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Abstract
We address a broad category of nonlinear constrained optimization problems. We then reformulate it as a time-varying 
optimization using continuous-time parametric functions and derive a dynamical system to track the respective optimal 
solution. We then re-parameterize the dynamical system according to a linear combination of parametric functions. By 
applying the calculus of variations, we optimize these parametric functions to minimize the optimality distance. Consequently, 
we develop an iterative dynamic algorithm, termed as OP-TVO, to achieve efficient convergence to the solution. We 
compare the performance of the proposed algorithm with the prediction correction method (PCM) in terms of optimality 
and computational complexity. The results demonstrate that OP-TVO effectively competes with PCM for the given class of 
optimization problems, suggesting a promising alternative to PCM. This work also introduces a novel paradigm for solving 
parametric dynamic systems.
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1. Introduction
Time-Varying Optimization (TVO) problems involve parametric 
optimization where the objective function, constraints, or 
both are expressed using continuously varying functions. This 
approach is used to determine the optimal trajectory of solutions 
in continuous-time optimization scenarios. Additionally, for 
problems where the optimal solution is known for a specific 
configuration, TVO can be utilized to extra-polate the solution 
to other settings of interest.

TVO is explored in the domain of parametric programming, 
where the optimization problem is parameterized using 
continuous parameters [1-5]. In prediction-correction, methods 
are developed to address nonlinear constrained TVO problems, 
providing a mechanism to track a solution trajectory with certain 
convergence guarantees [3]. A path-following procedure is 
proposed in to trace the solution path of a parametric nonlinear 
problem [4]. A quadratic programming is then employed which 
leads to some convergence properties for their method. In a path-
following approach is used to track the solutions of parametric 
nonlinear constrained programs through a semi-smooth barrier 
function [5].

TVO can also be viewed as an extension of time-invariant 
optimization problems for the extrapolation purposes [6-10]. 
Presents an interior-point method for optimization problems with 
time-varying objective and constraint functions, formulating a 
continuous-time dynamical system to track the optimal solution 
with bounded asymptotic tracking error [8]. In path following, 
methods are devised in the dual space to track the solutions of 
time-varying linearly constrained problems [9].

When it goes to the approach for solving TVO problems, 
prediction-correction schemes emerge as promising tracking 
algorithms [11-14]. It involves a dynamic-tracking mechanism, 
called the predictor step to track the solution trajectory over 
time, accompanied with a Newton based iterative mechanism, 
called corrector step to adjust the prediction errors. In a discrete-
time prediction-correction, approach is proposed to minimize 
unconstrained time-varying functions, analyzing the asymptotic 
tracking error to ensure convergence [6]. In prediction-
correction methods are introduced to track the optimal solution 
trajectory in the primal space with a bounded asymptotic error 
[7]. In prediction-correction, methods are devised in the dual 
space to track the solutions of time-varying linearly constrained 
problems [9].
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In this paper, we study a category of nonlinear constrained 
optimization problems where the optimal solution is known 
for a specific setting and needs to be determined for a target 
configuration. We utilize the concept of TVO to reformulate the 
problem using parametric programming. We then investigate a 
set of parametric functions to optimize the optimality distance. 
Unlike approaches based on prediction correction methods, 
our focus is on a functional optimization problem to expedite 
the convergence rate. Specifically, this paper differs from 
prediction-correction approaches by designing parametric 
functions to minimize the optimality distance of the solution, 
rather than focusing on correcting prediction errors [15,16]. The 
main contributions of this paper are listed as follows:

• We address a class of nonlinear constrained optimization 
problems by formulating them as time varying optimization 
problems using parametric functions. We then use a re-
parametrization trick to show that the corresponding dynamical 
system can be represented based on a linear combination of the 
parametric functions.
• We globally optimize the parametric functions by a functional 
optimization procedure, and develop an iterative algorithm with 
minimum optimality distance. We call the devised algorithm 
Optimal Parametric Time-Varying Optimization (OP-TVO).
• We compare OP-TVO with prediction-correction method from 

the literature, from the optimality and computational complexity 
perspectives.

Notations: In this paper, we use lower-case a for scalars, 
boldface lower-case a for vectors and boldface uppercase 
A for matrices. Further, A⊤ is the transpose of A, ∥a∥ is the 
Euclidean norm of a, ∇a g(•) and ∇a

2
 g(•)  are the gradient vector 

and Hessian matrix of multivariate function g(a) with respect 
to (w.r.t.) vector a, respectively. We show the components of a 
n-dimensional column vector a using the notation a = [a1,...,an]

⊤. 
Further,           collects the components of vector a from n = 1 to 
n = N. We use I, 1 and 0 to denote the identity matrix, all-ones 
and all-zeros vectors, respectively.

