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Abstract
This study proposes a novel approach for quantifying the uncertainty of a deep learning model by investigating the coverage 
as well as the adaptivity of its prediction intervals in a Conformal Prediction context. The model investigated is designed 
to impute the equivalent household income by taking both specific household group characteristics and relevant features 
of the main income gainer into account as it is known that there are well-known correlations in literature. The imputation 
of such variable is critical as outliers occur or the required information for computing it is not entirely available. Due to 
the relevance of income in socio-economic policy contexts, the reliability of its imputation constitutes a key aspect. The 
Conformalized Quantile Regression is adopted in order to evaluate the prediction intervals of the model by incorporating 
this approach into the same. In this study an improved assessment of the model uncertainty is achieved by separating the 
aleatoric component from the epistemic one. For this purpose, an appropriate selection of training data is proposed. This 
non random selection introduces bias which may alter model estimates causing distortions which impair the uncertainty 
quantification approach. As a consequence, a correction of selection bias is integrated in the uncertainty evaluation process. 
A real-world case study is considered to demonstrate the potential of the proposed quantification approach.
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1.  Introduction
In recent years the topic of income imputation has gained 
attention in economic research, especially when it comes to 
estimating the measurement of the equivalent household income 
[1]. This imputation is a challenging problem in general, due 
to the inherent uncertainty in socio economic data of which 
it is composed. This measure is designed for rendering the 
evaluation of household economic well-being more accurate by 
adjusting the total household income in accordance with the size 
of the household and relationships between its members, while 
keeping the economies of scale in mind as well as the different 
needs of the members [2]. Equivalent household income makes 
the comparison of different househod structures possible in that it 
detects various economic aspects which standard metrics might 
overlook [3]. Imputation techniques, such as regression-based 
or statistical matching methods, are not robust enough when it 
comes to managing incomplete or missing income data; therefore 
it is not insured that income distributions reflect realistic values 
in relation to known demographic groups [4]. Nevertheless, 
challenges persist, as the imputation process may introduce 
biases or inaccuracies that affect findings on income inequality, 
poverty rates, and related social policies [5]. As a result, accurate 
imputation remains critical for reliable socio-economic analyses 
and the development of equitable welfare policies. The inevitable 

existence of the aleatoric uncertainty pertaining to equivalent 
household income components may impair the point estimation 
process even in the case of a robust approach. An appropriate 
construction of input dataset for training the model is proposed 
[6,7] in order to enhance the epistemic aspect of the uncertainty 
under investigation. This specific construction may introduce a 
selection bias which results in distorted income estimates. As a 
consequence, in this study the Heckman correction is integrated 
into the aforementioned model [8]. The objective is to leverage 
deep learning methodologies in order to propose a robust 
procedure for evaluating the prediction intervals of a model for 
income imputation by means of the Conformalized Quantile 
Regression (CQR) from the Conformal Prediction framework 
[9-12]. A case study based on the statistical register by the 
name of ARCHIMEDE from ISTAT is considered in order to 
test for the potential of the uncertainty quantification technique 
proposed.

2. Basic Algorithms of a Deep Learning Model
Deep learning is a specific branch of machine learning which 
avails of artificial neural networks for complex data patterns 
modelling in large-scale datasets. Their general architecture 
provides multiple layers of connected neurons which manage 
complex problem solving in various fields of research. 
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The essential structures of the deep learning model under 
investigation are described below.

2.1. Denoising Autoencoder
The Denoising Autoencoder (DAE) is a type of artificial neural 
network designed for robust feature learning as well as removing 
noise from data. The DAE encodes both numeric vectors and 
vectors of categorical variables which has to be transformed into
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Fig. 1 Denoising Autoencoder

dummy variables so that the input data vectors become sequences of numbers included
in the interval [0, 1]. This model is trained to reconstruct the original input observation
x from a corrupted version x̃, of the same constituting an effective algorithm for data
denoising and feature extraction. A pre-defined noise function η ∼ N (0, 1) is applied
to input data to disturb it, forcing the DAE to reconstruct x = f(x). as the data
is being disturbed. A sketch of a simple one-layer architecture is shown in Fig. 1.
The encoder compresses each input into a smaller, more abstract rappresentation,
detecting essential features while filtering out irrelevant noise. This compressed, noise-
reduced rappresentation is subsequently reconstructed to obtain a noise-free version
of the data, closely matching the uncorrupted original input. The training process is
analogous to other popular neural network algorithms. In this case, the loss function
is the reconstruction error, defined as follows:

L(x̃,x) = 1

N

N∑
i=1

(xi − x̂i)
2 (1)

where x̂ indicates the reconstructed input observation by the DAE subsequent to the
noise application to the original observation x.

