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Abstract
Molecules and materials often display distributed heterogeneous properties. Modeling the behavior of a single molecule 
with these properties (e.g. via Monte-Carlo simulations) requires a rapid way to sample distributions of interest and 
describe how they evolve. Here, we pedagogically introduce a simple algorithm that converts evenly distributed random 
number generator outputs to any defined probability density function (PDF) called the Random Number Converter 
(RNC). We demonstrate a numerical approach to obtain cumulative distribution functions (CDFs) and utilize a binary 
search algorithm to circumvent the need for analytical inverse CDFs. This simple method is demonstrated for various 
distributions, including single-exponential and Gaussian distributions and non-standard PDFs, for which neither the 
CDF nor its inverse are analytically solvable. We then apply this algorithm to the rate analysis of catalytic turnover 
cycles and Fourier spectroscopy, enabling the study of complex reaction kinetics and retrospective interferometry 
analysis. Our algorithm and examples can be used to train undergraduates on the tools that underlay Monte Carlo 
methods and connect physical chemistry to standard computer science and statistics. We provide a MATLAB and Python 
module in the Supporting Information with customizable parameters.
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1. Introduction
Modeling that utilizes probability and randomness employs the 
concept of random numbers to achieve statistical explanations 
of complex physical phenomena, such as the stochastic 
equation of motion and kinetic Monte Carlo models. Monte 
Carlo simulations represent a large class of computational 
algorithms and experiments that allow one to use repeated 
random sampling to probe complex processes and dynamics. 
Monte Carlo modeling has been extensively applied to complex 
chemical problems, such as electronic structures, molecular 
dynamics, statistical thermodynamics, and quantum optics, 
all of which are central to both classical and modern physical 
chemistry education. Techniques such as Monte Carlo widely 
utilize random numbers generated using standard “black box” 

algorithms. In this article, we describe a simple algorithm 
that relates random number generation to the real probability 
distribution of any single variable. Probability distributions are 
broadly covered in undergraduate chemistry classes, but the link 
to stochastic simulations is rarely made. Hence, our proposed 
tool, while broadly accessible to undergraduate students, links the 
content of physical chemistry courses to outcomes of stochastic 
simulations and helps overcome the student- experienced barrier 
to computer simulations for chemical problems. The method 
can be directly used in the classroom education of statistical 
thermodynamics and assist physical chemistry undergraduate 
and graduate students in related fields with modeling analysis 
[1-8].
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analytically solvable. We then apply this algorithm to the rate analysis of catalytic turnover cycles 

and Fourier spectroscopy, enabling the study of complex reaction kinetics and retrospective 

interferometry analysis. Our algorithm and examples can be used to train undergraduates on the 

 

We will briefly introduce the standard analytical approach 
to converting evenly distributed random numbers into any 
arbitrary distribution, which we call the Random Number 
Converter (RNC), though it is commonly named inverse 
transform sampling. We begin with the example of a single-
exponential decay distribution, PDF (𝑥) = 𝑘𝑒−𝑘𝑥, where PDF 
stands for probability density function, and 𝑘 is a real number. 
This exponential distribution represents varied behavior, such 
as the time difference between random events that occur with 
a given frequency. It is also known as the zeroth-order Poisson 
distribution. To relate a random number valued between 0 and 
1 to this PDF, we must evaluate the cumulative distribution 
function (CDF), which measures the area under the curve as 
a function of the position along the curve. Single-exponential 
decay distributions have an analytical cumulative distribution 
function, i.e., CDF(𝑥) = x 𝑓(𝑥′) 𝑑𝑥′ is the closed-form function, 

This function can then be inverted (i.e. 𝑥 can be expressed as a 
closed-form function in terms of 𝑦), which allows us to derive 
the analytical inverse CDF,

Here, 𝑥 can be the vector to store our desired random numbers 
that follow the single-exponential decay PDF, where 𝜉 is a 
uniform random vector ranging between 0 and 1 that can be called 
from a pseudorandom number generator in all conventional 
programming languages [2,8,9].

We see that in the foresaid example, the random numbers are 
straightforwardly drawn from a closed-form inverse CDF. 
However, generating random numbers for any PDF presents 
two main difficulties: (i) the corresponding CDF often lacks 
an analytical solution, and (ii) the inverse function of the 
CDF is often not analytic. These challenges are addressed 
computationally with a number of methods common in numerical 
simulation, such as kernel density estimation and Markov chain 
Monte Carlo. As a result, the implementation and interpretability 
of algorithms are hindered, creating a barrier to student learning 
and connecting simulations and chemistry. Here we present our 
RNC as a simple numerical algorithm based on inverse transform 
sampling to convert uniform random numbers. Implementation 
of this algorithm provides multiple steps and opportunities 
for pedagogical explanation of modern concepts in chemical 
simulation and allied fields, such as statistics, computer science, 
materials science, chemical engineering, biology, and more. In 
the following, we will explore the intended learning outcomes 
(ILOs) and how RNC serves as a versatile tool for demystifying 
complex probability distributions, providing students with 
a hands-on learning experience that transcends traditional 
classroom instruction [10-13].

2. Intended Learning Outcomes
• Grasp Probability Distributions and Stochastic Techniques
students will gain a solid understanding of probability 
distributions and learn how to apply stochastic sampling 
methods, such as Monte Carlo simulations.
• Master the RNC Algorithm
students will become proficient in using the RNC algorithm to 
transform uniformly
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number of methods common in numerical simulation, such as kernel density estimation and 

Markov chain Monte Carlo (Węglarczyk, 2018; Wu et al., 2020). As a result, the implementation 

and interpretability of algorithms are hindered, creating a barrier to student learning and 

connecting simulations and chemistry. Here we present our RNC as a simple numerical algorithm 

based on inverse transform sampling to convert uniform random numbers (L. Devroye, 1986). 