We use a (θ) to represent the derivative of a(θ) w.r.t. θ.

2. Problem Statement
This paper studies a class of nonlinear constrained optimization 
problems. The problem involves an objective function f(.) : ℝN 
→ ℝ, vector-valued constraint functions hm(.) = [hm,1,...,hm,N]⊤(.) 
: ℝN → ℝN and optimization variables xm ∈ ℝN for m ∈ {1,...,M}. 
The problem is specifically
described as:
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objective function f(·) : RN → R, vector-valued constraint functions hm(·) = [hm,1, . . . , hm,N ]
⊤(·) :

RN → RN and optimization variables xm ∈ RN for m ∈ {1, . . . ,M}. The problem is specifically

described as:

P0 : min
{xm}M1

M∑
m=1

amf(xm)

s.t.
M∑

m=1

hm(xm) = u, (1)

where u ∈ RN . The optimal solution of Problem P0 is known for given non-zero parameters am = p0,m,

with m ∈ {1, . . . ,M}. The aim is then to find the optimal solution for non-zero target parameters

am = pτ,m.

Such problems arise in distributed optimizations or multi-agent systems, where individual agents are

required to optimize agent-specific rewards contributing to an overall cost function. The aim is thus to

obtain agent-specific variables {xm}M1 that optimize this overall cost function. This class of challenges

also arise in constrained problems with an objective established from different cost functions with

distinct weights {am}M1 .

We then intend to express P0 based on a TVO problem with parametric functions, and devise a path-

following method with convergence rate being optimized. For this, we follow a functional optimization
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arise in constrained problems with an objective established from 
different cost functions with distinct weights  

We then intend to express P0 based on a TVO problem with 
parametric functions, and devise a path following method 
with convergence rate being optimized. For this, we follow a 
functional optimization approach to design the parametric 
functions. Consequently, we parameterize           with the 
parametric functions                  and parameter θ ∈ ℝ+ ∪ {0}, so 
that
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approach to design the parametric functions. Consequently, we parameterize {am}M1 with the parametric

functions {bm(θ)}M1 and parameter θ ∈ R+ ∪ {0}, so that

lim
θ→0

bm(θ) = p0,m, lim
θ→τ

bm(θ) = pτ,m, (2)

for m ∈ {1, . . . ,M}. Note that such parametric functions as presented in (2) are not unique. However,

we aim to find those parametric functions that optimize the convergence rate.

We then consider the following TVO problem

P1(θ) : x∗(θ) = argmin
{xm(θ)}M1

M∑
m=1

bm(θ)f
(
xm(θ)

)

s.t.
M∑

m=1

hm

(
xm(θ)

)
= u, (3)

where x(θ) = [x⊤
1 , . . . ,x

⊤
M ]⊤(θ). As declared, we assume that the solution of P1(θ) for θ = 0 is given,

and the solution at target θ = τ > 0 is to be found.

A naive approach to find the solution of P1(θ) is to use a Newton-based iterative algorithm. However,

this approach may suffer from low convergence rate and its solution optimality depends on a step-length

parameter.

Instead, we develop a time-varying approach to exploit the information of optimal solution of P1(0).

We thus formulate the following continuous-time dynamical system

ẋm(θ) = ϕm

(
x(θ), θ

)
: RNM × R+ ∪ {0} → RN , (4)

with optimal trajectory solution denoted by x∗(·). We then devise an iterative approach to predict x∗(·)

by x(·) so that the optimality distance ∥x(θ)− x∗(θ)∥ is minimized for θ → τ . Note that (4) shows a

set of ODEs which should be solved with initial condition x(0) to give the desired solution x(τ). As

such, we intend to jointly solve TVO P1(θ) and design {bm(θ)}M1 for θ ∈ [0, τ ] so that the optimality

distance is minimized.

We need the following assumptions for TVO P1(θ).

Assumption I: The objective function f(·) and constraints hm(·) are twice continuously differentiable

with respect to (w.r.t.) xm.

Assumption II: The matrices {Jm}M1 are invertible for θ ∈ [0, τ ], where J m ∈ RN×N is the

transpose of Jacobian matrix of hm(·) w.r.t. xm(θ).

