
 Volume 2 | Issue 10 | 1 Int J Med Net, 2024

A Systematic Review of Enhancing CNN Performance in Automated Fabric
Defect Detection Through Sampling Techniques for Imbalanced Datasets with
the Developed CNN Model

Research Article

Saima Saleem*, David Williams and Satya Prakash
*Corresponding Author
Saima Saleem, Department of Artificial Intelligence, Ireland.

Submitted: 2024, Oct 06; Accepted: 2024, Oct 28; Published: 2024, Nov 08

Citation: Saleem, S., Prakash, S., Williams, D. (2024). A Systematic Review of Enhancing CNN Performance in Automated
Fabric Defect Detection Through Sampling Techniques for Imbalanced Datasets with the Developed CNN Model. Int J Med
Net, 2(10), 01-43.

Abstract
In the textile industry, manual fabric inspection poses significant challenges. Incomplete and faulty inspections can compromise
both product cost and quality. With the advancements in deep learning, various machine learning algorithms have emerged
as successful tools for image classification and analysis tasks. Nevertheless, there are several persistent issues, including the
complexity and time-consuming nature of training methods, the requirement for large datasets, and difficulties in achieving
generalization. What's needed is an accurate and swift automatic machine learning algorithm suitable for real-time detection
in industrial setups. To tackle these challenges, this research successfully developed a straightforward Convolutional Neural
Network (CNN) machine learning algorithm.

The algorithm's performance was evaluated on two different image sizes: 150 x 700, and 245 x 345. It became evident that
image size significantly influences the model's performance. Additionally, the dataset's inherent imbalance had an adverse
impact on the model's performance due to inadequate training and overfitting. To address the issue of imbalanced dataset and
enhance the model's performance, various sampling techniques were experimented with. Among these, the CNN model exhibited
its most outstanding performance when paired with a smaller image size of 245x345 and when utilizing the SMOTEENN
sampling technique. The results demonstrated remarkable accuracy, precision, recall, and F1 score, with values of 98.00%,
98.00%, 98.00%, and 98.00%, respectively. Moreover, the time required for modelling and prediction was impressively low,
at 1.57 seconds and 0.09 seconds, respectively. The research also proposed a method to deploy the algorithm and automate
the entire quality inspection process within the textile industry.

Department of artificial intelligence, Ireland

International Journal of Media and Networks
ISSN: 2995-3286

Keywords: Fabric-Defect Detection, Fabric Inspection, Deep Learning, Convolutional Neural Networks, Imbalanced Classification

Abbreviations
CNN: Convolutional Neural Network
TP: True Positive
FP: False Positive
TN: True Negative
FN: False Negative
P: Precision
r: Recall
SSD: Single Shot Detector
VLSTM: Visual Long-Short-Term Memory
VP: Visual Perception
SCAE: Stacked Convolutional Autoencoders
R-CNN: Region Based Convolutional Neural Network

RPN: Region Proposal Network
ROI: Region of Interest
PRAN-Net: Priori Anchor Convolutional Neural Network
MSCNN with K-clustering: Multi-scale CNN with K-clustering
CBAM: Convolutional Block Attention Module
ROC, Receiver Operator Characteristic
ReLU: Rectified Linear Unit
ADASYN: Adaptive Synthetic Sampling SMOTE
PCA: Principal Component Analysis

1. Introduction
A textile fabric manufacturing process is depicted in Fig. 1
below:

 Volume 2 | Issue 10 | 2 Int J Med Net, 2024

4

Introduction
A textile fabric manufacturing process is depicted in Fig. 1 below:

Fig. 1 Fabric manufacturing process

Fabric inspection is conducted at each stage of the textile manufacturing process, including

weaving, dyeing, printing, and finishing. This ensures product quality and minimizes

potential losses (Li et al., 2021, p. 1). The structure of fabric is inherently repetitive;

therefore, any defects disrupt this repetitive pattern (Gandelsman, Shocher, and Irani, 2019,

as cited in Wang and Jing, 2020, p. 161318). Early defect detection is crucial to prevent

wastage in the final product (Bullon et al., 2017, as cited in Li et al., 2021, p. 1). Jing et al.

(2022, pp. 2-3) categorized the task of defect detection into four levels:

 The first level involves the task of classifying defects into categories;

 The second level involves detecting and locating these defects;

 The third level identifies defective pixels within images, known as segmentation;

 The fourth level entails defect semantic segmentation, combining segmentation and

classification.

Fabric defect detection algorithms can be categorized into two types:

 Traditional algorithms and

 Learning-based algorithms.

Fiber Yarn Greige Fabric Finished Fabric

Cutting Stitching

Spinning Weaving

Fabric
Inspection

Dyeing

Figure 1: Fabric Manufacturing Process

Fabric inspection is conducted at each stage of the textile
manufacturing process, including weaving, dyeing, printing, and
finishing. This ensures product quality and minimizes potential
losses [1]. The structure of fabric is inherently repetitive;
therefore, any defects disrupt this repetitive pattern [2]. Early
defect detection is crucial to prevent wastage in the final product
[1]. Jing et al. (2022, pp. 2-3) categorized the task of defect
detection into four levels [3]:
• The first level involves the task of classifying defects into
categories;
• The second level involves detecting and locating these defects;
• The third level identifies defective pixels within images, known
as segmentation;
• The fourth level entails defect semantic segmentation,
combining segmentation and classification.
Fabric defect detection algorithms can be categorized into two
types:
• Traditional algorithms and
• Learning-based algorithms.

Traditional algorithms include statistical, spectral, structural,
and model-based methods. These techniques process individual
images and require manual feature selection. In contrast,
learning-based methods automate feature selection. Learning-
based algorithms can be further divided into:
• Classical machine learning algorithms;
• Deep machine learning algorithms

Deep learning methods have the advantage of automatic feature
extraction; However, they often require a substantial amount of
data compared to classical machine learning algorithms, which,
in turn, demand extensive parameter tuning [1,2].

Research has shown that CNN predictions for face recognition,
image classification and real time object detection can be as
accurate as human [4,5].

2. Related Works
Liu et al. (2018) proposed a method that utilized an enhanced
Single Shot Detector (SSD) with a shallower convolutional
feature layer [6]. They combined the deep neural networks for
single detection with YOLO's regression approach and Faster
R-CNN's anchor principle. Regression simplified the algorithm's
complexity and improved its efficiency, while anchors effectively
captured characteristics related to scales and aspect ratios. SSD
also employed a multiscale object feature extraction technique.
However, this method encountered challenges in accurately

detecting small defects.

Zhang et al. (2018) conducted a comparison among the YOLO
9000, YOLO-VOC, and Tiny-YOLO models, and they proposed
an improved YOLO-VOC model [7]. This enhanced model
employed super-parameter optimization for defect classification
and localization by utilizing a single-stage CNN for image
prediction increased detection speed, although the proposed
method's accuracy was comparatively lower.

In a study cited by Minhas and Zelek (2020, p. 507), Tan et al.
(2018) identified network-based transfer learning as the most
practically useful class among instance-based, mapping-based,
network-based, and transfer learning methods [8]. This approach
involves constructing a target network from a source network,
consisting of feature extractor and classification sub-networks.
Such an approach enables defect classification even when
working with limited labeled data.

Liu et al. (2019, p. 2) emphasized the accuracy of Convolutional
Neural Network (CNN) models in fabric defect detection tasks
[9]. According to Prakash et al. (2021), deep learning, especially
Convolutional Neural Networks (CNN), was a highly accurate
machine learning method for image detection and multi-
classification tasks, with real-time implementation capability
[10].

Zhao et al. (2019) designed a visual Long-Short-Term Memory
(LSTM) integrated CNN model utilizing visual perception (VP)
for classification [11]. Stacked Convolutional Autoencoders
(SCAE) were employed to extract features. Experimental
results on datasets containing 500, 1,000, and 10,500 images
demonstrated the highest performance on the 500-image dataset,
achieving an accuracy of 99.47%. However, this complex
method is sensitive to intricate fabric backgrounds.

Liu et al. (2019) proposed optimising the VGG16 convolutional
network with a deconvolutional network to accurately detect
defects [9]. Their model, LZFNet, incorporated a deconvolutional
network attached to each VGG16 layer, establishing a continuous
path back to the image pixel space. Despite its low parameter
count, obtaining a substantial amount of labeled training data for
CNN models in real-world scenarios remains challenging.

Wei et al. (2019) introduced a Faster R-CNN model that consisted
of convolution layers, a Region Proposal Network (RPN), ROI
pooling, and classification. Feature extraction was performed

 Volume 2 | Issue 10 | 3 Int J Med Net, 2024

using VGG16 [12]. The output score of the classification layer
represented the background for each anchor, while the output of
the regression layer indicated the coordinates of fabric defects.
However, this approach suffered from extended training times.
Chen et al. (2020) proposed an improved Faster R-CNN model
that incorporated Gabor kernels within Faster R-CNN and was
trained using a two-stage backpropagation method [13].

Minhas and Zelek (2020) introduced a specialised VGG16 model
optimised through deconvolutional networks using transfer
learning [8]. Their research highlighted two techniques: fixed
feature extraction and full network fine-tuning. Full network fine-
tuning, which involves updating the entire network's parameters
during training, outperformed fixed feature extraction. Notably,
the model's detection speed was not considered.

Peng et al. (2020) introduced the Priori Anchor Convolutional
Neural Network (PRAN-Net), which achieved high accuracy in
detecting tiny defects. They utilized multi-scale feature maps
from a Feature Pyramid Network (FPN) to generate sparse
priori anchors based on fabric defect ground truth boxes. Feature
extraction was performed using ResNet-101-FPN [14].

In contrast, Zhao et al. (2020) employed a K-means clustering
method known as Multi-scale CNN with K-clustering (MSCNN
with K-clustering) to define defect bounding boxes of known
sizes. However, this approach is data-driven and requires a
substantial number of labeled fabric images for model training,
and it covers only five defect types [11].

Almeida, Moutinho, and Matos-Carvalho (2021) proposed
an operator-assisted CNN model based on the premise that
undetected defects (False Negatives - FNs) typically incur
higher costs than non-defective items classified as defective
(False Positives - FPs) [15]. This model achieved an average
accuracy of 75%. However, with operator assistance, it reached
an accuracy of 95%.

He et al. (2021) introduced another Faster R-CNN algorithm
that incorporated the Convolutional Block Attention Module
(CBAM) in conjunction with ResNet50. ResNet50 was utilized
for feature extraction, classification, and regression [16]. The
extracted feature map was then input into RoI pooling and
RPN. To eliminate redundant boxes, Soft-NMS and RPN were
employed. This model can be integrated with CNN and trained
end-to-end alongside the basic CNN. Although this method is
time-consuming, the Channel Attention Module compresses the
feature map in the spatial dimension to obtain a one-dimensional
vector before performing the operation.

3. Convolutional Neural Network (CNN) Model
The CNN algorithm showed huge success in identifying objects
within images and was therefore considered in the present study
[17]. According to Yamashita et al. (2018, pp. 612-617), a typical
CNN architecture comprised convolution layers, pooling layers,
and fully connected layers [18]. It employs a kernel, a small grid
of parameters, to process input tensors. The kernel is applied to
the input tensor, and at each location, it calculates the product

of each element in the kernel and the corresponding element in
the input tensor, followed by summation. This process yields a
feature map. Two critical hyperparameters to consider are the
size and number of kernels. Padding is another consideration,
which involves reducing the dimensions of the output feature
map by overlapping the center of each kernel with the outermost
element of the input tensor.

Convolutional neural network CNN consists of convolution
layers, pooling layers, and fully connected layers. A convolution
layer is a basic layer of the CNN which is used for feature
extraction [18].

A Two-dimensional (2D) grid is an array used for storing the
pixels of the images [18].

Kernel is a small grid of parameters that is used for the feature
extraction [18].

As the output of one layer is fed to the next layer, extracted features
can hierarchically and progressively become more complex.
Training process minimises the difference between the output
and ground truth by means of backpropagation and gradient
descent. Training process identifies best kernels. Kernels learn
automatically during the training process. Hyperparameters that
need to be adjusted are the size of the kernels, number of kernels,
padding, and stride [18].

Convolution is a linear operation used for feature extraction.
In this process the kernel is applied on the input number array
called tensors. A product between each element of the kernel
and the input tensor is calculated at each location of the tensor
and then summed. The output is called a feature map. Two key
hyperparameters are the size and number of kernels. These are
usually 3 × 3, 5 × 5 or 7 × 7 [18].

Padding process reduces height and width of the output feature
map by overlapping the centre of each kernel with the outermost
element of the input tensor [18].

Stride is the distance between two successive kernels. A stride
that is larger than 1 is used to downsample the feature maps [18].

3.1 Nonlinear Activation Function
The outputs of a linear operation such as convolution are passed
through a nonlinear activation function. These are sigmoid or
hyperbolic tangent (tanh) functions, rectified linear unit (RELU)
[18].

3.2 Pooling Layer
A pooling layer reduces the dimensionality of the feature maps
and decreases the number of subsequent learnable parameters
[18].
Weight Sharing is used for the following purpose:
● To allow the local feature patterns extracted by kernels to
travel across all the images for the detection of patterns.
● To learn spatial hierarchies of feature patterns by downsampling
in conjunction with a pooling operation, resulting in capturing

 Volume 2 | Issue 10 | 4 Int J Med Net, 2024

an increasingly larger field of view.
● To increase model efficiency by reducing the number of
parameters to learn in comparison with fully connected neural
networks [18].

Max pooling extracts patches from the input feature maps,
discards the other and outputs the maximum value in each patch.
A max pooling with a filter of size 2 × 2 with a stride of 2 is
commonly used. This down samples the dimension of feature
maps by a factor of 2 [18].

3.3 Fully Connected Layer
The output feature maps of the final convolution or pooling layer
is flattened by means of transformation into a one-dimensional
(1D) array of number and then connected to one or more fully
connected layers. This fully connected layer is also known as
dense layers, in which every input is connected to every output
by a learnable weight. The final fully connected layer typically
has the same number of output nodes as the number of classes.
Each fully connected layer is followed by a nonlinear function,
such as RELU [18].

