
    Volume 2 | Issue 10 | 1 Int J Med Net, 2024

A Systematic Review of Enhancing CNN Performance in Automated Fabric 
Defect Detection Through Sampling Techniques for Imbalanced Datasets with 
the Developed CNN Model

Research Article

Saima Saleem*, David Williams and Satya Prakash
*Corresponding Author
Saima Saleem, Department of Artificial Intelligence, Ireland. 

Submitted: 2024, Oct 06;  Accepted: 2024, Oct 28;  Published:   2024, Nov 08 

Citation: Saleem, S., Prakash, S., Williams, D. (2024). A Systematic Review of Enhancing CNN Performance in Automated 
Fabric Defect Detection Through Sampling Techniques for Imbalanced Datasets with the Developed CNN Model.  Int J Med 
Net, 2(10), 01-43.

Abstract 
In the textile industry, manual fabric inspection poses significant challenges. Incomplete and faulty inspections can compromise 
both product cost and quality. With the advancements in deep learning, various machine learning algorithms have emerged 
as successful tools for image classification and analysis tasks. Nevertheless, there are several persistent issues, including the 
complexity and time-consuming nature of training methods, the requirement for large datasets, and difficulties in achieving 
generalization. What's needed is an accurate and swift automatic machine learning algorithm suitable for real-time detection 
in industrial setups. To tackle these challenges, this research successfully developed a straightforward Convolutional Neural 
Network (CNN) machine learning algorithm.

The algorithm's performance was evaluated on two different image sizes: 150 x 700, and 245 x 345. It became evident that 
image size significantly influences the model's performance. Additionally, the dataset's inherent imbalance had an adverse 
impact on the model's performance due to inadequate training and overfitting. To address the issue of imbalanced dataset and 
enhance the model's performance, various sampling techniques were experimented with. Among these, the CNN model exhibited 
its most outstanding performance when paired with a smaller image size of 245x345 and when utilizing the SMOTEENN 
sampling technique. The results demonstrated remarkable accuracy, precision, recall, and F1 score, with values of 98.00%, 
98.00%, 98.00%, and 98.00%, respectively. Moreover, the time required for modelling and prediction was impressively low, 
at 1.57 seconds and 0.09 seconds, respectively. The research also proposed a method to deploy the algorithm and automate 
the entire quality inspection process within the textile industry.
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Abbreviations
CNN: Convolutional Neural Network
TP: True Positive
FP: False Positive
TN: True Negative
FN: False Negative
P: Precision 
r: Recall
SSD: Single Shot Detector
VLSTM: Visual Long-Short-Term Memory
VP: Visual Perception
SCAE: Stacked Convolutional Autoencoders
R-CNN: Region Based Convolutional Neural Network

RPN: Region Proposal Network
ROI: Region of Interest
PRAN-Net: Priori Anchor Convolutional Neural Network
MSCNN with K-clustering: Multi-scale CNN with K-clustering
CBAM: Convolutional Block Attention Module
ROC, Receiver Operator Characteristic
ReLU: Rectified Linear Unit
ADASYN:  Adaptive Synthetic Sampling SMOTE
PCA: Principal Component Analysis

1. Introduction
A textile fabric manufacturing process is depicted in Fig. 1 
below:
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Fig. 1 Fabric manufacturing process 

Fabric inspection is conducted at each stage of the textile manufacturing process, including 

weaving, dyeing, printing, and finishing. This ensures product quality and minimizes 

potential losses (Li et al., 2021, p. 1). The structure of fabric is inherently repetitive; 

therefore, any defects disrupt this repetitive pattern (Gandelsman, Shocher, and Irani, 2019, 

as cited in Wang and Jing, 2020, p. 161318). Early defect detection is crucial to prevent 

wastage in the final product (Bullon et al., 2017, as cited in Li et al., 2021, p. 1). Jing et al. 

(2022, pp. 2-3) categorized the task of defect detection into four levels: 

 The first level involves the task of classifying defects into categories; 

 The second level involves detecting and locating these defects; 

 The third level identifies defective pixels within images, known as segmentation; 

 The fourth level entails defect semantic segmentation, combining segmentation and 

classification.  

Fabric defect detection algorithms can be categorized into two types: 

 Traditional algorithms and  

 Learning-based algorithms.  
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Figure 1: Fabric Manufacturing Process

Fabric inspection is conducted at each stage of the textile 
manufacturing process, including weaving, dyeing, printing, and 
finishing. This ensures product quality and minimizes potential 
losses [1]. The structure of fabric is inherently repetitive; 
therefore, any defects disrupt this repetitive pattern [2]. Early 
defect detection is crucial to prevent wastage in the final product 
[1]. Jing et al. (2022, pp. 2-3) categorized the task of defect 
detection into four levels [3]:
• The first level involves the task of classifying defects into 
categories;
• The second level involves detecting and locating these defects;
• The third level identifies defective pixels within images, known 
as segmentation;
• The fourth level entails defect semantic segmentation, 
combining segmentation and classification. 
Fabric defect detection algorithms can be categorized into two 
types:
• Traditional algorithms and 
• Learning-based algorithms. 

Traditional algorithms include statistical, spectral, structural, 
and model-based methods. These techniques process individual 
images and require manual feature selection. In contrast, 
learning-based methods automate feature selection. Learning-
based algorithms can be further divided into:
• Classical machine learning algorithms;
• Deep machine learning algorithms

Deep learning methods have the advantage of automatic feature 
extraction; However, they often require a substantial amount of 
data compared to classical machine learning algorithms, which, 
in turn, demand extensive parameter tuning [1,2].

Research has shown that CNN predictions for face recognition, 
image classification and real time object detection can be as 
accurate as human [4,5].

2. Related Works
Liu et al. (2018) proposed a method that utilized an enhanced 
Single Shot Detector (SSD) with a shallower convolutional 
feature layer [6]. They combined the deep neural networks for 
single detection with YOLO's regression approach and Faster 
R-CNN's anchor principle. Regression simplified the algorithm's 
complexity and improved its efficiency, while anchors effectively 
captured characteristics related to scales and aspect ratios. SSD 
also employed a multiscale object feature extraction technique. 
However, this method encountered challenges in accurately 

detecting small defects.

Zhang et al. (2018) conducted a comparison among the YOLO 
9000, YOLO-VOC, and Tiny-YOLO models, and they proposed 
an improved YOLO-VOC model [7]. This enhanced model 
employed super-parameter optimization for defect classification 
and localization by utilizing a single-stage CNN for image 
prediction increased detection speed, although the proposed 
method's accuracy was comparatively lower.

In a study cited by Minhas and Zelek (2020, p. 507), Tan et al. 
(2018) identified network-based transfer learning as the most 
practically useful class among instance-based, mapping-based, 
network-based, and transfer learning methods [8]. This approach 
involves constructing a target network from a source network, 
consisting of feature extractor and classification sub-networks. 
Such an approach enables defect classification even when 
working with limited labeled data. 

Liu et al. (2019, p. 2) emphasized the accuracy of Convolutional 
Neural Network (CNN) models in fabric defect detection tasks 
[9]. According to Prakash et al. (2021), deep learning, especially 
Convolutional Neural Networks (CNN), was a highly accurate 
machine learning method for image detection and multi-
classification tasks, with real-time implementation capability 
[10].

Zhao et al. (2019) designed a visual Long-Short-Term Memory 
(LSTM) integrated CNN model utilizing visual perception (VP) 
for classification [11]. Stacked Convolutional Autoencoders 
(SCAE) were employed to extract features. Experimental 
results on datasets containing 500, 1,000, and 10,500 images 
demonstrated the highest performance on the 500-image dataset, 
achieving an accuracy of 99.47%. However, this complex 
method is sensitive to intricate fabric backgrounds.

Liu et al. (2019) proposed optimising the VGG16 convolutional 
network with a deconvolutional network to accurately detect 
defects [9]. Their model, LZFNet, incorporated a deconvolutional 
network attached to each VGG16 layer, establishing a continuous 
path back to the image pixel space. Despite its low parameter 
count, obtaining a substantial amount of labeled training data for 
CNN models in real-world scenarios remains challenging.

Wei et al. (2019) introduced a Faster R-CNN model that consisted 
of convolution layers, a Region Proposal Network (RPN), ROI 
pooling, and classification. Feature extraction was performed 
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using VGG16 [12]. The output score of the classification layer 
represented the background for each anchor, while the output of 
the regression layer indicated the coordinates of fabric defects. 
However, this approach suffered from extended training times. 
Chen et al. (2020) proposed an improved Faster R-CNN model 
that incorporated Gabor kernels within Faster R-CNN and was 
trained using a two-stage backpropagation method [13].

