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Abstract
We consider a generalization of the mKdV model of shallow water out-flows. This generalization is a family of equations 
with nonlinear dispersion terms containing, in particular, KdV, mKdV, Benjamin- Bona-Mahony, Camassa-Holm, and 
Degasperis-Procesi equations. Non- linear dispersion, generally speaking, implies instability of classical solutions and 
wave breaking in a finite time. However, there are special conditions under which the general mKdV equation admits 
classical solutions that are global in time. We have created an economic finite difference scheme that preserves this 
property for numerical solutions. To illustrate this we demonstrate some numerical results about propogation and 
interaction of solitons.
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1. Introduction
We consider a modern unidirectional approximation of the shallow water system (see e.g, [1]) called the “general mKdV equation” 
(gmKdV):
          
   

Here α, c0, . . . , c3, γ are real parameters and ε characterizes the dispersion, n = 2 or n = 3. The constants α ≥ 0 and γ ≥ 0 are associated 
with different characters of the dispersion manifestation. In the Green-Naghdi approximation the restriction α + γ > 0 is required. 
The equation (1) terms with c2 ≥ 0 and c3 ≥ 0 can be treated as representations of nonlinear dispersion. In the Camassa-Holm 
approximation c2 + c3 > 0.

This six parametric family of third order conservation laws contains as particular cases a list of basic equations: the KdV and mKdV 
equation if α = c2 = c3 = 0 and n = 2 or n = 3; the Benjamin-Bona-Mahony (BBM) equation ([2], 1972) if n = 2, γ = c2 = c3 = 0; the 
Camassa-Holm (CH) equation ([3], 1993) if n = 2, c2 = c3 / 2, c1 = 3c3/2α2, and γ = 0; and the Degasperis-Procesi (DP) equation ([1], 
see also [4]) if n = 2, c2 = c3, c1 = 2c3/α

2, and c0 = γ = 0. All these particular equations are quite different. Indeed, the KdV, BBM and 
generalizations of CH and DP (if γ + α2c0 > 0) equations have soliton-type traveling wave solutions. At the same time, the CH with c0 
= 0 and DP equations, under the condition u →  0 as x → ±∞, have non-smooth traveling wave solutions only. Next, the KdV, mKdV, 
CH, and DP equations are completely integrable, whereas all others particular cases of the model (1) are essentially non-integrable 
(see e.g. [5]). Consequently, KdV, mKdV, DP, and CH solitons collide elastically, whereas BBM “solitons” have changed after the 
interaction and an oscillatory tail is generated [6]. Furthermore, the Cauchy and periodic problems for the CH and DP equations have 
been studied extensively (see e.g. [4,5,7,8] and references therein), whereas the solvability of similar problems for the general case 
(1) remains be unknown. So, the general model (1) represents the non trivial object of investigations and it is naturally to expect a 
very interesting behavior of its solution.

Concerning the numerical modeling of the equations of family (1), it seems that quite a lot of researches has been carried out. The 
main part of them is devoted to the CH equation. The fact is that when c3 = 2c2, the main term that generates instability falls out of 
the main balance law 
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1 Introduction

We consider a modern unidirectional approximation of the shallow water
system (see e.g. [1]) called the “general mKdV equation” (gmKdV):
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1, t > 0.

Here α, c0, . . . , c3, γ are real parameters and ε characterizes the dispersion,
n = 2 or n = 3. The constants α ≥ 0 and γ ≥ 0 are associated with different
characters of the dispersion manifestation. In the Green-Naghdi approxima-
tion the restriction α+γ > 0 is required. The equation (1) terms with c2 ≥ 0
and c3 ≥ 0 can be treated as representations of nonlinear dispersion. In the
Camassa-Holm approximation c2 + c3 > 0.

This six parametric family of third order conservation laws contains as
particular cases a list of basic equations: the KdV and mKdV equation if
α = c2 = c3 = 0 and n = 2 or n = 3; the Benjamin-Bona-Mahony (BBM)
equation ([2], 1972) if n = 2, γ = c2 = c3 = 0; the Camassa-Holm (CH)
equation ([3], 1993) if n = 2, c2 = c3/2, c1 = 3c3/2α2, and γ = 0; and
the Degasperis-Procesi (DP) equation ([1], see also [4]) if n = 2, c2 = c3,
c1 = 2c3/α2, and c0 = γ = 0. All these particular equations are quite
different. Indeed, the KdV, BBM and generalizations of CH and DP (if
γ + α2c0 > 0) equations have soliton-type traveling wave solutions. At the
same time, the CH with c0 = 0 and DP equations, under the condition u → 0
as x → ±∞, have non-smooth traveling wave solutions only. Next, the KdV,
mKdV, CH, and DP equations are completely integrable, whereas all others
particular cases of the model (1) are essentially non-integrable (see e.g. [5]).
Consequently, KdV, mKdV, DP, and CH solitons collide elastically, whereas
BBM “solitons” have changed after the interaction and an oscillatory tail
is generated [6]. Furthermore, the Cauchy and periodic problems for the
CH and DP equations have been studied extensively (see e.g. [4, 5, 7, 8]
and references therein), whereas the solvability of similar problems for the
general case (1) remains be unknown. So, the general model (1) represents
the non trivial object of investigations and it is naturally to expect a very
interesting behavior of its solution.

Concerning the numerical modeling of the equations of family (1), it seems
that quite a lot of researches has been carried out. The main part of them is
devoted to the CH equation. The fact is that when c3 = 2c2, the main term
that generates instability falls out of the main balance law

d

dt

{∫
∞

−∞

u2dx + α2
∫

∞

−∞

(εux)2dx
}

= ε−1(c3 − 2c2)
∫

∞

−∞

(εux)3dx. (2)

Further, due to wave breaking and the existence of non-smooth solutions, the
proposed schemes for CH and DP equations are mainly based on Fourier rep-
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Further, due to wave breaking and the existence of non-smooth solutions, the proposed schemes for CH and DP equations are mainly 
based on Fourier representation or Galerkin method (e.g. [9,-12] and others). Obviously, this involves the use of fairly complex 
iterative procedures.

As for the finite difference approximation, the approach that is mainly developed here is one that uses bi-Hamiltonian structures of 
CH and DP equations - the so-called “mean vector field method” [13-18].

