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Abstract
This paper aims to examine the effectiveness of deep learning (DL), a burgeoning aspect of machine learning and artificial 
intelligence, in exploring input-response dependencies from observed data, especially when complex nonlinearities are pres-
ent. DL has the potential to be at least as effective as, if not better than, traditional statistical techniques such as response 
surface methodology (RSM). To test this hypothesis, we developed DL models using Tensor flow and compared their predic-
tions against those of well-established statistical models. Our DL models were hyper parameter tuned using grid search. We 
found that, for identical input data, DL's predictions closely matched the results of published central composite designs, and 
often resulted in smaller root mean square errors, indicating greater predictability, particularly in cases where higher order 
nonlinearities might be present but missed. Therefore, it is recommended that Industrial Engineers, Data Scientists and R&D 
Professionals incorporate DL in their study of complex processes, along with classical statistical methods, if they have ap-
propriately collected input data. Overall, this study provides evidence that DL can be a valuable tool for exploring complex 
relationships in data.

J Data Analytic Eng Decision Making, 2024

1. Introduction
Data Science and its related models has had tremendous 
applications this decade, speeding up various applications 
in design, engineering, manufacturing and Research and 
Development (R & D) processes. This rapidly emerging field 
of knowledge coupled with Artificial Intelligence (AI) and 
Machine Learning (ML) enables engineers and scientists to 
develop more robust design of experiments and triggers an 
innovative surge in more reliable design and analysis. While 
data science deals with analysis and visualization which are 
key to making sense of data, the fundamental challenge for all 
engineers, scientists  and managers is building an infrastructure 
capable of collecting and processing data from a variety of 
sources. Data Science, Machine Learning and AI are a must for 
the contemporary researchers to make meaningful innovations. 
Through generating intelligence, accelerating innovation and 
fully enabling mobility,  data science professionals can remove 
barriers to adoption, improve efficiencies, mitigate risk and 
look forward to improved productivity. Traditionally, we were 
designing  to sequentially process data and to use specific  
program code instructions in the processing. Deep learning 
(DL) which is a subset of Machine Learning allows computer 
systems to analyze data to provide insights and predictions 

about the data. Machine learning refers to any type of computer 
program that can learn by itself without being programmed by a 
human. Deep learning, also known as deep structured learning 
that uses artificial neural networks. Deep learning systems can 
be supervised, partially supervised or unsupervised. This effort 
often starts with improving data storage and retrieval, enabling 
better utilization of data to improve service levels and thereby 
competitive and comparative advantages.

2. Problem Background
(Statistical Models derived from CCD Experiments formed 
the basis for evaluating DL)
The central composite design (CCD) is the most commonly used 
fractional factorial design used in the response surface model. 
In this design, the center points are augmented with a group of 
axial points called star points. With this design, attempts are 
made to estimate quickly the first-order and second-order terms. 
While our more than forty years of experience with statistical 
process modeling and optimization have been valuable, 
we believe that deep learning (DL), an emerging aspect of 
machine learning and artificial intelligence, can produce even 
better results than traditional mathematical and statistical 
techniques, including response surface methodology (RSM) 
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[1]. The two key applications of artificial neural networks are 
found in classification, and regression [2]. In the later, DL's 
ability to accurately represent complex non-linear multivariable 
relationships between process control (input) factors and 
response (output) variables has shown promise, where the 
basic modeling theory based on scientific principles and laws 
is unavailable. Furthermore, quadratic second-order response 
functions, which are commonly used to build empirical process 
models, may not be flexible enough to capture complex non-linear 
relationships, making DL a more suitable approach for these 
cases [2]. The success of machine learning in combination with 
evolutionary optimization genetic algorithm (GA) in optimizing 
discontinuous functions further highlights the potential of DL in 
complex modeling problems [3]. A very significant application 
modeling processes by neural nets is in optimization, an area 
in which the problems that must be optimized are not linear or 
polynomial; they cannot be precisely resolved, and they must be 
approximated [4]. 