2.2 Multilayer Perceptron

The Multilayer Perceptron (MLP) is another type of artificial neural network rather
similar to that described in the previous Section eventhough it is versatile in solving
a great number of problems in data science. The basic structure is composed of multi-
ple layers of neurons arranged in a feed-forward structure, which is highly effective for
regression and classification problems. Its core architecture usually includes an input
layer x, one or more hidden layers, and an output layer. Each layer consists of intercon-
nected neurons that apply non-linear activation functions to model complex patterns
in data. The MLP model y = f(x) is trained by adjusting the weights of connections
between neurons based on the backpropagation of the error between predicted outputs
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ŷ and actual outputs y. This error is usually optimized by implementing the stochastic
gradient descent in order to minimize it. MLP training for regression problems usually
requires the following loss function:

L(ỹ, y) = 1

N

N∑
i=1

(yi − ŷi)
2 (2)

which is defined as theMean Square Error (MSE) between the true value of the depen-
dent variable y and its predicted value ŷ = f(x) in a supervised learning perspective.

3 Setting up training data

The selection process of training data is one of the innovative aspects of this
study. Complex data structures in current statistical registers require sophisticated
approaches of analysis as is the case when detecting similar data structures in large
scale datasets. To be more specific, different groups of individuals related one to
another for kinship and utility reasons, i. e. household structures, deeply influence
income dynamics. The equivalent household income of the OECD scale should take
economies of scale into account without any disturbance of its predictors caused
by aleatoric uncertainty present within them . As a result, aleatoric uncertainty in
the data affects the estimation of the equivalent household income by altering the
economies of scale and therefore hindering a reliable evaluation of the prediction inter-
vals. As a consequence, an appropriate subset of the input dataset X is selected in
order to facilitate this evaluation process. This subset is composed of pairwise similar
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L(ỹ, y) = 1

N

N∑
i=1

(yi − ŷi)
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dent variable y and its predicted value ŷ = f(x) in a supervised learning perspective.

3 Setting up training data

The selection process of training data is one of the innovative aspects of this
study. Complex data structures in current statistical registers require sophisticated
approaches of analysis as is the case when detecting similar data structures in large
scale datasets. To be more specific, different groups of individuals related one to
another for kinship and utility reasons, i. e. household structures, deeply influence
income dynamics. The equivalent household income of the OECD scale should take
economies of scale into account without any disturbance of its predictors caused
by aleatoric uncertainty present within them . As a result, aleatoric uncertainty in
the data affects the estimation of the equivalent household income by altering the
economies of scale and therefore hindering a reliable evaluation of the prediction inter-
vals. As a consequence, an appropriate subset of the input dataset X is selected in
order to facilitate this evaluation process. This subset is composed of pairwise similar

4

 
= f (x) in a supervised learning perspective.

3. Setting up Training Data
The selection process of training data is one of the innovative 
aspects of this study. Complex data structures in current statistical 
registers require sophisticated approaches of analysis as is the 
case when detecting similar data structures in large scale datasets. 
To be more specific, different groups of individuals related 
one to another for kinship and utility reasons, i. e. household 
structures, deeply influence income dynamics. The equivalent 
household income of the OECD scale should take economies 
of scale into account without any disturbance of its predictors 
caused by aleatoric uncertainty present within them . As a result, 
aleatoric uncertainty in the data affects the estimation of the 
equivalent household income by altering the economies of scale 
and therefore hindering a reliable evaluation of the prediction 
intervals. As a consequence, an appropriate subset of the input 
dataset X is selected in order to facilitate this evaluation process. 
This subset is composed of pairwise similar households which 
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subset so that the Conformalized Quantile Regression which is 
integrated in the model estimates the prediction intervals in two 
different scenarios as is described in this Section. Households 
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different sizes and different attributes of their members. The 
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the input dataset into graphs and subsequently into sequences of 
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datasets: A which contains the first household of every pair while 
B contains the second households of the same. The model in 
question y = f (x) maps the changes in the equivalent household 
income y with respect to the variables x = {x1, x2, . . . , xn}, a 
set of features of the household breadwinner as well as specific 
household group characteristics subject to the pairwise similarity 
constraint. Data from both A and B sets is exchangeable and 
similarly distributed. The idea behind this study is to perform 
two independent uncertainty evaluation procedures by training 
the model with the same data (similar households) so that the 
contribution of the random component of the data is attenuated; 
this improves the accuracy of the uncertainty evaluation as well 
as increasing the robustness of the same by providing insights 
into model bias. In order to separate the aleatoric component 
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on the entire dataset A for the subsequent training of the MLP 
by using a random 80% partition of the encoded dataset B and 
the remaining data for evaluating the model. This procedure is 
repeated by swapping A and B in order to compare the results for 
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This procedure known as Heckman model is a statistical approach 
designed to address selection bias, which arises when the dataset 
selected for model training is not a random sample in that it is 
subject to specific selection criteria yielding model estimates 
which may be biased. The Heckman model is implemented 
in two stages. The first stage consists of a probit model for 
estimating the probability of an observation being included into 
the sample; essential for understanding the selection process. 
This stage results in the Inverse Mills Ratio (IMR), a measure 
of the deviation of the selection process from being random. The 
IMR is defined as follows:
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IMR =
ϕ(x′β)