3.4 Last Layer Activation Function
Selection of an appropriate activation function, applied in the
last of fully connected layer, is crucial and must be tailored to
the specific task at hand. For multiclass classification tasks,
the SoftMax function is commonly employed. This function
normalizes the output values from the last fully connected
layer into target class probabilities, ensuring each value ranges
between 0 and 1, with the sum of all values equating to 1 [18].

3.5 Data and Ground Truth Labels
Data and ground truth labels are collected to train and test a
model. Available data is divided into three sets: a training, a
validation, and a test set [18].

3.6 Overfitting
It occurs when a model memorises irrelevant data instead
of learning the signal, and, therefore, performs less well on a
subsequent new dataset. An overfitted model does not generalize
to new data. If the model performs well on the training set
compared to the validation set, then the model has likely been
overfit to the training data. The best solution for reducing
overfitting is to obtain more training data. The other solutions
including dropout or batch normalisation and data augmentation
as well as reducing architectural complexity. During dropout,
random activations are set to zero during training, reducing the
model's reliance on specific weights. Weight decay helps prevent
overfitting by penalizing large weights. Batch normalization
adjusts input values in each layer, reducing overfitting and
improving gradient flow, allowing faster learning rates and
less reliance on initial values. Data augmentation also combats
overfitting by modifying training data with random changes like
flipping, translation, and rotation, ensuring the model encounters
varied inputs during training [18].

3.7 Loss Function or Cost Function
It measures the compatibility between output predictions of the

network through forward propagation and given ground truth
labels. Commonly used loss function for multiclass classification
is cross entropy [18].

Yamashita et al. (2018, pp. 612-617) mentioned that ReLU
function operates by multiplying input values by weights and
then summing them to produce specific outputs [18]. Activation
functions like sigmoid or tangent were unsuitable for multi-
layered CNNs due to the vanishing gradient problem.

According to Prakash et al. (2021, p.4), the Adaptive Moment
(Adam) function is used to minimize error loss [10]. Yamashita
et al. (2018, pp. 619-620) mentioned that Gradient Descent is
employed to update the learnable parameters, including kernels
and weights, of the network to minimize loss [18].

3.8 Gradient Descent
It is used to update the learning parameters to minimize the loss
[18].

3.9 Epochs in Deep Learning
An epoch represents a full cycle through the entire training
dataset in neural network training. During each epoch, the
network adjusts its parameters (weights and biases) based on the
training data and chosen optimization method to minimize the
loss function. Data is passed through the network, predictions
are made, and compared with actual values using a loss function.
Gradients of the loss function are computed through techniques
like backpropagation, guiding parameter updates to minimize
loss. Parameters are updated using an optimization algorithm
like stochastic gradient descent (SGD). This process is repeated
for each batch of data until all batches are processed, completing
one epoch. Multiple epochs are typically run to allow the
model to learn from the entire dataset. The number of epochs
is a hyperparameter adjusted during training and validation to
optimize model performance while considering computational
resources [19].

3.10 Test and Validation Set
In machine learning, data is often divided into three main
subsets: the training set, the validation set, and the test set.
Training set is used to train the model. The model learns the
relationships between input features and the target variable
through iterative optimization on this dataset, The validation set
is used to tune the model's hyperparameters and to evaluate its
performance during the training process. By assessing the model
on a separate validation set, one can detect issues like overfitting
and adjust such as changing the model architecture, adjusting
hyperparameters, or implementing regularization techniques.
The key purpose of the validation set is to provide an unbiased
evaluation of the model fit during the training process and to
assist in model selection. After the model has been trained and
tuned using the training and validation sets, it is evaluated on
the test set. The test set provides a final, unbiased evaluation of
the model's performance. Since the test set is not used during
training or validation, it serves as a measure of how the model
is expected to perform on unseen data. The performance metrics
obtained from the test set give a realistic estimate of the model's

 Volume 2 | Issue 10 | 5 Int J Med Net, 2024

generalization ability [20].

4. Imbalance Dataset and Resampling Techniques
The dataset in which classification categories are not equal is
an imbalance dataset. Accuracy is not a useful performance
measurement in case of imbalanced dataset. Resampling the
dataset by different sampling techniques is used to tackle this
issue of imbalance dataset [21]. The dataset should be balanced
in which all sample sizes of positive and negative examples are
roughly equivalent. This balanced dataset is required to avoid
systematic error and bias [22].

4.1 Data Sampling
Imbalanced dataset can either be absolute or relative [23].
● Absolute: minority class samples are less and not well
represented.
● Relative: minority samples are well represented but these are
larger in number as compared to majority class samples.
Imbalance can be:
● Between-class: number of samples representing a class differs
from the number of samples representing the other class.
● Within Class: when a class is composed of several different
subclusters which, in turn, do not contain the same number of
samples [23].

4.2 Problems of Data Imbalance
● The classifier is biased towards the majority classes.
● Class imbalance hinders the recognition of minority classes
since the minority class samples may be insufficient to represent
the boundaries between the two classes.
● Imbalanced datasets are more deeply impacted by noisy data
[23].
Resampling is commonly used to adjust the class distribution
when dealing with unbalanced datasets [23].

4.3 Imbalanced Dataset Approaches
Resampling (oversampling and undersampling) is commonly
employed to adjust class distribution when dealing with
unbalanced datasets [23]. Jing et al. (2020, p. 3) recommended
two categories of methods to address class imbalance: hard and
soft sampling techniques [2]. Hard sampling methods involve
down-sampling positive or negative samples, whereas soft
sampling methods use a weighted loss function that updates
parameters using the entire dataset [2].

In a study on fabric defect detection mechanisms, Rasheed et al.
(2020, p. 2) discussed the challenges of acquiring datasets with
fabric defects and emphasized how the dataset's imbalanced
nature can cause traditional supervised machine learning
algorithms to fail. As a result of this imbalance, the mean average
precision and ROC curve were considered superior evaluation
methods [24].

Lin et al. (2023, pp. 2-10) recommended a generalized focal loss
function to tackle issues caused by imbalanced datasets. This
function aims to enhance the learning of positive samples while
reducing the impact of less informative negative samples. In
contrast, Jing et al. (2020) proposed using the median frequency

loss function [2].

Cheng et al. (2022, pp. 3101-3122) introduced an intriguing
deep learning algorithm called Separation Convolution UNet
(SCUNet), representing an enhanced iteration of UNet initially
designed for medical image segmentation [25]. UNet featured
a distinctive structure for stitching low-level and high-level
semantic features, employing four max-pooling operations. In
each pooling operation, image pixels were grouped into 2x2
pixels, retaining the maximum pixel values within each group
while discarding the others. This process resulted in information
loss, particularly affecting the representation of small defects.
In contrast, SCUNet opted for convolutional downsampling to
reduce the feature map size. To address overfitting and minimize
parameter count, all convolutional layers were substituted with
depth-separable convolution. The choice of the Intersection over
Union (IoU) Loss function, as opposed to cross-entropy loss, was
made to accommodate irregular boundaries in defected images.
The resulting model demonstrated an accuracy and recall of
98.01% and 98.07%, respectively. SCUNet's improvements over
UNet were noteworthy. Instead of cropping the feature map,
SCUNet stitched the entire feature map. All down-sampling
layers were replaced with convolutional layers, and rather than
discarding information, SCUNet compressed and fused feature
image pixels. Down-sampling was achieved through a max-
pooling layer with a stride of 2. The use of depth-separable
convolution divided the process into channel-by-channel and
point-by-point convolutions, extracting features from different
locations within the same channel feature map and combining
them to extract features of different channels at the same spatial
location.

4.4 Resampling Techniques
The most common methods are:
● Oversampling means that we increase the number of samples
in the minor classes so that the number of samples in different
classes become equal or close to it thus get more balanced [26].
● Undersampling methods resample the data to reduce some
samples from the majority class but this results in removal
of useful data samples [23]. To cope with this issue, different
techniques are used as:

4.5 Imbalanced-learn Tool
Imbalanced-learn is a tool that offers various methods to address
the challenges posed by imbalanced datasets. It provides
techniques such as oversampling, undersampling, a combination
of oversampling and undersampling, and ensemble sampling for
data preprocessing. Within these methods, there is a category
labeled 'Miscellaneous,' which includes the Function Sampler
technique.

4.6 Instance Selection Algorithms
In this unimportant samples are eliminated. This algorithm
selects a subset of the samples that preserves the underlying
distribution, so that the remaining data is still representative of
the characteristics of the overall data [23].

 Volume 2 | Issue 10 | 6 Int J Med Net, 2024

4.7 Combination Method
Ensemble method combines several weak classifiers to get a
better and more comprehensive ensemble classifier [27].
Oversampling Methods

5. Synthetic Minority Oversampling Technique SMOTE
 It is a technique to over sample the minority class by creating
more examples that are slightly different from the original
data points [21]. SMOTE chooses a minority class instance at
random and finds its k-nearest neighbors. One of these k-nearest
neighbors is then selected at random [28].

5.1 Random Over-Sampling
This method repeats some samples and balances the number of
samples. Samples are selected at random from minority classes
with replacement. In case of multiple classes, each class is
sampled independently (imbalanced-learn, n.d., i).

5.2 Borderline SMOTE
This finds borderline samples to generate new synthetic samples.
Model learns the borderline of each class in the training process.
Borderline of the minority class is determined and then synthetic
examples are generated to add to the original training set [29].

5.3 Synthetic Minority Over-Sampling Technique for
Nominal and Continuous (SMOTENC)
In this method, median of standard deviations of the minority
class (continuous) is calculated. Euclidean distance is calculated
between minority of one class for which k-nearest neighbors are
being identified and the other minority class samples using the
continuous feature space [21].

5.4 Synthetic Minority Over-sampling Technique for
Nominal (SMOTEN)
It is used to resample the categorical data features. The nearest
neighbors are computed using the modified version of Value
Difference Metric. The Value Difference Metric (VDM) looks
at the overlap of feature values over all feature vectors. A matrix
defining the distance between corresponding feature values for
all feature vectors is created [21].

5.5 SVM SMOTE
It is a kind of SMOTE that uses a support vector machine
algorithm to select samples. In SVM-SMOTE, borderline is
determined by the support vectors after training SVMs classifier
on the original training set (Imbalanced learn, n.d., a).

5.6 Drawback of SMOTE:
The oversampling of SMOTE ignores within-class imbalance.
Algorithm does not enforce the decision boundary. Sample
instances far from the border are oversampled with the same
probability as those close to the boundary [23].

SMOTE produces new samples with certain blindness and may
make class overlapping more serious [27].

5.7 Adaptive Synthetic (ADASYN) Algorithm
It is like SMOTE but it generates a different number of samples
depending on an estimate of the local distribution of the class to
be oversampled. ADASYN adds a random value and the samples
are somewhat scattered [23].

18

between corresponding feature values for all feature vectors is created (Chawla et al. 2002, p.

349-351)

SVM SMOTE

It is a kind of SMOTE that uses a support vector machine algorithm to select samples. In

SVM-SMOTE, borderline is determined by the support vectors after training SVMs classifier

on the original training set (Imbalanced learn, n.d., a).

Drawback of SMOTE:

The oversampling of SMOTE ignores within-class imbalance. Algorithm does not enforce the

decision boundary. Sample instances far from the border are oversampled with the same

probability as those close to the boundary (Letteri et al., 2020, pp. 6)

SMOTE produces new samples with certain blindness and may make class overlapping more

serious (Duan et al., 2020, pp. 2).

Adaptive Synthetic (ADASYN) algorithm

It is like SMOTE but it generates a different number of samples depending on an estimate of

the local distribution of the class to be oversampled. ADASYN adds a random value and the

samples are somewhat scattered (Letteri et al., 2020, p. 6-7)

Fig. 2 Difference between ADASYN and SMOTE algorithms (Letteri et al., 2020, p. 7)

It generates minority data samples according to their distributions. Thus, more minority class

samples are generated that learn hardly as compared to those minority samples that are easier

to learn. The ADASYN method can not only reduce the learning bias introduced by the

Figure 2: Difference between ADASYN and SMOTE Algorithms (Letteri et al., 2020, p. 7) [23]

It generates minority data samples according to their distributions.
Thus, more minority class samples are generated that learn
hardly as compared to those minority samples that are easier to
learn. The ADASYN method can not only reduce the learning
bias introduced by the original imbalance data distribution but
can also adaptively shift the decision boundary to focus on those
difficult to learn sample [30].

5.8 K-Means SMOTE Oversampling
K-Means SMOTE works in three steps:
1. Cluster the entire input space using k-means.
2. Distribute samples to:
● Select clusters which have a high number of minority class
samples.

● Assign more synthetic samples to clusters where minority
class samples are sparsely distributed.

The method implements SMOTE and random oversampling as
limit cases (kmeans-smote.readthedocs.io, n.d.).

6. Undersampling
6.1 Cluster Centroids
This technique decreases the influence of the majority class by
replacing several of its samples with centroids generated by
a KMeans algorithm. It selects a set number (N) of majority
samples to form N clusters using KMeans. Then, it substitutes
these samples with the coordinates of the cluster centroids
(imbalanced learn, n.d., b).

 Volume 2 | Issue 10 | 7 Int J Med Net, 2024

6.2 Condensed Nearest Neighbour
Condensed Nearest Neighbor reduces the dataset for k-NN
classification by using a subset of examples [31]. Nearest
neighbor rule decides how to remove a sample or not. The
algorithm is runs as given below:
1. Get all minority samples in a set.
2. Add a sample from the targeted class.
3. Classify each sample using nearest neighbor rule.
4. Add a sample if it is misclassified.
5. Repeat the procedure until there are no samples to be added.
(imbalanced learn, n.d. f)

6.3 Edited Nearest Neighbor
This method cleans dataset by removing samples close to the
decision boundary (imbalanced learn, n.d., c).

Samples are classified using nearest neighbor rule and then
classified using single nearest neighbor rule of the pre-classified
samples [32].

6.4 Repeated Edited Nearest Neighbor
This repeats the Edited Nearest Neighbor many times
(imbalanced learn, n.d., d).

7. AIIKNN
This method applies Edited Nearest Neighbor several times and
will vary the number of nearest neighbours (imbalanced learn,
n.d. e). AIIKNN differs from the previous Repeated Nearest
Neighbor as the number of neighbors of the internal nearest
neighbors algorithm is increased at each iteration (imbalanced
learn, n.d. e).