Our interest in the numerical investigation of the gDP model (for n = 2) appeared after the first result which states that gDP solitons, 
under some conditions, interact elastically in the weak asymptotic (for ε →0) sense [19,20]. To demonstrate this effect numerically 
there has been developed an approach which adapts to the finite-difference representation the conservation law

and the balance law (2). Next, let us note that right-hand side in (2) disappears for even functions. Thus, numerical simulation of 
soliton motion seems to be stable. Subsequent numerical experiments showed the validity of this hypothesis. Moreover, it turned out 
that the collision of solitons, in which, generally speaking, the evenness of the solution is violated, does not lead to any significant 
errors.

In this paper we adapt the main ideas of [23] and previous articles [21,22] to the general mKd model (1) for n = 3 and create a 
”conservative” and effective algorithm. The content of the paper is the following: in Section 2 we present assumptions which 
guarantee the soliton solution existence, a description of the finite difference scheme for sufficiently smooth waves is contained in 
Section 3, which focuses on the problem of dynamics and interaction of solitons. Section 4 shows the results of the corresponding 
numerical experiments. In the appendix, we demonstrate some technical details of the finite difference scheme analysis.

2. Soliton Type Solution
The difference between gDP and gmKdV equations is much deeper than between KdV and mKdV. The most important novelty here 
is such that solitons and antisolitons have different shapes. Furthermore, both solitons and antisolitons move with positive velocities.
 
To clarify the method for constructing a smooth traveling wave for equation (1), we briefly explain the approach [24]. Let’s consider 
the ansatz

which we call soliton (for A > 0 or antisoliton for A < 0), regardless of the scenario of their interaction. Here ω(η, A) is a smooth 
function such that

the wave amplitude A ≠ 0, the scale β, and the initial point x0 are free parameters. The velocity V = V (A) ≠ 0 should be determined.
We assume

and, to simplify subsequent formulas, define the notation

Next we define a new function g = g(η, q) such that
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resentation or Galerkin method (e.g. [9, 10, 11, 12] and others). Obviously,
this involves the use of fairly complex iterative procedures.

As for the finite difference approximation, the approach that is mainly
developed here is one that uses bi-Hamiltonian structures of CH and DP
equations - the so-called “mean vector field method” ([13, 14, 15, 16, 17] and
others, see also [18]).

Our interest in the numerical investigation of the gDP model (for n = 2)
appeared after the first result [19, 20] which states that gDP solitons, under
some conditions, interact elastically in the weak asymptotic (for ε → 0)
sense. To demonstrate this effect numerically there has been developed an
approach [21, 22, 23] which adapts to the finite-difference representation the
conservation law

d

dt

∫
∞

−∞

u(x, t) dx = 0, (3)

and the balance law (2). Next, let us note that right-hand side in (2) disap-
pears for even functions. Thus, numerical simulation of soliton motion seems
to be stable. Subsequent numerical experiments showed the validity of this
hypothesis. Moreover, it turned out that the collision of solitons, in which,
generally speaking, the evenness of the solution is violated, does not lead to
any significant errors.

In this paper we adapt the main ideas of [23] and previous articles [21, 22]
to the general mKdV model (1) for n = 3 and create a ”conservative” and
effective algorithm.

The content of the paper is the following: in Section 2 we present as-
sumptions which guarantee the soliton solution existence, a description of
the finite difference scheme for sufficiently smooth waves is contained in Sec-
tion 3, which focuses on the problem of dynamics and interaction of solitons.
Section 4 shows the results of the corresponding numerical experiments. In
the appendix, we demonstrate some technical details of the finite difference
scheme analysis.

2 Soliton type solution

The difference between gDP and gmKdV equations is much deeper than
between KdV and mKdV. The most important novelty here is such that
solitons and antisolitons have different shapes. Furthermore, both solitons
and antisolitons move with positive velocities.
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To clarify the method for constructing a smooth traveling wave for equa-
tion (1), we briefly explain the approach [24]. Let’s consider the ansatz

u = Aω
(
β(x − V t − x0)/ε, A

)
, (4)

which we call soliton (for A > 0 or antisoliton for A < 0), regardless of the
scenario of their interaction. Here ω(η, A) is a smooth function such that

ω(0, A) = 1, ω(−η, A) = ω(η, A), ω(η, A) → 0 as η → ±∞, (5)

the wave amplitude A �= 0, the scale β, and the initial point x0 are free
parameters. The velocity V = V (A) �= 0 should be determined.

We assume
γ + α2V > 0, (6)

and, to simplify subsequent formulas, define the notation

r = c3/(c2 + c3), β =
√

c1(γ + α2V )/(c3

√
r),

q = c2
3(V − c0)/

(
c1(γ + α2V )2

)
, p = c3A/(γ + α2V ).

(7)

Next we define a new function g = g(η, q) such that

ω(η, A) =
(
1 − g(η, q)r

)
/p. (8)

Substituting (8) into (1) we pass to the equation
(

dg

dη

)2

= F (g, q), (9)

where

F (g, q) = 3g2 − 2
1

2 + r
g2+r − 2

3 − q

2 − r
g2−r +

1 − q

1 − r
g2−2r − C(q),

C(q) =
r

(
3r2 − q(2 + r)

)

(1 − r)(4 − r2)
.

(10)

The right-hand side F has three roots. One of them, g = 1, corresponds to
the behavior of ω at infinity. The other, g0 < 1 and g1 > 1, are associated
with the condition ω(0, A) = 1. It’s easy to verify that

g0 ∈ (0, 1) ⇐⇒ C(q) > 0, F ′′

gg

∣∣∣
g=1

> 0 ⇐⇒ q > 0. (11)
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Now we note that, for the representation (8), the equality

can be realized if and only if k = 0 for A > 0 and k = 1 for A < 0. In turn, equalities (12) allow us to determine the relationship between 
the speed V = Vk and root gk. For α > 0 we have

Therefore, we obtain the equations for the roots gk = gk(A)

Now we can state the Cauchy problems

if A > 0 and

if A < 0
Considering in the same manner the case α = 0, we find the root g0 = g0(A) of F and the associated velocity V

 

Where
  

The right-hand side F has three roots. One of them, g = 1, corresponds to the behavior of ω at infinity. The other, g0 < 1 and g1 > 1, 
are associated with the condition ω(0, A) = 1. It’s easy to verify that

Assuming the fulfillment of the assumptions (11) we obtain the function F (g, q) like depicted on Figure 1.
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which we call soliton (for A > 0 or antisoliton for A < 0), regardless of the
scenario of their interaction. Here ω(η, A) is a smooth function such that

ω(0, A) = 1, ω(−η, A) = ω(η, A), ω(η, A) → 0 as η → ±∞, (5)

the wave amplitude A �= 0, the scale β, and the initial point x0 are free
parameters. The velocity V = V (A) �= 0 should be determined.