Φ(x′β)
(3)

where ϕ(·) denotes the probability density function of a standard normal distribution,
Φ(·) rappresents its cumulative distribution function, x is the vector of independent
variables and β is the vector of coefficients estimated by the probit model. The IMR
corrects the bias introduced by the non random selection process, an adjustment factor
of the MLP regression model. After this calculation, in the next (second) stage the
IMR is added to the training dataset as an additional feature in order to allow the
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Pr(Y ∈ C(X)) ≥ 1− α, (4)

where α ∈ (0, 1) is the significance level. Prediction intervals are estimated by training
a lower quantile regression model τα/2 and an upper quantile regression model τ1−α/2

separately. Subsequent to the training of the models the quantiles τ̂α/2 and τ̂1−α/2

are estimated by using a calibration dataset {(Xcal, Ycal)} containing n observations
which are not used for training the model. By defining the score of eaxh observation
belonging to this dataset as follows

s(x, y) = max[τ̂α/2(x)− y, y − τ̂1−α/2(x)] (5)

the quantile q̂ = ⌈(n + 1) (1 − α)⌉/n is computed in order to estimate the prediction
interval pertaining each observation of Xtest = x belongung to the test dataset

C(x) = [τ̃α/2(x)− q̂, τ̃1−α/2(x) + q̂] (6)

where the quantiles τ̃ are estimeted by using the true value of the test dataset Ytest =
y. Smaller intervals correspond to simpler cases while larger intervals reveal more
complicated cases. CQR approach can be adopted to evaluate the prediction intervals
of any machine learning model by incorporating in it the pinball loss function:

Lτ (y, ŷ) =
1

N

N∑
i=1

max
[
τ · (yi − ŷi), (τ − 1) · (yi − ŷi)

]
(7)

where y is the true value and ŷ is the predicted one.
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τ · (yi − ŷi), (τ − 1) · (yi − ŷi)
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τ · (yi − ŷi), (τ − 1) · (yi − ŷi)
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6

 = ⌈(n + 1) (1 − α)⌉/n is computed in order to estimate the prediction interval pertaining each observation of Xtest = x 
belonging to the test dataset

where the quantiles 

neural network to improve the learning process and correcting the distortions caused
by selection bias. “‘

5 Uncertainty Quantification of the Model

The uncertainty quantification in model predictions is a key aspect of model fitting
in machine learning. Conformal Prediction is a statistical framework for evaluating
prediction intervals which are guaranteed to cover the true value with a pre-defined
probability. The Conformalized Quantile Regression (CQR), is a method within
this framework which combines the quantile regression and conformal prediction to
compute valid adaptive prediction intervals. CQR is distribution-free as well as model-
independent, requiring no assumptions about the underlying data distribution. Classic
regression models are used to predict point-estimates around an average value of the
data while quantile regression models are used to estimate different quantiles, pro-
viding a range of esrimates. The conformal framework adjusts the aforementioned
estimates to ensure the specified coverage probability of the prediction intervals of
the model. The CQR approach provides that given a dataset of N observations
{(X = xi, Y = yi)} (i = 1, 2, . . . , N) with features X ∈ Rd and response Y ∈ R, CQR
constructs a prediction interval C(X) = [L(X), U(X)] so that:

Pr(Y ∈ C(X)) ≥ 1− α, (4)

where α ∈ (0, 1) is the significance level. Prediction intervals are estimated by training
a lower quantile regression model τα/2 and an upper quantile regression model τ1−α/2

separately. Subsequent to the training of the models the quantiles τ̂α/2 and τ̂1−α/2

are estimated by using a calibration dataset {(Xcal, Ycal)} containing n observations
which are not used for training the model. By defining the score of eaxh observation
belonging to this dataset as follows

s(x, y) = max[τ̂α/2(x)− y, y − τ̂1−α/2(x)] (5)

the quantile q̂ = ⌈(n + 1) (1 − α)⌉/n is computed in order to estimate the prediction
interval pertaining each observation of Xtest = x belongung to the test dataset