7.1 Instance Hardness Threshold
Samples of the class with low probabilities are removed from the
dataset. Sampling strategy is based on the result. If the result is
float, then it is the ratio of majority to minority class. There is a
problem of class overlap [33].

7.2 NearMiss Undersampling Technique
This method randomly eliminates samples from the larger class.
When two points belonging to different classes are very close
to each other in the distribution, this algorithm eliminates the
samples of the larger class to balance the distribution. The steps
taken by this algorithm are:
1. Calculates the distance between all the points in the larger
class and compares them with the points in the smaller class.
2. Samples of the larger class that have the shortest distance with
the smaller class are selected. These n classes need to be stored
for elimination.
3. If there are m instances of the smaller class, then the algorithm
will return m*n instances of the larger class [34].

7.3 Tomek Links
Tomek Links is a modification from Condensed Nearest
Neighbors. CNN method only randomly selects the samples
with its k nearest neighbors from the majority class that are
removed. Tomek Links method uses the rule to selects the pair
of observation (a and b) that are fulfilled these properties:

1. The observation a’s nearest neighbor is b.
2. The observation b’s nearest neighbor is a.
3. Observations a and b belong to a different class. That is, a and
b belong to the minority and majority class vice versa [35].

7.4 Neighbourhood Cleaning Rule Undersampler
This class uses Edited Nearest Neighbor and a k-NN to remove
irrelevant samples from the datasets (imbalanced learn, n.d.
g). Neighborhood Cleaning Rule (NCL) is an undersampling
method to overcome imbalance class distribution by reducing
the data based on cleaning. Cleaning process is improvised
by removing the three closest neighbors from the data which
are incorrectly classified. The data cleaning process is for both
majority and minority class. Basically, the principle of NCL is
based on the concept of One-Sided Selection (OSS), which is
one technique for reducing data based on the instances to reduce
classes carefully [36].

7.5 Hybrid Sampling: Oversampling Combined with
Undersampling
This method can generate noisy samples which is solved by
cleaning the space resulting from over-sampling. After SMOTE
over-sampling, Tomek’s link and edited nearest-neighbours are
the two cleaning methods are applied to the pipeline.The two
ready-to use classes imbalanced-learn implements for combining
over- and undersampling methods are: (i) SMOTETomek and
(ii) SMOTEENN (imbalanced learn, n.d. h)

7.6 Stratified k-Fold Cross Validation
Stratified k-fold cross-validation is a technique used in machine
learning for model evaluation and hyperparameter tuning. It
is particularly useful when dealing with imbalanced datasets,
where the distribution of classes is uneven. The method involves
dividing the dataset into k-folds while ensuring that each fold
maintains the same class distribution as the original dataset. This
helps to mitigate the risk of bias in model evaluation by ensuring
that each class is adequately represented in both the training and
testing subset
- The dataset is first divided into k equal-sized folds.
- For each fold, the class distribution is preserved, meaning that
each fold contains approximately the same proportion of each
class as the original dataset.
- The model is trained on k-1 folds and evaluated on the
remaining fold
- This process is repeated k times, with each fold serving as the
validation set exactly once
- The final performance metric is computed by averaging the
performance across all k folds
Stratified k-fold cross-validation helps to produce more reliable
estimates of model performance, especially in scenarios where
the class distribution is skewed [37].

8. Evaluation Metrics
8.1 Confusion Matrix
In a confusion matrix, columns correspond to the predicted
class, while rows correspond to the actual class. The components
of the matrix are as follows:
● True Negatives (TN): The count of negative examples that are

 Volume 2 | Issue 10 | 8 Int J Med Net, 2024

correctly classified as negative.
● False Positives (FP): The count of negative examples that are
incorrectly classified as positive.
● False Negatives (FN): The count of positive examples that are
incorrectly classified as negative.
● True Positives (TP): The count of positive examples that are
correctly classified as positive.

Evaluation metrics used in image identification are typically
accuracy, precision, recall, F1- score (Al-Sarayreh et al., 2018;
Larsen et al., 2014; Ropodi et al., 2015; Setyono et al., 2018;
Wang et al., 2019).
Accuracy
Accuracy and F1 scores are described in Eq. 1 and 2 respectively
[10].

23

Stratified k-fold cross-validation helps to produce more reliable estimates of model

performance, especially in scenarios where the class distribution is skewed (Kojavi, 1995).

Evaluation Metrics
Confusion Matrix

In a confusion matrix, columns correspond to the predicted class, while rows correspond to

the actual class. The components of the matrix are as follows:

● True Negatives (TN): The count of negative examples that are correctly classified as

negative.

● False Positives (FP): The count of negative examples that are incorrectly classified as

positive.

● False Negatives (FN): The count of positive examples that are incorrectly classified as

negative.

● True Positives (TP): The count of positive examples that are correctly classified as

positive.

Evaluation metrics used in image identification are typically accuracy, precision, recall, F1-

score (Al-Sarayreh et al., 2018; Larsen et al., 2014; Ropodi et al., 2015; Setyono et al., 2018;

Wang et al., 2019).

Accuracy

Accuracy and F1 scores are described in Eq. 1 and 2 respectively (Prakash et. al., 2021)

∑

 (1)

In Eq. 1, TPi or the true positive is the number of instances predicted correctly for instance

and is the total number of predictions.

F1 Score

In Eq. 1, TPi or the true positive is the number of instances predicted correctly for instance i and N is the total number of predictions.
F1 Score

24

 (2)

where,

Precision

 (3)

 (4)

(Prakash el. al., 2021)

Precision

Precision is defined as the ratio of true positive defects correctly detected to the total number

of detected defects (Peng et al., 2020, p. 7). Precision indicates how effectively a model

identifies true positives, ensuring that the positive detections are accurate (Chawla, V. N. et

al., 2002, p. 326).

Recall

Recall, often referred to as sensitivity or true positive rate, is the ratio of correctly detected

true defects (true positives) to the total number of true defects (Peng et al., 2020, p. 7). Recall

showcases the model's capacity to identify all positive instances, thus assessing its ability to

capture all actual positives (Chawla, V. N. et al., 2002, p. 326).

 F-Score

The F-value, also known as the F-score or F-measure, represents the harmonic average of

precision and recall (Minhas and Zelek, 2020, p. 510; Zhao et al., 2020, p. 23).

The F-value combines both recall and precision, and it reaches its highest value when both

recall and precision are high (Han et al., 2005, p. 880).

24

 (2)

where,

Precision

 (3)

 (4)

(Prakash el. al., 2021)

Precision

Precision is defined as the ratio of true positive defects correctly detected to the total number

of detected defects (Peng et al., 2020, p. 7). Precision indicates how effectively a model

identifies true positives, ensuring that the positive detections are accurate (Chawla, V. N. et

al., 2002, p. 326).

Recall

Recall, often referred to as sensitivity or true positive rate, is the ratio of correctly detected

true defects (true positives) to the total number of true defects (Peng et al., 2020, p. 7). Recall

showcases the model's capacity to identify all positive instances, thus assessing its ability to

capture all actual positives (Chawla, V. N. et al., 2002, p. 326).

 F-Score

The F-value, also known as the F-score or F-measure, represents the harmonic average of

precision and recall (Minhas and Zelek, 2020, p. 510; Zhao et al., 2020, p. 23).

The F-value combines both recall and precision, and it reaches its highest value when both

recall and precision are high (Han et al., 2005, p. 880).

where,

Precision

[10].

• Precision
Precision is defined as the ratio of true positive defects correctly
detected to the total number of detected defects [14]. Precision
indicates how effectively a model identifies true positives,
ensuring that the positive detections are accurate [21].

• Recall
Recall, often referred to as sensitivity or true positive rate, is
the ratio of correctly detected true defects (true positives) to the
total number of true defects [14]. Recall showcases the model's
capacity to identify all positive instances, thus assessing its
ability to capture all actual positives [21].

• F-Score
The F-value, also known as the F-score or F-measure, represents
the harmonic average of precision and recall [8,11].

The F-value combines both recall and precision, and it reaches
its highest value when both recall and precision are high [29].

For imbalanced datasets, accuracy can be misleading. Even
if a classifier correctly classifies all majority examples but
misclassifies all minority examples, the high accuracy results
from the significant number of majority examples. This renders
accuracy unreliable for predicting the minority class [29].

For balanced datasets, the error rate is utilized as a performance
metric:
Error Rate = 1 - Accuracy [21]

In imbalanced datasets, the error rate isn't an appropriate
performance measure. Instead, precision and recall are more
meaningful metrics [21].

9. Data Visualization
9.1 Principal Component Analysis
It is a statistical method to reduce the dimensionality of a dataset.
It determines the direction where the variation in the dataset is
maximum. This direction is called the “principal component”.
It determines the different principal components (directions)
within the dataset and then uses these principal components
to represent the samples. In this way samples can be plotted to
check the similarities or differences between the samples. This
enables to group the samples. Principal components are the
linear combinations (new variables) of the original variables
[38]. PCA is a technique for feature extraction. It combines all
the variables and then drops less important variables. In this
way new independent variables are created. It identifies the
relationships between variables and then determines direction of
dispersion in the dataset [39].

9.2 Visual Studio Code
Visual Studio Code (VS Code) is a free, open-source code
editor developed by Microsoft. It is widely used by developers
for writing and debugging code, and it supports a wide range
of programming languages and frameworks. Here are some key
features and aspects of Visual Studio Code. While it is technically
a code editor, VS Code offers many features commonly found in
integrated development environments (IDEs) (Microsoft, n.d.).

 Volume 2 | Issue 10 | 9 Int J Med Net, 2024

9.3 Tensorflow and Keras
Tensorflow is an open source machine learning framework
designed for building and training of machine learning models
and neural networks. It consists of libraries and tools for machine
learning tasks [66].

Keras is an open-source neural network library written in Python.
It is designed to be user-friendly, modular, and extensible,
allowing users to quickly prototype and build deep learning
models with minimal code. Keras was originally developed
by François Chollet and was integrated into TensorFlow as its
official high-level API starting from TensorFlow version 2.0.
Keras provides a simple and intuitive API that allows users
to define neural networks using high-level building blocks
like layers, activations, optimizers, and loss functions. Keras
supports both convolutional and recurrent neural networks, as
well as combinations of the two. It also provides support for
various types of layers, such as dense, convolutional, recurrent,
and more [40].

9.4 Research Question
The objective of this research is to address the following research
questions:
● Is it feasible to create a deep learning methodology for fabric
defect detection that combines?
a) efficient speed,
b) heightened accuracy and
c) comprehensive training encompassing various fabric defect
types.
● Can this method incorporate a balanced approach to minimize
false negatives in detection rates?
The focus was placed on deep learning algorithms. While
a considerable amount of research has been done, several
limitations persist, and a system that meets the criteria for
deployment within industry has not been achieved.

10. Materials and Methods
10.1 Dataset
The data collected for this project were from :
● Fabric Defect Dataset from Kaggle [41].
● Fabric Stain Dataset from Kaggle [42].
● Aitex fabric image database [43]

● Dataset from the author of the literature review paper: only the
non-defect images from the dataset [14].

10.2 Aitex Fabric Image Database
This textile fabric dataset consisted of 245 images of 7 different
fabrics with image sizes of 4096×256 pixels. There were 140
defect-free images, 20 for each type of fabric. In each of the
defected category, there were 105 images [43].

10.3 Fabric Stain Dataset
This was taken from Kaggle [42]. The dataset was built as a
part of the fabric defect detection project of the Intelligence Lab
of University of Moratuwa, Sri Lanka. The dataset consisted of
images with resolution of 1920x1080 or 1080x1920. It consisted
of 398 defected images with different types of stains and 68
defect free images.

10.4 Fabric Defect Dataset
The dataset was also taken from Kaggle and it was supplied
by the Intelligence Lab, Department of computer science
and Engineering, University of Moratuwa [41]. This dataset
consisted of 3 classes of defective images namely horizontal,
vertical and holes along with 3 mask images for each defective
image sample. The folder named 'captured' consisted of raw
images. Images have a size of 640x360.

10.5 Dataset from the x of the Literature Review Paper
Authors of the research papers in the literature review were
contacted through emails for the dataset. With the consent of the
author of the paper “Automatic fabric defect detection method
using pran-net” named Troy Peng, the annotated data was used
[14].

After collecting the images from all these sources, the distribution
of the images is as given below:
● Defect free 1,666
● Defected 1,073
Defected hole 281
Defected horizontal 136
Defected lines images 157
Defected stain images 398
Defected verticle images 101

 Volume 2 | Issue 10 | 10 Int J Med Net, 2024

30

Defected lines images 157

Defected stain images 398

Defected verticle images 101

Fig. 3 Number of images in each class of the dataset

Total Images = 2,739

Experimental Setup and Evaluation
The images were experimented with two distinct sizes:

● 150x700

● 245x345

The entire experiment was carried out using the Python programming language . Keras , in

conjunction with TensorFlow , was employed for the development and training of CNN.

Various libraries, including numpy, pandas, and scikit-learn, were used for supporting tasks.

The experimentation was conducted within the Visual Studio Code (VS Code) environment.

Data Pre-processing

Figure 3: Number of Images in Each Class of the Datase
Total Images = 2,739

10.6 Experimental Setup and Evaluation
The images were experimented with two distinct sizes:
● 150x700
● 245x345

The entire experiment was carried out using the Python
programming language . Keras , in conjunction with TensorFlow
, was employed for the development and training of CNN. Various
libraries, including numpy, pandas, and scikit-learn, were used
for supporting tasks. The experimentation was conducted within
the Visual Studio Code (VS Code) environment.

10.7 Data Pre-processing
The acquired dataset exhibited an imbalance in its distribution
across different classes. Consequently, various sampling
techniques from the imbalanced-learn module were applied
and tested on the three chosen image sizes i.e. 150x700, and
245x345. The objective was to determine the most effective
sampling technique that yields high performance.