4
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III. ODES ASSOCIATED WITH TVO P1(θ)

Proposition 1. The solution of Karush–Kuhn–Tucker conditions of problem P1(θ), for θ ∈ [0, τ ], can

be found by the pair (x(θ),λ) which follows the dynamical system (4) with:

ϕm

(
x(θ), θ

)
= −

(
bm(θ)∇2

mf +

N∑
n=1

λn∇2
mhm,n

)−1
Jm

(
λ̇− ḃm(θ)

bm(θ)
λ
)
, (5)

where

λ = −bm(θ)J −1
m ∇mf, for m ∈ {1, . . . ,M}, (6)

and λ̇ is obtained using
M∑

m=1

J ⊤
m ẋm(θ) = 0. (7)

Proof. Please refer to Appendix A.

According to (5), the dynamical system {ϕm(·, ·)}M1 has been formulated based on a nonlinear

combination of two parametric functions, bm(θ) and ḃm(θ). In the following, we use a decomposition

trick to express the dynamical system as a linear combination of parametric functions.

A. Reparameterizing based on a Decomposition

We introduce the parametric functions

cm(θ) :=
ḃm(θ)

bm(θ)
, m ∈ {1, . . . ,M}, (8)

which should satisfy
∫ τ

0
cm(θ)dθ = log

(pτ,m
p0,m

)
:= ψm based on (2). We then have:

Theorem 1. The dynamical system (5) can be re-parameterized based on the following linear combi-

nation of {cm(θ)}M1 :

ẋ(θ) = ϕ
(
x(θ), θ

)
= Γ(θ) c(θ), (9)
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ẋ(θ) = ϕ
(
x(θ), θ

)
= Γ(θ) c(θ), (9)

5

III. ODES ASSOCIATED WITH TVO P1(θ)

Proposition 1. The solution of Karush–Kuhn–Tucker conditions of problem P1(θ), for θ ∈ [0, τ ], can

be found by the pair (x(θ),λ) which follows the dynamical system (4) with:

ϕm

(
x(θ), θ

)
= −

(
bm(θ)∇2

mf +

N∑
n=1

λn∇2
mhm,n

)−1
Jm

(
λ̇− ḃm(θ)
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ḃm(θ)

bm(θ)
, m ∈ {1, . . . ,M}, (8)

which should satisfy
∫ τ

0
cm(θ)dθ = log

(pτ,m
p0,m

)
:= ψm based on (2). We then have:

Theorem 1. The dynamical system (5) can be re-parameterized based on the following linear combi-

nation of {cm(θ)}M1 :
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Proof. Please refer to Appendix A.	  
According to (5), the dynamical system   has been formulated 
based on a nonlinear Combination of two parametric functions, 
bm (θ) and bm (θ). In the following, we use a decomposition trick 
to express the dynamical system as a linear combination of 

parametric functions.

A. Reparametrizing based on a Decomposition
We introduce the parametric functions˙

Which should satisfy                                                               based on (2). We then have:

Theorem 1. The dynamical system (5) can be re-parameterized based on the following linear combination of                

6

where ϕ(·, ·) = [ϕ⊤
1 , . . . ,ϕ

⊤
M ]⊤(·, ·),

Γ(θ) =




γ11 . . . γ1M

...
...

...

γN1 . . . γNM


 ∈ RNM×M ,

γnm = −G−1
n

 M
k=1

Dk

−1

Dm − δnmI


1,

Gn = diag(v)−1J −1
n


∇2

nf +
N
j=1

vj∇2
nhn,j


,

Dm = J ⊤
m G−1

m ,

for n ∈ {1, . . . , N} and m ∈ {1, . . . ,M} with

v = −J −1
m ∇mf. (10)

Proof. We introduce N -by-N matrices {Gm}M1 and exploit the following decomposition:

bm(θ)∇2
mf +

N
n=1

λn∇2
mhm,n = J m diag(λ)Gm. (11)

Then, we get:

Gm = diag(v)−1J −1
m


∇2

mf +
N

n=1

vn∇2
mhm,n


, (12)

for which we used λ = bm(θ)v based on (6) and (10). Equation (12) shows that Gm is notably

independent of parametric function bn(θ). Now, by plugging (11) into (5), we obtain:

ẋn(θ) = −G−1
n diag(λ)−1�λ̇− cn(θ)λ


,

and according to (7), we get:

λ̇ = λ
 M

k=1

Dk

−1 M
m=1

Dmcm(θ) 1,

which together yields:

ẋn(θ) = −G−1
n

 M
k=1

Dk

−1 M
m=1

Dmcm(θ)− cn(θ)I


1.