C(x) = [τ̃α/2(x)− q̂, τ̃1−α/2(x) + q̂] (6)

where the quantiles τ̃ are estimeted by using the true value of the test dataset Ytest =
y. Smaller intervals correspond to simpler cases while larger intervals reveal more
complicated cases. CQR approach can be adopted to evaluate the prediction intervals
of any machine learning model by incorporating in it the pinball loss function:

Lτ (y, ŷ) =
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6. Proposed Approach: A Case Study
The proposed evaluation procedure for quantifying the 
uncertainty in a deep learning model for imputation purposes 
is presented in this Section and is applied to a real-world case 
study in order to evaluate its efficiency. Input data is from 
the ISTAT\ statistical register by the name of ARCHIMEDE 
regarding the resident population in Italy. The information 
gathered into the register is stored in socio-economic variables 
such as demographic variables, working activity, attained level 
of education, and income. Each record indicates an individual. 
People from the same household aregrouped by the same 
household identification number. The model being evaluated 

estimates the relationships between equivalent household 
income and relevant features of the household breadwinner in 
combination with specific household group variables pertaining 
to a specific region of the Italian territory only.

6.1. Input Data of the Model
An initial set X of 253286 households was selected by picking 
households with n ≥ 3 members only. As it is reported in Sec. 
3, these households are mathematically described as being fully 
connected undirected weighted graphs. The number of vertices 
is variable, so that there are graphs of different dimensions in the 
dataset. Every vertex is related to a sequence of K categorical 
variables (nodal attributes) a(i) ={a(i)

1, a
(i)

2, . . . , a
(i)

K} called the 
profile of the vertex vi (i = 1, 2, . . . , n). The list of attributes in this 
case study is reported in Tab. 1: Subsequent to the application of

              Variable Description Number of classes
1 Gender Gender of the household member 2
2 AgeClass Age of the household member (in classes) 4
3 Citizn Citizenship of the household member 2
4 EduLevel Level of education of the household member 4
5 MainSourceIncome Main source of income of the household member 7

Table 1: Attributes of the Household Members in the Input Dataset

the algorithm reported in Sec. 3, a dataset of N = 254227 pairs 
of equal households was selected from the X dataset. Selected 
pairs comprise 193803 distinct households of different sizes 
as well as different values of the attributes of each member. 
Pairwise similar households share the same size as well as the 
same attributes of their members so that the similarity value of 
every pair is equal to 1. The resulting input dataset is split into 
two partitions: dataset A contains the first household of every 
pair, while dataset B contains the second household of the same. 
These datasets are used to constitute two independent model 

training processes based on different but similarly distributed 
data, i.e., A → B and A ← B.

6.2. Correction of the Selection Bias
The dataset (A ∪ B) ⊂ X is not selected at random. As a 
consequence, the deep learning model may be affected by bias. 
This selection bias is treated by using the 2-stage Heckman 
procedure as reported in Sec. 4. The list of the variables used in 
the probit model of the selection stage sel ∼ probit(predictors) 
is reported in Tab. 2: The dependent variable sel equals 1 if the 



 Volume 4 | Issue 1 | 5Curr Res Stat Math, 2025

observation belongs to the subset A ∪ B

Variable Description
1 Ncomp Number of household members (household size)
2 NForeigners Number of household members who are foreigners
3 NChildren Number of household members of age ≤ 14
4 Ncomp gender2 Number of household female members
5 NEduLev1 Number of household members who attend compulsory school
6 NEduLev2 Number of household members who attend high school
7 NMainSourceIncome1 Number of household members who are employers
8 NMainSourceIncome2 Number of household members who are self-employed
9 NRetired Number of household members who are retired

Table 2: Predictors of the Probit Model

and 0 otherwise. Subsequent to this model fitting, the IMR is 
added as a feature in the predictive model of the multilayer 
perceptron to adjust it for bias.