To test the claims of DL's superior modeling capability, it 
is attempted here in this paper to build a compact DL model  
by using Tensorflow. In the field of engineering and scientific 
processes where theory is not yet sufficiently advanced, the 
commonly used statistical process engineering methodology 
is the central composite experimental design (CCD), which 
involves a series of planned experiments with prescribed input 
variable levels and observed response data [3]. CCD is useful for 
studying non-linear response surfaces or significant low-order 
interactions among input variables. However, its mathematical 
complexity limits its ability to study only up to second-order 
effects, potentially missing out on higher order non-linearities 
present in the process. DL, on the other hand, can learn these non-
linearities through its modeling parameters updated from sample 
input-response data presented during training. DL models use 
multiple computational layers and advanced techniques such as 
convolutional neural networks (CNN) to extend their predictive 
capability in object detection, voice and image classification, 
and segmentation. These artifacts, now common in our physical 
world, such as self-driving cars and language modeling, can 
handle a significant degree of non-linearity. Therefore, we 
believe that incorporating DL into the study of input-response 

relationships in engineering and scientific processes, in 
conjunction with traditional statistical methods, can provide a 
more comprehensive understanding of complex systems.   

To objectively compare the efficacy of deep learning (DL) and 
response surface methodology (RSM) in data-based process 
modeling, we undertook and utilized a standard problem from 
the well-respected and widely followed textbook, "Design 
and Analysis of Statistical Experiments" [3]. The problem 
involve modeling a chemical process using Center Composite 
Experimental Design (CCD) to produce a second-order 
regression model with two input variables and three responses, 
with its complete statistical analysis provided in the text. This 
provided a baseline for comparison with a DL-based prediction 
model we developed using the same data [5]. The DL model was 
hyperparameter tuned using guidance from current literature  
and showed excellent performance, closely matching the results 
from the text. In fact, in several examples, the DL model yielded 
smaller root mean square errors. This experience is becoming 
increasingly common for machine learning and DL investigators 
[1,6]. Therefore, incorporating DL in process studies with 
suitably collected input data before invoking RSM could lead to 
more accurate results. The Python/Tensorflow code for the DL 
model used in this study is enclosed in the Appendix.

3. Montgomery’s Second-Order Chemical Process Model 
The current state-of-the-art approach to empirically model 
multi-factor processes and optimize them is clearly explained 
in [3]. In this study, a chemical process was investigated by 
manipulating two operating conditions, reaction time (x1) and 
reaction temperature (x2), following the central composite 
design (CCD) experimental scheme. The responses observed in 
each experiment were yield (y1), viscosity (y2), and molecular 
weight (y3) (see Table 1). According to this design allows the 
development of second-order response models in x1 and x2, 
enabling the optimization of responses y1, y2, and y3 when 
required [3]. Although we do not follow the optimization steps 
outlined in, we quote the multi-regression prediction model for 
yield (y1) to which DL would be compared, using the relevant 
data from Table 1 [3].  
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 Input Variable Settings Responses Observed 
CCD 

Expt # 
x1 (Reaction 

Time in Minutes) 
x2 (Temperature 

F) 
y1 (yield) y2 

(viscosity) 
y3 (mol. 
Weight) 

1 80 170 76.5 62 2940 
2 80 180 77.0 60 3470 
3 90 170 78.0 66 3680 
4 90 180 79.5 59 3890 
5 85 175 79.9 72 3480 
6 85 175 80.3 69 3200 
7 85 175 80.0 68 3410 
8 85 175 79.7 70 3290 
9 85 175 79.8 71 3500 
10 92.07 175 78.4 68 3360 
11 77.93 175 75.6 71 3020 
12 85 182.07 78.5 58 3630 
13 85 167.93 77.0 57 3150 

 

The author of (Montgomery, 2001) obtained the 2nd order regression model for yield (y1) as 

follows: 

Yield (y1) = -1430.52285 + 7.80749 Time + 13.27053 Temp – 0.055050 Time2 – 0.0400050 

Temp2 + 0.010000 Time Temp …………………………………………………………………(1) 

We used model presented in (1) to compare its predictions with the DL models we subsequently 

built. Reference (Montgomery, 2001) provides two more regression models built using the data 

of Table 1, as follows. 