Based on the definition of γnm, we thus have:

ẋn(θ) =
M

m=1

γnmcm(θ), n ∈ {1, . . . , N},

which proves the statement.
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ẋn(θ) = −G−1
n diag(λ)−1�λ̇− cn(θ)λ


,

and according to (7), we get:

λ̇ = λ
 M

k=1

Dk

−1 M
m=1

Dmcm(θ) 1,

which together yields:
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for n ∈ {1,...,N} and m ∈ {1,...,M} with

Proof. We introduce N-by-N matrices {Gm}M
1 and exploit the following decomposition:

Then, we get:

for which we used λ = bm (θ) v based on (6) and (10). Equation (12) shows that Gm is notably independent of parametric function 
bn(θ). Now, by plugging (11) into (5), we obtain:

and according to (7), we get:

which together yields:

Based on the definition of γnm, we thus have:

which proves the statement.

Remark: The dynamical system (9) depends only on c(•) and 
not on b(•). Moreover, as Γ(•) does not depend on c(•), the 
dynamical system portrays a linear parametric expression w.r.t. 
c(•). It enables us to find the condition in which solving (5), or 

equivalently (9), leads to a unique solution.

In this regard, we make the following assumptions.
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Assumption III: The matrices                            
and diag(v) are invertible.

Assumption IV: The derivatives of                                and  
                           w.r.t.                are bounded.

Proposition 2. If Assumptions I, II, III and IV hold, then the 
dynamical system (9) has a unique Solution.

Proof. By utilizing the Picard–Lindelof theorem and leveraging 
the equivalence between Lipschitz¨ continuity and boundedness 
of the derivative, the statement follows.  

The linear form of (9) also enables us to design c(•) such that the 
optimality distance is optimized.

Once c(•) is designed, we can get:                         
based on (2) and (8).

4. Optimality Distance
Equation (9) shows a set of ODEs that is intricate to precisely 
solve due to highly non-linearity w.r.t. θ. However, one approach 
is to use the Euler method to approximate x(•) by x(•):
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Once c(·) is designed, we can get: bm(θ) = p0,m exp
( ∫ θ

0
cm(ξ)dξ

)
based on (2) and (8).

IV. OPTIMALITY DISTANCE

Equation (9) shows a set of ODEs that is intricate to precisely solve due to highly non-linearity w.r.t.

θ. However, one approach is to use the Euler method [16] to approximate x(·) by x̂(·):

x̂(θ) = x̂(θ −∆θ) + ∆θ ˆ̇x(θ −∆θ), θ ∈ (0, τ ], (13)

where ∆θ is the incremental step and ˆ̇x(θ) = ϕ
(
x̂(θ), θ

)
. For this method, the optimality distance Od

is upper-bounded by:

Od = ∥x̂(τ)− x(τ)∥ ≤ ∆θ2

2

L∑
j=1

∥ẍ(τ − j∆θ)∥+O(L∆θ3),

where τ = L∆θ. This shows that optimality distance is limited by order of ∆θ2. However, based on

(13) another upper-bound can be found as follows:

Od =

∥∥∥∥
∫ τ

0

(
ẋ(θ)− m̂

)
dθ

∥∥∥∥ ≤
∫ τ

0

∥ẋ(θ)− m̂∥dθ, (14)

where

m̂ =
1

L

L∑
j=1

ˆ̇x(τ − j∆θ).

Note that m̂ does not depend on θ. Consequently, minimizing the upper-bound of Od, i.e.,
∫ τ

0
∥ẋ(θ)−

m̂∥dθ, leads to the optimality distance being minimized.
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Assumption III: The matrices {∇2
n(f + v⊤hn)}N1 ,

∑M
k=1 Dk and diag(v) are invertible.

Assumption IV: The derivatives of {∇mf}M1 , {J m}M1 and {∇2
n(f + v⊤hn)}N1 w.r.t. {xm(θ)}M1 are

bounded.

Proposition 2. If Assumptions I, II, III and IV hold, then the dynamical system (9) has a unique

solution.

Proof. By utilizing the Picard–Lindelöf theorem and leveraging the equivalence between Lipschitz

continuity and boundedness of the derivative, the statement follows.