We assume
γ + α2V > 0, (6)

and, to simplify subsequent formulas, define the notation

r = c3/(c2 + c3), β =
√

c1(γ + α2V )/(c3

√
r),

q = c2
3(V − c0)/

(
c1(γ + α2V )2

)
, p = c3A/(γ + α2V ).

(7)

Next we define a new function g = g(η, q) such that

ω(η, A) =
(
1 − g(η, q)r

)
/p. (8)

Substituting (8) into (1) we pass to the equation
(

dg
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)2

= F (g, q), (9)

where

F (g, q) = 3g2 − 2
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3r2 − q(2 + r)

)

(1 − r)(4 − r2)
.

(10)

The right-hand side F has three roots. One of them, g = 1, corresponds to
the behavior of ω at infinity. The other, g0 < 1 and g1 > 1, are associated
with the condition ω(0, A) = 1. It’s easy to verify that

g0 ∈ (0, 1) ⇐⇒ C(q) > 0, F ′′

gg

∣∣∣
g=1

> 0 ⇐⇒ q > 0. (11)
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Assuming the fulfillment of the assumptions (11) we obtain the function
F (g, q) like depicted on Fig 1.

Figure 1: Right-hand side of the equation (9) in the case r = 1/2, q ≈ 0.148.
Here g0 ≈ 0.175, g1 ≈ 2.455, and C(q) ≈ 1.964.

Now we note that, for the representation (8), the equality

1 − gr
k

def= pk = c3A/(γ + α2V ), k = 0, 1, (12)

can be realized if and only if k = 0 for A > 0 and k = 1 for A < 0.
In turn, equalities (12) allow us to determine the relationship between the
speed V = Vk and root gk. For α > 0 we have

Vk = α−2
{
c3A/pk − γ

}
, k = 0, 1. (13)

Therefore, we obtain the equations for the roots gk = gk(A)

F (gk, q)
∣∣∣
q=q(Vk)

= 0, k = 0, 1. (14)

Now we can state the Cauchy problems

dg

dη
=

√
F (g, q)

∣∣∣
q=q(V0)

, η ∈ (0, ∞); g|η=0 = go, (15)

if A > 0 and

dg

dη
= −

√
F (g, q)

∣∣∣
q=q(V1)

, η ∈ (0, ∞); g|η=0 = g1, (16)
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Thus, taking into account the restrictions (11), we come to the following statement.

Theorem 1
Let the amplitude A satisfy the conditions [24]

if A < 0.
Considering in the same manner the case α = 0, we find the root g0 =

ḡ0(A) of F and the associated velocity V̄

ḡ0(A) = (1 − c3A/γ)1/r, V̄ = c0 + c1γ
2q

(
ḡ0(A)

)
/c2

3, α = 0. (17)

Thus, taking into account the restrictions (11), we come to the following
statement

Theorem 1. [24] Let the amplitude A satisfy the conditions

A ∈ (A∗

0, A−

0 )
⋃

(A+
0 , ∞) if α > 0, γα > 0, and c2

3 > 4ξγα, (18)

A > A∗

0, A �= A
±

0 if α > 0, γα > 0, and c2
3 = 4ξγα, (19)

A > A∗

0 if α > 0, γα > 0, and c2
3 < 4ξγα, (20)

A < p1γαc3 < 0 if α > 0, (21)

either A < γ/c3, A �= 0 if α = 0. Then the equation (1) for n = 3 has the
soliton solution (4) with the velocity (13) if α > 0 and (17) if α = 0. The
function ω(η, A) vanishes at the exponential rate, ω(η, A) ∼ exp(−√

rqη)
for η >> 1. Here γα = γ + α2c0, ξ = 3r2α2c1/(2 + r), A∗

0 = p0γα/c3,

A
±

0 = p0c3/2ξ, and A±

0 = p0

(
c3 ±

√
c2

3 − 4ξγα

)
/2ξ.

3 Finite difference scheme

The actual numerical simulation for the Cauchy problem for the gmKdV
equation (1) is realized for n = 3 and for a bounded x-interval, x ∈ [0, L].
For this reason we simulate the Cauchy problem by the following mixed
problem:

∂

∂t

{
u − α2ε2 ∂2u

∂x2

}
+

∂

∂x

{
c0u + c1u

3 − c2ε
2
(

∂u

∂x

)2

+ γε2 ∂2u

∂x2

− c3ε
2u

∂2u

∂x2

}
= 0, x ∈ (0, L), t ∈ (0, T ), (22)

u
∣∣∣
x=0

= u
∣∣∣
x=L

= ux

∣∣∣
x=L

= 0, u
∣∣∣
t=0

= u0(x/ε), (23)

where L, T , and sufficiently smooth function u0 are such that uniformly in
t ∈ [0, T ]

∣∣∣u(x, t)|x∈[0,δ]

∣∣∣ ≤ cε2 << 1,
∣∣∣u(x, t)|x∈[L−δ,L]

∣∣∣ ≤ cε2 << 1 (24)
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i

def=
1
2

(yj
ix + yj

ix̄), yj
it̄

def= ∂t̄y
j
i

def=
yj

i − yj−1
i

τ
, yj

ixx̄ = (yj
ix)x̄.

Let us consider the following system of nonlinear equations:

yj
it̄ − α2ε2yj

ixx̄t̄ + c0y
j
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− ε2Q2(y

j
i ) = 0, i = 1, . . . , I − 1, j = 1, 2, . . . , J, (27)

yj
l = 0, yj

I−l = 0, l = 0, 1, 2, j = 1, 2, . . . , J, (28)

y0
i = ũ0(xi/ε), i = 0, . . . , I, (29)

where

Q1(y) =
1
2

{y2yẋ + y(y2)ẋ + (y3)ẋ}, γh = γ(1 − h), (30)

Q2(y) = ∂ẋ

{
c2yxyx̄ +

c3

2

(
2yyxx̄ + (yx)2 − 2yxyx̄ + (yx̄)2

)}
, (31)

ũ0(xl/ε) = ũ0(xI−l/ε) = 0 for l = 0, 1, 2,

ũ0(xi/ε) =
1
h

∫ xi+h/2

xi−h/2
u0

(
η

ε

)
dη, i = 3, . . . , I − 3.

The main properties of the terms Ql(y) are the following

h
∑

i

Ql(yi) = 0 l = 1, 2, h
∑

i

yiQ1(yi) = 0, (32)

h
∑

i

yiQ2(yi) =
1
2

(c3 − 2c2)h
∑

i

yixyix̄yiẋ. (33)

The sense of the term hyj
ixx̄x is similar to the parabolic regularization of

the gDP equation (see below). It is clear also that the local approximation
accuracy of (27) is O(τ + h2) for sufficiently smooth solution. It should be
noted also that a similar approach to the nonlinearity Q1 digitization has
been presented and successfully used in [25, 26].