Implementation of this algorithm provides multiple steps and opportunities for pedagogical 

explanation of modern concepts in chemical simulation and allied fields, such as statistics, 

computer science, materials science, chemical engineering, biology, and more (Batstone, 2013). 

In the following, we will explore the intended learning outcomes (ILOs) and how RNC serves as 

a versatile tool for demystifying complex probability distributions, providing students with a 

hands-on learning experience that transcends traditional classroom instruction. 

 

2. Intended Learning Outcomes 

(1) Grasp Probability Distributions and 

Stochastic Techniques: students will 

gain a solid understanding of 

probability distributions and learn how 

to apply stochastic sampling methods, 

such as Monte Carlo simulations. 

(2) Master the RNC Algorithm: students 

will become proficient in using the 

RNC algorithm to transform uniformly 

 
Figure 1. Graphic summary of the ILOs of RNC 
implementation in modern physical chemistry. 

Figure 1: Graphic summary of the ILOs of RNC implementation in modern physical chemistry. Distributed random numbers into 
universal PDFs.

• Develop Skills in Analyzing and Simulating Chemical Data
students will learn to analyze and simulate spectroscopy and 
visualize reaction kinetics using computational techniques, 
including the RNC algorithm.
• Link Abstract Mathematics to Practical Simulations
students will develop a deeper understanding of abstract physical 
chemistry mathematics by interpreting results from stochastic 
simulations and linking them to practical applications.
• Integrate Multidisciplinary Knowledge
students will cultivate the ability to integrate concepts from 
statistics and computer science to understand physical chemical 
phenomena.
• Enhance Computational and Programming Skills
students will improve their computational and programming 
abilities, particularly in MATLAB and Python, enabling them to 
understand the limitations and assumptions inherent in various 
modeling approaches.

3. Results and Discussion
3.1. The Schematic Procedure of Our RNC
The method is detailed in Figure 2, and the MATLAB and 
Python scripts with comments are provided in Section 1 of the 
Supporting Information (SI). Firstly, for any given PDF, we 
numerically integrate it to obtain the CDF using the trapezoidal 
method, where 104 to 105 𝑥-grid points for the PDF are enough 
(i.e. there are the same number of PDF and CDF 𝑦-grid points). 
This decision aims to help undergraduate students grasp the 
process and ease the transition to other programming languages, 
such as C or Fortran, for researchers incorporating this RNC 
module into their research. Educators could use this as a chance to 
describe other numerical integration methods, such as Riemann 
sums or Simpson’s rule, or more sophisticated methods, such 
as Gaussian quadrature or Monte Carlo integration algorithms 
[14-,15]. 
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et al., 1996; Song and Kawai, 2024). The 

grid density and number of bins could be 

tested by the students as an exercise, 

experimenting with the algorithm’s 

behavior and convergence. 

Next, a constant-probability 

random number, 𝜉𝜉𝑖𝑖 , between 0 and 1 is 

obtained to describe a random probability. 

We note that this provides an additional 

opportunity to discuss methods for random 

number generation, such as the idea of 

pseudorandom numbers and the need for 

methods to generate truly random numbers, as recently highlighted in the active area of quantum 

research (Liu et al., 2023). A function value of the CDF (i.e. 𝑦𝑦 = CDF(𝑥𝑥) value) closest to this 

random probability is then picked using a binary search solution to numerically achieve the process 

of obtaining the inverse of the CDF. Once again, another opportunity is presented here to discuss 

search algorithms and their relative efficiencies. Finally, the 𝑥𝑥𝑖𝑖 value corresponding to the selected 

CDF value is determined, representing one of the desired random numbers. With multiple 𝜉𝜉𝑖𝑖 inputs, 

a set of  𝑥𝑥𝑖𝑖  (i.e. {𝑥𝑥𝑖𝑖} ) is obtained and stored, where the histogram of {𝑥𝑥𝑖𝑖}  fully reproduces the 

desired PDF. In Figure 2, a typical Maxwell-Boltzmann distribution (i.e. PDF(𝑥𝑥) = 𝐴𝐴𝑥𝑥2𝑒𝑒−𝑥𝑥 , 

where 𝐴𝐴 is the normalization factor) is shown as an illustration. To facilitate hands-on exploration, 

students can adjust parameters, such as the number of bins, grid spacing, and value of 𝑘𝑘 , and 

experiment with additional factors, such as the method of interpolation or introduction of noise, 

Figure 2. Scheme of the RNC method, where a given PDF 
is inputted, the CDF is computed numerically, both are 
normalized, the inverse CDF is obtained through binary 
search, and a set of random numbers that follow the 
desired PDF is obtained. A typical Maxwell-Boltzmann 
PDF example is shown on the right.   