10.8 Data Visualization
Data visualisation was facilitated through Principal Component
Analysis (PCA).
Principal Component Analysis (PCA) is considered good for
data visualization for several reasons:
- PCA reduces the number of dimensions in the data while
preserving as much variance as possible. This simplifies complex
datasets and makes them easier to visualize, typically in 2D or
3D.
- By projecting data onto principal components that capture
the most variance, PCA highlights the underlying structure and
patterns, making relationships in the data more apparent.
- PCA can help in removing noise and redundant information,
which can clarify the visual representation of the data.

10.9 Modelling- Convolutional Neural Network
A CNN model's architecture was designed to facilitate
multi-classification and consisted of five two-dimensional
convolutional layers for feature extraction.
● The initial convolutional layer was configured with 16 filters,
each having a 7x7 kernel size. The second convolutional layer
used a set of 32 filters with a 5x5 kernel size.
● The third layer used 64 filters with a 3x3 kernel size.
● The fourth layer comprised 128 filters with a kernel size of
3x3.
● Lastly, the fifth layer was equipped with 256 filters and used
a 3x3 kernel size.

Padding with the hyperparameter 'same' was applied to allow
the filter kernels to traverse the images by including additional
pixels. Using 'same' as the padding hyperparameter ensured that
the size of the output feature map remained the same as that of
the input feature map.

Each successive convolutional layer was accompanied by
batch normalization, an activation function, max pooling, and
dropout layers. Batch normalization was used to standardize and
normalize the dataset within batches, contributing to improved
training and learning speed.

The outputs of linear operations, such as convolutions, passed
through nonlinear activation function Rectified Linear Unit
(ReLU). Rectified Linear Unit (ReLU) activation function was
employed due to the multi-layered nature of the CNN.

For this novel model, Max pooling was adopted to reduce
image dimensions and achieve downsampling, creating lower-
resolution images with essential features. A 2x2 filter shape
was employed for max pooling since it should be smaller than

 Volume 2 | Issue 10 | 11 Int J Med Net, 2024

the feature map's dimensions. This pooling layer generated
new feature maps. Dropout layers were introduced to address
overfitting.

In the final phase of the model, a fully connected layer, also
known as a dense layer, was used to align the outputs from the
pooling layers with the dataset labels. Since multiple pooling
layers were employed, a flattening layer was introduced to
organize these outputs sequentially into a vector. After passing
through all the convolutional layers, the output took the form of
a multidimensional array, which was then fed into a dense layer.
To interpret the results as a probability distribution, a SoftMax
function was applied in the fully connected layer.

To evaluate compatibility between network output predictions
and given labels, a loss function i.e. Adaptive Moment (Adam)
function was employed.

10.10 Parameter Settings
For this novel idea, for each experiment, the dataset was
divided into a training set and a test set using a 95:05 stratified
sampling ratio. The validation data was used to examine if the
hyperparameters required further tuning. The test data was used
as an unseen dataset to examine the results of the model. The
training process encompassed 100 epochs , with a batch size of
6 samples per batch.

Using a stratified k-fold cross-validation approach with 10 folds,
the dataset is split into training and validation sets for each
fold. For every fold iteration, a Convolutional Neural Network
(CNN) model is created using the specified image shape and
trained on the training data for 100 epochs with a batch size of
6. The model's performance is evaluated on the validation set,
and both the validation loss and accuracy are recorded. This
iterative process allows for a comprehensive assessment of the
model's performance across multiple folds, contributing to a
more reliable evaluation of its generalization capabilities."

10.11 Evaluation Metrics
Evaluation metrics used were accuracy, precision, recall, F1-

score, confusion matrix.

10.12 Validation Time
This is the time taken to evaluate the performance of the model on
the validation dataset after each epoch (or at specified intervals
during training). The validation dataset is a separate set of data
not used for training but for assessing how well the model is
generalizing. This helps in tuning the model’s hyperparameters
and prevents overfitting. The validation time includes the time
required to compute metrics like accuracy, precision, recall, and
F1 score on this dataset

10.13 Modelling Time
Also known as training time, this is the duration required for
the model to learn from the training dataset. It includes the
time taken for forward and backward propagation through the
network for all epochs until the model converges. This phase
involves the optimization of the model parameters (weights and
biases) through iterative updates. Efficient modelling time is
critical for developing models quickly, especially when dealing
with large datasets or complex architectures.

10.14 Prediction Time
This is the time it takes for the trained CNN model to make
predictions on new, unseen data. It measures how quickly the
model can infer the class labels or other outputs for input data
during deployment. Low prediction time is essential for real-
time applications, where the model needs to provide results
almost instantaneously, such as in autonomous driving or live
video analysis.

11. Results
CNN Modelling was performed for the two selected sizes
of images dataset without any sampling technique. In order
to optimize the performance of the CNN model, sampling
techniques available in the imbalanced-learn module were
experimented to select the best sampling technique with high
performance. The results were as given in table 1, 2 and 3.

35

 Parameters

 Total Trainable Non-trainable

245x345 2,698,310 2,697,062 1,248

150x700 3,157,062 3,155,814 1,248

Table 1 Total number of trainable and non-trainable parameters for the two image sizes

 245x345 150x700

 Accuracy Precision Recall F1 Accuracy Precision Recall F1

 % % % % % %

Without Sampling 94 96 94 94 91 91 91 91

Table 1: Total number of Trainable and Non-Trainable Parameters for the Two Image Sizes

 Volume 2 | Issue 10 | 12 Int J Med Net, 2024

35

 Parameters

 Total Trainable Non-trainable

245x345 2,698,310 2,697,062 1,248

150x700 3,157,062 3,155,814 1,248

Table 1 Total number of trainable and non-trainable parameters for the two image sizes

 245x345 150x700

 Accuracy Precision Recall F1 Accuracy Precision Recall F1

 % % % % % %

Without Sampling 94 96 94 94 91 91 91 91

36

Undersampling

Cluster
Centroids

89 91 89 90 73 87 73 76

AllKNN 93 97 93 94 94 95 94 94

Condensed Nearest Neigbor 65 83 65 69 69 73 69 69

Edited Nearest Neighbours 90 93 90 89 87 91 87 87

RepeatedEditedNearestNeighbours 88 90 88 88 91 93 91 91

Instance Hardness Threshold 87 88 87 87 85 87 85 86

Near Miss 73 87 73 75 77 85 77 78

Neighbourhood Cleaning Rule 95 95 95 95 91 92 91 91

TomekLinks 92 93 92 92 91 91 91 90

Random Undersampler 93 94 93 93 90 93 90 90

Oversampling

ADASYN 95 95 95 95 90 90 90 90

Random Oversampling 96 97 96 96 95 96 95 95

Borderline
SMOTE

96 96 96 95 93 93 93 93

kMeans
SMOTE

94 95 94 94 95 96 95 95

SMOTEN 91 92 91 91 93 94 93 93

SMOTENC

SVM SMOTE 96 96 96 96 95 95 95 95

Combined Oversampling and Undersampling

 Volume 2 | Issue 10 | 13 Int J Med Net, 2024

36

Undersampling

Cluster
Centroids

89 91 89 90 73 87 73 76

AllKNN 93 97 93 94 94 95 94 94

Condensed Nearest Neigbor 65 83 65 69 69 73 69 69

Edited Nearest Neighbours 90 93 90 89 87 91 87 87

RepeatedEditedNearestNeighbours 88 90 88 88 91 93 91 91

Instance Hardness Threshold 87 88 87 87 85 87 85 86

Near Miss 73 87 73 75 77 85 77 78

Neighbourhood Cleaning Rule 95 95 95 95 91 92 91 91

TomekLinks 92 93 92 92 91 91 91 90

Random Undersampler 93 94 93 93 90 93 90 90

Oversampling

ADASYN 95 95 95 95 90 90 90 90

Random Oversampling 96 97 96 96 95 96 95 95

Borderline
SMOTE

96 96 96 95 93 93 93 93

kMeans
SMOTE

94 95 94 94 95 96 95 95

SMOTEN 91 92 91 91 93 94 93 93

SMOTENC

SVM SMOTE 96 96 96 96 95 95 95 95

Combined Oversampling and Undersampling

37

SMOTEENN 98 98 98 98 96 96 96 96

SMOTETomek 96 96 96 96 91 91 91 91

Ensemble

Pipeline 93 93 93 93 87 89 87 87

Miscellaneous

Function Sampler 94 95 94 94 96 97 96 96

Table 2 Model performance without and with data pre-processing

 245x345 150x700

 Validation
Time

Model
Time

Pred
Time

Validation
Time

Model
Time

Pred
Time

 Sec Sec Sec Sec Sec Sec

Table 2: Model Performance Without and With Data Pre-Processing

37

SMOTEENN 98 98 98 98 96 96 96 96

SMOTETomek 96 96 96 96 91 91 91 91

Ensemble

Pipeline 93 93 93 93 87 89 87 87

Miscellaneous

Function Sampler 94 95 94 94 96 97 96 96

Table 2 Model performance without and with data pre-processing

 245x345 150x700

 Validation
Time

Model
Time

Pred
Time

Validation
Time

Model
Time

Pred
Time

 Sec Sec Sec Sec Sec Sec

38

Without Sampling 2.64 0.22 0.06 3.26 0.34 0.06-0.1

Undersampling

ClusterCentroids 2.8 0.29 0.06-0.1 3.11 0.205 0.07-0.08

AllKNN 2.69 0.21 0.07 3.52 0.24 0.07-0.08

Condensed Nearest Neigbor 2.52 0.2 0.07 3.18 0.20 0.06-0.15

Edited Nearest Neighbour 2.5 0.2 0.09 3.3 0.22 0.09

Repeated Edited Nearest Neighbout 2.6 0.2 0.06 3,12 0.21 0.05-0.7

Instance Hardness Threshold 2.50 0.21 0.07 3.32 0.2 0.08

Near Miss 2.69 0.24 0.07 3.2 0.2 0.07

Neighbourhood Cleaning Rule 2.82 0.24 0.07 3.4 0.25 0.06-0.14

TomekLinks 2.45 0.27 0.06-0.1 2.93 0.3 0.08-0.1

Random Undersampler 2.55 0.23 0.06-0.08 3.86 2.51 0.09

Oversampling

ADASYN 2.43 0.56 0.08-0.1 3.53 0.89 0.08

Random Oversampling 2.90 0.7 0.06-0.1 2.98 0.23 0.07

Borderline
SMOTE

3.25 1.96 0.06-0.096 3.31 1.74 0.087-0.065

kMeans
SMOTE

3.2 1.1 0.09 3.47 5.66 0.077

SMOTEN 3 1.9 0.07 3.36 2.02 0.07-0.09

SMOTENC

SVM SMOTE 3.15 1.90 0.085-0.1 3.40 1.86 0.07-0.086

 Volume 2 | Issue 10 | 14 Int J Med Net, 2024

38

Without Sampling 2.64 0.22 0.06 3.26 0.34 0.06-0.1

Undersampling

ClusterCentroids 2.8 0.29 0.06-0.1 3.11 0.205 0.07-0.08

AllKNN 2.69 0.21 0.07 3.52 0.24 0.07-0.08

Condensed Nearest Neigbor 2.52 0.2 0.07 3.18 0.20 0.06-0.15

Edited Nearest Neighbour 2.5 0.2 0.09 3.3 0.22 0.09

Repeated Edited Nearest Neighbout 2.6 0.2 0.06 3,12 0.21 0.05-0.7

Instance Hardness Threshold 2.50 0.21 0.07 3.32 0.2 0.08

Near Miss 2.69 0.24 0.07 3.2 0.2 0.07

Neighbourhood Cleaning Rule 2.82 0.24 0.07 3.4 0.25 0.06-0.14

TomekLinks 2.45 0.27 0.06-0.1 2.93 0.3 0.08-0.1

Random Undersampler 2.55 0.23 0.06-0.08 3.86 2.51 0.09

Oversampling

ADASYN 2.43 0.56 0.08-0.1 3.53 0.89 0.08

Random Oversampling 2.90 0.7 0.06-0.1 2.98 0.23 0.07

Borderline
SMOTE

3.25 1.96 0.06-0.096 3.31 1.74 0.087-0.065

kMeans
SMOTE

3.2 1.1 0.09 3.47 5.66 0.077

SMOTEN 3 1.9 0.07 3.36 2.02 0.07-0.09

SMOTENC

SVM SMOTE 3.15 1.90 0.085-0.1 3.40 1.86 0.07-0.086

39

Combined Oversampling and Undersampling

SMOTEENN 3,4 1.57 0.09 3.5 1.15 0.07-0.1

SMOTETomek 2.77 2.21 0.06 3.67 2.44 0.07-0.12

Ensemble

Pipeline (AIKNN+Neighbouhood CleaningRule) 2.8 0.31 0.07 3.26 0.35 0.06-0.09

Miscellaneous

Function Sampling 2.59 0.21 0.07-0.1 3.26 0.2 0.07-0.15

Table 3 Model time performance with data pre-processing

Discussion
The aims of this study were twofold: to amass an image dataset containing fabric defects and

to create a model capable of accurately categorizing these defects, ultimately leading to an

automated system for identifying and detecting fabric defects.

Table 3: Model Time Performance With Data Pre-Processing

 Volume 2 | Issue 10 | 15 Int J Med Net, 2024

12. Discussion
The aims of this study were twofold: to amass an image dataset
containing fabric defects and to create a model capable of
accurately categorizing these defects, ultimately leading to an
automated system for identifying and detecting fabric defects.

To do this, state-of-the-art data sampling techniques were applied
to the dataset consisting of a total of 2,739 images, including a
total of 1666 non-defected images and 1,073 defected images.
These sampling techniques were experimented on a novel CNN
image detection methodology. These results demonstrated some
interesting findings relating to AI and implementation strategies
for future commercial deployment strategies.

As depicted in table 2, when analysing the dataset without pre-
processing, the CNN model's performance was impacted by the
imbalanced nature of the data. For images size 150 x 700, the
model achieved 91% accuracy, precision, recall, and F1 score,
respectively. However, with images sized 245x345, the model's
performance notably improved, reaching 94% accuracy, 96%
precision, 94% recall and F1 score. Remarkably, the 245x345
image size demonstrated superior performance compared to
the larger 150x700 image size. But even then, the performance
was not outstanding and needed further improvement. For this
reason, different sampling techniques were experimented to
improve the performance of the model.