6.3. Coverage and Adaptivity of the Prediction Intervals
The deep learning model in this case study is composed by 
a DAE which is stacked with a MLP in order to estimate the 
equivalent household income. The DAE transforms the input 
vector of the categorical variables into a smaller vector made 
up of numerical variables, the input of the MLP. This encoded 
input vector is augmented by adding the IMR variable in order 
to correct the model for the selection bias. The predictors of the 
probit model in Tab.2 are necessary for estimeting the probability 
of households of being selected in the training dataset. Variables 
used as predictors of the deep learning model (DAE and MLP) 

are listed in Tab.3. The categorical variables are transformed into 
dummy variables before being encoded by the DAE. Subsequent 
to this data pre-processing, the MLP is trained by using cross-
validation. The numerical variables reported in Tab.3 are also 
considered as being categorical as a result of a top-coding of the 
aforementioned1. The uncertainty quantification of this model is 
carried out by integrating the loss function described in Eq.7 in 
the MLP in order to evaluate the prediction intervals as reported 
in Sec.5 in accordance with Angelopoulos and Bates [11]. The 
proposed approach for quantifying the epistemic component of 
the uncertainty provides two analoous procedures: 1) A → B and 
2) A ← B as is described in the diagram in Fig.3. The results of 
the application of the A → B and A ← B are reported in Tab.4 and 
Tab.5, where coverage and adaptivity are respectively compared 
in order to investigate uncertainty. The empirical coverage

Variable Description Number of classes
1 BW.IncomeClass Income of the breadwinner                         5
2 Ncomp Number of household members (n ≥ 3)             6
3 BW.MainSourceIncome Main source of income of the breadwinner 7
4 NChildren Number of household members of age ≤ 14 6
5 BW.MaritalStatus Marital status of the breadwinner 5
6 BW.EduLevel Education level of the breadwinner 4
7 BW.Gender Gender of the breadwinner 2
8 BW.Retired Is the breadwinner retired? 2
9 AllSameCtzn Citizenship of the whole household 3
10 BW.AgeClass Age of the breadwinner 4
11 NRetired Number of household members who are retired 5

Table 3: Predictors of the Imputation model

measures the percentage of cases in which the prediction 
intervals contain the true value of the dependent variable. This 
property is also evaluated asymptotically by using an efficient 
caching of the non-conformity scores calculated as prescribed in 

the literature. Adaptivity measures the property of the prediction 
intervals to adapt to the cases covered by the model. Small 
intervals reveal good prediction ability of the model, while larger 
intervals suggest greater uncertainty in the predictions. In order
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value of the dependent variable. This property is also evaluated asymptotically by
using an efficient caching of the non-conformity scores calculated as prescribed in the
literature. Adaptivity measures the property of the prediction intervals to adapt to
the cases covered by the model. Small intervals reveal good prediction ability of the
model, while larger intervals suggest greater uncertainty in the predictions. In order

DAE training on data A

DAE encoding of data B Probit on the entire input data X ⊇ A ∪ B

MLP fitting on the encoded data B + IMR

Prediction intervals using CQR Coverage and Adaptivity evaluation

Fig. 3 Workflow diagram of the A → B procedure

Table 4 Coverage of the prediction intervals

Model Empirical Score caching

#1 (A → B) 0.9545153 0.951681

#2 (A ← B) 0.9503557 0.9511803
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Model Empirical Score caching
#1 (A → B) 0.9545153 0.951681
#2 (A ← B) 0.9503557 0.9511803

Table 4: Coverage of the Prediction Intervals

Stats #1 (A → B) #2 (A ← B)
Min 0.000001 0.0006018
1st Qu. 0.094100 0.1309214
Median 0.110540 0.1530824
Mean 0.142123 0.1946715
3rd Qu. 0.130294 0.1782837
Max 1.000000 1.0000000

Table 5: Adaptivity of the Prediction Intervals

to compare the evaluation procedures, the adaptivity was 
normalized by calculating as the ratio between the length of 
the prediction interval and the maximum value of all interval 
lengths as is reported in Tab. 5. In order to further investigate 

the uncertainty of the model, the boxplots of the distributions 
pertaining to the length of prediction intervals by the input 
categorical variables are reported in the following.
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to compare the evaluation procedures, the adaptivity was normalized by calculating
as the ratio between the length of the prediction interval and the maximum value
of all interval lengths as is reported in Tab. 5. In order to further investigate the
uncertainty of the model, the boxplots of the distributions pertaining to the length of
prediction intervals by the input categorical variables are reported in the following.