Figure 2: Scheme of the RNC method, where a given PDF is inputted, the CDF is computed numerically, both are normalized, 
the inverse CDF is obtained through binary search, and a set of random numbers that follow the desired PDF is obtained. A typical 
Maxwell-Boltzmann PDF example is shown on the right.
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The grid density and number of bins could be tested by the 
students as an exercise, experimenting with the algorithm’s 
behavior and convergence Next, a constant-probability random 
number, 𝜉𝑖, between 0 and 1 is obtained to describe a random 
probability. We note that this provides an additional opportunity 
to discuss methods for random number generation, such as the 
idea of pseudorandom numbers and the need for methods to 
generate truly random numbers, as recently highlighted in the 
active area of quantum research. A function value of the CDF 
(i.e. 𝑦 = CDF (𝑥) value) closest to this random probability is then 
picked using a binary search solution to numerically achieve the 
process of obtaining the inverse of the CDF. Once again, another 
opportunity is presented here to discuss search algorithms and 
their relative efficiencies.  Finally, the 𝑥𝑖 value corresponding to 
the selected CDF value is determined, representing one of the 
desired random numbers. With multiple 𝜉𝑖 inputs, a set of 𝑥𝑖 (i.e. 
{𝑥𝑖}) is obtained and stored, where the histogram of {𝑥𝑖} fully 
reproduces the desired PDF. In Figure 2, a typical Maxwell-
Boltzmann distribution (i.e. PDF (𝑥) = 𝐴𝑥2𝑒−𝑥, where 𝐴 is the 
normalization factor) is shown as an illustration. To facilitate 
hands-on exploration, students can adjust parameters, such as 
the number of bins, grid spacing, and value of 𝑘, and experiment 
with additional factors, such as the method of interpolation or 
introduction of noise, offering a dynamic platform to understand 
the nuances of shaping random numbers into various PDFs. 
Hereinafter, we show the use of this RNC in different cases [16]. 

Common distribution shapes: In Figure 3(a), we demonstrate 
for the previously mentioned single-exponential decay 
distribution, PDF (𝑥) = 𝑘𝑒−𝑘𝑥, that, without any of the algebraic 
work, our numerical method can obtain random numbers with the 
desired distribution shape. Here, we choose 𝑘 = 1 for simplicity, 
and 107 random numbers and its corresponding histogram with 
100 bins were created. The normalized PDF and CDF are plotted 
as well. We also show the analytical results in Section 2 of the SI 
as a direct comparison. The Gaussian PDF is another important 
distribution used in both statistical and quantum mechanics due 
to its relationship with the central limit theorem A Gaussian has 
a CDF that involves the error function, which is not a closed-
form function (i. e.  it cannot be expressed without using infinite 
summation). The typical algorithm of obtaining Gaussian-
distributed random numbers is through the Marsaglia polar 
method, which utilizes the Box-Muller transform (example in 
Section 3 of the SI) In Figure 3(b), we illustrate that our method 
can also capture such a distribution with an example 

More complicated distribution shapes: In the real world, 
distributions of physical quantities such as time, force, velocity, 
position, energy, etc. for a system are usually not ideal single- 
exponential or normal Gaussian shapes [5,8,22-26]. The 
presented method is designed to tackle such situations. In Figure 
3(c), a. we demonstrate the distribution of 
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choose 𝑘𝑘 = 1 for simplicity, and  107 random numbers and its corresponding histogram with 100 

bins were created. The normalized PDF and CDF are plotted as well. We also show the analytical 

results in Section 2 of the SI as a direct comparison. The Gaussian PDF is another important 

distribution used in both statistical and quantum mechanics due to its relationship with the central 

limit theorem (Maragó et al., 2010; Shy and Eichinger, 1986). A Gaussian has a CDF that involves 

the error function, which is not a closed-form function (i.e. it cannot be expressed without using 

infinite summation). The typical algorithm of obtaining Gaussian-distributed random numbers is 

through the Marsaglia polar method, which utilizes the Box-Muller transform (example in Section 

3 of the SI) (Mandal, 2022; Marsaglia, 1991; Marsaglia et al., 1964). In Figure 3(b), we illustrate 

that our method can also capture such a distribution with an example PDF(𝑥𝑥) = 1
√𝜋𝜋 𝑒𝑒

−(𝑘𝑘−3)2. 

 

3.3 More complicated distribution shapes: In the real world, distributions of physical quantities 

such as time, force, velocity, position, energy, etc. for a system are usually not ideal single-

exponential or normal Gaussian shapes (Gentekos and Fors, 2018; Laimer et al., 2021; Long et al., 

2023; Nguyen and Papavassiliou, 2021; Shy and Eichinger, 1986; Stacklies et al., 2011; Woo and 

Kim, 2021). The presented method is designed to tackle such situations. In Figure 3(c), we 

demonstrate the distribution of PDF(𝑥𝑥) = 1
𝜋𝜋 sin(2√𝑥𝑥) , where 𝑥𝑥 ∈ [0, 𝜋𝜋

2

4 ] . Via a standard 𝑢𝑢 -

- 7 - 
 

offering a dynamic platform to understand the nuances of shaping random numbers into various 

PDFs. Hereinafter, we show the use of this RNC in different cases. 

 

3.2 Common distribution shapes: In Figure 3(a), we demonstrate for the previously mentioned 

single-exponential decay distribution, PDF(𝑥𝑥) = 𝑘𝑘𝑒𝑒−𝑘𝑘𝑘𝑘, that, without any of the algebraic work, 

our numerical method can obtain random numbers with the desired distribution shape. Here, we 

choose 𝑘𝑘 = 1 for simplicity, and  107 random numbers and its corresponding histogram with 100 

bins were created. The normalized PDF and CDF are plotted as well. We also show the analytical 

results in Section 2 of the SI as a direct comparison. The Gaussian PDF is another important 

distribution used in both statistical and quantum mechanics due to its relationship with the central 

limit theorem (Maragó et al., 2010; Shy and Eichinger, 1986). A Gaussian has a CDF that involves 

the error function, which is not a closed-form function (i.e. it cannot be expressed without using 

infinite summation). The typical algorithm of obtaining Gaussian-distributed random numbers is 

through the Marsaglia polar method, which utilizes the Box-Muller transform (example in Section 

3 of the SI) (Mandal, 2022; Marsaglia, 1991; Marsaglia et al., 1964). In Figure 3(b), we illustrate 

that our method can also capture such a distribution with an example PDF(𝑥𝑥) = 1
√𝜋𝜋 𝑒𝑒

−(𝑘𝑘−3)2. 