The linear form of (9) also enables us to design c(·) such that the optimality distance is optimized.

Once c(·) is designed, we can get: bm(θ) = p0,m exp
( ∫ θ

0
cm(ξ)dξ

)
based on (2) and (8).

IV. OPTIMALITY DISTANCE

Equation (9) shows a set of ODEs that is intricate to precisely solve due to highly non-linearity w.r.t.

θ. However, one approach is to use the Euler method [16] to approximate x(·) by x̂(·):

x̂(θ) = x̂(θ −∆θ) + ∆θ ˆ̇x(θ −∆θ), θ ∈ (0, τ ], (13)

where ∆θ is the incremental step and ˆ̇x(θ) = ϕ
(
x̂(θ), θ

)
. For this method, the optimality distance Od

is upper-bounded by:

Od = ∥x̂(τ)− x(τ)∥ ≤ ∆θ2

2

L∑
j=1

∥ẍ(τ − j∆θ)∥+O(L∆θ3),

where τ = L∆θ. This shows that optimality distance is limited by order of ∆θ2. However, based on

(13) another upper-bound can be found as follows:

Od =

∥∥∥∥
∫ τ

0

(
ẋ(θ)− m̂

)
dθ

∥∥∥∥ ≤
∫ τ

0

∥ẋ(θ)− m̂∥dθ, (14)

where

m̂ =
1

L

L∑
j=1

ˆ̇x(τ − j∆θ).

Note that m̂ does not depend on θ. Consequently, minimizing the upper-bound of Od, i.e.,
∫ τ

0
∥ẋ(θ)−

m̂∥dθ, leads to the optimality distance being minimized.
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∥ẋ(θ)− m̂∥dθ, (14)

where

m̂ =
1

L

L∑
j=1

ˆ̇x(τ − j∆θ).

Note that m̂ does not depend on θ. Consequently, minimizing the upper-bound of Od, i.e.,
∫ τ

0
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where Δθ is the incremental step and x(θ) = ϕ(x(θ), θ). For this method, the optimality distance Od is upper-bounded by:˙̂ ˆ

where τ = LΔθ. This shows that optimality distance is limited by order of Δθ2. However, based on (13) another upper-bound can be 
found as follows:

where

Note that m does not depend on θ. Consequently, minimizing the upper bound of Od, i.e.,               m ∥dθ, leads to the optimality 
distance being minimized.

5. Optimality Distance Minimization
We consider the following functional optimization problem (FOP) to jointly design the parametric functions c(•) and find the 
optimum solution x(•):
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∥ẋ(θ)−

m̂∥dθ, leads to the optimality distance being minimized.

ˆ ˆ

8

V. OPTIMALITY DISTANCE MINIMIZATION

We consider the following functional optimization problem (FOP) to jointly design the parametric

functions c(·) and find the optimum solution x(·):

J1 : min
x(·),c(·)

 τ

0

∥ẋ(θ)− m̂∥2dθ

s.t. ẋ(θ) = Γ(θ) c(θ),

s.t.
 τ

0

c(θ)dθ = ψ. (15)

By solving FOP J1, we can achieve the optimal solution x(θ) which minimizes the optimality distance

Od based on (14). To solve (15), we thus constitute the Hamiltonian H as:

H = ∥ẋ(θ)− m̂∥2 +w(θ)⊤
�
ẋ(θ)− Γ(θ) c(θ)


+ λ⊤


c(θ)− 1

τ
ψ

,

where w(θ) is a co-state variables and λ is a Lagrange multiplier. Using calculus of variations, the

functional solution of (15) is obtained by:



∇c(θ)H = 2Γ(θ)⊤

Γ(θ)c(θ)− m̂− 1

2
w(θ)


+ λ = 0,

∇x(θ)H− d
dθ
∇ẋ(θ)H

= w(θ)⊤ ∇x(θ)Γ(θ) c(θ) + 2ẍ(θ) + ẇ(θ) = 0,

ẋ(θ)− Γ(θ) c(θ) = 0,
 τ

0
c(θ)dθ −ψ = 0.

(16)

This system of conditions are intricate to solve and an estimation of m̂ is needed in advance. These

motivate us to develop an iterative algorithm to find the solution of J1.

In this regard, we propose an iterative mechanism as follows: In the beginning, we initialize c(·) such

that
 τ

0
c(θ)dθ = ψ. Then, we continually follow two consecutive steps till the algorithm converges.