Viscosity (y2) = -9030.74 + 13.393 Time + 97.708 Temp – 2.75×0.01 Time2 – 0.26757 Temp2 – 

5×0.01 Time Temp …………………………………………………………………………….(2) 

Molecular Weight (y3) = -6308.8 + 41.025 Time + 35.473 Temp …………………………….(3) 

Note that each of these process models (1), (2) and (3) are at best second order regression 

models. The CCD scheme for conducting the experiments would not yield any information about 

higher order effects or interactions. However, nature’s acts are not restricted to second order 

effects only. Such higher order interactions and effects cannot be explored by CCD. Even in 

Resolution V experimental designs two-factor interactions are aliased with three-factor 

interactions (Montgomery, 2001, page 307). Such occurrences seriously affect experimental 

investigation of complex factor effects and their interactions.  
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Table 1: The C C D Experimental Results extracted from Table 11-6 [2]

The author of [3] obtained the 2nd order regression model for 
yield (y1) as follows:
Yield (y1) = -1430.52285 + 7.80749 Time + 13.27053 Temp – 
0.055050 Time2 – 0.0400050
Temp2 + 0.010000 Time Temp ............................. (1)
We used model presented in (1) to compare its predictions with 
the DL models we subsequently built. Reference (Montgomery, 
2001) provides two more regression models built using the data 
of Table 1, as follows.
Viscosity (y2) = -9030.74 + 13.393 Time + 97.708 Temp – 
2.75×0.01 Time2 – 0.26757 Temp2 – 5×0.01 Time Temp..... (2)
Molecular Weight (y3) = -6308.8 + 41.025 Time + 35.473 Temp 
...................................... (3)
Note that each of these process models (1), (2) and (3) are at 
best second order regression models. The CCD scheme for 
conducting the experiments would not yield any information 
about higher order effects or interactions. However, nature’s 
acts are not restricted to second order effects only. Such higher 
order interactions and effects cannot be explored by CCD. Even 
in Resolution V experimental designs two-factor interactions 
are aliased with three-factor interactions [3]. Such occurrences 
seriously affect experimental investigation of complex factor 
effects and their interactions.

4. Process Model Building by Deep Learning (DL)
What follows is a brief outline of the DL model building 
procedure. For more details, we refer the reader to citations [7,2]. 
DL is a machine learning algorithm that utilizes artificial neural 
networks with multiple layers capable of learning a wide range 
of computational tasks through modifiable parameters. After 
setting up the network architecture, DL is trained to adjust its 
weights, minimizing the difference between predicted and actual 
output. This training process involves exposing the algorithm to 
a large amount of labeled data to optimize the interconnecting 
weights in the network. The complexity and accuracy of DL’s 
performance increase with the number of layers [8]. This feature 
is heavily utilized in tasks like speech and image recognition, 
natural language processing, and decision making. However, 
added complexity also affects DL efficiency [9]. Efforts are 
being continually made to develop tools and frameworks such 
as TensorFlow, PyTorch, and Keras to enhance DL efficiency. 
These developments have significantly benefited industries like 
healthcare, transportation, and finance, among many others. 
DL is efficient and improves predictive accuracy compared to 
simple ANNs. Building a DL model is a systematic process that 
involves several steps. Firstly, the problem needs to be defined 
and relevant data needs to be gathered. In our case, we aimed 
to create a DL model that would emulate the statistical CCD/
RSM method to determine input-response relationships within a 
suitably collected dataset, as demonstrated in Table 11-3 of [3].