To simplify the notation, we write

y
def= yj

i , y̌
def= yj−1

i .

So, the short form of the equation (27) is the following:

yt̄ − α2ε2yxx̄t̄ + c0yẋ + c1Q1(y) + ε2
(
γhyxx̄ẋ + γhyxx̄x

)
− ε2Q2(y) = 0. (34)

Our first result consists of obtaining of discrete analogs of the equalities
(2) and (3). Multiplying (27) by 1 and y, summing over i, and using some
trivial equalities (see [23]) it is easy to obtain the following
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Q1(y) =
1
2

{y2yẋ + y(y2)ẋ + (y3)ẋ}, γh = γ(1 − h), (30)

Q2(y) = ∂ẋ

{
c2yxyx̄ +

c3

2

(
2yyxx̄ + (yx)2 − 2yxyx̄ + (yx̄)2

)}
, (31)

ũ0(xl/ε) = ũ0(xI−l/ε) = 0 for l = 0, 1, 2,

ũ0(xi/ε) =
1
h

∫ xi+h/2

xi−h/2
u0

(
η

ε

)
dη, i = 3, . . . , I − 3.

The main properties of the terms Ql(y) are the following

h
∑

i

Ql(yi) = 0 l = 1, 2, h
∑

i

yiQ1(yi) = 0, (32)

h
∑

i

yiQ2(yi) =
1
2

(c3 − 2c2)h
∑

i

yixyix̄yiẋ. (33)

The sense of the term hyj
ixx̄x is similar to the parabolic regularization of

the gDP equation (see below). It is clear also that the local approximation
accuracy of (27) is O(τ + h2) for sufficiently smooth solution. It should be
noted also that a similar approach to the nonlinearity Q1 digitization has
been presented and successfully used in [25, 26].

To simplify the notation, we write

y
def= yj

i , y̌
def= yj−1

i .

So, the short form of the equation (27) is the following:

yt̄ − α2ε2yxx̄t̄ + c0yẋ + c1Q1(y) + ε2
(
γhyxx̄ẋ + γhyxx̄x

)
− ε2Q2(y) = 0. (34)

Our first result consists of obtaining of discrete analogs of the equalities
(2) and (3). Multiplying (27) by 1 and y, summing over i, and using some
trivial equalities (see [23]) it is easy to obtain the following
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Lemma 1. Let the nonlinear system of algebraic equations (27)-(29) have
the unique solution yj

i , i = 1, ..., I − 1, j = 1, 2, ..., J , and let ε > 0 be a
constant. Then uniformly in j ≤ J the following relations hold:

∂t̄ h
∑

yj = 0, (35)

∂t̄

{
�yj�2 + α2�εyj

x�2
}

+ τ
{

�yj
t̄ �2 + α2�εyj

xt̄�2
}

+ γh2�εyj
xx̄�2

= ε2(c3 − 2c2)h
∑

yj
xyj

x̄yj
ẋ, (36)

Here and in what follows
∑

denotes the summation over all i and � · � is
the discrete version of the L2(0, L) norm, namely

∑
f =

I−1∑

i=1

fi , �f�2 = h
I−1∑

i=1

|fi|2. (37)

Next, we note that the equality (36), as well as (2), does’t imply any regu-
larity of the solution if c3 �= 2c2. However, there exists a special case, when
(36) allows us to analyze the equation (34) solution.

Lemma 2. Let T > 0 be a constant, α > 0, and u0, u0
x ∈ L2(0, L). Moreover,

let for each j = 0, 1, 2, ..., J there exist k(j) such that

yj
k(j)+i = yj

k(j)−i, i = 0, 1, . . . , (38)

where yj
i = 0 for i ≤ 0 and i ≥ I. Then under the assumptions of Lemma 1

�yj�2 + α2�εyj
x�2 + τ

{
�|yt̄�|2(j) + α2�|εyj

xt̄�|2(j)
}

+ γh2�|εyxx̄�|2(j) = �y0�2 + α2�εy0
x�2. (39)

Here and in what follows �|·�|(j) is the discrete version of the L2
(
(0, L)×

(0, tj)
)

norm, namely

�|f�|2(j) = τ
j∑

k=1

�fk�2. (40)

As a consequence of this lemma one can prove a convergence result. Namely,
let yτ,h(x, t) be an extension of the net-function yj

i which satisfies the same
estimate (39) and the evenness assumption in the sense of (38) (see e.g. [27]),
and let u(x, t) denote the solution of the problem (22), (23). Then, using the
standard technic (see e.g. [28]), one can prove the theorem
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ẋ, (36)

Here and in what follows
∑

denotes the summation over all i and � · � is
the discrete version of the L2(0, L) norm, namely

∑
f =

I−1∑

i=1

fi , �f�2 = h
I−1∑

i=1

|fi|2. (37)

Next, we note that the equality (36), as well as (2), does’t imply any regu-
larity of the solution if c3 �= 2c2. However, there exists a special case, when
(36) allows us to analyze the equation (34) solution.

Lemma 2. Let T > 0 be a constant, α > 0, and u0, u0
x ∈ L2(0, L). Moreover,

let for each j = 0, 1, 2, ..., J there exist k(j) such that

yj
k(j)+i = yj

k(j)−i, i = 0, 1, . . . , (38)

where yj
i = 0 for i ≤ 0 and i ≥ I. Then under the assumptions of Lemma 1

�yj�2 + α2�εyj
x�2 + τ

{
�|yt̄�|2(j) + α2�|εyj

xt̄�|2(j)
}

+ γh2�|εyxx̄�|2(j) = �y0�2 + α2�εy0
x�2. (39)

Here and in what follows �|·�|(j) is the discrete version of the L2
(
(0, L)×

(0, tj)
)

norm, namely

�|f�|2(j) = τ
j∑

k=1

�fk�2. (40)

As a consequence of this lemma one can prove a convergence result. Namely,
let yτ,h(x, t) be an extension of the net-function yj

i which satisfies the same
estimate (39) and the evenness assumption in the sense of (38) (see e.g. [27]),
and let u(x, t) denote the solution of the problem (22), (23). Then, using the
standard technic (see e.g. [28]), one can prove the theorem