12.1 Oversampling
In table 2, it is evident that ADASYN, Random Oversampling,
Borderline SMOTE, and SVM SMOTE yielded superior
performance when applied to images sized 245x345 compared to
those sized 150x700, across metrics such as accuracy, precision,
recall, and F1 score. Unfortunately, SMOTENC encountered
memory size limitations and could not be executed. Notably,
kMeans SMOTE and SMOTEN did not exhibit enhanced
performance.

Among the oversampling techniques, Random Oversampling,
Borderline SMOTE, and SVM SMOTE showcased exceptional
performance. Notably, Random Oversampling achieved a
precision of 97%, outperforming the other techniques in this
regard.

As indicated in Table 2, both Random Oversampling and
ADASYN exhibited notably quicker validation and modelling
times for images sized 245x345 compared to other oversampling
methods, as well as compared to the 150x700 size across all
methods. The longest validation times were observed for k
Means SMOTE, Borderline SMOTE, SMOTEN, and SVM
SMOTE.

12.2 Under Sampling
None of the under sampling techniques demonstrated satisfactory
performance for either of the two image sizes. However,
Neighbourhood Cleaning Rule and AIIKNN showcased notable
improvements. Neighbourhood Cleaning Rule exhibited superior
performance, achieving 95% across accuracy, precision, recall,
and F1 Score for images sized 245x345. AIIKNN displayed

enhanced precision, reaching 97% and 95% for images sized
245x345 and 150x700, respectively.

The validation, modelling, and prediction times for both AIIKNN
and Neighbourhood Cleaning Rule were nearly equivalent to the
model's performance without sampling. This held true for both
image sizes, 245x345 and 150x700. Among the under sampling
techniques, Tomek links exhibited the shortest validation,
modelling, and prediction times.

12.3 Combined Undersampling and Oversampling
Remarkably, both SMOTEENN and SMOTE Tomek surpassed
the performance of combined oversampling and undersampling
techniques. Particularly, SMOTEENN demonstrated superior
performance compared to SMOTE Tomek.

12.3.1 Ensemble
As depicted in Table 2, the Pipeline sampling utilized
undersampling techniques AIKNN and Neighbourhood Cleaning
Rule. Due to limited memory space, oversampling techniques
could not be evaluated. Consequently, the Pipeline could not
demonstrate any performance across both image sizes.

12.3.2 Miscellaneous
The Function sampler did not exhibit any performance
improvement with the image size 245x345. However, for the
larger image size of 150x700, performance was notably better,
with 96% accuracy, recall, and F1 score, and 97% precision.

From Table 2, it's apparent that among the best-performing
sampling techniques across various experimented methods,
SMOTEENN, combining oversampling and undersampling,
delivered the most promising performance compared to
other selected top-performing methods. The CNN model's
performance with the SMOTEENN sampling technique was
notably strong for the image size of 245x345.

The following table (Table 4) provides an overview of the best-
performing techniques among the different sampling methods
tested with two image sizes: 150x700 and 245x345. As shown
in the table, the combined oversampling and undersampling
techniques yielded the best results. Among the two combined
techniques tested, SMOTEENN and SMOTETomek,
SMOTEENN achieved the highest performance with 98%
accuracy, precision, recall, and F1 score for the 245x345 image
size.

For SMOTEENN, the validation, modeling, and prediction
times for the 245x345 image size were nearly the same as for
the 150x700 image size. However, for SMOTETomek, the
validation time for the 245x345 size was lower (2.7 seconds)
compared to SMOTEENN (3.4 seconds). Conversely, the
modeling time for SMOTETomek was higher (2.21 seconds)
compared to SMOTEENN (1.57 seconds).

The performance of SVM SMOTE, Random Oversampling,
and Borderline SMOTE—techniques categorized under
oversampling for the 245x345 image size—and the miscellaneous

 Volume 2 | Issue 10 | 16 Int J Med Net, 2024

sampling technique, Function Sampler, for the 150x700 image
size, remained nearly identical in terms of accuracy, precision,
recall, and F1 score. The validation, prediction, and modeling
times for SVM SMOTE, Random Oversampling, and Borderline
SMOTE were relatively shorter compared to the combined
oversampling and undersampling technique, SMOTEENN.

For images sized 245x345, the validation, modeling, and
prediction time for SMOTEENN was longer compared to

SMOTE Tomek, being the maximum among the undersampling
and oversampling techniques. SMOTE Tomek exhibited
shorter validation times, outperforming other undersampling
and oversampling techniques. However, as SMOTEENN has
surpassed SMOTETomek in terms of accuracy and precision,
therefore, SMOTEENN remains on the top of SMOTETomek
and among other sampling techniques in terms of overall
performance.

44

Sampling

Image

Size

Accuracy

Precision

Recall

F1
Time

Model
S

Predict
s

Valid
s

Oversampling
and

Undersampling

245x345

SMOTEENN

0.98

0.98

0.98

0.98

1.57

0.09

3.4

150x700

0.96

0.96

0.96

0.96

 1.15

0.07-0.1

 3.5

245x345

SMOTETomek

 0.96

0.96

0.96

0.96

 2.21

0.06

2.77

Oversampling

245x345

SVM SMOTE

0.96

0.96

0.96

0.96

1.90

0.09-0.1

3.15

150x700

0.95

0.96

0.95

0.95

1.86

0.07-
0.09

3.4

245x345

Random
Oversampling

0.96

0.97

0.96

0.96

0.7

0.06-0.1

2.90

150x700

0.95

0.96

0.95

0.95

0.23

0.07

2.98

245x345

Borderline
SMOTE

0.96

0.96

0.96

0.95

1.96

0.06-
0.09

3.25

Miscellaneous 150x700 Function
Sampler

0.96

0.97

0.96

0.96

0.2

0.07-
0.15

3.26

Table 4 Performance comparison of the best performing sampling techniques

When analysing results, PCA was used for the data visualization. Figure 4 shows the data set

before data preprocessing.

Table 4: Performance Comparison of the Best Performing Sampling Techniques

When analysing results, PCA was used for the data visualization. Figure 4 shows the data set before data pre-processing.

 Volume 2 | Issue 10 | 17 Int J Med Net, 2024
45

Fig. 4 PCA before data pre-processing

- Red colored narrates the defect free images.

Defected images are shown as:

- Royal Blue shows the holes,

- Orange shows vertical

- Green shows lines

- Light blue shows horizontal

- Yellow shows stains

As shown in the figure 4, defects are not properly segregated and therefore, model could not

predict the defect classes accurately and precisely. For example, the yellow dots representing

stains could be misclassified as defect-free since they are mixed with the red dots. Similarly,

the royal blue dots are mixed with the green dots, leading to potential misclassification of

defects. A similar issue occurs with the royal blue dots, which are mixed with the green dots,

leading to potential misclassification of these defects.

Figure 4: PCA before Data Pre-Processing

- Red coloured narrates the defect free images.
Defected images are shown as:
- Royal Blue shows the holes,
- Orange shows vertical
- Green shows lines
- Light blue shows horizontal
- Yellow shows stains
As shown in the figure 4, defects are not properly segregated and
therefore, model could not predict the defect classes accurately
and precisely. For example, the yellow dots representing stains
could be misclassified as defect-free since they are mixed with
the red dots. Similarly, the royal blue dots are mixed with the

green dots, leading to potential misclassification of defects. A
similar issue occurs with the royal blue dots, which are mixed
with the green dots, leading to potential misclassification of
these defects.

The following figures 5 and 6 give the data visualization
using Principal Component Analysis for the best performing
techniques.

Fig. 5 shows the data visualization when data was pre-processed
using best performed sampling technique SMOTEENN.

46

The following figures 5 and 6 give the data visualization using Principal Component Analysis

for the best performing techniques.

Fig. 5 shows the data visualization when data was pre-processed using best performed

sampling technique SMOTEENN.

a) Image size 245x345 b) Image size 150x700

Fig. 5 PCA after data pre-processing with SMOTEENN sampling technique

As shown in the fig. 5a. There is a clear separation between the different colors showing that

all the classes are completely seggragated that led to high accuracy. Similary, fig 5b also

shows the similar but somewhere like there is a small merge of two classed. For example the

red color is somewhat mixed with other colors.

Figure 5: PCA After Data Pre-Processing with SMOTEENN Sampling Technique
As shown in the fig. 5a. There is a clear separation between
the different colors showing that all the classes are completely
seggragated that led to high accuracy. Similary, fig 5b also

shows the similar but somewhere like there is a small merge of
two classed. For example, the red color is somewhat mixed with
other colors.

 Volume 2 | Issue 10 | 18 Int J Med Net, 2024

47

 a

 b c d

 e f g

Fig. 6 PCA after data pre-processing with:

a) SMOTETomek image size 245x345
b) SVM SMOTE Oversampling image size 245x345
c) SVM SMOTE Oversampling image size 150x700

Figure 6: PCA After Data Pre-Processing with:

a) SMOTETomek image size 245x345
b) SVM SMOTE Oversampling image size 245x345
c) SVM SMOTE Oversampling image size 150x700
d) Random Oversampling image size 245x345
e) Random Oversampling image size 150x700
f) Borderline SMOTE image size 245x345
g) Function Sampler image size 150x700

 Volume 2 | Issue 10 | 19 Int J Med Net, 2024

It is obvious from the Fig 6 that the model with the different
resampling techniques like SMOTETomek (image size 245x345),
SVM SMOTE (245x345 and 150x700), Random sampling
(image size 245x345, 150x700), Borderline SMOTE (image size
245x345) and Function Sampler (image size 150x700), the red
colored dots representing the defect free class are mixed with the

other classes that is the reason for the decrease in the accuracy of
the model performance.

PCA hence is a very effective method to understand the
model performance. This method gives a clear picture of the
multiclassification behaviour of the model.

48

d) Random Oversampling image size 245x345
e) Random Oversampling image size 150x700
f) Borderline SMOTE image size 245x345
g) Function Sampler image size 150x700

It is obvious from the Fig 6 that the model with the different resampling techniques like

SMOTETomek (image size 245x345), SVM SMOTE (245x345 and 150x700), Random

sampling (image size 245x345, 150x700), Borderline SMOTE (image size 245x345) and

Function Sampler (image size 150x700), the red colored dots representing the defect free

class are mixed with the other classes that is the reason for the decrease in the accuracy of the

model performance.

PCA hence is a very effective method to understand the model performance. This method

gives a clear picture of the multiclassification behaviour of the model.

Fig. 7 shows the confusion matrices after modelling with CNN for the selected size 245x345.

Fig. 7 Confusion matrix of the CNN model sampled with SMOTEENN method for image
size 245x345

Fig. 8 Prediction time and accuracy of the CNN model with SMOTEENN sampling
technique image size 245x345

48

d) Random Oversampling image size 245x345
e) Random Oversampling image size 150x700
f) Borderline SMOTE image size 245x345
g) Function Sampler image size 150x700

It is obvious from the Fig 6 that the model with the different resampling techniques like

SMOTETomek (image size 245x345), SVM SMOTE (245x345 and 150x700), Random

sampling (image size 245x345, 150x700), Borderline SMOTE (image size 245x345) and

Function Sampler (image size 150x700), the red colored dots representing the defect free

class are mixed with the other classes that is the reason for the decrease in the accuracy of the

model performance.

PCA hence is a very effective method to understand the model performance. This method

gives a clear picture of the multiclassification behaviour of the model.

Fig. 7 shows the confusion matrices after modelling with CNN for the selected size 245x345.

Fig. 7 Confusion matrix of the CNN model sampled with SMOTEENN method for image
size 245x345

Fig. 8 Prediction time and accuracy of the CNN model with SMOTEENN sampling
technique image size 245x345

Figure 7: Shows the Confusion Matrices After Modelling with CNN for the Selected Size 245x345

Fig. 7 Confusion matrix of the CNN model sampled with SMOTEENN method for image size 245x345

Figure 8: Prediction Time and Accuracy of the CNN Model with Smoothen Sampling Technique Image Size 245x345

Fig.8 shows the time taken and accuracy for predicting the
defects and the accuracy of predictions for the developed
CNN with SMOTEENN sampling techniques for the image
size 245x345. It is evident that the trained model performance
remained 100% accurate.

Verification from Literature Review
The findings from the experimentation align with the conclusions
drawn by Luke, Joseph, and Balaji (2019, p. 70), which are
elaborated below [44]:
1. CNN significantly influences image resolution accuracy.
2. Image sizes exert a substantial impact on model accuracy.
Changes in size can either enhance or degrade model
performance.
3. Accuracy tends to increase as image sizes are enlarged, but
this trend reverses beyond a certain threshold due to reduced
receptive field.
4. Larger image sizes impact the ability to learn medium and
high-level features.
5. To achieve higher accuracy, the optimal image size falls within
the range between the default size and 512.

6. Resizing images affects low-level features due to information
loss, thereby influencing accuracy. The accuracy is particularly
influenced by inter-class similarities, which are closely tied to
low-level features [44].

Image resolution notably influences the model's performance.
Thambawita et al. (2021) discovered that CNN achieved its best
performance with a larger image size of 512x512 compared to
32x32 [45].

Horwath et al. (2020, p. 4) noted that image segmentation
becomes challenging with high-resolution images due to issues
recognizing interface pixels without considering the background.
The complexity of features increases accordingly [22].

Sabottke and Spieler (2020, p.2) emphasized that a lower
number of parameters leads to improved model performance
by reducing overfitting risk [46]. However, excessive resolution
reduction may result in a loss of valuable information. They
found that CNN performance was optimal within the range of
resolutions between 256x256 and 448x448 image sizes. Their

 Volume 2 | Issue 10 | 20 Int J Med Net, 2024

conclusion was that there's a trade-off between increasing
image resolution and the maximum feasible batch size. A high
number of parameters affects model performance not solely
due to overfitting but also because of the intricacies involved in
optimization [46].

Rukundo (2021, p. 17) highlighted that determining the optimal
image size for training datasets is a significant challenge.
He observed that a size of 256x256 outperformed 128x128,
attributing this improvement to the lower cross-entropy loss in a
U-net trained on a 256x256 training image set. He emphasized
that lower loss corresponds to greater model accuracy [47].