These are the Prediction and Parametric-tuning steps. In the prediction step, we sequentially solve (13)

based on (9) and recently updated c(·), in order to predict x(θ) for θ ∈ (0, τ ]. In the parametric-tuning

step, we minimize the functional objective
 τ

0
∥ẋ(θ)− m̂∥2dθ w.r.t. c(·) with m̂ being obtained based

on the solution of prediction step. As declared, we perform these two steps till the convergence. We

call this algorithm Optimal Parametric Time-Varying Optimization (OP-TVO).

Specifically, we consider the following FOP, in the second step of OP-TVO, to optimize the parametric

functions c(·):

J2 : min
c(·)

 τ

0

Γ(θ) c(θ)− m̂

2

dθ + µ

 τ

0

c(θ)⊤c(θ)dθ

s.t.
 τ

0

c(θ)dθ = ψ , (17)
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s.t. ẋ(θ) = Γ(θ) c(θ),

s.t.
 τ

0

c(θ)dθ = ψ. (15)

By solving FOP J1, we can achieve the optimal solution x(θ) which minimizes the optimality distance

Od based on (14). To solve (15), we thus constitute the Hamiltonian H as:
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∥ẋ(θ)− m̂∥2dθ w.r.t. c(·) with m̂ being obtained based

on the solution of prediction step. As declared, we perform these two steps till the convergence. We

call this algorithm Optimal Parametric Time-Varying Optimization (OP-TVO).

Specifically, we consider the following FOP, in the second step of OP-TVO, to optimize the parametric

functions c(·):

J2 : min
c(·)

 τ

0

Γ(θ) c(θ)− m̂

2

dθ + µ

 τ

0

c(θ)⊤c(θ)dθ

s.t.
 τ

0

c(θ)dθ = ψ , (17)

ˆ
ˆ

Where the term                             is additionally added to regularize the smoothness of c(θ) w.r.t. θ, and 0 < µ ≪ 1 is the regularization 
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.

Proof. Considering that the dynamical system (9) has been expressed based on a linear combination of

parametric functions c(·), J2 is a convex FOP. This implies that the globally optimal solution of J2 can

be found by applying the Euler-Lagrange equation on J2 [17]. We thus get:
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Γ(θ)⊤(Γ(θ) c(θ)− m̂) + µc(θ) + λ = 0,

 τ

0
c(θ)dθ −ψ = 0 .

(19)

By solving (19), the statement follows.

Algorithm 1 shows the pseudo-code of OP-TVO. For each iteration (iter), the prediction and parametric-

tuning steps are executed to jointly predict the optimal solution x∗(τ) and design the parametric functions

c(·). We also need a metric for the convergence to stop the algorithm. For this, we track the value of

Ôd :=
L

j=1

ϕ

x̂(τ − j∆θ), τ − j∆θ


− m̂


2

as an estimation of the optimality distance. We thus

consider that the algorithm has converged if the value of Ôd lies below a threshold Oth.

VI. NUMERICAL RESULTS AND DISCUSSION

To evaluate the devised algorithm OP-TVO, we compare it with a Prediction-Correction Method

(PCM) [6], as well as with a Benchmark solution obtained by an extremely small incremental step

∆θ = 10−6 regardless of its computational complexity. Note that, we consider this Benchmark as the

optimal solution, by which we can compute the optimality distance Od. These algorithms have been

implemented using Matlab R2022a on a 8× 1.70 GHz Intel Core i5-10310U Processor, equipped with

16 GB of memory and 12 Mbytes of data cache.
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Proof. Considering that the dynamical system (9) has been expressed based on a linear combination of

parametric functions c(·), J2 is a convex FOP. This implies that the globally optimal solution of J2 can

be found by applying the Euler-Lagrange equation on J2 [17]. We thus get:
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Γ(θ)⊤(Γ(θ) c(θ)− m̂) + µc(θ) + λ = 0,

 τ

0
c(θ)dθ −ψ = 0 .

(19)

By solving (19), the statement follows.

Algorithm 1 shows the pseudo-code of OP-TVO. For each iteration (iter), the prediction and parametric-

tuning steps are executed to jointly predict the optimal solution x∗(τ) and design the parametric functions

c(·). We also need a metric for the convergence to stop the algorithm. For this, we track the value of
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as an estimation of the optimality distance. We thus

consider that the algorithm has converged if the value of Ôd lies below a threshold Oth.