9

Lemma 1. Let the nonlinear system of algebraic equations (27)-(29) have
the unique solution yj

i , i = 1, ..., I − 1, j = 1, 2, ..., J , and let ε > 0 be a
constant. Then uniformly in j ≤ J the following relations hold:

∂t̄ h
∑

yj = 0, (35)

∂t̄

{
�yj�2 + α2�εyj

x�2
}

+ τ
{

�yj
t̄ �2 + α2�εyj

xt̄�2
}

+ γh2�εyj
xx̄�2

= ε2(c3 − 2c2)h
∑

yj
xyj

x̄yj
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= ε2(c3 − 2c2)h
∑

yj
xyj

x̄yj
ẋ, (36)

Here and in what follows
∑

denotes the summation over all i and � · � is
the discrete version of the L2(0, L) norm, namely

∑
f =

I−1∑

i=1

fi , �f�2 = h
I−1∑

i=1

|fi|2. (37)

Next, we note that the equality (36), as well as (2), does’t imply any regu-
larity of the solution if c3 �= 2c2. However, there exists a special case, when
(36) allows us to analyze the equation (34) solution.

Lemma 2. Let T > 0 be a constant, α > 0, and u0, u0
x ∈ L2(0, L). Moreover,

let for each j = 0, 1, 2, ..., J there exist k(j) such that

yj
k(j)+i = yj

k(j)−i, i = 0, 1, . . . , (38)

where yj
i = 0 for i ≤ 0 and i ≥ I. Then under the assumptions of Lemma 1

�yj�2 + α2�εyj
x�2 + τ

{
�|yt̄�|2(j) + α2�|εyj

xt̄�|2(j)
}

+ γh2�|εyxx̄�|2(j) = �y0�2 + α2�εy0
x�2. (39)

Here and in what follows �|·�|(j) is the discrete version of the L2
(
(0, L)×

(0, tj)
)

norm, namely

�|f�|2(j) = τ
j∑

k=1

�fk�2. (40)

As a consequence of this lemma one can prove a convergence result. Namely,
let yτ,h(x, t) be an extension of the net-function yj

i which satisfies the same
estimate (39) and the evenness assumption in the sense of (38) (see e.g. [27]),
and let u(x, t) denote the solution of the problem (22), (23). Then, using the
standard technic (see e.g. [28]), one can prove the theorem
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as τ, h → 0, where W l
2 denotes the Sobolev space.

Similar to (39) one can obtain stronger estimates.
Lemma 3. Under the assumption of Lemma 2 let u0 ∈ W 2

2. Then uniformly in j:

Theorem 2. Let the assumptions of Lemma 2 be satisfied. Then there exists
a subsequence yτ̄ ,h̄(x, t) such that

yτ̄ , h̄ → u ∗-weakly in L∞
(
(0, T ); W 1

2 (0, L)
))

(41)

as τ , h → 0, where W l
2 denotes the Sobolev space.

Similar to (39) one can obtain stronger estimates.

Lemma 3. Under the assumption of Lemma 2 let u0 ∈ W 2
2 . Then uniformly

in j:

�εyj
x�2 + α2�ε2yj

xx̄�2 + τ
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}
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�yj
t̄ �2 + �εyj

xt̄�2 ≤ ε−4C
(
�y0�, �εy0

x�, �ε2y0
xx̄�

)
, (43)

where C(v, w, z) does not depend on τ , h, and ε.

3.2 Linearization

Now we should verify the solvability of the equation (34) for any fixed j ≥ 1,
that is of the system of nonlinear equations

y − α2ε2yxx̄ + τ
{

c0yẋ + c1Q1(y) + ε2
(
γhyxx̄ẋ + γhyxx̄x

)

− ε2Q2(y)
}

= y̌ − α2ε2y̌xx̄, (44)

as well as select a way to linearize the nonlinear terms. To this aim let us
construct the sequence of vector functions ϕ(s) def= {ϕ0(s), ..., ϕI(s)}, s ≥ 0,
such that ϕ(0) = y̌ and ϕ

def= ϕ(s) for s ≥ 1 satisfies the equation

ϕ − α2ε2ϕxx̄ + τ
{
c0ϕẋ + c1R1(ϕ̄, ϕ) + ε2

(
γhϕxx̄ẋ + γhϕxx̄x

)

− ε2R2(ϕ̄, ϕ)
}

= y̌ − α2ε2y̌xx̄ + τ
{
2c1Q1(ϕ̄) − ε2Q2(ϕ̄)

}
, (45)

ϕl = 0, ϕI−l = 0, l = 0, 1, 2,

where ϕ̄
def= ϕ(s − 1). To obtain (45) we use the identity

Q1(ϕ) = Q1(ϕ̄ + w) = Q1(ϕ̄) + R1(ϕ̄, w) + R1(w, ϕ̄) + Q1(w), (46)

10

Theorem 2. Let the assumptions of Lemma 2 be satisfied. Then there exists
a subsequence yτ̄ ,h̄(x, t) such that

yτ̄ , h̄ → u ∗-weakly in L∞
(
(0, T ); W 1

2 (0, L)
))

(41)

as τ , h → 0, where W l
2 denotes the Sobolev space.

Similar to (39) one can obtain stronger estimates.

Lemma 3. Under the assumption of Lemma 2 let u0 ∈ W 2
2 . Then uniformly

in j:

�εyj
x�2 + α2�ε2yj

xx̄�2 + τ
{

�|εyxt̄�|2(j) + α2�|ε2yxx̄t̄�|2(j)
}

+ γh2�|ε2yxx̄ẋ�|2(j) = �εy0
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c0ϕẋ + c1R1(ϕ̄, ϕ) + ε2

(
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Q2(ϕ) = Q2(ϕ̄ + w) = Q2(ϕ̄) + R2(ϕ̄, w) + Q2(w), (47)

R1(u, v) =
1
2

{
u2vẋ + 2u(uv)ẋ + 3(u2v)ẋ + 2uvuẋ + v(u2)ẋ

}
, (48)

R2(ϕ̄, w) = ∂ẋ

{
(c2 − c3)

(
ϕ̄xwx̄ + ϕ̄x̄wx

)

+ c3

(
ϕ̄wxx̄ + ϕ̄xwx + ϕ̄x̄wx̄ + ϕ̄xx̄w

)}
, (49)

where w = ϕ − ϕ̄. Next we neglect the quadratic in w terms in (46), (47),
and note that

R1(ϕ̄, w) = R1(ϕ̄, ϕ) − 3Q1(ϕ̄), R2(ϕ̄, w) = R2(ϕ̄, ϕ) − 2Q2(ϕ̄). (50)