The next step is to preprocess the data to ensure its compatibility 
with the desired format. In our case, we strictly followed the 
Python and TensorFlow coding conventions (as shown in the 
Appendix), which can be seen in the code under the section # 

Set up the input data. Once the data is preprocessed, the network 
architecture needs to be specified. For our DL model, we used 
the flow forward layout with two input nodes to receive the 
input, and a hidden layer that was specified by us. This aspect 
of the model can be empirically optimized to ensure the DL's 
efficient and accurate performance, as shown in the code under 
the section # Define the model architecture. After selecting the 
appropriate architecture, we had options to build the model 
using a deep learning framework, such as TensorFlow, PyTorch, 
or Keras. In our case, we chose to use TensorFlow, Keras, and 
numpy to define the layers of the model, connect them, and set 
the hyperparameters like learning rate and batch size. Next, we 
compiled the model and specified the performance metric as 
the mean squared error between the observed response and the 
DL's predicted response for the same experimental factor setting 
(x1 and x2 in Table 1). To train the model, we provided it with 
pairwise x (input data), y (corresponding output or response 
data), and the epoch number to control the model's convergence 
iterations. The connecting weights between the layers of the 
model were optimized using the ADAM optimizer, a global 
optima-seeking numerical heuristic.

Once the model was trained, we were ready to predict the output 
for new data and evaluate its performance. However, due to 
the limited availability of experimental data dictated by Table 
11-6, we used all 13 data points for training and performance 
evaluation [3]. As a result, our ability to validate the model's 
generalization performance to new data is limited. Access 
to the process engineering setup that generated Table 11-6 in 
was impossible, making the partitioning of the small amount 
of available data into train/evaluate subsets impractical for the 
sake of precision [3]. Therefore, while evaluation of the model's 
performance using separate test data is integral to building a 
DL model, in this exercise, it was not feasible. Nonetheless, our 
reason for reusing the data from Table 11-6 was compelling, 
given the circumstances [3]. Evaluating a DL model involves 
fine-tuning its hyperparameters, which can significantly impact 
the quality and performance of the model in production. The 
hyperparameters include the learning rate, regularization 
strength, number of hidden layers, number of nodes in each 
layer, and batch size. Although there are some suggested 
guidelines for training these hyperparameters, they are generally 
domain-specific and may require modifications to the model's 
architecture [10]. To address this, we used the grid search method 
to find the optimal hyperparameters for our model.

However, even with the optimal hyperparameters, there are 
still challenges in achieving convergence without overtraining 
the model. One issue we encountered was setting the random 
seed, which determines the computational path taken by the 
heuristic global optimization. We conducted multiple trials with 
different seeds and epochs to heuristically attain convergence 
while avoiding overtraining. These challenges highlight the 
importance of careful and iterative testing and optimization of 
the DL model.
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5. Comparison of CCD Results and DL Predictions
In order to compare the predictability performance of CCD 
experiments and DL, we utilized the standard problem presented 
in Chapter 11 of [3]. The DL's model training and validation 
data were extracted from Table 11-6 of, which provided us with 
a reliable dataset for our analysis [3]. To supplement this data, 

we also used Table 1 of this paper, which displays the relevant 
CCD experimental input and response data for yield, viscosity, 
and molecular weight observed in the real chemical process. 
By utilizing these data sources, we were able to conduct a 
comprehensive analysis and compare the efficacy of CCD and 
DL for modeling multi-factor processes. 
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which displays the relevant CCD experimental input and response data for yield, viscosity, and 

molecular weight observed in the real chemical process. By utilizing these data sources, we were 

able to conduct a comprehensive analysis and compare the efficacy of CCD and DL for 

modeling multi-factor processes.  

Table 2 Process Yield data: Actual Observed Response, Response Predicted by Statistical CCD 
Model, and Response Predicted by Deep Learning (DL) Model 

CCD 
Experimental 

Factor Settings 
Time, 

Temperature F 

Actual Yield: 
Response 

Experimentally 
Observed 

Response 
predicted by DL 

Yield Model 

Response 
predicted by 
CCD Yield 

Model (Eq (1))  