12.4 Result Comparison with Models from the Related
Works
Until today, fabric defect detection tasks have primarily been
carried out manually. Numerous research studies have proposed
defect detection algorithms; however, these methods have certain
limitations. They often suffer from slow processing speeds and
lack the capability to effectively detect a wide range of defect
types. Consequently, these methods have not found practical
applicability within the textile industry.

The following table gives a brief view of the evaluation of the
models discussed in the section of related works.

51

The following table gives a brief view of the evaluation of the models discussed in the section

of related works.

Accuracy
%

Precision
%

Recall
%

F1 Score
%

Detection
Time

Peng et. al (2020)
PRAN-NET Denim 91.99

 9.7
Frame per sec

Peng et. al (2020)
PRAN-NET Plain 98.66

 25.4
Frame per sec

Almeida, Moutinho and Matos-
Carvalho (2021)
CNN-FN Reduction

75.45 72.76 88.47 5.69 ms per
image

Zhao et. al (2019)
CNN-VLSTM 95.73-99.47 95.74-100 95.73-100 95.73-100 1.8-3.5 e2
Wei et. al (2019)
Faster RCNN 95.88 0.3 sec
Liu et al. (2019)
VGG16 97.7
Liu et al. (2019)
LZFNet 98 13.8 ms
Cheng et al. (2022)
SCUNet 98.01 96.86

Our Model 99 100 99 99 0.06-0.07 sec

98 98 98 98 0.06-0.07 sec

Table 5 Performance comparison of different models from the literature review with our model

All the models discussed in the related works section exhibited a common drawback: they are

slow and time-consuming, rendering them unsuitable for various types of fabric defects.

Although CNNs based on visual VLSTM presented by Zhao et al. (2019) demonstrated

superior performance in terms of accuracy and speed but they also exhibit significant

sensitivity to intricate fabric structures.

The performance of the model developed by Zhao et al. (2019) is given in the table 8.

Table 6 Performance metrics of Zhao et al. (2019) model

51

The following table gives a brief view of the evaluation of the models discussed in the section

of related works.

Accuracy
%

Precision
%

Recall
%

F1 Score
%

Detection
Time

Peng et. al (2020)
PRAN-NET Denim 91.99

 9.7
Frame per sec

Peng et. al (2020)
PRAN-NET Plain 98.66

 25.4
Frame per sec

Almeida, Moutinho and Matos-
Carvalho (2021)
CNN-FN Reduction

75.45 72.76 88.47 5.69 ms per
image

Zhao et. al (2019)
CNN-VLSTM 95.73-99.47 95.74-100 95.73-100 95.73-100 1.8-3.5 e2
Wei et. al (2019)
Faster RCNN 95.88 0.3 sec
Liu et al. (2019)
VGG16 97.7
Liu et al. (2019)
LZFNet 98 13.8 ms
Cheng et al. (2022)
SCUNet 98.01 96.86

Our Model 99 100 99 99 0.06-0.07 sec

98 98 98 98 0.06-0.07 sec

Table 5 Performance comparison of different models from the literature review with our model

All the models discussed in the related works section exhibited a common drawback: they are

slow and time-consuming, rendering them unsuitable for various types of fabric defects.

Although CNNs based on visual VLSTM presented by Zhao et al. (2019) demonstrated

superior performance in terms of accuracy and speed but they also exhibit significant

sensitivity to intricate fabric structures.

The performance of the model developed by Zhao et al. (2019) is given in the table 8.

Table 6 Performance metrics of Zhao et al. (2019) model

Table 5: Performance Comparison of Different Models from the Literature Review with our Model

All the models discussed in the related works section exhibited
a common drawback: they are slow and time-consuming,
rendering them unsuitable for various types of fabric defects.
Although CNNs based on visual VLSTM presented by Zhao
et al. (2019) demonstrated superior performance in terms of

accuracy and speed but they also exhibit significant sensitivity
to intricate fabric structures [11].

The performance of the model developed by Zhao et al. (2019)
is given in the table 8.

Table 6: Performance Metrics of Zhao et al. (2019) Model

The model developed by Zhao et al. (2019) was based on visual
long-short term memory (VLSTM) [11]. In contrast to the model
proposed by Zhao et al. (2019), the current model is:

● notably simpler,
● lacking the integration of the CNN architecture with other
mechanisms.

 Volume 2 | Issue 10 | 21 Int J Med Net, 2024

● Zhao et al. (2019) conducted experiments with varying
image quantities, such as 500, 1000, and 10500, and identified
the dataset consisting of only 500 images as yielding the best
performance. However, the performance of the larger image
datasets, particularly the 1000-image dataset, was suboptimal
[11].

In contrast, the CNN model devised in this research exhibited
superior performance when trained with a substantial dataset
comprising 2,739 images, particularly excelling with the
image size of 245x345. Consequently, the model discussed in
this research paper emerges as the most suitable candidate for
deployment within the textile industry.

The SCUNet model, developed by Cheng et al. (2022), exhibits
several limitations. Notably, the experimentation involved
a singular image size of 256x256, a small dataset comprising
only 106 grayscale images, and data processing utilizing
image cropping and augmentation. Importantly, the model's
performance on colored data images remains unknown, as the
experiments focused solely on grayscale images [25]. Cheng et
al. (2022, p. 3115) acknowledge a limitation wherein the model
requires fabric to be "flat"; however, the term is inaccurately
used, as the authors seem to refer to "plain" fabric—fabric
devoid of patterns or designs [25]. The model's inadequacy
in handling designed fabrics is evident. Cheng et al. (2022,
p. 3117) claim time efficiency compared to manual visual
inspection but fail to present metrics for detection time, leaving
the efficiency and speed of defect detection unmeasured [25].
In contrast, our research paper not only addresses detection
time but also evaluates the model's efficiency. Our model,
tested on both colored and grayscale images, encompasses all
defect sizes. The dataset, curated from various sources, includes
plain and patterned fabrics. In direct comparison, our model
outperforms SCUNet with an overall accuracy of 98% and recall
of 98%. This achievement is particularly noteworthy given our
comprehensive experimentation with diverse fabric types, defect
sizes, and image variations, demonstrating superior adaptability
and performance.

13. Conclusion
This research introduces an innovative approach for the
automated detection of fabric defects within the textile industry.
Within this sector, the journey begins with yarn from the
spinning department, which is then utilized in the weaving unit
to create greige fabric. The subsequent stages involve processes
such as scouring, bleaching, dyeing, and finishing the fabric.
Once the fabric reaches the finished state, it undergoes a quality

assessment before proceeding to the stitching department
for garment production. During the quality inspection phase,
the fabric is placed across quality tables, where inspectors
meticulously examine it and identify any instances of fabric
defects, marking the fabric as necessary.

The objective of this study was to identify a suitable deep learning
algorithm capable of automating fabric quality inspection in the
textile industry, thereby replacing the labor-intensive manual
process. After conducting a comprehensive literature review, a
convolutional neural network (CNN) algorithm was chosen as
the basis for the research. To determine the optimal image size
for the algorithm, two sizes—150x700, and 245x345—were
tested to achieve the best model performance. Addressing the
challenge of dataset imbalance, various sampling techniques
were employed and evaluated.

Remarkably, the research revealed that the CNN model
yielded the most impressive results when combined with the
SMOTEENN sampling technique. This outcome signifies a
significant advancement in automating fabric quality inspection
within the textile industry.

The research highlighted the substantial impact of image size on
the model's performance. The CNN model that was developed
demonstrated its most exceptional performance when paired
with the SMOTEENN sampling technique. Among the two
tested image sizes—150x700, and 245x345—the 245x345 size
emerged as the most optimal performer.

In terms of practical application, this model stood out for its swift
processing times. Specifically, for the image sizes 245x345,
the model achieved a validation time of just 3.4 seconds and
a prediction time of 0.09 seconds. While the 150x700 size
demanded 3.5 seconds and 1.15 seconds for the same tasks.
This efficiency positions the model as a viable candidate for
deployment within the industry.

Deployment Strategy
A novel approach is introduced to revolutionise the fabric
quality inspection process. This method integrates the utilisation
of an infrared camera, which scans the entire fabric width while
it is conveyed along the table's length. Capturing high-resolution
infrared images, the camera provides data for the developed
machine learning algorithm, which is responsible for identifying
fabric defects. Upon detecting a defect, the algorithm triggers an
automatic labelling machine to mark the defective section. The
entire workflow is illustrated in fig. 9 below:

 Volume 2 | Issue 10 | 22 Int J Med Net, 2024

56

Deployment Strategy
A novel approach is introduced to revolutionise the fabric quality inspection process. This

method integrates the utilisation of an infrared camera, which scans the entire fabric width

while it is conveyed along the table's length. Capturing high-resolution infrared images, the

camera provides data for the developed machine learning algorithm, which is responsible for

identifying fabric defects. Upon detecting a defect, the algorithm triggers an automatic

labelling machine to mark the defective section. The entire workflow is illustrated in fig. 9

below:

Fig.9 Automated Fabric Defect Detection

Figure 9: Automated Fabric Defect Detection

Future Research
Further research is warranted to enhance the robustness of the
model by expanding the image dataset and incorporating a
broader array of defect types for multi-classification purposes.

Additionally, more extensive research is needed to facilitate
the deployment of this model within the textile industry. This
would involve the implementation of infrared cameras and
defect labelling machines to fully automate the fabric quality
inspection process. Such endeavours would contribute to the
comprehensive integration of the developed algorithm into
practical industrial settings.

Acknowledgments
I extend a special thanks to Peiran Peng, the author of "Automatic
Fabric Defect Detection Method Using PRAN-Net," as well as
to Kaggle for their invaluable support in facilitating the data
collection process.

Conflict of Interest Statement
The author has no conflict of interest to declare.

References
1.	 Li, C., Li, J., Li, Y., He, L., Fu, X., & Chen, J. (2021). Fabric

defect detection in textile manufacturing: a survey of the
state of the art. Security and Communication Networks,
2021(1), 9948808.

2.	 Wang, Z., & Jing, J. (2020). Pixel-wise fabric defect
detection by CNNs without labeled training data. IEEE
Access, 8, 161317-161325.

3.	 Jing, J., Wang, Z., Rätsch, M., & Zhang, H. (2022). Mobile-
Unet: An efficient convolutional neural network for fabric
defect detection. Textile Research Journal, 92(1-2), 30-42.

4.	 Du, J. (2018, April). Understanding of object detection
based on CNN family and YOLO. In Journal of Physics:
Conference Series (Vol. 1004, p. 012029). IOP Publishing.

5.	 Fan, H., & Zhou, E. (2016). Approaching human level facial
landmark localization by deep learning. Image and Vision
Computing, 47, 27-35.

6.	 Liu, Z., Liu, S., Li, C., Ding, S., & Dong, Y. (2018, October).
Fabric defects detection based on SSD. In Proceedings of
the 2nd international conference on graphics and signal

processing (pp. 74-78).
7.	 Zhang, H. W., Zhang, L. J., Li, P. F., & Gu, D. (2018, May).

Yarn-dyed fabric defect detection with YOLOV2 based on
deep convolution neural networks. In 2018 IEEE 7th data
driven control and learning systems conference (DDCLS)
(pp. 170-174). IEEE.

8.	 Minhas, M. S., & Zelek, J. S. (2020, February). Defect
Detection using Deep Learning from Minimal Annotations.
In VISIGRAPP (4: VISAPP) (pp. 506-513).

9.	 Liu, Z., Zhang, C., Li, C., Ding, S., Dong, Y., & Huang,
Y. (2019). Fabric defect recognition using optimized neural
networks. Journal of Engineered Fibers and Fabrics, 14,
1558925019897396.

10.	 Prakash, S., Berry, D. P., Roantree, M., Onibonoje, O.,
Gualano, L., Scriney, M., & McCarren, A. (2021). Using
artificial intelligence to automate meat cut identification
from the semimembranosus muscle on beef boning lines.
Journal of Animal Science, 99(12), skab319.

11.	 Zhao, Y., Hao, K., He, H., Tang, X., & Wei, B. (2020). A
visual long-short-term memory based integrated CNN model
for fabric defect image classification. Neurocomputing, 380,
259-270.

12.	 Wei, B., Hao, K., Tang, X., S. and Ren, L. (2019) ‘Fabric
defect detection based on faster RCNN’ in Advances in
Intelligent Systems and Computing, 849, pp. 45–51.

13.	 Chen, M., Yu, L., Zhi, C., Sun, R., Zhu, S., Gao, Z., ... &
Zhang, Y. (2022). Improved faster R-CNN for fabric defect
detection based on Gabor filter with Genetic Algorithm
optimization. Computers in Industry, 134, 103551.

14.	 Peng, P., Wang, Y., Hao, C., Zhu, Z., Liu, T. and Zhou,
W. (2020) ‘Automatic fabric defect detection method using
pran-net’ Applied Sciences (Switzerland), 10 (23), pp. 1–13.

15.	 Almeida, T., Moutinho, F., & Matos-Carvalho, J. P. (2021).
Fabric defect detection with deep learning and false negative
reduction. IEEE Access, 9, 81936-81945.

16.	 He, Y. (2021). Fabric Defect Detection based on Improved
Faster RCNN. International Journal of Artificial Intelligence
& Applications (IJAIA), 12(4).