Minhas and Zelek (2020) introduced a specialised VGG16 model 
optimised through deconvolutional networks using transfer 
learning [8]. Their research highlighted two techniques: fixed 
feature extraction and full network fine-tuning. Full network fine-
tuning, which involves updating the entire network's parameters 
during training, outperformed fixed feature extraction. Notably, 
the model's detection speed was not considered.

Peng et al. (2020) introduced the Priori Anchor Convolutional 
Neural Network (PRAN-Net), which achieved high accuracy in 
detecting tiny defects. They utilized multi-scale feature maps 
from a Feature Pyramid Network (FPN) to generate sparse 
priori anchors based on fabric defect ground truth boxes. Feature 
extraction was performed using ResNet-101-FPN [14].

In contrast, Zhao et al. (2020) employed a K-means clustering 
method known as Multi-scale CNN with K-clustering (MSCNN 
with K-clustering) to define defect bounding boxes of known 
sizes. However, this approach is data-driven and requires a 
substantial number of labeled fabric images for model training, 
and it covers only five defect types [11].

Almeida, Moutinho, and Matos-Carvalho (2021) proposed 
an operator-assisted CNN model based on the premise that 
undetected defects (False Negatives - FNs) typically incur 
higher costs than non-defective items classified as defective 
(False Positives - FPs) [15]. This model achieved an average 
accuracy of 75%. However, with operator assistance, it reached 
an accuracy of 95%.

He et al. (2021) introduced another Faster R-CNN algorithm 
that incorporated the Convolutional Block Attention Module 
(CBAM) in conjunction with ResNet50. ResNet50 was utilized 
for feature extraction, classification, and regression [16]. The 
extracted feature map was then input into RoI pooling and 
RPN. To eliminate redundant boxes, Soft-NMS and RPN were 
employed. This model can be integrated with CNN and trained 
end-to-end alongside the basic CNN. Although this method is 
time-consuming, the Channel Attention Module compresses the 
feature map in the spatial dimension to obtain a one-dimensional 
vector before performing the operation.

3. Convolutional Neural Network (CNN) Model 
The CNN algorithm showed huge success in identifying objects 
within images and was therefore considered in the present study 
[17]. According to Yamashita et al. (2018, pp. 612-617), a typical 
CNN architecture comprised convolution layers, pooling layers, 
and fully connected layers [18]. It employs a kernel, a small grid 
of parameters, to process input tensors. The kernel is applied to 
the input tensor, and at each location, it calculates the product 

of each element in the kernel and the corresponding element in 
the input tensor, followed by summation. This process yields a 
feature map. Two critical hyperparameters to consider are the 
size and number of kernels. Padding is another consideration, 
which involves reducing the dimensions of the output feature 
map by overlapping the center of each kernel with the outermost 
element of the input tensor.

Convolutional neural network CNN consists of convolution 
layers, pooling layers, and fully connected layers. A convolution 
layer is a basic layer of the CNN which is used for feature 
extraction [18].

A Two-dimensional (2D) grid is an array  used for storing the 
pixels of the images [18].

Kernel is a small grid of parameters that is used for the feature 
extraction [18]. 

As the output of one layer is fed to the next layer, extracted features 
can hierarchically and progressively become more complex. 
Training process minimises the difference between the output 
and ground truth by means of backpropagation and gradient 
descent. Training process identifies best kernels. Kernels learn 
automatically during the training process. Hyperparameters that 
need to be adjusted are the size of the kernels, number of kernels, 
padding, and stride [18].

Convolution is a linear operation used for feature extraction. 
In this process the kernel is applied on the input number array 
called tensors. A product between each element of the kernel 
and the input tensor is calculated at each location of the tensor 
and then summed. The output is called a feature map. Two key 
hyperparameters  are the size and number of kernels. These are 
usually 3 × 3, 5 × 5 or 7 × 7 [18].

Padding process reduces height and width of the output feature 
map by overlapping the centre of each kernel with the outermost 
element of the input tensor [18].

Stride is the distance between two successive kernels. A stride 
that is larger than 1 is used to downsample the feature maps [18]. 

3.1 Nonlinear Activation Function
The outputs of a linear operation such as convolution are passed 
through a nonlinear activation function. These are sigmoid or 
hyperbolic tangent (tanh) functions, rectified linear unit (RELU) 
[18]. 

3.2 Pooling Layer
A pooling layer reduces the dimensionality of the feature maps 
and decreases the number of subsequent learnable parameters  
[18].
Weight Sharing is used for the following purpose:
● To allow the local feature patterns extracted by kernels to 
travel across all the images for the detection of patterns.
● To learn spatial hierarchies of feature patterns by downsampling 
in conjunction with a pooling operation, resulting in capturing 
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an increasingly larger field of view.
● To increase model efficiency by reducing the number of 
parameters to learn in comparison with fully connected neural 
networks [18].

Max pooling extracts patches from the input feature maps, 
discards the other and outputs the maximum value in each patch. 
A max pooling with a filter of size 2 × 2 with a stride of 2 is 
commonly used. This down samples the dimension of feature 
maps by a factor of 2 [18].

3.3 Fully Connected Layer
The output feature maps of the final convolution or pooling layer 
is flattened by means of transformation into a one-dimensional 
(1D) array of number and then connected to one or more fully 
connected layers. This fully connected layer is also known as 
dense layers, in which every input is connected to every output 
by a learnable weight. The final fully connected layer typically 
has the same number of output nodes as the number of classes. 
Each fully connected layer is followed by a nonlinear function, 
such as RELU [18].

3.4 Last Layer Activation Function
Selection of an appropriate activation function, applied in the 
last of fully connected layer, is crucial and must be tailored to 
the specific task at hand. For multiclass classification tasks, 
the SoftMax function is commonly employed. This function 
normalizes the output values from the last fully connected 
layer into target class probabilities, ensuring each value ranges 
between 0 and 1, with the sum of all values equating to 1 [18].

3.5 Data and Ground Truth Labels
Data and ground truth labels are collected to train and test a 
model. Available data is divided into three sets: a training, a 
validation, and a test set [18]. 

3.6 Overfitting
It occurs when a model memorises irrelevant data instead 
of learning the signal, and, therefore, performs less well on a 
subsequent new dataset. An overfitted model does not generalize 
to new data. If the model performs well on the training set 
compared to the validation set, then the model has likely been 
overfit to the training data. The best solution for reducing 
overfitting is to obtain more training data. The other solutions 
including dropout or batch normalisation and data augmentation 
as well as reducing architectural complexity. During dropout, 
random activations are set to zero during training, reducing the 
model's reliance on specific weights. Weight decay helps prevent 
overfitting by penalizing large weights. Batch normalization 
adjusts input values in each layer, reducing overfitting and 
improving gradient flow, allowing faster learning rates and 
less reliance on initial values. Data augmentation also combats 
overfitting by modifying training data with random changes like 
flipping, translation, and rotation, ensuring the model encounters 
varied inputs during training [18]. 

3.7 Loss Function or Cost Function
It measures the compatibility between output predictions of the 

network through forward propagation and given ground truth 
labels. Commonly used loss function for multiclass classification 
is cross entropy [18].

Yamashita et al. (2018, pp. 612-617) mentioned that ReLU 
function operates by multiplying input values by weights and 
then summing them to produce specific outputs [18]. Activation 
functions like sigmoid or tangent were unsuitable for multi-
layered CNNs due to the vanishing gradient problem.

According to Prakash et al. (2021, p.4), the Adaptive Moment 
(Adam) function is used to minimize error loss [10]. Yamashita 
et al. (2018, pp. 619-620) mentioned that Gradient Descent is 
employed to update the learnable parameters, including kernels 
and weights, of the network to minimize loss [18]. 

3.8 Gradient Descent
It is used to update the learning parameters to minimize the loss 
[18].

3.9 Epochs in Deep Learning
An epoch represents a full cycle through the entire training 
dataset in neural network training. During each epoch, the 
network adjusts its parameters (weights and biases) based on the 
training data and chosen optimization method to minimize the 
loss function. Data is passed through the network, predictions 
are made, and compared with actual values using a loss function. 
Gradients of the loss function are computed through techniques 
like backpropagation, guiding parameter updates to minimize 
loss. Parameters are updated using an optimization algorithm 
like stochastic gradient descent (SGD). This process is repeated 
for each batch of data until all batches are processed, completing 
one epoch. Multiple epochs are typically run to allow the 
model to learn from the entire dataset. The number of epochs 
is a hyperparameter adjusted during training and validation to 
optimize model performance while considering computational 
resources [19].