 

3.3 More complicated distribution shapes: In the real world, distributions of physical quantities 

such as time, force, velocity, position, energy, etc. for a system are usually not ideal single-

exponential or normal Gaussian shapes (Gentekos and Fors, 2018; Laimer et al., 2021; Long et al., 

2023; Nguyen and Papavassiliou, 2021; Shy and Eichinger, 1986; Stacklies et al., 2011; Woo and 

Kim, 2021). The presented method is designed to tackle such situations. In Figure 3(c), we 

demonstrate the distribution of PDF(𝑥𝑥) = 1
𝜋𝜋 sin(2√𝑥𝑥) , where 𝑥𝑥 ∈ [0, 𝜋𝜋

2

4 ] . Via a standard 𝑢𝑢 -

- 7 - 
 

offering a dynamic platform to understand the nuances of shaping random numbers into various 

PDFs. Hereinafter, we show the use of this RNC in different cases. 

 

3.2 Common distribution shapes: In Figure 3(a), we demonstrate for the previously mentioned 

single-exponential decay distribution, PDF(𝑥𝑥) = 𝑘𝑘𝑒𝑒−𝑘𝑘𝑘𝑘, that, without any of the algebraic work, 

our numerical method can obtain random numbers with the desired distribution shape. Here, we 

choose 𝑘𝑘 = 1 for simplicity, and  107 random numbers and its corresponding histogram with 100 

bins were created. The normalized PDF and CDF are plotted as well. We also show the analytical 

results in Section 2 of the SI as a direct comparison. The Gaussian PDF is another important 

distribution used in both statistical and quantum mechanics due to its relationship with the central 

limit theorem (Maragó et al., 2010; Shy and Eichinger, 1986). A Gaussian has a CDF that involves 

the error function, which is not a closed-form function (i.e. it cannot be expressed without using 

infinite summation). The typical algorithm of obtaining Gaussian-distributed random numbers is 

through the Marsaglia polar method, which utilizes the Box-Muller transform (example in Section 

3 of the SI) (Mandal, 2022; Marsaglia, 1991; Marsaglia et al., 1964). In Figure 3(b), we illustrate 

that our method can also capture such a distribution with an example PDF(𝑥𝑥) = 1
√𝜋𝜋 𝑒𝑒

−(𝑘𝑘−3)2. 

 

3.3 More complicated distribution shapes: In the real world, distributions of physical quantities 

such as time, force, velocity, position, energy, etc. for a system are usually not ideal single-

exponential or normal Gaussian shapes (Gentekos and Fors, 2018; Laimer et al., 2021; Long et al., 

2023; Nguyen and Papavassiliou, 2021; Shy and Eichinger, 1986; Stacklies et al., 2011; Woo and 

Kim, 2021). The presented method is designed to tackle such situations. In Figure 3(c), we 

demonstrate the distribution of PDF(𝑥𝑥) = 1
𝜋𝜋 sin(2√𝑥𝑥) , where 𝑥𝑥 ∈ [0, 𝜋𝜋

2

4 ] . Via a standard 𝑢𝑢 -

- 8 - 
 

substitution, the CDF is still analytically achievable. However, the inverse CDF is a transcendental 

equation that permits multiple solutions. Nevertheless, with our binary search of the numerically 

obtained CDF, the shape can be treated as a common distribution and obtained in a straightforward 

manner. In Figure 3(d), a more extreme case is shown, where the PDF(𝑥𝑥) = 𝑥𝑥2𝑒𝑒−𝑥𝑥 2⁄ (sin 𝑥𝑥)2 

contains polynomial, exponential, and sine functions. Here, the CDF and its inverse both become 

challenging. However, with the presented method, the random numbers can be easily obtained. 

 

3.4 Rate of a catalytic turnover cycle (F1-ATPase model): Through step-by-step demonstrations 

and interactive exercises, educators can illustrate how RNC empowers learners to tailor random 

number outputs to specific distributions, facilitating a deeper grasp of physical chemistry concepts. 

Utilizing our RNC, complicated chemical reaction kinetics can be analyzed easily without any 

additional algebra. This can help students numerically convince themselves of theoretically 

 
Figure 3 (a) i. Normalized PDF and the corresponding CDF (numerically obtained) of a single-exponential 
decay distribution. ii. 100-bin histogram of 107 random numbers obtained from the binary search method 
that follows the single-exponential decay distribution. (b) i. and ii. are the same as (a) i. and ii., but for a 
typical Gaussian distribution. (c) i. and ii. are the same as (a) i. and ii., but for a sine function-based 
distribution. (d) i. and ii. are the same as (a) i. and ii., but for a more complicated distribution shape that 
combines polynomial, exponential, and sine functions. 

Figure 3 (a) i. Normalized PDF and the corresponding CDF (numerically obtained) of a single-exponential decay distribution. 
ii. 100-bin histogram of 107 random numbers obtained from the binary search method that follows the single-exponential decay 
distribution. (b) i. and ii. are the same as (a) i. and ii., but for a typical Gaussian distribution. (c) i. and ii. are the same as (a) i. and 
ii., but for a sine function-based distribution. (d) i. and ii. are the same as (a) i. and ii., but for a more complicated distribution shape 
that combines polynomial, exponential, and sine functions.

substitution, the CDF is still analytically achievable. However, 
the inverse CDF is a transcendental equation that permits 
multiple solutions. Nevertheless, with our binary search of 
the numerically obtained CDF, the shape can be treated as a 
common distribution and obtained in a straightforward manner. 
In Figure 3(d), a more extreme case is shown, where the PDF 
(𝑥) = 𝑥2𝑒−𝑥⁄2 (sin 𝑥) 2 contains polynomial, exponential, and 
sine functions. Here, the CDF and its inverse both become 
challenging. However, with the presented method, the random 
numbers can be easily obtained.