VI. NUMERICAL RESULTS AND DISCUSSION

To evaluate the devised algorithm OP-TVO, we compare it with a Prediction-Correction Method

(PCM) [6], as well as with a Benchmark solution obtained by an extremely small incremental step

∆θ = 10−6 regardless of its computational complexity. Note that, we consider this Benchmark as the

optimal solution, by which we can compute the optimality distance Od. These algorithms have been

implemented using Matlab R2022a on a 8× 1.70 GHz Intel Core i5-10310U Processor, equipped with

16 GB of memory and 12 Mbytes of data cache.
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Algorithm 1: Optimal Parametric Time-Varying Optimization (OP-TVO)
Input: Optimal solution x(0).

Outputs: Optimal solution x(τ) and parametric functions c(·).

Initialization:

Initialize c(·) so that
 τ

0
c(θ)dθ = ψ.

Set flag = 1 and iter = 0.

while flag do
iter = iter+1.

Prediction step:

Predict x(θ) for θ ∈ (0, τ ] using (13) and (9) and based on updated c(·).

Parametric-tuning step:

Update c(·) using (18) and based on predicted x(θ) with θ ∈ (0, τ ].

if Convergence then
flag = 0.

end

end

We then consider a constrained optimization problem E1 [18], [19], and change the constraints to

add non-linearity to the problem.

E1 : min
{xm}M1

M
m=1

am erfc


γ0

xm,1
2

0.1
xm,2 − 1




s.t.
M

m=1

log(1 + xm,1) = L,

s.t.
M

m=1

x2
m,2 = 1,

where the optimization variables are xm = [xm,1, xm,2]
⊤ for m ∈ {1, . . . ,M}, M = 100, am =

m−τ/
M

m=1 m
−τ , τ = 3 and γ0 = 40. For E1, it can be verified that the optimal solution for am = 1

M

is obtained as:

xm,1 = exp(L/M − 1), xm,2 =


1/M, m ∈ {1, . . . ,M}.

Therefore, we constitute a TVO problem exactly as E1 but with parametric functions {bm(θ)}M1 replacing
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We then consider a constrained optimization problem E1 and change the constraints to add non-linearity to the problem [18.19].

Therefore, we constitute a TVO problem exactly as E1 but with parametric functions                     replacing
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Fig. 1: Solution Trajectories for xm,1 with m ∈ {1, 8, 15}. Fig. 2: Solution Trajectories for xm,2 with m ∈ {20, 30, 100}.

{am}M1 such that:

bm(0) =
1

M
, bm(τ) = am, m ∈ {1, . . . ,M}.

We further use the re-parametrizing functions c(·) with cm(θ) :=
ḃm(θ)

bm(θ)
. We then apply Algorithm 1

with hyper-parameters µ = 10−7, Oth = 10−5 and ∆θ = 10−2 to find the optimal solution.

Figures 1 and 2 illustrate the solution trajectories {xm(θ)}M1 , obtained by Algorithm 1, as a function

of θ for different iterations. For the first iteration, the trajectory solutions portray a highly nonlinear

behavior. However, as the number of iteration increases, this non-linearity reduces. When the algorithm

converges (3rd iteration), the linear curvature of the solution trajectories indicate that a precise solution

with minimal optimality distance has been obtained.

We also apply a PCM on Problem E1 to obtain the solution. To have a fair comparison, we adjust

the hyper-parameter ∆θ for PCM such that the corresponding optimal value is almost equal to that of

Algorithm 1. As such, we need to set ∆θ = 10−4.

Table I compares the performance results of PCM, Benchmark and OP-TVO. The second column

presents the optimal values achieved by these approaches. The third column quantifies the extent of

constraints violation, represented as the summation of violations of all constraints. The fourth column

indicates the elapsed time in seconds for the computations. and the fifth and sixth columns show the

optimality distance Od and its estimation Ôd, respectively.

Despite PCM achieving a slightly lower objective function value than Benchmark, it is noteworthy

that Benchmark excels significantly in terms of constraint satisfaction compared to PCM. Therefore,

the Benchmark solution is considered the reference in this comparison. Based on the values of Ôd,

11
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11

Fig. 1: Solution Trajectories for xm,1 with m ∈ {1, 8, 15}. Fig. 2: Solution Trajectories for xm,2 with m ∈ {20, 30, 100}.