3.10 Test and Validation Set
In machine learning, data is often divided into three main 
subsets: the training set, the validation set, and the test set.  
Training set is used to train the model. The model learns the 
relationships between input features and the target variable 
through iterative optimization on this dataset, The validation set 
is used to tune the model's hyperparameters and to evaluate its 
performance during the training process. By assessing the model 
on a separate validation set, one can detect issues like overfitting 
and adjust such as changing the model architecture, adjusting 
hyperparameters, or implementing regularization techniques. 
The key purpose of the validation set is to provide an unbiased 
evaluation of the model fit during the training process and to 
assist in model selection. After the model has been trained and 
tuned using the training and validation sets, it is evaluated on 
the test set. The test set provides a final, unbiased evaluation of 
the model's performance. Since the test set is not used during 
training or validation, it serves as a measure of how the model 
is expected to perform on unseen data. The performance metrics 
obtained from the test set give a realistic estimate of the model's 
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generalization ability [20].

4. Imbalance Dataset and Resampling Techniques
The dataset in which classification categories are not equal is 
an imbalance dataset. Accuracy is not a useful performance 
measurement in case of imbalanced dataset. Resampling the 
dataset by different sampling techniques is used to tackle this 
issue of imbalance dataset [21]. The dataset should be balanced 
in which all sample sizes of positive and negative examples are 
roughly equivalent. This balanced dataset is required to avoid 
systematic error and bias [22].

4.1 Data Sampling
Imbalanced dataset can either be absolute or relative [23]. 
● Absolute: minority class samples are less and not well 
represented.
● Relative: minority samples are well represented but these are 
larger in number as compared to majority class samples.
Imbalance can be:
● Between-class: number of samples representing a class differs 
from the number of samples representing the other class.
● Within Class: when a class is composed of several different 
subclusters which, in turn, do not contain the same number of 
samples [23].

4.2 Problems of Data Imbalance
● The classifier is biased towards the majority classes.
●  Class imbalance hinders the recognition of minority classes 
since the minority class samples may be insufficient to represent 
the boundaries between the two classes. 
● Imbalanced datasets are more deeply impacted by noisy data 
[23].
Resampling is commonly used to adjust the class distribution 
when dealing with unbalanced datasets [23].

4.3 Imbalanced Dataset Approaches
Resampling (oversampling and undersampling) is commonly 
employed to adjust class distribution when dealing with 
unbalanced datasets [23]. Jing et al. (2020, p. 3) recommended 
two categories of methods to address class imbalance: hard and 
soft sampling techniques [2]. Hard sampling methods involve 
down-sampling positive or negative samples, whereas soft 
sampling methods use a weighted loss function that updates 
parameters using the entire dataset [2].

In a study on fabric defect detection mechanisms, Rasheed et al. 
(2020, p. 2) discussed the challenges of acquiring datasets with 
fabric defects and emphasized how the dataset's imbalanced 
nature can cause traditional supervised machine learning 
algorithms to fail. As a result of this imbalance, the mean average 
precision and ROC curve were considered superior evaluation 
methods [24].

Lin et al. (2023, pp. 2-10) recommended a generalized focal loss 
function to tackle issues caused by imbalanced datasets. This 
function aims to enhance the learning of positive samples while 
reducing the impact of less informative negative samples. In 
contrast, Jing et al. (2020) proposed using the median frequency 

loss function [2].

Cheng et al. (2022, pp. 3101-3122) introduced an intriguing 
deep learning algorithm called Separation Convolution UNet 
(SCUNet), representing an enhanced iteration of UNet initially 
designed for medical image segmentation [25]. UNet featured 
a distinctive structure for stitching low-level and high-level 
semantic features, employing four max-pooling operations. In 
each pooling operation, image pixels were grouped into 2x2 
pixels, retaining the maximum pixel values within each group 
while discarding the others. This process resulted in information 
loss, particularly affecting the representation of small defects. 
In contrast, SCUNet opted for convolutional downsampling to 
reduce the feature map size. To address overfitting and minimize 
parameter count, all convolutional layers were substituted with 
depth-separable convolution. The choice of the Intersection over 
Union (IoU) Loss function, as opposed to cross-entropy loss, was 
made to accommodate irregular boundaries in defected images. 
The resulting model demonstrated an accuracy and recall of 
98.01% and 98.07%, respectively. SCUNet's improvements over 
UNet were noteworthy. Instead of cropping the feature map, 
SCUNet stitched the entire feature map. All down-sampling 
layers were replaced with convolutional layers, and rather than 
discarding information, SCUNet compressed and fused feature 
image pixels. Down-sampling was achieved through a max-
pooling layer with a stride of 2. The use of depth-separable 
convolution divided the process into channel-by-channel and 
point-by-point convolutions, extracting features from different 
locations within the same channel feature map and combining 
them to extract features of different channels at the same spatial 
location.

4.4 Resampling Techniques
The most common methods are:
● Oversampling means that we increase the number of samples 
in the minor classes so that the number of samples in different 
classes become equal or close to it thus get more balanced [26].
● Undersampling methods resample the data  to reduce some 
samples from the majority class but this results in removal 
of useful data samples [23]. To cope with this issue, different 
techniques are used as:

4.5 Imbalanced-learn Tool
Imbalanced-learn is a tool that offers various methods to address 
the challenges posed by imbalanced datasets. It provides 
techniques such as oversampling, undersampling, a combination 
of oversampling and undersampling, and ensemble sampling for 
data preprocessing. Within these methods, there is a category 
labeled 'Miscellaneous,' which includes the Function Sampler 
technique.

4.6 Instance Selection Algorithms
In this unimportant samples are eliminated. This algorithm 
selects a subset of the samples that preserves the underlying 
distribution, so that the remaining data is still representative of 
the characteristics of the overall data [23].
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4.7 Combination Method
Ensemble method combines several weak classifiers to get a 
better and more comprehensive ensemble classifier [27]. 
Oversampling Methods

5. Synthetic Minority Oversampling Technique SMOTE
 It is a technique to over sample the minority class  by creating 
more examples that are slightly different from the original 
data points [21]. SMOTE chooses a minority class instance at 
random and finds its k-nearest neighbors. One of these k-nearest 
neighbors is then selected at random [28].

5.1 Random Over-Sampling   
This method repeats some samples and balances the number of 
samples.  Samples are selected at random from minority classes 
with replacement. In case of multiple classes, each class is 
sampled independently (imbalanced-learn, n.d., i). 

5.2 Borderline SMOTE
This finds borderline samples to generate new synthetic samples. 
Model learns the borderline of each class in the training process. 
Borderline of the minority class is determined and then synthetic 
examples are generated to add to the original training set [29].

5.3 Synthetic Minority Over-Sampling Technique for 
Nominal and Continuous (SMOTENC)
In this method, median of standard deviations of the minority 
class (continuous) is calculated. Euclidean distance is calculated 
between minority of one class for which k-nearest neighbors are 
being identified and the other minority class samples using the 
continuous feature space [21].

5.4 Synthetic Minority Over-sampling Technique for 
Nominal (SMOTEN)
It is used to resample the categorical data features. The nearest 
neighbors are computed using the modified version of Value 
Difference Metric. The Value Difference Metric (VDM) looks 
at the overlap of feature values over all feature vectors. A matrix 
defining the distance between corresponding feature values for 
all feature vectors is created [21].

5.5 SVM SMOTE
It is a kind of SMOTE that uses a support vector machine 
algorithm to select samples. In SVM-SMOTE, borderline is 
determined by the support vectors after training SVMs classifier 
on the original training set (Imbalanced learn, n.d., a). 

5.6 Drawback of SMOTE:
The oversampling of SMOTE ignores within-class imbalance. 
Algorithm does not enforce the decision boundary. Sample 
instances far from the border are oversampled with the same 
probability as those close to the boundary [23].

SMOTE produces new samples with certain blindness and may 
make class overlapping more serious [27].