17.	 Wallelign, S., Polceanu, M., & Buche, C. (2018, May).
Soybean plant disease identification using convolutional
neural network. In The thirty-first international flairs
conference.

https://onlinelibrary.wiley.com/doi/abs/10.1155/2021/9948808
https://onlinelibrary.wiley.com/doi/abs/10.1155/2021/9948808
https://onlinelibrary.wiley.com/doi/abs/10.1155/2021/9948808
https://onlinelibrary.wiley.com/doi/abs/10.1155/2021/9948808
https://ieeexplore.ieee.org/abstract/document/9184894/
https://ieeexplore.ieee.org/abstract/document/9184894/
https://ieeexplore.ieee.org/abstract/document/9184894/
https://journals.sagepub.com/doi/abs/10.1177/0040517520928604
https://journals.sagepub.com/doi/abs/10.1177/0040517520928604
https://journals.sagepub.com/doi/abs/10.1177/0040517520928604
https://iopscience.iop.org/article/10.1088/1742-6596/1004/1/012029/meta
https://iopscience.iop.org/article/10.1088/1742-6596/1004/1/012029/meta
https://iopscience.iop.org/article/10.1088/1742-6596/1004/1/012029/meta
https://www.sciencedirect.com/science/article/pii/S0262885615001341
https://www.sciencedirect.com/science/article/pii/S0262885615001341
https://www.sciencedirect.com/science/article/pii/S0262885615001341
https://dl.acm.org/doi/abs/10.1145/3282286.3282300
https://dl.acm.org/doi/abs/10.1145/3282286.3282300
https://dl.acm.org/doi/abs/10.1145/3282286.3282300
https://dl.acm.org/doi/abs/10.1145/3282286.3282300
https://ieeexplore.ieee.org/abstract/document/8516094/
https://ieeexplore.ieee.org/abstract/document/8516094/
https://ieeexplore.ieee.org/abstract/document/8516094/
https://ieeexplore.ieee.org/abstract/document/8516094/
https://ieeexplore.ieee.org/abstract/document/8516094/
https://www.scitepress.org/PublishedPapers/2020/91680/91680.pdf
https://www.scitepress.org/PublishedPapers/2020/91680/91680.pdf
https://www.scitepress.org/PublishedPapers/2020/91680/91680.pdf
https://journals.sagepub.com/doi/abs/10.1177/1558925019897396
https://journals.sagepub.com/doi/abs/10.1177/1558925019897396
https://journals.sagepub.com/doi/abs/10.1177/1558925019897396
https://journals.sagepub.com/doi/abs/10.1177/1558925019897396
https://doi.org/10.1093/jas/skab319
https://doi.org/10.1093/jas/skab319
https://doi.org/10.1093/jas/skab319
https://doi.org/10.1093/jas/skab319
https://doi.org/10.1093/jas/skab319
https://www.sciencedirect.com/science/article/pii/S092523121931505X
https://www.sciencedirect.com/science/article/pii/S092523121931505X
https://www.sciencedirect.com/science/article/pii/S092523121931505X
https://www.sciencedirect.com/science/article/pii/S092523121931505X
F:\opast pdf\Andra Niharika\IJMN\2024\Jan\IJMN-24-88\10.1007\978-3-319-99695-0_6
F:\opast pdf\Andra Niharika\IJMN\2024\Jan\IJMN-24-88\10.1007\978-3-319-99695-0_6
F:\opast pdf\Andra Niharika\IJMN\2024\Jan\IJMN-24-88\10.1007\978-3-319-99695-0_6
doi: 10.1016/j.compind.2021.103551.
doi: 10.1016/j.compind.2021.103551.
doi: 10.1016/j.compind.2021.103551.
doi: 10.1016/j.compind.2021.103551.
doi:10.1109/ACCESS.2021.3086028.
doi:10.1109/ACCESS.2021.3086028.
doi:10.1109/ACCESS.2021.3086028.
doi: 10.5121/ijaia.2021.12402
doi: 10.5121/ijaia.2021.12402
doi: 10.5121/ijaia.2021.12402
https://cdn.aaai.org/ocs/17682/17682-77716-1-PB.pdf
https://cdn.aaai.org/ocs/17682/17682-77716-1-PB.pdf
https://cdn.aaai.org/ocs/17682/17682-77716-1-PB.pdf
https://cdn.aaai.org/ocs/17682/17682-77716-1-PB.pdf

 Volume 2 | Issue 10 | 23 Int J Med Net, 2024

18.	 Yamashita, R., Nishio, M., Do, R., K., G. and Togasi, K.
(2018), ‘Convolutional neural networks: an overview and
application in radiology’, SpringerOpen.

19.	 LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998).
Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11), 2278-2324.

20.	 Goodfellow, I. (2016). Deep learning.
21.	 Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer,

W. P. (2002). SMOTE: synthetic minority over-sampling
technique. Journal of artificial intelligence research, 16,
321-357.

22.	 Horwath, J. P., Zakharov, D. N., Mégret, R., & Stach, E. A.
(2020). Understanding important features of deep learning
models for segmentation of high-resolution transmission
electron microscopy images. npj Computational Materials,
6(1), 108.

23.	 Letteri, I., Di Cecco, A., Dyoub, A., & Della Penna, G.
(2020). A novel resampling technique for imbalanced
dataset optimization. arXiv preprint arXiv:2012.15231.

24.	 Rasheed, A., Zafar, B., Rasheed, A., Ali, N., Sajid, M., Dar,
S. H., ... & Mahmood, M. T. (2020). Fabric defect detection
using computer vision techniques: a comprehensive review.
Mathematical Problems in Engineering, 2020(1), 8189403.

25.	 Cheng, L., Yi, J., Chen, A., & Zhang, Y. (2023). Fabric
defect detection based on separate convolutional UNet.
Multimedia Tools and Applications, 82(2), 3101-3122.

26.	 Vladimir, P. (2020),’Handling imbalanced dataset in image
classification’, Analytics Vidhya. Available at: Handling
imbalanced dataset in image classification | by Privalov
Vladimir | Analytics Vidhya | Medium

27.	 Duan, H., Wei, Y., Liu, P. and Yin, H. (2020), ‘A Novel
Ensemble Framewok Based on K-Means and Resampling
for Imbalanced Data’, Applied Sciences, 10, pp. 1-16.

28.	 Pahren, L., Thomas, P., Jia, X., & Lee, J. (2022). A novel
method in intelligent synthetic data creation for machine
learning-based manufacturing quality control. IFAC-
PapersOnLine, 55(19), 73-78.

29.	 Han, H., Wang, W. Y., & Mao, B. H. (2005, August).
Borderline-SMOTE: a new over-sampling method in
imbalanced data sets learning. In International conference
on intelligent computing (pp. 878-887). Berlin, Heidelberg:
Springer Berlin Heidelberg.

30.	 He, H., Bai, Y., Garcia, E. A., & Li, S. (2008, June).
ADASYN: Adaptive synthetic sampling approach for
imbalanced learning. In 2008 IEEE international joint
conference on neural networks (IEEE world congress on
computational intelligence) (pp. 1322-1328). Ieee.

31.	 Gowda, K., & Krishna, G. (1979). The condensed
nearest neighbor rule using the concept of mutual nearest
neighborhood (corresp.). IEEE Transactions on Information
Theory, 25(4), 488-490.

32.	 Wilson, D. L. (1972). Asymptotic properties of nearest
neighbor rules using edited data. IEEE Transactions on
Systems, Man, and Cybernetics, (3), 408-421.

33.	 Sisters, Li. (2020),’Instance Hardness Threshold: An
Undersampling Method to Tackle Imbalanced Classification
Problems’, Towards Data Science.

34.	 Madhukar, B. (2020),’Using Near-Miss Algorithm For

Imbalanced Datasets’, Developers Corner.
35.	 Viadinugroho, R. A.A. (2021),’Imbalanced Classification

in Python: SMOTE-Tomek Links Method’, TowardsData
Science.

36.	 Agustianto, K., & Destarianto, P. (2019, October). Imbalance
data handling using neighborhood cleaning rule (NCL)
sampling method for precision student modeling. In 2019
International conference on computer science, Information
Technology, and Electrical Engineering (ICOMITEE) (pp.
86-89). IEEE.

37.	 Kohavi, R. (1995). A study of cross-validation and bootstrap
for accuracy estimation and model selection. Morgan
Kaufman Publishing.

38.	 Ringnér, M. (2008). What is principal component analysis?.
Nature biotechnology, 26(3), 303-304.

39.	 Brems, M. (2017). A one-stop shop for principal component
analysis. Medium towards Data Science, 17.

40.	 Chollet, F., et al. (2015). Keras. GitHub Repository.
41.	 Ranathunga, S. (2020), ‘Fabric defect dataset’, Kaggle.
42.	 Pathirana, P. (2020), ‘Fabric stain dataset’, Kaggle.
43.	 Silvestre-Blanes, J., Albero-Albero, T., Miralles, I., Pérez-

Llorens, R. and Moreno, J. (2019), ‘ Aitex Fabric Image
Database’, Aitex.

44.	 Luke, J., Joseph, R., & Balaji, M. (2019). Impact of image
size on accuracy and generalization of convolutional neural
networks. Int. J. Res. Anal. Rev.(IJRAR), 6(1), 70-80.

45.	 Thambawita, V., Strümke, I., Hicks, S. A., Halvorsen,
P., Parasa, S., & Riegler, M. A. (2021). Impact of image
resolution on deep learning performance in endoscopy
image classification: An experimental study using a large
dataset of endoscopic images. Diagnostics, 11(12), 2183.

46.	 Sabottke, C. F., & Spieler, B. M. (2020). The effect of image
resolution on deep learning in radiography. Radiology:
Artificial Intelligence, 2(1), e190015.

47.	 Rukundo, O. (2021), ‘Effects of image size on Deep
Learning’, Arxiv, pp.19.

48.	 Andalib, A. S., Salekin, A., Islam, M. R., & Abdulla-
Al-Shami, M. (2012, December). Novel approaches for
detecting fabric fault using artificial neural network with
k-fold validation. In 2012 15th International Conference
on Computer and Information Technology (ICCIT) (pp. 55-
60). IEEE.

49.	 Atwya, M., & Panoutsos, G. (2019). Transient thermography
for flaw detection in friction stir welding: a machine learning
approach. IEEE Transactions on Industrial Informatics,
16(7), 4423-4435.

50.	 Bovik, A. C., Clark, M., & Geisler, W. S. (1990).
Multichannel texture analysis using localized spatial
filters. IEEE transactions on pattern analysis and machine
intelligence, 12(1), 55-73.

51.	 Campbell, J. G., Fraley, C., Stanford, D., Murtagh, F., &
Raftery, A. E. (1999). Model‐based methods for textile fault
detection. International Journal of Imaging Systems and
Technology, 10(4), 339-346.

52.	 Chakraborty, S. (2021). Automatic Printed Fabric Defect
Detection Using a Convolutional Neural Network. North
Carolina State University.

53.	 Chetverikov, D., & Hanbury, A. (2002). Finding defects

https://insightsimaging.springeropen.com/articles/10.1007/s13244-018-0639-9
https://insightsimaging.springeropen.com/articles/10.1007/s13244-018-0639-9
https://insightsimaging.springeropen.com/articles/10.1007/s13244-018-0639-9
https://ieeexplore.ieee.org/abstract/document/726791/
https://ieeexplore.ieee.org/abstract/document/726791/
https://ieeexplore.ieee.org/abstract/document/726791/
https://books.google.com/books?hl=en&lr=&id=omivDQAAQBAJ&oi=fnd&pg=PR5&dq=20.%09Goodfellow,+I.,+Bengio,+Y.,+%26+Courville,+A.+(2016).+Deep+Learning.+MIT+Press.&ots=MOP_bstzPX&sig=spKK16cGkQYVhoCvusbj-YYXqlc
http://www.jair.org/index.php/jair/article/view/10302
http://www.jair.org/index.php/jair/article/view/10302
http://www.jair.org/index.php/jair/article/view/10302
http://www.jair.org/index.php/jair/article/view/10302
https://doi.org/10.1038/s41524-020-00363-x
https://doi.org/10.1038/s41524-020-00363-x
https://doi.org/10.1038/s41524-020-00363-x
https://doi.org/10.1038/s41524-020-00363-x
https://doi.org/10.1038/s41524-020-00363-x
https://www.researchgate.net/publication/348078650_A_Novel_Resampling_Technique_for_Imbalanced_Dataset_Optimization
https://www.researchgate.net/publication/348078650_A_Novel_Resampling_Technique_for_Imbalanced_Dataset_Optimization
https://www.researchgate.net/publication/348078650_A_Novel_Resampling_Technique_for_Imbalanced_Dataset_Optimization
https://doi.org/10.1155/2020/8189403
https://doi.org/10.1155/2020/8189403
https://doi.org/10.1155/2020/8189403
https://doi.org/10.1155/2020/8189403
https://doi.org/10.1007/s11042-022-13568-7
https://doi.org/10.1007/s11042-022-13568-7
https://doi.org/10.1007/s11042-022-13568-7
doi:10.3390/app10051684
doi:10.3390/app10051684
doi:10.3390/app10051684
https://www.sciencedirect.com/science/article/pii/S2405896322014008
https://www.sciencedirect.com/science/article/pii/S2405896322014008
https://www.sciencedirect.com/science/article/pii/S2405896322014008
https://www.sciencedirect.com/science/article/pii/S2405896322014008
doi:10.1007/11538059_91
doi:10.1007/11538059_91
doi:10.1007/11538059_91
doi:10.1007/11538059_91
doi:10.1007/11538059_91
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4633969
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4633969
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4633969
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4633969
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4633969
https://ieeexplore.ieee.org/abstract/document/1056066/
https://ieeexplore.ieee.org/abstract/document/1056066/
https://ieeexplore.ieee.org/abstract/document/1056066/
https://ieeexplore.ieee.org/abstract/document/1056066/
https://ieeexplore.ieee.org/abstract/document/4309137/
https://ieeexplore.ieee.org/abstract/document/4309137/
https://ieeexplore.ieee.org/abstract/document/4309137/
https://analyticsindiamag.com/ai-mysteries/using-near-miss-algorithm-for-imbalanced-datasets/
https://analyticsindiamag.com/ai-mysteries/using-near-miss-algorithm-for-imbalanced-datasets/
https://towardsdatascience.com/imbalanced-classification-in-python-smote-tomek-links-method-6e48dfe69bbc
https://towardsdatascience.com/imbalanced-classification-in-python-smote-tomek-links-method-6e48dfe69bbc
https://towardsdatascience.com/imbalanced-classification-in-python-smote-tomek-links-method-6e48dfe69bbc
doi:10.1109/ICOMITEE.2019.8921159
doi:10.1109/ICOMITEE.2019.8921159
doi:10.1109/ICOMITEE.2019.8921159
doi:10.1109/ICOMITEE.2019.8921159
doi:10.1109/ICOMITEE.2019.8921159
doi:10.1109/ICOMITEE.2019.8921159
https://core.ac.uk/download/pdf/186743801.pdf
https://core.ac.uk/download/pdf/186743801.pdf
https://core.ac.uk/download/pdf/186743801.pdf
http://146.6.100.192/users/BCH339N_2018/NBT_primer_PCA.pdf
http://146.6.100.192/users/BCH339N_2018/NBT_primer_PCA.pdf
https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c
https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c
https://github.com/keras-team/keras
https://www.kaggle.com/datasets/rmshashi/fabric-defect-dataset
https://www.kaggle.com/datasets/priemshpathirana/fabric-stain-dataset
https://www.aitex.es/afid/
https://www.aitex.es/afid/
https://www.aitex.es/afid/
https://www.researchgate.net/publication/332241609.
https://www.researchgate.net/publication/332241609.
https://www.researchgate.net/publication/332241609.
doi: 10.3390/diagnostics11122183
doi: 10.3390/diagnostics11122183
doi: 10.3390/diagnostics11122183
doi: 10.3390/diagnostics11122183
doi: 10.3390/diagnostics11122183
https://pubs.rsna.org/doi/10.1148/ryai.2019190015
https://pubs.rsna.org/doi/10.1148/ryai.2019190015
https://pubs.rsna.org/doi/10.1148/ryai.2019190015
doi:10.48550/arXiv.2101.11508
doi:10.48550/arXiv.2101.11508
https://ieeexplore.ieee.org/abstract/document/6509767/
https://ieeexplore.ieee.org/abstract/document/6509767/
https://ieeexplore.ieee.org/abstract/document/6509767/
https://ieeexplore.ieee.org/abstract/document/6509767/
https://ieeexplore.ieee.org/abstract/document/6509767/
https://ieeexplore.ieee.org/abstract/document/6509767/
https://ieeexplore.ieee.org/abstract/document/8873595/
https://ieeexplore.ieee.org/abstract/document/8873595/
https://ieeexplore.ieee.org/abstract/document/8873595/
https://ieeexplore.ieee.org/abstract/document/8873595/
https://ieeexplore.ieee.org/abstract/document/41384/
https://ieeexplore.ieee.org/abstract/document/41384/
https://ieeexplore.ieee.org/abstract/document/41384/
https://ieeexplore.ieee.org/abstract/document/41384/
https://onlinelibrary.wiley.com/doi/abs/10.1002/(SICI)1098-1098(1999)10:4%3C339::AID-IMA5%3E3.0.CO;2-3
https://onlinelibrary.wiley.com/doi/abs/10.1002/(SICI)1098-1098(1999)10:4%3C339::AID-IMA5%3E3.0.CO;2-3
https://onlinelibrary.wiley.com/doi/abs/10.1002/(SICI)1098-1098(1999)10:4%3C339::AID-IMA5%3E3.0.CO;2-3
https://onlinelibrary.wiley.com/doi/abs/10.1002/(SICI)1098-1098(1999)10:4%3C339::AID-IMA5%3E3.0.CO;2-3
https://search.proquest.com/openview/7fbe5e907d6cb0604d531c617736afe7/1?pq-origsite=gscholar&cbl=18750&diss=y
https://search.proquest.com/openview/7fbe5e907d6cb0604d531c617736afe7/1?pq-origsite=gscholar&cbl=18750&diss=y
https://search.proquest.com/openview/7fbe5e907d6cb0604d531c617736afe7/1?pq-origsite=gscholar&cbl=18750&diss=y
https://www.sciencedirect.com/science/article/pii/S0031320301001881