Rate of a catalytic turnover cycle (F1-ATPase model): 
Through step-by-step demonstrations and interactive exercises, 
educators can illustrate how RNC empowers learners to tailor 
random number outputs to specific distributions, facilitating 
a deeper grasp of physical chemistry concepts. Utilizing our 
RNC, complicated chemical reaction kinetics can be analyzed 
easily without any additional algebra. This can help students 
numerically convince themselves of theoretically.
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derived solutions. Here, we use F1-ATPase as a simple model. F1-ATPase is a “rotary motor” 

consisting of three dimeric subunits (i.e. states 1, 2, and 3) that act as a “stator” (Okazaki and 

Hummer, 2013; Steel et al., 2015). The central unit does a complete turn upon sequential binding 

to one of the subunits of ATP, performs hydrolysis, and releases ADP (Okazaki and Hummer, 

2013; Steel et al., 2015; Stewart et al., 2013). This catalytic turnover cycle is schematized in Figure 

4(a). Here, we let 𝑘𝑘 be the ATP binding rate constant. The time, 𝑡𝑡, to go from state 𝑖𝑖 to 𝑖𝑖 + 1 (i.e. 

a single-step) is distributed randomly with a mean time, 𝜏𝜏 = 1 (𝑘𝑘[ATP])⁄ , and a single-exponential 

decay distribution, 𝑝𝑝1(𝑡𝑡) = 𝑒𝑒−𝑡𝑡 𝜏𝜏⁄ 𝜏𝜏⁄ , where [ATP] is the molar concentration of ATP (𝑘𝑘 is in units 

of M−1s−1). The single-step reaction is second-order with respect to the reactant concentration. 

Since the reaction occurs sequentially over time, the total turnover time (i.e. going from state 𝑖𝑖 

back to state 𝑖𝑖) distribution is represented as successive convolutions of the single-step reaction. 

To numerically obtain the distribution of turnover times and avoid analytically solving the 

 
Figure 4 (a). The F1-ATPase “rotary motor” reaction scheme. (b). PDFs of the time, t, to go from state 1 
back to state 1 (i.e. the full catalytic turnover cycle) with respect to different ATP concentrations, [ATP], 
ranging from 0.1 to 0.3 M. Here, the single-step (i.e. 𝑖𝑖 to 𝑖𝑖 + 1) rate, 𝑘𝑘, is assumed to be 5 𝑀𝑀−1𝑠𝑠−1. (c). 
Illustrations of histograms of 106 random times created by the presented RNC for [ATP] = 0.1, 0.2, and 0.3 
M with 100 bins each. (d). Calculated sample means, 〈𝑡𝑡〉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , from the random times with standard 
deviations at each 𝜏𝜏 = 1/(𝑘𝑘[𝐴𝐴𝐴𝐴𝐴𝐴]) point. These average times are linearly fitted to obtain a slope of 2.995. 

Figure 4 (a). The F1-ATPase “rotary motor” reaction scheme. (b). PDFs of the time, t, to go from state 1 back to state 1 (i.e. the 
full catalytic turnover cycle) with respect to different ATP concentrations, [ATP], ranging from 0. 1 to 0. 3 M.  Here, the single-step 
(i.e. 𝑖 to 𝑖 + 1) rate, 𝑘, is assumed to be 5 𝑀−1𝑠−1. (c). Illustrations of histograms of 106 random times created by the presented RNC 
for [ATP] = 0.1, 0.2, and 0.3 M with 100 bins each. (d). Calculated sample means, 〈𝑡〉𝑐𝑦𝑐𝑙𝑒, from the random times with standard 
deviations at each 𝜏 = 1/(𝑘[𝐴𝑇𝑃])  point.  These average times are linearly fitted to obtain a slope of 2. 995. 

derived solutions. Here, we use F1-ATPase as a simple model. F1-
ATPase is a “rotary motor” consisting of three dimeric subunits 
(i.e. states 1, 2, and 3) that act as a “stator”. The central unit does 
a complete turn upon sequential binding to one of the subunits 
of ATP, performs hydrolysis, and releases ADP. This catalytic 
turnover cycle is schematized in Figure 4(a). Here, we let 𝑘 be 
the ATP binding rate constant. The time, 𝑡, to go from state 𝑖 to 𝑖 
+ 1 (i.e. a single-step) is distributed randomly with a mean time, 𝜏  
= 1⁄ (𝑘 [ATP]), and a single-exponential decay distribution, 𝑝1(𝑡) 
=  𝑒−𝑡⁄𝜏 ⁄𝜏 , where [ATP] is the molar concentration of ATP (𝑘 is 
in units of M−1s−1). The single-step reaction is second-order with 
respect to the reactant concentration. Since the reaction occurs 
sequentially over time, the total turnover time (i.e. going from 
state 𝑖 back to state 𝑖) distribution is represented as successive 
convolutions of the single-step reaction [35-37]. 

To numerically obtain the distribution of turnover times and 
avoid analytically solving the convolutions, we evaluate it 
computationally using the convolution theorem based on Fourier 
transforms (Blackwell and Simpson, n.d.). Therefore, the two- 
and three-step distributions (i.e. 𝑝2 and 𝑝3, respectively) are

where “ ∗ ” indicates the convolution and ℱ and ℱ−1 represent 
Fourier and inverse Fourier transforms, respectively. The PDFs 
with different [ATP] ranging from 0. 1 to 0. 3 M are illustrated in 
Figure 4(b) with 𝑘 set to be 5 M−1s−1. The 100-bin histograms of 
106 random times obtained from our RNC associated with [ATP] 
of 0.1, 0.2, and 0.3 M are shown in Figure 4(c). With several 

samples among different [ATP] values, the mean turnover times, 
〈𝑡〉cycle, and the sample standard deviations are calculated. In 
Figure 4(d), with a linear fitting, we obtain a slope of 2. 995 (i. e.  
〈𝑡〉cycle ~3𝜏, where the mean turnover time is simply three times 
that of a single-step and linearly related to 1/[ATP]). This result 
aligns precisely with the analytically derived solutions (Section 
4 of the SI), thereby showing that this RNC can help students 
intuitively see the rules of chemical reaction kinetics. Together 
with the analytical derivation, students can better understand its 
physical and chemical principles. Furthermore, it illustrates how 
stochastic processes can lead to changes in distributions, but not 
changes in average properties.