5.7 Adaptive Synthetic (ADASYN) Algorithm 
It is like SMOTE but it generates a different number of samples 
depending on an estimate of the local distribution of the class to 
be oversampled. ADASYN adds a random value and the samples 
are somewhat scattered [23].
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It generates minority data samples according to their distributions. 
Thus, more minority class samples are generated that learn 
hardly as compared to those minority samples that are easier to 
learn. The ADASYN method can not only reduce the learning 
bias introduced by the original imbalance data distribution but 
can also adaptively shift the decision boundary to focus on those 
difficult to learn sample [30].

5.8 K-Means SMOTE Oversampling
K-Means SMOTE works in three steps:
1. Cluster the entire input space using k-means.
2. Distribute samples to:
● Select clusters which have a high number of minority class 
samples.

● Assign more synthetic samples to clusters where minority 
class samples are sparsely distributed.

The method implements SMOTE and random oversampling as 
limit cases (kmeans-smote.readthedocs.io, n.d.).

6. Undersampling
6.1 Cluster Centroids
This technique decreases the influence of the majority class by 
replacing several of its samples with centroids generated by 
a KMeans algorithm. It selects a set number (N) of majority 
samples to form N clusters using KMeans. Then, it substitutes 
these samples with the coordinates of the cluster centroids 
(imbalanced learn, n.d., b).



    Volume 2 | Issue 10 | 7 Int J Med Net, 2024

6.2 Condensed Nearest Neighbour
Condensed Nearest Neighbor reduces the dataset for k-NN 
classification by using a subset of examples [31]. Nearest 
neighbor rule decides how to remove a sample or not. The 
algorithm is runs as given below:
1. Get all minority samples in a set.
2. Add a sample from the targeted class.
3. Classify each sample using nearest neighbor rule.
4. Add a sample if it is misclassified.
5. Repeat the procedure until there are no samples to be added.
(imbalanced learn, n.d. f)

6.3 Edited Nearest Neighbor
This method cleans dataset by removing samples close to the 
decision boundary (imbalanced learn, n.d., c).

Samples are classified using nearest neighbor rule and then 
classified using single nearest neighbor rule of the pre-classified 
samples [32].

6.4 Repeated Edited Nearest Neighbor
This repeats the Edited Nearest Neighbor many times 
(imbalanced learn, n.d., d).

7. AIIKNN
This method applies Edited Nearest Neighbor several times and 
will vary the number of nearest neighbours (imbalanced learn, 
n.d. e). AIIKNN differs from the previous Repeated Nearest 
Neighbor as the number of neighbors of the internal nearest 
neighbors algorithm is increased at each iteration (imbalanced 
learn, n.d. e).

7.1 Instance Hardness Threshold
Samples of the class with low probabilities are removed from the 
dataset. Sampling strategy is based on the result. If the result is 
float, then it is the ratio of majority to minority class. There is a 
problem of class overlap [33].

7.2 NearMiss Undersampling Technique
This method randomly eliminates samples from the larger class. 
When two points belonging to different classes are very close 
to each other in the distribution, this algorithm eliminates the 
samples of the larger class to balance the distribution. The steps 
taken by this algorithm are:
1. Calculates the distance between all the points in the larger 
class and compares them with the points in the smaller class. 
2. Samples of the larger class that have the shortest distance with 
the smaller class are selected. These n classes need to be stored 
for elimination. 
3. If there are m instances of the smaller class, then the algorithm 
will return m*n instances of the larger class [34]. 

7.3 Tomek Links
Tomek Links is a modification from Condensed Nearest 
Neighbors. CNN method only randomly selects the samples 
with its k nearest neighbors from the majority class that are 
removed. Tomek Links method uses the rule to selects the pair 
of observation (a and b) that are fulfilled these properties:

1. The observation a’s nearest neighbor is b.
2. The observation b’s nearest neighbor is a.
3. Observations a and b belong to a different class. That is, a and 
b belong to the minority and majority class vice versa [35].

7.4 Neighbourhood Cleaning Rule Undersampler
This class uses Edited Nearest Neighbor and a k-NN to remove 
irrelevant samples from the datasets (imbalanced learn, n.d. 
g). Neighborhood Cleaning Rule (NCL) is an undersampling 
method to overcome imbalance class distribution by reducing 
the data based on cleaning. Cleaning process is improvised 
by removing the three closest neighbors from the data which 
are incorrectly classified. The data cleaning process is for both 
majority and minority class. Basically, the principle of NCL is 
based on the concept of One-Sided Selection (OSS), which is 
one technique for reducing data based on the instances to reduce 
classes carefully [36].

7.5 Hybrid Sampling: Oversampling Combined with 
Undersampling
This method can generate noisy samples which is solved by 
cleaning the space resulting from over-sampling. After SMOTE 
over-sampling, Tomek’s link and edited nearest-neighbours are 
the two cleaning methods are applied to the pipeline.The two 
ready-to use classes imbalanced-learn implements for combining 
over- and undersampling methods are: (i) SMOTETomek and 
(ii) SMOTEENN (imbalanced learn, n.d. h)

7.6 Stratified k-Fold Cross Validation
Stratified k-fold cross-validation is a technique used in machine 
learning for model evaluation and hyperparameter tuning. It 
is particularly useful when dealing with imbalanced datasets, 
where the distribution of classes is uneven. The method involves 
dividing the dataset into k-folds while ensuring that each fold 
maintains the same class distribution as the original dataset. This 
helps to mitigate the risk of bias in model evaluation by ensuring 
that each class is adequately represented in both the training and 
testing subset
- The dataset is first divided into k equal-sized folds.
- For each fold, the class distribution is preserved, meaning that 
each fold contains approximately the same proportion of each 
class as the original dataset.
- The model is trained on k-1 folds and evaluated on the 
remaining fold
- This process is repeated k times, with each fold serving as the 
validation set exactly once
- The final performance metric is computed by averaging the 
performance across all k folds
Stratified k-fold cross-validation helps to produce more reliable 
estimates of model performance, especially in scenarios where 
the class distribution is skewed  [37].

8. Evaluation Metrics
8.1 Confusion Matrix
In a confusion matrix, columns correspond to the predicted 
class, while rows correspond to the actual class. The components 
of the matrix are as follows:
● True Negatives (TN): The count of negative examples that are 
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correctly classified as negative.
● False Positives (FP): The count of negative examples that are 
incorrectly classified as positive.
● False Negatives (FN): The count of positive examples that are 
incorrectly classified as negative.
● True Positives (TP): The count of positive examples that are 
correctly classified as positive.

Evaluation metrics used in image identification are typically 
accuracy, precision, recall, F1- score (Al-Sarayreh et al., 2018; 
Larsen et al., 2014; Ropodi et al., 2015; Setyono et al., 2018; 
Wang et al., 2019). 
Accuracy
Accuracy and F1 scores are described in Eq. 1 and 2 respectively 
[10].
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In Eq. 1, TPi or the true positive is the number of instances predicted correctly for instance   

and   is the total number of predictions. 

F1 Score 

In Eq. 1, TPi or the true positive is the number of instances predicted correctly for instance i and N is the total number of predictions.
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where,

Precision

[10].

• Precision
Precision is defined as the ratio of true positive defects correctly 
detected to the total number of detected defects [14]. Precision 
indicates how effectively a model identifies true positives, 
ensuring that the positive detections are accurate [21].

• Recall
Recall, often referred to as sensitivity or true positive rate, is 
the ratio of correctly detected true defects (true positives) to the 
total number of true defects [14]. Recall showcases the model's 
capacity to identify all positive instances, thus assessing its 
ability to capture all actual positives [21].

• F-Score
The F-value, also known as the F-score or F-measure, represents 
the harmonic average of precision and recall [8,11].

The F-value combines both recall and precision, and it reaches 
its highest value when both recall and precision are high [29]. 

For imbalanced datasets, accuracy can be misleading. Even 
if a classifier correctly classifies all majority examples but 
misclassifies all minority examples, the high accuracy results 
from the significant number of majority examples. This renders 
accuracy unreliable for predicting the minority class [29].

For balanced datasets, the error rate is utilized as a performance 
metric:
Error Rate = 1 - Accuracy [21]

In imbalanced datasets, the error rate isn't an appropriate 
performance measure. Instead, precision and recall are more 
meaningful metrics [21].

9. Data Visualization
9.1 Principal Component Analysis
It is a statistical method to reduce the dimensionality of a dataset. 
It determines the direction where the variation in the dataset is 
maximum. This direction is called the “principal component”. 
It determines the different principal components (directions) 
within the dataset and then uses these principal components 
to represent the samples. In this way samples can be plotted to 
check the similarities or differences between the samples. This 
enables to group the samples. Principal components are the 
linear combinations (new variables) of the original variables 
[38]. PCA is a technique for feature extraction. It combines all 
the variables and then drops less important variables. In this 
way new independent variables are created. It identifies the 
relationships between variables and then determines direction of 
dispersion in the dataset [39].