0

50000

100000

150000

200000

0 1 2 3 4 5 6
BW.IncomeClass

Inte
rval

 len
gth

Source
A −> B
A <− B

Boxplot Comparison for: BW.IncomeClass

Fig. 4 Prediction interval lengths: BW.IncomeClass

0

50000

100000

150000

200000

3 4 5 6 7 8
Ncomp

Inte
rval

 len
gth

Source
A −> B
A <− B

Boxplot Comparison for: Ncomp

Fig. 5 Prediction interval lengths: Ncomp

10
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Table 5 Adaptivity of the prediction intervals
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to compare the evaluation procedures, the adaptivity was normalized by calculating
as the ratio between the length of the prediction interval and the maximum value
of all interval lengths as is reported in Tab. 5. In order to further investigate the
uncertainty of the model, the boxplots of the distributions pertaining to the length of
prediction intervals by the input categorical variables are reported in the following.
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7 Conclusions

This study proposes a general approach for evaluating the uncertainty of deep learn-
ing models as is the case of the Multilayer Perceptron stacked with the Denoising
Autoencoder described in this paper. This evaluation approach can be extended to
other machine learning models if they cater for the integration of robust techniques
for quantifying uncertainty. The structure of the deep learning regression model being

11

0

50000

100000

150000

200000

1 2 3 4 5 6 7
BW.MainSourceIncome

Inte
rval

 len
gth

Source
A −> B
A <− B

Boxplot Comparison for: BW.MainSourceIncome

Fig. 6 Prediction interval lengths: BW.MainSourceIncome

0

50000

100000

150000

200000

0 1 2 3 4 5
NChildren

Inte
rval

 len
gth

Source
A −> B
A <− B

Boxplot Comparison for: NChildren

Fig. 7 Prediction interval lengths: NChildren

0

50000

100000

150000

200000

1 2 3 4 5
BW.MaritalStatus

Inte
rval

 len
gth

Source
A −> B
A <− B

Boxplot Comparison for: BW.MaritalStatus

Fig. 8 Prediction interval lengths: BW.MaritalStatus

7 Conclusions

This study proposes a general approach for evaluating the uncertainty of deep learn-
ing models as is the case of the Multilayer Perceptron stacked with the Denoising
Autoencoder described in this paper. This evaluation approach can be extended to
other machine learning models if they cater for the integration of robust techniques
for quantifying uncertainty. The structure of the deep learning regression model being

11

0

50000

100000

150000

200000

1 2 3 4 5 6 7
BW.MainSourceIncome

Inte
rval

 len
gth

Source
A −> B
A <− B

Boxplot Comparison for: BW.MainSourceIncome

Fig. 6 Prediction interval lengths: BW.MainSourceIncome

0

50000

100000

150000

200000

0 1 2 3 4 5
NChildren

Inte
rval

 len
gth

Source
A −> B
A <− B

Boxplot Comparison for: NChildren

Fig. 7 Prediction interval lengths: NChildren

0

50000

100000

150000

200000

1 2 3 4 5
BW.MaritalStatus

Inte
rval

 len
gth

Source
A −> B
A <− B

Boxplot Comparison for: BW.MaritalStatus

Fig. 8 Prediction interval lengths: BW.MaritalStatus

7 Conclusions

This study proposes a general approach for evaluating the uncertainty of deep learn-
ing models as is the case of the Multilayer Perceptron stacked with the Denoising
Autoencoder described in this paper. This evaluation approach can be extended to
other machine learning models if they cater for the integration of robust techniques
for quantifying uncertainty. The structure of the deep learning regression model being

11

Figure 6: Prediction Interval Lengths: BW.MainSourceIncome

Figure 7: Prediction Interval Lengths: NChildren

Figure 8: Prediction Interval Lengths: BW.MaritalStatus

7. Conclusions
This study proposes a general approach for evaluating the 
uncertainty of deep learning models as is the case of the 
Multilayer Perceptron stacked with the Denoising Autoencoder 

described in this paper. This evaluation approach can be extended 
to other machine learning models if they cater for the integration 
of robust techniques for quantifying uncertainty. The structure of 
the deep learning regression model being
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Fig. 11 Prediction interval lengths: BW.PensScheme

considered combines a data pre-processing algorithm and a regression model. The pro-
posed evaluation approach requires the selection of two similarly distributed datasets
A ans B, focusing on the comparison of complementary evaluation procedures, i.e. A-
to-B and B-to-A which are carried out in order to analyze coverage and adaptivity of
the model, measures for assessing the reliability of prediction intervals in rappresent-
ing the underlying unknown data distribution. The integration of the Conformalized
Quantile Regression approach in the deep learning model produces valid prediction
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considered combines a data pre-processing algorithm and a 
regression model. The proposed evaluation approach requires 
the selection of two similarly distributed datasets A ans B, 
focusing on the comparison of complementary evaluation 
procedures, i.e. A to- B and B-to-A which are carried out in order 