Continuing, we we note that the solvability of the algebraic system (45) is
obvious for sufficiently small τ/h3. In order to estimate �ϕ� let us use the
identities (46) - (50) again and rewrite (45) as follows:

ϕ − α2ε2ϕxx̄ + τ
{
c0ϕẋ + c1Q1(ϕ) + ε2

(
γhϕxx̄ẋ + γhϕxx̄x

)

− ε2Q2(ϕ)
}

= y̌ − α2ε2y̌xx̄ + τ
{
c1R1(w, ϕ̄) + c1Q1(w) − ε2Q2(w)

}
. (51)

Similarly to (36) the equation (51) yields

�ϕ�2 + α2�εϕx�2 + τγh2�εϕxx̄�2 − ε2(c3/2 − c2)h
∑

ϕxϕx̄ϕẋ

= h
∑

ϕ{y̌ − α2ε2y̌xx̄} + τh
∑

ϕ{c1R1(w, ϕ̄) + c1Q1(w) − ε2Q2(w)}. (52)

Again we should assume the existence of a special solution ϕ, which sat-
isfies the evenness condition (38). The next step is the estimation of the
discrepancy w. Assuming the existence of the special even solution yk of the
equation (34) with k = 1, 2, ..., j − 1, and subtracting one equation (45) (for
s = s0 − 1) from the another one (for s = s0), we obtain:

w − α2ε2wxx̄ + τ
{
c0wẋ + c1R1(y̌, w) + ε2

(
γhwxx̄ẋ + γhwxx̄x

)

− ε2R2(y̌, w)
}

= τ(y̌t̄ − α2ε2y̌xx̄t̄) for s = 1, (53)

w − α2ε2wxx̄ + τ
{
c0wẋ + c1R1(ϕ̄, w) + c1R1(w̄, ¯̄ϕ) + ε2

(
γhwxx̄ẋ + γhwxx̄x

)

− ε2R2(ϕ̄, w)
}

= −τ
(
c1Q1(w̄) − ε2Q2(w̄)

)
for s > 1, (54)

where w̄ def= ϕ(s − 1) − ϕ(s − 2). Applying the standard techniques we verify
the following estimates for ϕ and w (for the proof see Attachment):
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obvious for sufficiently small τ/h3. In order to estimate �ϕ� let us use the
identities (46) - (50) again and rewrite (45) as follows:
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c0ϕẋ + c1Q1(ϕ) + ε2

(
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where w̄ def= ϕ(s − 1) − ϕ(s − 2). Applying the standard techniques we verify
the following estimates for ϕ and w (for the proof see Attachment):

11

Q2(ϕ) = Q2(ϕ̄ + w) = Q2(ϕ̄) + R2(ϕ̄, w) + Q2(w), (47)

R1(u, v) =
1
2

{
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}
, (48)

R2(ϕ̄, w) = ∂ẋ
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γhwxx̄ẋ + γhwxx̄x

)

− ε2R2(y̌, w)
}

= τ(y̌t̄ − α2ε2y̌xx̄t̄) for s = 1, (53)

w − α2ε2wxx̄ + τ
{
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c0wẋ + c1R1(ϕ̄, w) + c1R1(w̄, ¯̄ϕ) + ε2

(
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where w = φ - φ. Next we neglect the quadratic in w terms in (46), (47), and note that

Continuing, we note that the solvability of the algebraic system (45) is obvious for sufficiently small τ / h3. In order to estimate ||φ|| 
let us use the identities (46) - (50) again and rewrite (45) as follows:

 Similarly to (36) the equation (51) yields

Again we should assume the existence of a special solution φ, which satisfies the evenness condition (38). The next step is the 
estimation of the discrepancy w. Assuming the existence of the special even solution yk of the equation (34) with k = 1, 2, ..., j − 1, 
and subtracting one equation (45) (for s = s0 − 1) from the another one (for s = s0), we obtain:
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Lemma 4
Let the assumptions of Lemma 3 be satisfied and let φ satisfy the evenness condition (38). Suppose also that

Lemma 4. Let the assumptions of Lemma 3 be satisfied and let ϕ satisfy the
evenness condition (38). Suppose also that

τ ≤ q1εh2, h ≤ q2ε, (55)

where constants qi > 0 are sufficiently small. Then

�ϕ�2
(2,τ)

{
1 − (εq3

1q4
2)1/4

(
�w�2

(2,τ) + (q1q2)1/4h3/4�w�2
(1)

)}

≤ c1�y̌�2
(2) + c2

{
�w�4

(2,τ) + �w�6
(1)

}
, (56)

�w�2
(2,τ) ≤ c3τ

2�y̌t̄�2
(1) for s = 1, (57)

�w�2
(2,τ) ≤ c4(τε−2)2�w̄�6

(1) + c5�w̄�4
(2,τ), for s > 1, (58)

where

�f�2
(1)

def= �f�2 + �εfx�2, �f�2
(2)

def= �f�2 + �εfx�2 + �ε2fxx̄�2,

�f�2
(2,τ)

def= �f�2 + �εfx�2 + τh2�εfxx̄�2, (59)

ci > 0 denote constants which do not depend on h, τ , ε, and s.

In particular, estimates (55)-(58) imply for s = 2

�w(2)�2
(2,τ) ≤ c

(
τε−2

)2
τ 6 + (c′τ 2)2 ≤ cτ 4,

�ϕ(2)�2
(2,τ)(1 − cτ 4) ≤ c�y̌�2

(2) + c′τ 8. (60)

Collecting the estimates (43) and (55)-(58) together, we finally reach the
conclusion that the terms of the w-sequence vanish very rapidly,

�w(s)�2
(2,τ) ≤

(
c′τ

)2s

. (61)

Note next that by virtue of (56)-(58), the terms of ϕ-sequence are bounded
uniformly in s

�ϕ(s)�2
(2,ε) ≤ c�yj�2 + O(τ 4). (62)

Furthermore, for any n > 0

�ϕ(s + n) − ϕ(s)�(2,ε) ≤
n∑

i=1

�ws+i�(2,ε)

≤ �ws+1�(2,ε)

∞∑

i=1

�ws+i�(2,ε)

�ws+1�(2,ε)

≤ c�ws+1�(2,ε).

This implies the main statement of this subsection:
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Note next that by virtue of (56)-(58), the terms of φ-sequence are bounded uniformly in s

This implies the main statement of this subsection:

Theorem 3
Let the assumption Lemma 4 be satisfied. Then the sequence φ(s) converges in the H2

τ,h,ε sense to the solution of the equation (44). 
Moreover 

where H2
τ,h,ε is the space with the norm (59) and a constant c > 0 dos not depend on h, τ, and ε.