9.2 Visual Studio Code
Visual Studio Code (VS Code) is a free, open-source code 
editor developed by Microsoft. It is widely used by developers 
for writing and debugging code, and it supports a wide range 
of programming languages and frameworks. Here are some key 
features and aspects of Visual Studio Code. While it is technically 
a code editor, VS Code offers many features commonly found in 
integrated development environments (IDEs) (Microsoft, n.d.).
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9.3 Tensorflow and Keras
Tensorflow is an open source machine learning framework 
designed  for building and training of machine learning models 
and neural networks. It consists of libraries and tools for machine 
learning tasks [66].

Keras is an open-source neural network library written in Python. 
It is designed to be user-friendly, modular, and extensible, 
allowing users to quickly prototype and build deep learning 
models with minimal code. Keras was originally developed 
by François Chollet and was integrated into TensorFlow as its 
official high-level API starting from TensorFlow version 2.0. 
Keras provides a simple and intuitive API that allows users 
to define neural networks using high-level building blocks 
like layers, activations, optimizers, and loss functions. Keras 
supports both convolutional and recurrent neural networks, as 
well as combinations of the two. It also provides support for 
various types of layers, such as dense, convolutional, recurrent, 
and more [40].

9.4 Research Question
The objective of this research is to address the following research 
questions:
● Is it feasible to create a deep learning methodology for fabric 
defect detection that combines? 
a) efficient speed, 
b) heightened accuracy and 
c) comprehensive training encompassing various fabric defect 
types.
● Can this method incorporate a balanced approach to minimize 
false negatives in detection rates?
The focus was placed on deep learning algorithms. While 
a considerable amount of research has been done, several 
limitations persist, and a system that meets the criteria for 
deployment within industry has not been achieved.

10. Materials and Methods
10.1 Dataset
The data collected for this project were from :
● Fabric Defect Dataset from Kaggle [41].
● Fabric Stain Dataset from Kaggle [42]. 
● Aitex fabric image database [43]

● Dataset from the author of the literature review paper: only the 
non-defect images from the dataset [14].

10.2 Aitex Fabric Image Database 
This textile fabric dataset consisted of 245 images of 7 different 
fabrics with image sizes of 4096×256 pixels. There were 140 
defect-free images, 20 for each type of fabric. In each of the 
defected category, there were 105 images [43].

10.3 Fabric Stain Dataset
This was taken from Kaggle [42].  The dataset was built as a 
part of the fabric defect detection project of the Intelligence Lab 
of University of Moratuwa, Sri Lanka. The dataset consisted of 
images with resolution of 1920x1080 or 1080x1920. It consisted 
of 398 defected images with different types of stains and 68 
defect free images.

10.4 Fabric Defect Dataset 
The dataset was also taken from Kaggle and it was supplied 
by the Intelligence Lab, Department of computer science 
and Engineering, University of Moratuwa [41]. This dataset 
consisted of 3 classes of defective images namely horizontal, 
vertical and holes along with 3 mask images for each defective 
image sample. The folder named 'captured' consisted of raw 
images. Images have a size of 640x360.

10.5 Dataset from the x of the Literature Review Paper 
Authors of the research papers in the literature review were 
contacted through emails for the dataset. With the consent of the 
author of the paper “Automatic fabric defect detection method 
using pran-net” named Troy Peng, the annotated data was used 
[14].

After collecting the images from all these sources, the distribution 
of the images is as given below:
● Defect free 1,666
● Defected 1,073
Defected hole 281 
Defected horizontal 136 
Defected lines images 157 
Defected stain images 398 
Defected verticle images 101
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10.6 Experimental Setup and Evaluation
The images were experimented with two distinct sizes:
● 150x700  
● 245x345 

The entire experiment was carried out using the Python 
programming language . Keras , in conjunction with TensorFlow 
, was employed for the development and training of CNN. Various 
libraries, including numpy, pandas, and scikit-learn, were used 
for supporting tasks. The experimentation was conducted within 
the Visual Studio Code (VS Code) environment.

10.7 Data Pre-processing
The acquired dataset exhibited an imbalance in its distribution 
across different classes. Consequently, various sampling 
techniques from the imbalanced-learn module were applied 
and tested on the three chosen image sizes i.e.  150x700, and 
245x345. The objective was to determine the most effective 
sampling technique that yields high performance. 

10.8 Data Visualization
Data visualisation was facilitated through Principal Component 
Analysis (PCA). 
Principal Component Analysis (PCA) is considered good for 
data visualization for several reasons:
- PCA reduces the number of dimensions in the data while 
preserving as much variance as possible. This simplifies complex 
datasets and makes them easier to visualize, typically in 2D or 
3D.
- By projecting data onto principal components that capture 
the most variance, PCA highlights the underlying structure and 
patterns, making relationships in the data more apparent.
- PCA can help in removing noise and redundant information, 
which can clarify the visual representation of the data.

10.9 Modelling- Convolutional Neural Network
A CNN model's architecture was designed to facilitate 
multi-classification and consisted of five two-dimensional 
convolutional layers for feature extraction. 
● The initial convolutional layer was configured with 16 filters, 
each having a 7x7 kernel size. The second convolutional layer 
used a set of 32 filters with a 5x5 kernel size. 
● The third  layer used 64 filters with a 3x3 kernel size. 
● The fourth layer comprised 128 filters with a kernel size of 
3x3. 
● Lastly, the fifth layer was equipped with 256 filters and used 
a 3x3 kernel size. 

Padding with the hyperparameter 'same' was applied to allow 
the filter kernels to traverse the images by including additional 
pixels. Using 'same' as the padding hyperparameter ensured that 
the size of the output feature map remained the same as that of 
the input feature map.

Each successive convolutional layer was accompanied by 
batch normalization, an activation function, max pooling, and 
dropout layers. Batch normalization was used to standardize and 
normalize the dataset within batches, contributing to improved 
training and learning speed. 

The outputs of linear operations, such as convolutions, passed 
through nonlinear activation function Rectified Linear Unit 
(ReLU). Rectified Linear Unit (ReLU) activation function was 
employed due to the multi-layered nature of the CNN. 

For this novel model, Max pooling was adopted to reduce 
image dimensions and achieve downsampling, creating lower-
resolution images with essential features. A 2x2 filter shape 
was employed for max pooling since it should be smaller than 
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the feature map's dimensions. This pooling layer generated 
new feature maps. Dropout layers were introduced to address 
overfitting.

In the final phase of the model, a fully connected layer, also 
known as a dense layer, was used to align the outputs from the 
pooling layers with the dataset labels. Since multiple pooling 
layers were employed, a flattening layer was introduced to 
organize these outputs sequentially into a vector. After passing 
through all the convolutional layers, the output took the form of 
a multidimensional array, which was then fed into a dense layer. 
To interpret the results as a probability distribution, a SoftMax 
function was applied in the fully connected layer.

To evaluate compatibility between network output predictions 
and given labels, a loss function i.e. Adaptive Moment (Adam) 
function was employed. 

10.10 Parameter Settings
For this novel idea, for each experiment, the dataset was 
divided into a training set and a test set using a 95:05 stratified 
sampling ratio. The validation data was used to examine if the 
hyperparameters required further tuning. The test data was used 
as an unseen dataset to examine the results of the model. The 
training process encompassed 100 epochs , with a batch size of 
6 samples per batch. 

Using a stratified k-fold cross-validation approach with 10 folds, 
the dataset is split into training and validation sets for each 
fold. For every fold iteration, a Convolutional Neural Network 
(CNN) model is created using the specified image shape and 
trained on the training data for 100 epochs with a batch size of 
6. The model's performance is evaluated on the validation set, 
and both the validation loss and accuracy are recorded. This 
iterative process allows for a comprehensive assessment of the 
model's performance across multiple folds, contributing to a 
more reliable evaluation of its generalization capabilities."

10.11 Evaluation Metrics
Evaluation metrics used were accuracy, precision, recall, F1- 

score, confusion matrix.