Colored photon streams for interferometric analysis: 
Another example is numerical analysis in spectroscopy. When 
performing spectroscopic experiments of chemical compounds, 
multiple physical processes can occur simultaneously. The 
resulting emission spectrum may represent different emissive 
populations, energy transfer between states, and linewidth 
broadening resulting from excited state fluctuations.  For such 
non- standard PDF shapes (i.e. emission spectra), our RNC 
allows one to “sample” photon energies and describe how they 
may propagate through an optical experiment, such as filters, 
dichroic mirrors, and interferometers. Here, we propose two 
mock emitters, a “red” one with a peak emission of ~1.25 
eV and a “blue” one with a peak emission of ~1.35 eV. The 
photoluminescent (PL) spectrum is assumed to carry a skewed 
Gaussian with Lorentzian shape, where the skewness (i.e. 
asymmetry) is designed to account for the possible deviations 
of the relaxation pathways of each individual emitting molecule 
[27-32]. 

The simulated spectra are shown in Figure 5(a)i. One possible 
single-emitter PL function could be  
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where 𝐴 is the overall normalization constant, 𝜀0 is the peak 
emission energy, 𝜎𝑔 is the standard deviation of the Gaussian 
distribution that is equal to Γ𝑔/(2 √2  ln 2 ) , Γ𝑔 is the Gaussian 
full-width at half maximum (FWHM), Γ𝑙 is the Lorentzian 
FWHM, and 𝛽 is the skewness parameter, where a larger number 
results in a more skewed spectrum and a positive or negative 𝛽 
indicates left or right skewness, respectively. Therefore, for each 

emitter type, we can supply a set of spectral parameters, {𝜀0, Γ𝑔, 
Γ𝑙, 𝛽}.  Here, we used {1. 25, 0. 40, 0. 16, −6} for the “red” emitter 
and {1. 35, 0. 18, 0. 08, −3} for the “blue” emitter. 

The PL spectrum can be thought of as a photon counting 
statistics of colors, where we can acquire random colors for 
each simulated photon that satisfies the PL line shape in eq.  
5. Obviously, obtaining an analytical CDF or inverse CDF is 
impossible. Here, we illustrate the results (i.e. CDF and the 
created histograms) using our numerical method in Figure 5(a)
ii. and iii. With these colors.
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resulting from excited state fluctuations (Alivisatos et al., 1988; Riesen, 2006). For such non-

standard PDF shapes (i.e. emission spectra), our RNC allows one to “sample” photon energies and 

describe how they may propagate through an optical experiment, such as filters, dichroic mirrors, 

and interferometers. Here, we propose two mock emitters, a “red” one with a peak emission of 

~1.25  eV and a “blue” one with a peak emission of ~1.35  eV. The photoluminescent (PL) 

spectrum is assumed to carry a skewed Gaussian with Lorentzian shape, where the skewness (i.e. 

asymmetry) is designed to account for the possible deviations of the relaxation pathways of each 

individual emitting molecule (Cury et al., 2004; Gao and Yin, 2017; Toutounji, 2019; Wang et al., 

2022). The simulated spectra are shown in Figure 5(a)i. One possible single-emitter PL function 

could be 

 
PDF(𝜀𝜀) = 𝐴𝐴𝑒𝑒

−(𝜀𝜀−𝜀𝜀0)2

2𝜎𝜎𝑔𝑔2 ⋅ {1 + erf [𝛽𝛽(𝜀𝜀 − 𝜀𝜀0)
√2𝜎𝜎𝑔𝑔

]} ⋅ Γ𝑙𝑙
2[(𝜀𝜀 − 𝜀𝜀0)2 + (Γ𝑙𝑙 2⁄ )2] , (eq. 5) 

where 𝐴𝐴 is the overall normalization constant, 𝜀𝜀0 is the peak emission energy, 𝜎𝜎𝑔𝑔 is the standard 

deviation of the Gaussian distribution that is equal to Γ𝑔𝑔/(2√2 ln 2), Γ𝑔𝑔 is the Gaussian full-width 

at half maximum (FWHM), Γ𝑙𝑙 is the Lorentzian FWHM, and 𝛽𝛽 is the skewness parameter, where 

a larger number results in a more skewed spectrum and a positive or negative 𝛽𝛽 indicates left or 

right skewness, respectively. Therefore, for each emitter type, we can supply a set of spectral 

parameters, {𝜀𝜀0, Γ𝑔𝑔, Γ𝑙𝑙, 𝛽𝛽}.  Here, we used {1.25, 0.40, 0.16, −6}  for the “red” emitter and 

{1.35, 0.18, 0.08, −3} for the “blue” emitter. 