3.3 Numerical Simulation
To solve the system of linear equations (45) we use the Gauss method adapted to systems with five non-zero diagonals. This implies 
the efficiency of the scheme in the sense that it executes O(I) arithmetic operations to pass to the next time-level. In accordance with 
(63) we stop the iterative calculation of φ(s) at the second step setting y j = φ (2). Clearly, this implies the appearance of an error. 
However, our results of numerical simulations justify this decision (see below).
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In order to define soliton initial data we solve numerically the equation
(14) and define g(0) = g∗, where g∗ = g0 for A > 0 and g∗ = g1 for A < 0.
Next, to avoid the non uniqueness in the problems (15), (16) we calculate

g∗(h) = g∗+
1
4

h2 dF

dg

���
g=g∗

+
1
4

h4

4!
dF

dg

d2F

dg2

���
g=g∗

+
1
4

h6

6!
dF

dg


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d3F

dg3
+

�
d2F

dg2

�2



������
g=g∗

and solve the similar (15) (if A > 0 or (16) if A < 0) problem

dg

dη
=

�
F (g, q), η ∈ (h, ∞); g|η=h = g∗(h), (64)

using the fourth order Runge-Kutta method. The last step is the determina-
tion of the profile ω(η, A) in accordance with the rule (8).

Example 1. When α = c0 = c2 = c3 = 0, c1 = 2, γ = 1, and n = 3,
(1) is the modified KdV equation. For definiteness, here and in what follows
we set ε = 0.1. We test the finite difference scheme (45) by calculating
the difference Er between the numerical and exact mKdV solitons, and also
check the fulfilment of the conservation laws (35) and (36), see Fig. 2 and
Table 1. The motion of the numerical mKdV soliton is shown in Fig. 3.
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Example 1. When α = c0 = c2 = c3 = 0, c1 = 2, γ = 1, and n = 3,
(1) is the modified KdV equation. For definiteness, here and in what follows
we set ε = 0.1. We test the finite difference scheme (45) by calculating
the difference Er between the numerical and exact mKdV solitons, and also
check the fulfilment of the conservation laws (35) and (36), see Fig. 2 and
Table 1. The motion of the numerical mKdV soliton is shown in Fig. 3.
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Figure 2: Behavior of the error-functions Er and ∆k (65) for the mKdV
soliton with A = 1.2 and τ = h2

Here

Er = max
i=0,...,I

|uexact(xi, tj) − yj
i |, ∆k = max

j′=0,...,j
|Ej′

k − E0
k |, k = 1, 2, (65)

uexact = A cosh−1(β(x − V t − x0)/ε) is the exact mKdV soliton, V = A2,
β = A, and yj

i is the numerical wave at xi = x0 + ih, tj = jτ . The energies
Ej

k are calculated in accordance with formulas (32), (33),

Ej
1 = h

I∑

i=0

yj
i , Ej

2 = �yj�2 + α2�εyj
x�2 + τ 2

j∑

j′=1

{
�yj′

t̄ �2 + α2�εyj′

xt̄�2
}

+ γh2τ
j∑

j′=1

�εyj
xx̄�2 + ε2(2c2 − c3)τh

j∑

j′=1

I∑

i=0

yj
ixyj

ix̄yj
iẋ.

h (×10−3) 20.0 12.5 10.0 7.1 5.5 5.0 4.5 4.1 3.8 3.3
Er (×10−3) 170.7 71.4 46.5 24.0 14.6 1.8 0.9 0.8 7.0 9.0
∆1 (×10−6) 18.3 14.4 11.1 6.5 3.9 4.1 4.3 2.9 4.6 9.0
∆2 (×10−6) 0.5 0.4 0.5 0.6 0.6 1.9 1.1 3.5 0.7 1.2

Table 1: The errors Er, ∆k for h ∈ [3.3 × 10−3, 0.2] and A = 1.2 at time
t = tj = 1.
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Table 1: The Errors Er, Δk for h ∈ [3.3 × 10−3, 0.2] and A = 1.2 at time t = tj = 1.
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Figure 3: Dynamics of the mKdV soliton with A = 1.6, h = 4.1 × 10−3, and
τ = h2

Example 2. Let us consider mgDP equation (1) in the case

c3 = c2 = 2, γ = 2, c1 = c0 = α = 1. (66)

Then r = 1/2 and Theorem 1 guarantees the existence of solitons with ampli-
tudes under the assumption (18), where A∗

0 = 0.33, A−

0 = 1.9, and A+
0 = 2.55.

h
(

×10−3
)

20.0 12.5 10.0 7.1 5.5 5.0 4.5 4.1 3.8 3.3

∆1

(
×10−5

)
0.5 2.5 7.3 5.2 46.0 20.8 102.3 201.3 523.2 1037.3

∆2

(
×10−3

)
328.2 246.1 146.1 97.2 84.1 38.3 1.1 3.5 41.5 317.9

Table 2: The errors ∆k for h ∈ [3.8×10−3, 0.2] and A = 1.2 at time t = tj = 1.
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Table 2: The Error ∆k for h ∈ [3.8×10−3, 0.2] and A = 1.2 at time t = tj = 1.

Figure 4: Behavior of the Error- Functions ∆k for the mgDP Soliton with A = 1.2 in the case (66)

Figure 5: Evolution of the mgDP Soliton with A = 1.2 in the case (66)

Example 2. Let us consider mgDP equation (1) in the case

Then r = 1/2 and Theorem 1 guarantees the existence of solitons with amplitudes under the assumption (18), where A∗
0 = 0.33, A−

0 
= 1.9, and A+

0 = 2.55.

Next, for r = 1/2 the function F (g,q) (10) is the 5-degree polynomial

Thus, the real root g = g∗ can be found analytically using the Cardano’s formula. We set A = 1.2 and define the initial data by solving 
the problem (64). The graph in Fig. 4 and Table 2 confirm the stability of the wave propagation. Figures 5 and 6 depict the evolution 
of one and two solitons respectively for the case (66).

Figure 4: Behavior of the error-functions ∆k for the mgDP soliton with
A = 1.2 in the case (66)

Next, for r = 1/2 the function F (g, q) (10) is the 5-degree polynomial

F (g, q) = (1/15)(z − 1)2
(

− 12z3 + 21z2 + (20q − 6)z + 10q − 3
)∣∣∣

z=g1/2
.