10.12 Validation Time
This is the time taken to evaluate the performance of the model on 
the validation dataset after each epoch (or at specified intervals 
during training). The validation dataset is a separate set of data 
not used for training but for assessing how well the model is 
generalizing. This helps in tuning the model’s hyperparameters 
and prevents overfitting. The validation time includes the time 
required to compute metrics like accuracy, precision, recall, and 
F1 score on this dataset

10.13 Modelling Time
Also known as training time, this is the duration required for 
the model to learn from the training dataset. It includes the 
time taken for forward and backward propagation through the 
network for all epochs until the model converges. This phase 
involves the optimization of the model parameters (weights and 
biases) through iterative updates. Efficient modelling time is 
critical for developing models quickly, especially when dealing 
with large datasets or complex architectures.

10.14 Prediction Time
This is the time it takes for the trained CNN model to make 
predictions on new, unseen data. It measures how quickly the 
model can infer the class labels or other outputs for input data 
during deployment. Low prediction time is essential for real-
time applications, where the model needs to provide results 
almost instantaneously, such as in autonomous driving or live 
video analysis.

11. Results
CNN Modelling was performed for the two selected sizes 
of images dataset without any sampling technique. In order 
to optimize the performance of the CNN model, sampling 
techniques available in the imbalanced-learn module were 
experimented to select the best sampling technique with high 
performance. The results were as given in table 1, 2 and 3.
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 Parameters 

 Total Trainable Non-trainable 

245x345 2,698,310 2,697,062 1,248 
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Table 1 Total number of trainable and non-trainable parameters for the two image sizes 
 

 

 

 

 

 

 

 

 

 

 

 245x345 150x700 

 Accuracy Precision Recall F1 Accuracy Precision Recall F1 

 % % %  % % %  

Without Sampling 94 96 94 94 91 91 91 91 

Table 1: Total number of Trainable and Non-Trainable Parameters for the Two Image Sizes
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Undersampling 

Cluster 
Centroids 

89 91 89 90 73 87 73 76 

AllKNN 93 97 93 94 94 95 94 94 

Condensed Nearest Neigbor 65 83 65 69 69 73 69 69 

Edited Nearest Neighbours 90 93 90 89 87 91 87 87 

RepeatedEditedNearestNeighbours 88 90 88 88 91 93 91 91 

Instance Hardness Threshold 87 88 87 87 85 87 85 86 

Near Miss 73 87 73 75 77 85 77 78 

Neighbourhood Cleaning Rule 95 95 95 95 91 92 91 91 

TomekLinks 92 93 92 92 91 91 91 90 

Random Undersampler 93 94 93 93 90 93 90 90 

Oversampling 

ADASYN 95 95 95 95 90 90 90 90 

Random Oversampling 96 97 96 96 95 96 95 95 

Borderline 
SMOTE 

96 96 96 95 93 93 93 93 

kMeans 
SMOTE 

94 95 94 94 95 96 95 95 

SMOTEN 91 92 91 91 93 94 93 93 

SMOTENC         

SVM SMOTE 96 96 96 96 95 95 95 95 

Combined Oversampling and Undersampling 
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SMOTEENN 98 98 98 98 96 96 96 96 

SMOTETomek 96 96 96 96 91 91 91 91 

Ensemble 

Pipeline 93 93 93 93 87 89 87 87 

Miscellaneous 

Function Sampler 94 95 94 94 96 97 96 96 

Table 2 Model performance without and with data pre-processing 
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Without Sampling 2.64 0.22 0.06 3.26 0.34 0.06-0.1 

Undersampling 

ClusterCentroids 2.8 0.29 0.06-0.1 3.11 0.205 0.07-0.08 

AllKNN 2.69 0.21 0.07 3.52 0.24 0.07-0.08 

Condensed Nearest Neigbor 2.52 0.2 0.07 3.18 0.20 0.06-0.15 

Edited Nearest Neighbour 2.5 0.2 0.09 3.3 0.22 0.09 

Repeated Edited Nearest Neighbout 2.6 0.2 0.06 3,12 0.21 0.05-0.7 

Instance Hardness Threshold 2.50 0.21 0.07 3.32 0.2 0.08 

Near Miss 2.69 0.24 0.07 3.2 0.2 0.07 

Neighbourhood Cleaning Rule 2.82 0.24 0.07 3.4 0.25 0.06-0.14 

TomekLinks 2.45 0.27 0.06-0.1 2.93 0.3 0.08-0.1 

Random Undersampler 2.55 0.23 0.06-0.08 3.86 2.51 0.09 

Oversampling 

ADASYN 2.43 0.56 0.08-0.1 3.53 0.89 0.08 

Random Oversampling 2.90 0.7 0.06-0.1 2.98 0.23 0.07 

Borderline 
SMOTE 

3.25 1.96 0.06-0.096 3.31 1.74 0.087-0.065 

kMeans 
SMOTE 

3.2 1.1 0.09 3.47 5.66 0.077 

SMOTEN 3 1.9 0.07 3.36 2.02 0.07-0.09 

SMOTENC       

SVM SMOTE 3.15 1.90 0.085-0.1 3.40 1.86 0.07-0.086 
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Combined Oversampling and Undersampling 

SMOTEENN 3,4 1.57 0.09 3.5 1.15 0.07-0.1 

SMOTETomek 2.77 2.21 0.06 3.67 2.44 0.07-0.12 

Ensemble 

Pipeline (AIKNN+Neighbouhood CleaningRule) 2.8 0.31 0.07 3.26 0.35 0.06-0.09 

Miscellaneous 

Function Sampling 2.59 0.21 0.07-0.1 3.26 0.2 0.07-0.15 

Table 3 Model time performance with data pre-processing 
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12. Discussion
The aims of this study were twofold: to amass an image dataset 
containing fabric defects and to create a model capable of 
accurately categorizing these defects, ultimately leading to an 
automated system for identifying and detecting fabric defects.

To do this, state-of-the-art data sampling techniques were applied 
to the dataset consisting of a total of 2,739 images, including a 
total of 1666 non-defected images and 1,073 defected images. 
These sampling techniques were experimented on a novel CNN 
image detection methodology. These results demonstrated some 
interesting findings relating to AI and implementation strategies 
for future commercial deployment strategies.

As depicted in table 2, when analysing the dataset without pre-
processing, the CNN model's performance was impacted by the 
imbalanced nature of the data. For images size 150 x 700, the 
model achieved 91% accuracy, precision, recall, and F1 score, 
respectively. However, with images sized 245x345, the model's 
performance notably improved, reaching 94% accuracy, 96% 
precision, 94% recall and F1 score. Remarkably, the 245x345 
image size demonstrated superior performance compared to 
the larger 150x700 image size. But even then, the performance 
was not outstanding and needed further improvement. For this 
reason, different sampling techniques were experimented to 
improve the performance of the model.
      
12.1 Oversampling
In table 2, it is evident that ADASYN, Random Oversampling, 
Borderline SMOTE, and SVM SMOTE yielded superior 
performance when applied to images sized 245x345 compared to 
those sized 150x700, across metrics such as accuracy, precision, 
recall, and F1 score. Unfortunately, SMOTENC encountered 
memory size limitations and could not be executed. Notably, 
kMeans SMOTE and SMOTEN did not exhibit enhanced 
performance.

Among the oversampling techniques, Random Oversampling, 
Borderline SMOTE, and SVM SMOTE showcased exceptional 
performance. Notably, Random Oversampling achieved a 
precision of 97%, outperforming the other techniques in this 
regard.

As indicated in Table 2, both Random Oversampling and 
ADASYN exhibited notably quicker validation and modelling 
times for images sized 245x345 compared to other oversampling 
methods, as well as compared to the 150x700 size across all 
methods. The longest validation times were observed for k 
Means SMOTE, Borderline SMOTE, SMOTEN, and SVM 
SMOTE.
     
12.2 Under Sampling
None of the under sampling techniques demonstrated satisfactory 
performance for either of the two image sizes. However, 
Neighbourhood Cleaning Rule and AIIKNN showcased notable 
improvements. Neighbourhood Cleaning Rule exhibited superior 
performance, achieving 95% across accuracy, precision, recall, 
and F1 Score for images sized 245x345. AIIKNN displayed 

enhanced precision, reaching 97% and 95% for images sized 
245x345 and 150x700, respectively.

The validation, modelling, and prediction times for both AIIKNN 
and Neighbourhood Cleaning Rule were nearly equivalent to the 
model's performance without sampling. This held true for both 
image sizes, 245x345 and 150x700. Among the under sampling 
techniques, Tomek links exhibited the shortest validation, 
modelling, and prediction times.