 The PL spectrum can be thought of as a photon counting statistics of colors, where we can 

acquire random colors for each simulated photon that satisfies the PL line shape in eq. 5. Obviously, 

obtaining an analytical CDF or inverse CDF is impossible. Here, we illustrate the results (i.e. CDF 

and the created histograms) using our numerical method in Figure 5(a)ii. and iii. With these color 

- 11 - 
 

resulting from excited state fluctuations (Alivisatos et al., 1988; Riesen, 2006). For such non-

standard PDF shapes (i.e. emission spectra), our RNC allows one to “sample” photon energies and 

describe how they may propagate through an optical experiment, such as filters, dichroic mirrors, 

and interferometers. Here, we propose two mock emitters, a “red” one with a peak emission of 

~1.25  eV and a “blue” one with a peak emission of ~1.35  eV. The photoluminescent (PL) 

spectrum is assumed to carry a skewed Gaussian with Lorentzian shape, where the skewness (i.e. 

asymmetry) is designed to account for the possible deviations of the relaxation pathways of each 

individual emitting molecule (Cury et al., 2004; Gao and Yin, 2017; Toutounji, 2019; Wang et al., 

2022). The simulated spectra are shown in Figure 5(a)i. One possible single-emitter PL function 

could be 

 
PDF(𝜀𝜀) = 𝐴𝐴𝑒𝑒

−(𝜀𝜀−𝜀𝜀0)2

2𝜎𝜎𝑔𝑔2 ⋅ {1 + erf [𝛽𝛽(𝜀𝜀 − 𝜀𝜀0)
√2𝜎𝜎𝑔𝑔

]} ⋅ Γ𝑙𝑙
2[(𝜀𝜀 − 𝜀𝜀0)2 + (Γ𝑙𝑙 2⁄ )2] , (eq. 5) 

where 𝐴𝐴 is the overall normalization constant, 𝜀𝜀0 is the peak emission energy, 𝜎𝜎𝑔𝑔 is the standard 

deviation of the Gaussian distribution that is equal to Γ𝑔𝑔/(2√2 ln 2), Γ𝑔𝑔 is the Gaussian full-width 

at half maximum (FWHM), Γ𝑙𝑙 is the Lorentzian FWHM, and 𝛽𝛽 is the skewness parameter, where 

a larger number results in a more skewed spectrum and a positive or negative 𝛽𝛽 indicates left or 

right skewness, respectively. Therefore, for each emitter type, we can supply a set of spectral 

parameters, {𝜀𝜀0, Γ𝑔𝑔, Γ𝑙𝑙, 𝛽𝛽}.  Here, we used {1.25, 0.40, 0.16, −6}  for the “red” emitter and 

{1.35, 0.18, 0.08, −3} for the “blue” emitter. 

 The PL spectrum can be thought of as a photon counting statistics of colors, where we can 

acquire random colors for each simulated photon that satisfies the PL line shape in eq. 5. Obviously, 

obtaining an analytical CDF or inverse CDF is impossible. Here, we illustrate the results (i.e. CDF 

and the created histograms) using our numerical method in Figure 5(a)ii. and iii. With these color 

- 12 - 
 

statistics, we can further use these random numbers for spectral analysis. Atallah et al. presented 

in their work the single-photon counting interferometry using the Mach-Zehnder interferometer 

(MZI), which can be considered as a cosine filter in the frequency domain (Atallah et al., 2019). 

Therefore, our random colors can be used to retrospectively generate MZI interferograms (Section 

5 of the SI). Photon streams, assuming perfectly Poisson emission (i.e. single-exponential decay 

distribution in time), with colored photons are sent to the cosine filter. Photons are then directed 

(i.e. self-interfere) to end up probabilistically favoring a detector (i.e. D1 or D2). Interference 

effects then result in a given perfectly anticorrelated probability, (𝑝𝑝). Here, 
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Figure 5 (a) i. Simulated dual-emitter PL spectra where both “red” and “blue” emitters are assumed to have 
the product of a skewed Gaussian and Lorentzian line shape. ii. Corresponding CDFs. iii. Histogram of 
obtained random numbers (i.e. colors of photons) that follow the given PL spectra. (b) i. and ii. Simulated 
MZI against the stage positions (scan ± 50 𝜇𝜇𝜇𝜇) for the isolated “red” and “blue” emitters and their Fourier 
transformed spectra. (c) i. Simulated MZI for the combined “red” and “blue” emitters as a total interferogram. 
ii. Fourier transformed spectra for the total interferogram (black) with the isolated ones (red and blue). 
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frequency domain. Therefore, our random colors can be used 
to retrospectively generate MZI interferograms (Section 5 of 
the SI). Photon streams, assuming perfectly Poisson emission 
(i.e. single-exponential decay distribution in time), with colored 
photons are sent to the cosine filter.  Photons are then directed (i. e.  
self-interfere) to end up probabilistically favoring a detector (i.e. 
D1 or D2).  Interference effects then result in a given perfectly 
anticorrelated probability, (𝑝). Here, 

where 𝛿 is the movable delay stage position in the interferometer 
(i.e. the relative photon arrival path length) and 𝜆 = ℎ𝑐⁄𝜀 is the 
photon wavelength (i.e. color). The photon counting outcomes 
at each detector with respect to a specific stage position, 𝛿, 
represents the signal intensities, 𝑆D1(𝛿) and 𝑆D2(𝛿). Therefore, 
the total anticorrelated signal intensity, 𝑆(𝛿) , is

In single-emitter cases (i.e. only “red” or only “blue” emitters 
are present), the interferograms against the stage positions 
are shown in Figure 5(b) and overlaid with the single-sided 
Fourier transforms of the interferograms, which excellently 
reproduce the given initial PDFs. In Figure 5(c)i. and ii., the 
mixed-emitter case is illustrated, where a stream of mixed-color 
photos from “red” and “blue” emitters are constructed. The total 
interferogram and its Fourier transform are shown. The Fourier 
transformed line shape shows perfect agreement with the given 
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and 