to analyze coverage and adaptivity of the model, measures for 
assessing the reliability of prediction intervals in rappresenting 
the underlying unknown data distribution. The integration of 
the Conformalized Quantile Regression approach in the deep 
learning model produces valid prediction
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intervals which provide an evaluation criterion of the reliability of the model. The
two-sided evaluation approach proposed in this study provides consistent insights as
a result of the enhancemwnt of the epistemic uncertainty coompared to the aleatoric
one. This study does not explicitly separate the aleatoric and the epistemic compo-
nents of the uncertainty. The aleatoric component is instead reduced by training the
DAE on the selected datasets A and B. The subsequent data encoding in both the
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Figure 12: Prediction interval lengths: AllSameCtzn
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intervals which provide an evaluation criterion of the reliability 
of the model. The two-sided evaluation approach proposed in this 
study provides consistent insights as a result of the enhancemwnt 
of the epistemic uncertainty coompared to the aleatoric one. This 
study does not explicitly separate the aleatoric and the epistemic 
components of the uncertainty. The aleatoric component is 
instead reduced by training the DAE on the selected datasets 
A and B. The subsequent data encoding in both the evaluation 
procedures equalize the aleatoric uncertainty as a result of the data 
similarity. The reduction of the aleatoric component contribution 
in the evaluation process of the uncertainty allow the prediction 
intervals to primarily reflect epistemic component while the 
equalization implies that differences between the evaluations are 
related to epistemic uncertainty. It is important to underline that, 
due to its probabilistic setup, the LSH algorithm assigns the pairs 
of similar households to A and B in a random order, minimizong 
potential biases during dataset creation. The detction algorithm 
resembles a split-plot design, where the primary variables act as 
main plot factors, and breadwinner specific variables are treated 
as subplot factors nested within similar households. In order to 
further address the bias introduced by the non random selection 
of training data, the Heckman correction is incorporated 
into the regression model. This is achieved by including the 
Inverse Mills Ratio as a feature to account for selection bias. 
The Heckman correction mitigates the concept drift resulting 
from a non rappresentative training sample, ensuring that the 
predictions generalize better to the target population. However, 
it assumes that the selection process is fully explained by 
observable variables and relies on the normality of errors, which 
may not hold universally. Including the IMR as a covariate also 
adds complexity to the interpretation of the model’s coefficients. 
An in-depth investigation of the deep learning model under 
evaluation reports a higher occurrence of outliers on the left-
hand side in the boxplots, corresponding to low values of the 
categorical variables under consideration. The probability 

of there being outliers is likely to increase as the number of 
observations which involve the aforementioned categories 
increases as well. The reduction of aleatoric uncertainty by 
using the DAE as a data pre-processing may not fully eliminate 
it for certain subgroups, resulting in higher frequency of outliers. 
This is particularly evident in households with similar structures 
and different breadwinner characteristics, where variations in 
prediction intervals reveal epistemic uncertainty pertaining to 
complex underrepresented groups. Differences in the lengths 
of prediction intervals between the categories indicate residual 
epistemic uncertainty steming from uneven data rappresentation. 
Categories pertaining to longer intervals reflect greater 
uncertainty, which arises from underrepresentationor complex 
data patterns. Outliers in these intervals suggest that the DAE 
does not correct input data anomalies or does not handle rare 
attributes, requiring a more complex pre-processing algorithm as 
is the case of architectures with a higher number of hidden layers 
or a higher number of DAEs arranged in a stack. The results 
of this study demonstrate the effectiveness of the comparison 
betwenn two opposite evaluation procedures based on noise-
free similar data for smoothing the aleatoric component out 
from the uncertainty quantidication process while emphasize the 
epistemic component being reflected in the prediction intervals 
of the model. A further reduction of the residual uncertainty may 
be achieved by rcurring to data balancing in order to reduce 
the occurrence of rare observations or ensemble methods for 
combining both the evaluation proceduresin order to improvw 
the robustness of the prediction intervals [13-16].

References
1. Atkinson, A. B. (1995). Income Distribution in OECD 

Countries: Evidence from the Luxembourg Income Study. 
2. Organisation for Economic Co-operation and Development. 