12.3 Combined Undersampling and Oversampling 
Remarkably, both SMOTEENN and SMOTE Tomek surpassed 
the performance of combined oversampling and undersampling 
techniques. Particularly, SMOTEENN demonstrated superior 
performance compared to SMOTE Tomek.

12.3.1 Ensemble
As depicted in Table 2, the Pipeline sampling utilized 
undersampling techniques AIKNN and Neighbourhood Cleaning 
Rule. Due to limited memory space, oversampling techniques 
could not be evaluated. Consequently, the Pipeline could not 
demonstrate any performance across both image sizes.

12.3.2 Miscellaneous
The Function sampler did not exhibit any performance 
improvement with the image size 245x345. However, for the 
larger image size of 150x700, performance was notably better, 
with 96% accuracy, recall, and F1 score, and 97% precision.

From Table 2, it's apparent that among the best-performing 
sampling techniques across various experimented methods, 
SMOTEENN, combining oversampling and undersampling, 
delivered the most promising performance compared to 
other selected top-performing methods. The CNN model's 
performance with the SMOTEENN sampling technique was 
notably strong for the image size of 245x345.

The following table (Table 4) provides an overview of the best-
performing techniques among the different sampling methods 
tested with two image sizes: 150x700 and 245x345. As shown 
in the table, the combined oversampling and undersampling 
techniques yielded the best results. Among the two combined 
techniques tested, SMOTEENN and SMOTETomek, 
SMOTEENN achieved the highest performance with 98% 
accuracy, precision, recall, and F1 score for the 245x345 image 
size.

For SMOTEENN, the validation, modeling, and prediction 
times for the 245x345 image size were nearly the same as for 
the 150x700 image size. However, for SMOTETomek, the 
validation time for the 245x345 size was lower (2.7 seconds) 
compared to SMOTEENN (3.4 seconds). Conversely, the 
modeling time for SMOTETomek was higher (2.21 seconds) 
compared to SMOTEENN (1.57 seconds).

The performance of SVM SMOTE, Random Oversampling, 
and Borderline SMOTE—techniques categorized under 
oversampling for the 245x345 image size—and the miscellaneous 
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sampling technique, Function Sampler, for the 150x700 image 
size, remained nearly identical in terms of accuracy, precision, 
recall, and F1 score. The validation, prediction, and modeling 
times for SVM SMOTE, Random Oversampling, and Borderline 
SMOTE were relatively shorter compared to the combined 
oversampling and undersampling technique, SMOTEENN.

For images sized 245x345, the validation, modeling, and 
prediction time for SMOTEENN was longer compared to 

SMOTE Tomek, being the maximum among the undersampling 
and oversampling techniques. SMOTE Tomek exhibited 
shorter validation times, outperforming other undersampling 
and oversampling techniques. However, as SMOTEENN has 
surpassed SMOTETomek in terms of accuracy and precision, 
therefore, SMOTEENN remains on the top of SMOTETomek 
and among other sampling techniques in terms of overall 
performance.
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When analysing results, PCA was used for the data visualization. Figure 4 shows the data set before data pre-processing.
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Fig. 4 PCA before data pre-processing 
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As shown in the figure 4, defects are not properly segregated and therefore, model could not 

predict the defect classes accurately and precisely. For example, the yellow dots representing 

stains could be misclassified as defect-free since they are mixed with the red dots. Similarly, 

the royal blue dots are mixed with the green dots, leading to potential misclassification of 

defects. A similar issue occurs with the royal blue dots, which are mixed with the green dots, 

leading to potential misclassification of these defects.  

 

Figure 4: PCA before Data Pre-Processing

- Red coloured narrates the defect free images. 
Defected images are shown as:
- Royal Blue shows the  holes, 
- Orange shows vertical
- Green shows lines
- Light blue shows horizontal
- Yellow shows stains
As shown in the figure 4, defects are not properly segregated and 
therefore, model could not predict the defect classes accurately 
and precisely. For example, the yellow dots representing stains 
could be misclassified as defect-free since they are mixed with 
the red dots. Similarly, the royal blue dots are mixed with the 

green dots, leading to potential misclassification of defects. A 
similar issue occurs with the royal blue dots, which are mixed 
with the green dots, leading to potential misclassification of 
these defects. 

The following figures 5 and 6 give the data visualization 
using Principal Component Analysis for the best performing 
techniques.

Fig. 5 shows the data visualization when data was pre-processed 
using best performed sampling technique SMOTEENN.
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Fig. 5 PCA after data pre-processing with SMOTEENN sampling technique 

As shown in the fig. 5a. There is a clear separation between the different colors showing that 

all the classes are completely seggragated that led to high accuracy. Similary, fig 5b also 

shows the similar but somewhere like there is a small merge of two classed. For example the 
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Figure 5: PCA After Data Pre-Processing with SMOTEENN Sampling Technique
As shown in the fig. 5a. There is a clear separation between 
the different colors showing that all the classes are completely 
seggragated that led to high accuracy. Similary, fig 5b also 

shows the similar but somewhere like there is a small merge of 
two classed. For example, the red color is somewhat mixed with 
other colors.
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Fig. 6 PCA after data pre-processing with:  
 
a) SMOTETomek image size 245x345 
b) SVM SMOTE Oversampling image size 245x345  
c) SVM SMOTE Oversampling image size 150x700 

Figure 6: PCA After Data Pre-Processing with: 

a) SMOTETomek image size 245x345
b) SVM SMOTE Oversampling image size 245x345 
c) SVM SMOTE Oversampling image size 150x700
d) Random Oversampling image size 245x345 
e) Random Oversampling image size 150x700
f) Borderline SMOTE image size 245x345
g) Function Sampler image size 150x700
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It is obvious from the Fig 6 that the model with the different 
resampling techniques like SMOTETomek (image size 245x345), 
SVM SMOTE (245x345 and 150x700), Random sampling 
(image size 245x345, 150x700), Borderline SMOTE (image size 
245x345) and Function Sampler (image size 150x700), the red 
colored dots representing the defect free class are mixed with the 

other classes that is the reason for the decrease in the accuracy of 
the model performance.

PCA hence is a very effective method to understand the 
model performance. This method gives a clear picture of the 
multiclassification behaviour of the model.
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Fig. 7 shows the confusion matrices after modelling with CNN for the selected size 245x345. 

 

Fig. 7 Confusion matrix of the CNN model sampled with SMOTEENN method for image 
size 245x345 

 

 

  

Fig. 8  Prediction time and accuracy of the CNN model with SMOTEENN sampling 
technique image size 245x345 
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Figure 7: Shows the Confusion Matrices After Modelling with CNN for the Selected Size 245x345

Fig. 7 Confusion matrix of the CNN model sampled with SMOTEENN method for image size 245x345

Figure 8:  Prediction Time and Accuracy of the CNN Model with Smoothen Sampling Technique Image Size 245x345

Fig.8 shows the time taken and accuracy for predicting the 
defects and the accuracy of predictions for the developed 
CNN with SMOTEENN sampling techniques for the image 
size 245x345. It is evident that the trained model performance 
remained 100% accurate. 

Verification from Literature Review
The findings from the experimentation align with the conclusions 
drawn by Luke, Joseph, and Balaji (2019, p. 70), which are 
elaborated below [44]:
1. CNN significantly influences image resolution accuracy.
2. Image sizes exert a substantial impact on model accuracy. 
Changes in size can either enhance or degrade model 
performance.
3. Accuracy tends to increase as image sizes are enlarged, but 
this trend reverses beyond a certain threshold due to reduced 
receptive field.
4. Larger image sizes impact the ability to learn medium and 
high-level features.
5. To achieve higher accuracy, the optimal image size falls within 
the range between the default size and 512.

6. Resizing images affects low-level features due to information 
loss, thereby influencing accuracy. The accuracy is particularly 
influenced by inter-class similarities, which are closely tied to 
low-level features [44].

Image resolution notably influences the model's performance. 
Thambawita et al. (2021) discovered that CNN achieved its best 
performance with a larger image size of 512x512 compared to 
32x32 [45].

Horwath et al. (2020, p. 4) noted that image segmentation 
becomes challenging with high-resolution images due to issues 
recognizing interface pixels without considering the background. 
The complexity of features increases accordingly [22].