{am}M1 such that:

bm(0) =
1

M
, bm(τ) = am, m ∈ {1, . . . ,M}.

We further use the re-parametrizing functions c(·) with cm(θ) :=
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TABLE I: Performance Result of OP-TVO and PCM.

Approach Optimal Value Constraint Violations Elapsed Time [s] Od Ôd

Benchmark 5.6089× 10−7 1.312×10−6 2066 0.0 N/A

PCM 5.6086× 10−7 1.739×10−4 271 0.00135 N/A

OP-TVO, iter=1 3.2443× 10−5 0.419 3 0.8291 N/A

iter=2 5.6088× 10−7 5.129×10−5 52 5.132×10−4 0.228

iter=3 5.6088× 10−7 5.051×10−5 105 5.130×10−4 2.68×10−6

iter=4 5.6088× 10−7 5.050×10−5 160 5.130×10−4 2.14×10−6

OP-TVO chieves convergence after three iterations. OP-TVO with iter = 3 outperforms PCM from the

computational complexity as it converges within 105 seconds while PCM converges after 271 seconds.

Furthermore, OP-TVO with iter = 3 exhibits a superior optimality distance Od compared to PCM. Not

to mention that OP-TVO better satisfies the constraints than PCM. These results indicate that OP-TVO

provides a more accurate solution than PCM, demonstrating its capability to achieve optimal solutions

with lower computational complexity and higher performance precision.

VII. CONCLUSION

In this paper, we reformulated a class of nonlinear constrained optimization problems using a time-

varying optimization approach incorporating parametric functions. By applying a re-parametrization

technique, we transformed the problem into a dynamical system expressed linearly in terms of these

parametric functions. Our objective was to minimize the optimality distance traced by this dynamical

system, which led us to formulate a functional minimization problem. To achieve this, we introduced

an iterative algorithm named OP-TVO, designed specifically to determine the trajectory of solutions

with an optimal optimality distance. Our experimental results demonstrate that OP-TVO surpasses the

Prediction-Correction Method (PCM) in terms of both optimality distance and convergence rate. These

findings highlight OP-TVO as a promising alternative to PCM for addressing distributed time-varying

optimization problems. By building upon the results gained from this study, future work can explore

optimization problems involving time-varying constraints.

Table 1: Performance Result of OP-TVO and PCM
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OP-TVO chieves convergence after three iterations. OP-
TVO with iter = 3 outperforms PCM from the computational 
complexity as it converges within 105 seconds while PCM 
converges after 271 seconds. Furthermore, OP-TVO with iter = 
3 exhibits a superior optimality distance Od compared to PCM. 
Not to mention that OP-TVO better satisfies the constraints 
than PCM. These results indicate that OP-TVO provides a more 
accurate solution than PCM, demonstrating its capability to 
achieve optimal solutions with lower computational complexity 
and higher performance precision.

7. Conclusion
In this paper, we reformulated a class of nonlinear constrained 
optimization problems using a time varying optimization 
approach incorporating parametric functions. By applying a re-
parametrization technique, we transformed the problem into a 
dynamical system expressed linearly in terms of these parametric 
functions. Our objective was to minimize the optimality distance 
traced by this dynamical system, which led us to formulate a 
functional minimization problem. To achieve this, we introduced 
an iterative algorithm named OP-TVO, designed specifically to 
determine the trajectory of solutions with an optimal optimality 
distance. Our experimental results demonstrate that OP-TVO 
surpasses the Prediction-Correction Method (PCM) in terms of 
both optimality distance and convergence rate. These findings 
highlight OP-TVO as a promising alternative to PCM for 
addressing distributed time-varying optimization problems. By 
building upon the results gained from this study, future work 
can explore optimization problems involving time-varying 
constraints.
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APPENDIX

A. Proof of Proposition 1.

We constitute the Lagrangian function, and obtain the Karush–Kuhn–Tucker conditions which read:


bm(θ)∇mf +Jmλ = 0,

M
m=1 hm(xm)− u = 0,

(20)

where λ is the Lagrange multiplier. By considering Assumption 1 and taking derivative of the recent

conditions w.r.t. θ, we get:



ḃm(θ)∇mf +

bm(θ)∇2

mf +
N
j=1

λj∇2
mhm,j


ẋn(θ)

+Jmλ̇ = 0,

M
m=1 J

⊤
mẋm = 0,

(21)

By combining (20) and (21) and considering Assumption 2, the statement follows.
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