH[Log10[ff Q0^(1/6)],-3,70],GH[Log10[ff (2/3)^(1/6)],-3,70]] 
b22a=Plot[{(* Figure22 *) Log10[fff*N[10^qqq]^(-
4/3)*BRQ1[10^qqq]^3/deltaF[10^qqq]]}, 
  {qqq,-1,5.05},PlotRange->{-4.05,1.85},PlotStyle->{RGBColor[0.27,0.39,0.54], 
  Thickness[0.0038]}]; 
b22b=Plot[{(* Figure22 *) Log10[ff*N[10^qqq]^(1/6)]},{qqq,-1,5.05}, 
  PlotRange->{-4.05,1.85},PlotStyle->{RGBColor[1,0.21,0.38],Thickness[0.0038]}]; 
Show[b22a,b22b,GV[Log10[1/2],-5,2],GV[Log10[2/3],-5,2],GV[xmin,-5,2], 
  GH[Log10[fff*N[2/3]^(-4/3)*BRQ1[2/3]^3/deltaF[2/3]],-3,70], 
  GH[Log10[ff (1)^(1/6)],-3,70],GV[Log10[8238],-5,2], 
  LabelStyle->{FontFamily->"Chicago",12,Black},ImageSize->Full] 
 

" Photon - Nucleon - ratio/m³" 
 
b23a=Plot[{(* Figure23 *)  
  Log10[3.7ngN[10^qqq]]-Log10[fff*N[10^qqq]^(-4/3)* 
  BRQ1[10^qqq]^3/deltaF[10^qqq]]},{qqq,-1,Log10[100Q0]}, 
  PlotStyle->{RGBColor[0.23,0.74,0.63],Thickness[0.0045]}]; 
b23b=Plot[{(* Figure23 *)  
  Log10[ngN[10^qqq]]},{qqq,-1,Log10[100Q0]}, 
  PlotStyle->{RGBColor[0.91,0.43,0.5],Thickness[0.0045]}]; 
Show[b23a,b23b,GV[Log10[Q0],-30,350],GV[krz1,-30,350],GV[xmin,-30,350], 
  GH[Log10[ngN[Q0]],-3,70],GH[krz2,-30,350],AxesOrigin->{0,0}, 
  LabelStyle->{FontFamily->"Chicago",12,Black},ImageSize->Full] 
 

" Real number of CMBR-photons and nucleons" 
 
krz1 "Equality x" 
krz3 "Equality 10^x" 
krz4 " Fermions nowadays" 
krz5 "Bosons nowadays" 
b24=Plot[{(* Figure24 *) 
  Log10[ngN[10^qqq]]+3Log10[r1 (10^qqq)^1.5 BRQ1[10^qqq]], 
  Log10[ngN[10^qqq]]+6Log10[Sqrt[r1] N[10^qqq]], 
  Log10[3.7ngN[10^qqq]]- 
  Log10[fff*N[10^qqq]^(-4/3)*BRQ1[10^qqq]^3/deltaF[10^qqq]]+3* 
  Log10[r1 (10^qqq)^1.5 BRQ1[10^qqq]], 
  Log10[nmN[10^qqq]]+6Log10[Sqrt[r1] N[10^qqq]]},{qqq,-.35,Log10[1000Q0]}]; 
Show[b24,GV[N[krz1],-20,100],GV[Log10[Q0],-20,100],GV[xmin,-20,100], 
  GV[3.91,-20,100],GH[ymin,-.5,70], 
  GH[krz3,-.5,70],GH[krz4,-.5,70],GH[krz5,-.5,70], 
  LabelStyle->{FontFamily->"Chicago",12,Black},ImageSize->Full] 
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""Incoherent matter density" 
 
b25a=Plot[{(* Figure25 *) 
  Log10[M2/(10^qqq)]-3 Log10[r1 (10^qqq)^1.5 BRQ1[10^qqq]]-3}, 
  {qqq,-1,Log10[100 Q0]},PlotRange->{-45,435}, 
  PlotStyle->{RGBColor[0.5,0.31,0.62],Thickness[0.0045]}]; 
b25b=Plot[{(* Figure25 *) 
  Log10[M2/r1^3/(10^qqq)^7]-3},{qqq,-1,Log10[100 Q0]},PlotRange->{-45,435}, 
  PlotStyle->{RGBColor[0.5,0.68,0.37],Thickness[0.0045]}]; 
Show[b25b,b25a, 
  GV[Log10[Q0],-45,440],GV[Log10[10^krz1],-45,440], 
  GH[Log10[7.00663*10^397],-3,70],GH[Log10[7.30066*10^263]-3,-3,70], 
  GH[Log10[7.41027*10^-26]-3,-3,70],LabelStyle->{FontFamily->"Chicago",12, 
  Black},ImageSize->Full,AxesOrigin->{0,0}] 
 

""Spatial dependence of incoherent matter density" 
 
q11=Function[Q0(1-(2#)^(2/3))]; 
b26=Plot[{(* Figure26 *) 
  Log10[N[M2/q11[qqq]]/N[r1 q11[qqq]^1.5 BRQ1[q11[qqq]]]^3/10^3], 
  Log10[N[M2/r1^3/q11[qqq]^7]/10^3]},{qqq,0,0.5}, 
  PlotRange->{-29.5,11},PlotStyle->RGBColor[0.333333, 0, 1]]; 
Show[b26,GV[0.5,-29.5,11],LabelStyle->{FontFamily->"Chicago",12,Black}, 
  ImageSize->Full,AxesOrigin->{0,Log10[M1/R^3]-3}] 
M1/R^3/10^3 
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