 Volume 2 | Issue 10 | 24 Int J Med Net, 2024

in texture using regularity and local orientation. Pattern
Recognition, 35(10), 2165-2180.

54.	 Conci, A., & Proença, C. B. (1998). A fractal image analysis
system for fabric inspection based on a box-counting
method. Computer Networks and ISDN Systems, 30(20-21),
1887-1895.

55.	 Imbalanced Learn (n.d.a), ’SVMSMOTE’.
56.	 Imbalanced Learn (n.d.b),’ClusterCentroids.
57.	 Imbalanced Learn (n.d.c),’EditedNearestNeighbor’.
58.	 Imbalanced Learn (n.d. d), ’RepeatedEditedNearestNeigh-

bors’.
59.	 Imbalanced Learn (n.d.e),’AIIKNN’.
60.	 Imbalanced Learn (n.d.,f), ’Under-sampling’.
61.	 Imbalanced Learn (n.d.h)’, Combination of Over- and

Under-Sampling’.
62.	 Imbalanced Learn (n.d.i)’, ‘RandomOverSampler’.
63.	 kmeans-smote.readthedocs.io (no date),’kmeans_smote

module’.
64.	 Lin, G., Liu, K., Xia, X. and Tan, R. (2023). ‘An Efficient

and Intelligent Detection Method for Fabric Defects based
on Improved YOLOv5’, Sensors, 23 (1), pp. 1-16.

65.	 Microsoft. (n.d.). Visual Studio Code - Code Editing.
Redefined.

66.	 TensorFlow. (n.d.).
67.	 Zhao, S., Yin, L., Zhang, J., Wang, J., & Zhong, R. (2020).

Real‐time fabric defect detection based on multi‐scale
convolutional neural network. IET Collaborative Intelligent
Manufacturing, 2(4), 189-196.

Appendices
Appendix A- Link to Data and Experiments
https://drive.google.com/drive/folders/1paR6OtnxIoPmi-hnHLoAaq1HitH7Xypu?usp=sharing

Appendix B-Figures
Figure 1: Fabric manufacturing process
Figure 2: Difference between ADASYN and SMOTE algorithms (Letteri et al., 2020, p. 7)
Figure 3: Number of images in each class of the dataset
Figure 4: PCA before data pre-processing
Figure 5: PCA after data pre-processing with SMOTEENN sampling technique
Figure 6: PCA after data pre-processing with: a) SMOTETomek image size 245x345 b) SVM SMOTE Oversampling image
size 245x345 c) SVM SMOTE Oversampling image size 150x700 d) Random Oversampling image size 245x345 e) Random
Oversampling image size 150x700 f) Borderline SMOTE image size 245x345 g) Function Sampler image size 150x700

Figure 7: Confusion matrices of the CNN model sampled with SMOTEENN method
Figure 8: Prediction time and accuracy of the CNN model with SMOTEENN sampling

Appendix C- Tables
Table 1: Total number of trainable and non-trainable parameters for the two image sizes
Table 2: Model performance without and with data pre-processing
Table 3: Model time performance with data pre-processing
Table 4: Performance comparison of the best performing sampling techniques
Table 5: Performance comparison of different models from the literature review with our model
Table 6: Performance metrics of Zhao et al. (2019) model

https://www.sciencedirect.com/science/article/pii/S0031320301001881
https://www.sciencedirect.com/science/article/pii/S0031320301001881
https://www.sciencedirect.com/science/article/pii/S0169755298002116
https://www.sciencedirect.com/science/article/pii/S0169755298002116
https://www.sciencedirect.com/science/article/pii/S0169755298002116
https://www.sciencedirect.com/science/article/pii/S0169755298002116
https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.SVMSMOTE.html
https://imbalanced-learn.org/stable/references/generated/imblearn.under_sampling.ClusterCentroids.html
F:\opast pdf\Andra Niharika\IJMN\2024\Jan\IJMN-24-88\1.	https:\imbalanced-learn.org\stable\references\generated\imblearn.under_sampling.EditedNearestNeighbours.html
F:\opast pdf\Andra Niharika\IJMN\2024\Jan\IJMN-24-88\1.	https:\imbalanced-learn.org\stable\references\generated\imblearn.under_sampling.EditedNearestNeighbours.html
F:\opast pdf\Andra Niharika\IJMN\2024\Jan\IJMN-24-88\1.	https:\imbalanced-learn.org\stable\references\generated\imblearn.under_sampling.EditedNearestNeighbours.html
https://imbalanced-learn.org/stable/references/generated/imblearn.under_sampling.AllKNN.html
https://imbalanced-learn.org/stable/combine.html
https://imbalanced-learn.org/stable/combine.html
F:\opast pdf\Andra Niharika\IJMN\2024\Jan\IJMN-24-88\1.	https:\imbalanced-learn.org\stable\references\generated\imblearn.over_sampling.RandomOverSampler.html
https://kmeans-smote.readthedocs.io/en/latest
https://kmeans-smote.readthedocs.io/en/latest
https://doi.org/10.3390/s23010097
https://doi.org/10.3390/s23010097
https://doi.org/10.3390/s23010097
https://code.visualstudio.com/
https://code.visualstudio.com/
https://www.tensorflow.org/
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-cim.2020.0062
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-cim.2020.0062
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-cim.2020.0062
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-cim.2020.0062

 Volume 2 | Issue 10 | 25 Int J Med Net, 2024

66

Appendix D- Sampling Techniques (PCA, Confusion
Matrix)

Undersampling Techniques

AIKNN

Image size 245x345 Image size 150x700

Image size 245x345 Image size 150x700

66

Appendix D- Sampling Techniques (PCA, Confusion
Matrix)

Undersampling Techniques

AIKNN

Image size 245x345 Image size 150x700

Image size 245x345 Image size 150x700

Appendix D- Sampling Techniques (PCA, Confusion Matrix)

67

Image size 245x345 Image size 150x700

Cluster Centroids

Image size 245x345 Image size 150x700

Image size 245x345 Image size 150x700

 Volume 2 | Issue 10 | 26 Int J Med Net, 2024

67

Image size 245x345 Image size 150x700

Cluster Centroids

Image size 245x345 Image size 150x700

Image size 245x345 Image size 150x700

68

Image size 245x345 Image size 150x700

Condensed Nearest Neighbour

Image size 245x345 Image size 150x700

 Volume 2 | Issue 10 | 27 Int J Med Net, 2024

68

Image size 245x345 Image size 150x700

Condensed Nearest Neighbour

Image size 245x345 Image size 150x700

69

Image size 245x345 Image size 150x700

Image size 245x345 Image size 150x700

 Volume 2 | Issue 10 | 28 Int J Med Net, 2024
70

Edited Nearest Neighbour

Image size 245x345 Image size 150x700

Image size 245x345 Image size 150x700

70

Edited Nearest Neighbour

Image size 245x345 Image size 150x700

Image size 245x345 Image size 150x700

71

Image size 245x345 Image size 150x700

Instance Hardness Threshold

Image size 245x345 Image size 150x700

 Volume 2 | Issue 10 | 29 Int J Med Net, 2024

71

Image size 245x345 Image size 150x700

Instance Hardness Threshold

Image size 245x345 Image size 150x700

72

Image size 245x345 Image size 150x700

Image size 245x345 Image size 150x700

 72

Image size 245x345 Image size 150x700

Image size 245x345 Image size 150x700

 Volume 2 | Issue 10 | 30 Int J Med Net, 2024
73

NearMiss

Image size 245x345 Image size 150x700

Image size 245x345 Image size 150x700

 Volume 2 | Issue 10 | 31 Int J Med Net, 2024
74

Image size 245x345 Image size 150x700

75

Neighbourhood Cleaning Rule

Image size 245x345 Image size 150x700

 Volume 2 | Issue 10 | 32 Int J Med Net, 2024

75

Neighbourhood Cleaning Rule

Image size 245x345 Image size 150x700

76

Random Undersampler

Image size 245x345 Image size 150x700

Image size 245x345 Image size 150x700

 Volume 2 | Issue 10 | 33 Int J Med Net, 2024

76

Random Undersampler

Image size 245x345 Image size 150x700

Image size 245x345 Image size 150x700

77

Repeated Edited Nearest Neighbour

Image size 245x345 Image size 150x700

Image size 245x345 Image size 150x700

Image size 245x345 Image size 150x700

 Volume 2 | Issue 10 | 34 Int J Med Net, 2024

77

Repeated Edited Nearest Neighbour

Image size 245x345 Image size 150x700

Image size 245x345 Image size 150x700

Image size 245x345 Image size 150x700

78

Tomeklinks

Image size 245x345 Image size 150x700

Image size 245x345 Image size 150x700

 Volume 2 | Issue 10 | 35 Int J Med Net, 2024
79

Image size 245x345 Image size 150x700

Oversampling

ADASYN

Image size 245x345 Image size 150x700

Image size 245x345 Image size 150x700

 Volume 2 | Issue 10 | 36 Int J Med Net, 2024

80

Image size 245x345 Image size 150x700

Borderline SMOTE

Image size 245x345 Image size 150x700

Image size 245x345 Image size 150x700

 Volume 2 | Issue 10 | 37 Int J Med Net, 2024
81

Image size 245x345 Image size 150x700

kMeans SMOTE

Image size 245x345 Image size 150x700

Image size 245x345 Image size 150x700

 Volume 2 | Issue 10 | 38 Int J Med Net, 2024

82

Image size 245x345 Image size 150x700

Random Oversampling

Image size 245x345 Image size 150x700

Image size 245x345 Image size 150x700

 Volume 2 | Issue 10 | 39 Int J Med Net, 2024
83

Image size 245x345 Image size 150x700

SMOTEN

Image size 245x345 Image size 150x700

Image size 245x345 Image size 150x700

 Volume 2 | Issue 10 | 40 Int J Med Net, 2024
84

Image size 245x345 Image size 150x700

Combined Oversampling and Undersampling

SMOTETomek

Image size 245x345 Image size 150x700

 Volume 2 | Issue 10 | 41 Int J Med Net, 2024
85

Image size 245x345 Image size 150x700

Image size 245x345 Image size 150x700

86

Ensemble

Pipeline

Image size 245x345 Image size 150x700

Image size 245x345 Image size 150x700

86

Ensemble

Pipeline

Image size 245x345 Image size 150x700

Image size 245x345 Image size 150x700

 Volume 2 | Issue 10 | 42 Int J Med Net, 2024

86

Ensemble

Pipeline

Image size 245x345 Image size 150x700

Image size 245x345 Image size 150x700

87

Image size 245x345 Image size 150x700

88

Miscellaneous

Function Sampler

Image size 245x345 Image size 150x700

Image size 245x345 Image size 150x700

 Volume 2 | Issue 10 | 43 Int J Med Net, 2024

Copyright: ©2024 Saima Saleem, et al. This is an open-access
article distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source
are credited.

https://opastpublishers.com

88

Miscellaneous

Function Sampler

Image size 245x345 Image size 150x700

Image size 245x345 Image size 150x700

89

Image size 245x345 Image size 150x700