(2013). OECD framework for statistics on the distribution 
of household income, consumption and wealth. OECD 

https://agris.fao.org/search/en/providers/122621/records/647396b63ed73003714ce665
https://agris.fao.org/search/en/providers/122621/records/647396b63ed73003714ce665


 Volume 4 | Issue 1 | 10Curr Res Stat Math, 2025

Publishing.
3. Jenkins, S. P., & Cowell, F. A. (1994). Modelling Household 

Income Distribution. LSE Research Online.
4. Little, R. J., & Rubin, D. B. (2019). Statistical analysis with 

missing data (Vol. 793). John Wiley & Sons.
5. Creedy, J., & Kalb, G. (2005). Economics of Household 

Income Imputation: Concepts and Techniques. Springer.
6. Massoli, P. (2024). Detecting Similar Complex Data 

Structures in Large-Scale Datasets. Curr Res Stat Math, 
3(2), 01-07.

7. Massoli, P. (2024). Assessing the Quality in the Detection of 
Similar Complex Data Structures in Large-Scale Datasets. J 
Math Techniques Comput Math, 3(8), 01-09.

8. Heckman, J. (1979). Sample selection bias as a specification 
error. Econometrica.

9. Koenker, R. (2005). Quantile regression. Cambridge Univ 
Pr. 

10. Shafer, G., & Vovk, V. (2008). A tutorial on conformal 
prediction. Journal of Machine Learning Research, 9(3).

11. Angelopoulos, A. N., & Bates, S. (2021). A gentle 

introduction to conformal prediction and distribution-free 
uncertainty quantification. arXiv preprint arXiv:2107.07511.

12. Romano, Y., Patterson, E., & Cand´es, E. J. (2019). 
Conformalized Quantile Regression. Advances in Neural 
Information Processing Systems (NeurIPS).

13. Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P. A. 
(2008, July). Extracting and composing robust features 
with denoising autoencoders. In Proceedings of the 25th 
international conference on Machine learning (pp. 1096-
1103).

14. Zhou, S. K., & Chellappa, R. (2006). From sample similarity 
to ensemble similarity: Probabilistic distance measures in 
reproducing kernel hilbert space. IEEE transactions on 
pattern analysis and machine intelligence, 28(6), 917-929.

15. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep 
Learning. MIT Press.

16. Yoon, J., Jordon, J., & Schaar, M. (2018, July). Gain: 
Missing data imputation using generative adversarial nets. 
In International conference on machine learning (pp. 5689-
5698). PMLR.

Copyright: ©2025 Pierpaolo Massoli. This is an open-access article 
distributed under the terms of the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited.

https://opastpublishers.com

https://www.researchgate.net/profile/Pierpaolo-Massoli/publication/381407967_Detecting_Similar_Complex_Data_Structures_in_Large-Scale_Datasets/links/666c01e085a4ee7261c1182b/Detecting-Similar-Complex-Data-Structures-in-Large-Scale-Datasets.pdf
https://www.researchgate.net/profile/Pierpaolo-Massoli/publication/381407967_Detecting_Similar_Complex_Data_Structures_in_Large-Scale_Datasets/links/666c01e085a4ee7261c1182b/Detecting-Similar-Complex-Data-Structures-in-Large-Scale-Datasets.pdf
https://www.researchgate.net/profile/Pierpaolo-Massoli/publication/381407967_Detecting_Similar_Complex_Data_Structures_in_Large-Scale_Datasets/links/666c01e085a4ee7261c1182b/Detecting-Similar-Complex-Data-Structures-in-Large-Scale-Datasets.pdf
https://www.jstor.org/stable/1912352
https://www.jstor.org/stable/1912352
https://www.jmlr.org/papers/volume9/shafer08a/shafer08a.pdf
https://www.jmlr.org/papers/volume9/shafer08a/shafer08a.pdf
https://doi.org/10.48550/arXiv.2107.07511
https://doi.org/10.48550/arXiv.2107.07511
https://doi.org/10.48550/arXiv.2107.07511
https://dl.acm.org/doi/abs/10.1145/1390156.1390294
https://dl.acm.org/doi/abs/10.1145/1390156.1390294
https://dl.acm.org/doi/abs/10.1145/1390156.1390294
https://dl.acm.org/doi/abs/10.1145/1390156.1390294
https://dl.acm.org/doi/abs/10.1145/1390156.1390294
https://ieeexplore.ieee.org/abstract/document/1624356
https://ieeexplore.ieee.org/abstract/document/1624356
https://ieeexplore.ieee.org/abstract/document/1624356
https://ieeexplore.ieee.org/abstract/document/1624356
https://proceedings.mlr.press/v80/yoon18a.html?ref=https://githubhelp.com
https://proceedings.mlr.press/v80/yoon18a.html?ref=https://githubhelp.com
https://proceedings.mlr.press/v80/yoon18a.html?ref=https://githubhelp.com
https://proceedings.mlr.press/v80/yoon18a.html?ref=https://githubhelp.com