 
𝑝𝑝D2 =

1
2 [1 − cos(2𝜋𝜋𝜋𝜋/𝜆𝜆)], (eq. 7) 

where 𝜋𝜋 is the movable delay stage position in the interferometer (i.e. the relative photon arrival 

path length) and 𝜆𝜆 = ℎ𝑐𝑐 𝜀𝜀⁄  is the photon wavelength (i.e. color) (Atallah et al., 2019; Sica et al., 

2023). The photon counting outcomes at each detector with respect to a specific stage position, 𝜋𝜋, 

represents the signal intensities, 𝑆𝑆D1(𝜋𝜋) and 𝑆𝑆D2(𝜋𝜋). Therefore, the total anticorrelated signal 

intensity, 𝑆𝑆(𝜋𝜋), is 

 𝑆𝑆(𝜋𝜋) = 𝑆𝑆D1(𝜋𝜋) − 𝑆𝑆D2(𝜋𝜋). (eq. 8) 
   

In single-emitter cases (i.e. only “red” or only “blue” emitters are present), the interferograms 

against the stage positions are shown in Figure 5(b) and overlaid with the single-sided Fourier 

transforms of the interferograms, which excellently reproduce the given initial PDFs. In Figure 

5(c)i. and ii., the mixed-emitter case is illustrated, where a stream of mixed-color photons from 

“red” and “blue” emitters are constructed. The total interferogram and its Fourier transform are 

shown. The Fourier transformed line shape shows perfect agreement with the given PL spectrum, 

demonstrating that our simple RNC can be used by students or researchers to conduct retrospective 

analysis and simulation of Fourier spectroscopy.  

 In the classroom setting, hands-on activities utilizing RNC can provide students with 

valuable insights into the significance of probability distributions in simulating real-world 

chemical phenomena. Through intuitional simulation with RNC, complex processes become 

visually accessible without the need for heavy algebraic computations. By incorporating RNC into 

laboratory experiments, students can actively engage in the process of generating data that adheres 

to predetermined distribution functions, enhancing their experimental skills and analytical prowess. 
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PL spectrum, demonstrating that our simple RNC can be used 
by students or researchers to conduct retrospective analysis and 
simulation of Fourier spectroscopy [19,34].

In the classroom setting, hands-on activities utilizing RNC can 
provide students with valuable insights into the significance 
of probability distributions in simulating real-world chemical 
phenomena. Through intuitional simulation with RNC, complex 
processes become visually accessible without the need for heavy 
algebraic computations. By incorporating RNC into laboratory 
experiments, students can actively engage in the process of 
generating data that adheres to predetermined distribution 
functions, enhancing their experimental skills and analytical 
prowess [38].

4. Conclusion
In this work, we introduce a very simple RNC capable 
of converting uniform random numbers to any given real 
distribution shape (i.e. PDF). It utilizes a numerical scheme to 
obtain the CDF, avoiding the possibly algebraically difficult 
analytical integration. After obtaining the CDF, we employ 
the binary search method to obtain the corresponding random 
numbers, bypassing the need of computing the inverse CDF 
as most functions lack an analytical inverse (i.e. inverse 
transform sampling). We demonstrate its application for simple 
distributions, such as exponential and Gaussian distributions, 
and its handling of more complicated PDFs, such as combined 
trigonometrical and polynomial functions. Finally, we illustrate 
its application in the analysis of chemical reaction kinetics 
and Fourier spectroscopy. In the catalytic turnover F1-ATPase 
reaction model, we demonstrate the capability of our RNC in 
obtaining the relation between the mean turnover time, single-
step rate, and concentration of ATP without heavy algebraic 
work. This provides an easy and intuitive way for students to 
visualize the analytically derived reaction kinetics results. In 
the example of Fourier spectroscopy, we illustrate the analysis 
by assigning a random color to simulated photons with the 
distribution pattern determined using hypothesized spectra. 
This allows for retrospective interferometry analysis, which 
is useful for teaching spectroscopy courses and conducting 
Fourier spectroscopy modeling and analyses. Numerous 
derivatives and developments can emerge from this simple 
method. For instance, the current RNC code is limited by 
hardware memory. More implementation can be done to not 
only augment computing speed but to also mitigate memory 
costs, thereby optimizing computational efficiency.  However, 
we believe that the integration of these algorithms provides a 
platform to teach basic concepts in computer science, such as 
memory management, hardware constraints, and numerical 
integration methods as they have become more crucial in 
modern physical chemistry. Additionally, discussions on more 
sophisticated search algorithms can be incorporated, enriching 
students' understanding of algorithmic design principles and 
their applications. Moreover, extending the RNC module to 
other programming languages such as Maple and Mathematica 
is imperative. These languages, renowned for their pedagogical 
value, offer hands-on opportunities to explore statistical concepts, 
such as distributions, histograms, and sampling. By leveraging 

these tools, educators can provide comprehensive instruction 
on random number conversion techniques while fostering a 
deeper understanding of computational efficiency and statistical 
methodologies among physical chemistry students.

Overall, we believe that our simple method for converting 
random number generator outputs to universal distribution 
shapes offers versatile applications in teaching and research in 
physical chemistry.  Utilizing this RNC not only simplifies the 
conversion process but also instills a sense of confidence and 
proficiency among students as they navigate the intricacies 
of probability theory and statistical analysis. The intuitive 
nature of the RNC algorithm makes it a valuable tool for 
educators seeking to elucidate complex concepts surrounding 
probability distribution functions, offering students a tangible 
means of conceptualizing abstract mathematical principles. 
This interdisciplinary implementation results in hands-on 
learning outcomes, helping students adapt to advanced physical 
chemistry courses, industrial applications, and academic 
research.  Through continuous refinement and integration into 
pedagogical frameworks, RNC, alongside its integration with 
Monte Carlo simulations, holds the potential to revolutionize 
the way students and researchers approach the synthesis and 
analysis of data in the field of physical chemistry. 
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