Thus, the real root g = g∗ can be found analytically using the Cardano’s
formula. We set A = 1.2 and define the initial data by solving the problem
(64). The graph in Fig. 4 and Table 2 confirm the stability of the wave
propagation. Figures 5 and 6 depict the evolution of one and two solitons
respectively for the case (66).
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Figure 6: Collision of two solitons with A1 = 1.2, A2 = 0.5 in the case (66)

Example 3. Let us now consider mgDP equation (1) in the case

α = c1 = c3 = c2 = 1, γ = c0 = 2. (67)

Then r = 1/2 and Theorem 1 guarantees the existence of solitons with am-
plitudes under the assumption (20), where A∗

0 = 0.20.

h
(

×10−3
)

6.2 6.0 5.8 5.7 5.5 5.4 5.2 5.1 5.0
∆1

(
×10−4

)
11.4 6.1 16.8 42.1 10.5 18.7 5.0 20.9 51.0

∆2

(
×10−3

)
17.0 28.4 23.0 18.6 8.0 7.3 27.3 18.5 10.1

Table 3: The errors ∆k for h ∈ [5 × 10−3, 6 × 10−3] and A = 1.5 at time
t = tj = 1.

Figure 7: Behavior of the error-functions ∆k for the mgDP soliton with
A = 1.5 in the case (67)
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Figure 8: Evolution of the mgDP Antisoliton with A = −1.8 in the case (67) with h = 5.2×10−3 and g1 = 1.73473808

Example 3: Let us now consider mgDP equation (1) in the case

Then r = 1/2 and Theorem 1 guarantees the existence of solitons with amplitudes under the assumption (20), where A∗ = 0.20.

Next, similar to Example 2, for r = 1/2 the function F (g, q) is the 5- degree polynomial (10). Thus, the real roots g = g0  (0, 1) and g 
= g1 > 1 can be found analytically using the Cardano’s formula. We use either A > 0 or A < 0 with g0 or g1 respectively and define the 
initial data by solving the problem (64). The graph in Fig. 8 and Table 3 confirm the stability of the antisoliton propagation. Figure 
9 depicts soliton-antisoliton interaction for the case (67).
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degree polynomial (10). Thus, the real roots g = g0 ∈ (0, 1) and g = g1 > 1
can be found analytically using the Cardano’s formula. We use either A > 0
or A < 0 with g0 or g1 respectively and define the initial data by solving the
problem (64). The graph in Fig. 8 and Table 3 confirm the stability of the
antisoliton propagation. Figure 9 depicts soliton-antisoliton interaction for
the case (67).

Figure 8: Evolution of the mgDP antisoliton with A = −1.8 in the case (67)
with h = 5.2 × 10−3 and g1 = 1.73473808

Figure 9: Collision of the soliton-antisoliton with A1 = 1.8, A2 = −0.5 in the
case (67)
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Next, similar to Example 2, for r = 1/2 the function F (g, q) is the 5-
degree polynomial (10). Thus, the real roots g = g0 ∈ (0, 1) and g = g1 > 1
can be found analytically using the Cardano’s formula. We use either A > 0
or A < 0 with g0 or g1 respectively and define the initial data by solving the
problem (64). The graph in Fig. 8 and Table 3 confirm the stability of the
antisoliton propagation. Figure 9 depicts soliton-antisoliton interaction for
the case (67).

Figure 8: Evolution of the mgDP antisoliton with A = −1.8 in the case (67)
with h = 5.2 × 10−3 and g1 = 1.73473808

Figure 9: Collision of the soliton-antisoliton with A1 = 1.8, A2 = −0.5 in the
case (67)

18

Figure 9: Collision of the soliton-Soliton-Antisoliton with A1 = 1.8, A2 = -0.5 in the case (67)
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In what follows we use the notation
 

for the discrete analogs of the Lp(0, L) norm. Again, for simplicity we write

Our main tools are the discrete versions of the Holder and the Gagliardo Nirenberg inequalities, namely,

[27] Ladyzhenskaya, O.A.: The Boundary Value Problems of Mathematical
Physics. Springer-Verlag, New York (1985)

[28] Lions, J.L.: Quelques methodes de resolution des problemes aux limites
non lineaires. Dunod, Paris (1969)

5 Attachment

In what follows we use the notation

||f ||p =
(

h
I−1∑

i=1

|fi|p
) 1

p

for the discrete analogs of the L
p(0, L) norm. Again, for simplicity we write

||f || def= ||f ||p if p = 2.
Our main tools are the discrete versions of the Hölder and the Gagliardo

- Nirenberg inequalities, namely,

h

∣∣∣∣∣

N∑

i=0

figi

∣∣∣∣∣ ≤ �f�p�g�q,
1
p

+
1
q

= 1, 1 < p, q < ∞,

�∂r
xf�p ≤ c�f�1−θ

{
�f�2 + �∂ℓ

xf�2
}θ/2

, θℓ =
1
2

+ r − 1
p

, 0 < θ < 1, (68)

where c is a constant which does not depend on h. Let us recall that the
Gagliardo-Nirenberg inequality is the multiplicative form of the embedding
theorem (see e.g. [27]). The proof of the discrete version of the Gagliardo-
Nirenberg inequality can be found for example in [27]. For x ∈ R

1 the proof
of (68) is trivial. Recall also that for f from the Sobolev space H l

0(0, L) of
functions with zero value on the boundary,

max
i

|fi| ≤
√

2�f�1/2�fx�1/2. (69)

Furthermore, we use the well-known identities

(yg)x = yxg + ygx + hyxgx, (yg)x̄ = yx̄g + ygx̄ − hyx̄gx̄,

so that

(yg)ẋ = yẋg + ygẋ +
h2

2
(yxgx)x̄. (70)
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Combining (55) and (80)-(82) yields the desired estimate (58) for the dis-
crepancy w with s > 1.
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Combining (55) and (80)-(82) yields the desired estimate (58) for the discrepancy w with s > 1.

5. Conclusion
Energy estimates and results of numerical experiments confirm the adaptation of the balance laws (2), (3) for the gmKdV equation 
(1) by difference scheme (45). This implies the stability of the motion of even-shaped waves in both the analytical and numerical 
sense. Moreover, the scheme remains stable even in the case of soliton interaction, when, generally speaking, the solution ceases 
to be even at the time instant of collision of waves [38]. At the same time, it turned out that equation (1) with n = 3 is much more 
sensitive to the accuracy of the initial data than the gDP equation with n = 2. Indeed, the gmKdV equation requires accuracy O(h8) in
the initial data approximation for (64), while for the gDP equation it was sufficient to use only three terms of the Taylor expansion,
see [23]. 
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