Sabottke and Spieler (2020, p.2) emphasized that a lower 
number of parameters leads to improved model performance 
by reducing overfitting risk [46]. However, excessive resolution 
reduction may result in a loss of valuable information. They 
found that CNN performance was optimal within the range of 
resolutions between 256x256 and 448x448 image sizes. Their 
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conclusion was that there's a trade-off between increasing 
image resolution and the maximum feasible batch size. A high 
number of parameters affects model performance not solely 
due to overfitting but also because of the intricacies involved in 
optimization [46].

Rukundo (2021, p. 17) highlighted that determining the optimal 
image size for training datasets is a significant challenge. 
He observed that a size of 256x256 outperformed 128x128, 
attributing this improvement to the lower cross-entropy loss in a 
U-net trained on a 256x256 training image set. He emphasized 
that lower loss corresponds to greater model accuracy [47].

12.4 Result Comparison with Models from the Related 
Works
Until today, fabric defect detection tasks have primarily been 
carried out manually. Numerous research studies have proposed 
defect detection algorithms; however, these methods have certain 
limitations. They often suffer from slow processing speeds and 
lack the capability to effectively detect a wide range of defect 
types. Consequently, these methods have not found practical 
applicability within the textile industry.

The following table gives a brief view of the evaluation of the 
models discussed in the section of related works.
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The following table gives a brief view of the evaluation of the models discussed in the section 

of related works. 

  
Accuracy 
% 

Precision 
% 

Recall 
% 

F1 Score 
% 

Detection 
Time  

Peng et. al (2020) 
PRAN-NET Denim 91.99       

 9.7  
Frame per sec 

Peng et. al (2020) 
PRAN-NET  Plain 98.66       

 25.4  
Frame per sec 

Almeida, Moutinho and Matos-
Carvalho (2021) 
CNN-FN Reduction 

75.45 72.76 88.47   5.69 ms per 
image 

Zhao et. al (2019) 
CNN-VLSTM   95.73-99.47 95.74-100 95.73-100 95.73-100 1.8-3.5 e2 
Wei  et. al (2019) 
Faster RCNN 95.88       0.3 sec 
Liu et al. (2019) 
VGG16 97.7         
Liu et al. (2019) 
LZFNet 98       13.8 ms 
Cheng et al. (2022) 
SCUNet 98.01  96.86   
 

 
Our Model 99 100 99 99 0.06-0.07 sec 

 

98 98 98 98 0.06-0.07 sec 

Table 5 Performance comparison of different models from the literature review with our model 

All the models discussed in the related works section exhibited a common drawback: they are 

slow and time-consuming, rendering them unsuitable for various types of fabric defects. 

Although CNNs based on visual VLSTM presented by Zhao et al. (2019) demonstrated 

superior performance in terms of accuracy and speed but they also exhibit significant 

sensitivity to intricate fabric structures. 

The performance of the model developed by Zhao et al. (2019) is given in the table 8. 

 

Table 6 Performance metrics of Zhao et al. (2019) model 
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Table 5:  Performance Comparison of Different Models from the Literature Review with our Model

All the models discussed in the related works section exhibited 
a common drawback: they are slow and time-consuming, 
rendering them unsuitable for various types of fabric defects. 
Although CNNs based on visual VLSTM presented by Zhao 
et al. (2019) demonstrated superior performance in terms of 

accuracy and speed but they also exhibit significant sensitivity 
to intricate fabric structures [11].

The performance of the model developed by Zhao et al. (2019) 
is given in the table 8.

Table 6: Performance Metrics of Zhao et al. (2019) Model

The model developed by Zhao et al. (2019) was based on visual 
long-short term memory (VLSTM) [11]. In contrast to the model 
proposed by Zhao et al. (2019), the current model is:

● notably simpler, 
● lacking the integration of the CNN architecture with other 
mechanisms. 
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● Zhao et al. (2019) conducted experiments with varying 
image quantities, such as 500, 1000, and 10500, and identified 
the dataset consisting of only 500 images as yielding the best 
performance. However, the performance of the larger image 
datasets, particularly the 1000-image dataset, was suboptimal 
[11]. 

In contrast, the CNN model devised in this research exhibited 
superior performance when trained with a substantial dataset 
comprising 2,739 images, particularly excelling with the 
image size of 245x345. Consequently, the model discussed in 
this research paper emerges as the most suitable candidate for 
deployment within the textile industry.

The SCUNet model, developed by Cheng et al. (2022), exhibits 
several limitations. Notably, the experimentation involved 
a singular image size of 256x256, a small dataset comprising 
only 106 grayscale images, and data processing utilizing 
image cropping and augmentation. Importantly, the model's 
performance on colored data images remains unknown, as the 
experiments focused solely on grayscale images [25]. Cheng et 
al. (2022, p. 3115) acknowledge a limitation wherein the model 
requires fabric to be "flat"; however, the term is inaccurately 
used, as the authors seem to refer to "plain" fabric—fabric 
devoid of patterns or designs [25]. The model's inadequacy 
in handling designed fabrics is evident. Cheng et al. (2022, 
p. 3117) claim time efficiency compared to manual visual 
inspection but fail to present metrics for detection time, leaving 
the efficiency and speed of defect detection unmeasured [25]. 
In contrast, our research paper not only addresses detection 
time but also evaluates the model's efficiency. Our model, 
tested on both colored and grayscale images, encompasses all 
defect sizes. The dataset, curated from various sources, includes 
plain and patterned fabrics. In direct comparison, our model 
outperforms SCUNet with an overall accuracy of 98% and recall 
of 98%. This achievement is particularly noteworthy given our 
comprehensive experimentation with diverse fabric types, defect 
sizes, and image variations, demonstrating superior adaptability 
and performance.

13. Conclusion
This research introduces an innovative approach for the 
automated detection of fabric defects within the textile industry. 
Within this sector, the journey begins with yarn from the 
spinning department, which is then utilized in the weaving unit 
to create greige fabric. The subsequent stages involve processes 
such as scouring, bleaching, dyeing, and finishing the fabric. 
Once the fabric reaches the finished state, it undergoes a quality 

assessment before proceeding to the stitching department 
for garment production. During the quality inspection phase, 
the fabric is placed across quality tables, where inspectors 
meticulously examine it and identify any instances of fabric 
defects, marking the fabric as necessary.

The objective of this study was to identify a suitable deep learning 
algorithm capable of automating fabric quality inspection in the 
textile industry, thereby replacing the labor-intensive manual 
process. After conducting a comprehensive literature review, a 
convolutional neural network (CNN) algorithm was chosen as 
the basis for the research. To determine the optimal image size 
for the algorithm, two sizes—150x700, and 245x345—were 
tested to achieve the best model performance. Addressing the 
challenge of dataset imbalance, various sampling techniques 
were employed and evaluated.

Remarkably, the research revealed that the CNN model 
yielded the most impressive results when combined with the 
SMOTEENN sampling technique. This outcome signifies a 
significant advancement in automating fabric quality inspection 
within the textile industry.

The research highlighted the substantial impact of image size on 
the model's performance. The CNN model that was developed 
demonstrated its most exceptional performance when paired 
with the SMOTEENN sampling technique. Among the two 
tested image sizes—150x700, and 245x345—the 245x345 size 
emerged as the most optimal performer.

In terms of practical application, this model stood out for its swift 
processing times. Specifically, for the image sizes 245x345, 
the model achieved a validation time of just 3.4 seconds and 
a prediction time of 0.09 seconds. While the 150x700 size 
demanded 3.5 seconds and 1.15 seconds for the same tasks. 
This efficiency positions the model as a viable candidate for 
deployment within the industry.

Deployment Strategy
A novel approach is introduced to revolutionise the fabric 
quality inspection process. This method integrates the utilisation 
of an infrared camera, which scans the entire fabric width while 
it is conveyed along the table's length. Capturing high-resolution 
infrared images, the camera provides data for the developed 
machine learning algorithm, which is responsible for identifying 
fabric defects. Upon detecting a defect, the algorithm triggers an 
automatic labelling machine to mark the defective section. The 
entire workflow is illustrated in fig. 9 below:
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Fig.9 Automated Fabric Defect Detection 

 

 

 

 

 

 

 

Figure 9: Automated Fabric Defect Detection

Future Research
Further research is warranted to enhance the robustness of the 
model by expanding the image dataset and incorporating a 
broader array of defect types for multi-classification purposes.

Additionally, more extensive research is needed to facilitate 
the deployment of this model within the textile industry. This 
would involve the implementation of infrared cameras and 
defect labelling machines to fully automate the fabric quality 
inspection process. Such endeavours would contribute to the 
comprehensive integration of the developed algorithm into 
practical industrial settings.
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