DL Residual = 
DL yield – 

Actual Yield 

CCD Residual 
= CCD yield – 
Actual Yield 

[[ 80.   170. ] 76.5 76.49989 76.3  -0.00011 -0.2 

[ 80.   180. ] 77 76.83794 76.83  -0.16206 -0.17 

[ 90.   170. ] 78 77.85798 77.79  -0.14202 -0.21 

[ 90.   180.  ] 79.5 79.56743 79.32  0.06743 -0.18 

[ 85.   175.  ] 79.9 79.93311 79.94  0.03311 0.04 

[ 85.   175.  ] 80.3 79.93311 79.94  -0.36689 -0.36 

[ 85.   175.  ] 80 79.93311 79.94  -0.06689 -0.06 

[ 85.   175. ] 79.7 79.93311 79.94  0.23311 0.24 

[ 85.   175. ] 79.8 79.93311 79.94  0.13311 0.14 

[ 92.07 175.  ] 78.4 78.53846 78.59  0.13846 0.19 

[ 77.93 175.  ] 75.6 75.76752 75.78  0.16752 0.18 

[ 85.   182.07] 78.5 78.500114 78.67  0.000114 0.17 

[ 85.   167.93]] 77 76.96246 77.21  -0.03754 0.21 

    

RMS 

= 0.023989284 0.038376923 

 

 
Table 2: Process Yield data: Actual Observed Response, Response Predicted by Statistical CCD Model, and Response Pre-
dicted by Deep Learning (DL) Model

 

9 
 

 

 

Figure 1 Display shows proximity of Deep Learning (DL) Model’s Predictions to Actual 
Observations contrasting the Predictions by CCD 

 

 

Figure 2 Displays that the Deep Learning (DL) Model’s Prediction residuals are not materially 
different (if not smaller) from those produced by the CCD model 
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Figure 1: Display shows proximity of Deep Learning (DL) Model’s Predictions to Actual Observations Contrasting the Predictions 
by CCD



          Volume 1| Issue 1 | 05J Data Analytic Eng Decision Making, 2024

 

9 
 

 

 

Figure 1 Display shows proximity of Deep Learning (DL) Model’s Predictions to Actual 
Observations contrasting the Predictions by CCD 

 

 

Figure 2 Displays that the Deep Learning (DL) Model’s Prediction residuals are not materially 
different (if not smaller) from those produced by the CCD model 

 

0.00011 

0.16206 0.14202 

-0.06743 
-0.03311 

0.36689 

0.06689 

-0.23311 

-0.13311 -0.13846 -0.16752 

-0.000114 

0.03754 

0.2 
0.17 

0.21 
0.18 

-0.04 

0.36 

0.06 

-0.24 

-0.14 
-0.19 -0.18 -0.17 

-0.21 
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 10 11 12 13

DL and CCD Model Residuals 

DL Residual CCD Residual
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Figure 3 The scatter of the CCD model’s predictions about the actual observations of yield (the 
dotted line) is slightly wider than the scatter of the Deep Learning (DL) Predictions 

 

 

Figure 4 The Deep Learning and the CCD model’s predictions of Viscosity relative to actual 
observations of Viscosity 
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Figure 3: The scatter of the CCD model’s Predictions about the Actual Observations of yield (the dotted line) is Slightly Wider than 
the Scatter of the Deep Learning (DL) Predictions
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Figure 4: The Deep Learning and the CCD Model’s Predictions of Viscosity Relative to Actual Observations of Viscosity
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Figure 5 The Deep Learning and the CCD model’s predictions of Molecular Weight relative to 
actual observations of Molecular Weight 
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Figure 5: The Deep Learning and the CCD Model’s Predictions of Molecular Weight Relative to Actual Observations of Molecular 
Weight

The effectiveness of the deep learning (DL) model building ap-
proach in comparison to the central composite design (CCD)-
based regression model can be evaluated in several ways. First-
ly, examining the model residuals in the last two columns of 
Table 2 reveals that each of the DL's residuals is smaller than 
the corresponding residual for the CCD model, even though we 
did not run the DL algorithm beyond a reasonable limit (epoch 
= 100000). This qualitative edge of DL over CCD is depicted 
graphically in Figure 3. Quantitatively, we observe that the root 
mean square error, which represents the standard deviation of 
the residuals, is 0.161209012 for DL, whereas it is 0.202432181 
for the CCD model. We suggest that the DL model's apparent 
superior prediction performance is due to its ability to incorpo-

rate the response's true nonlinearities and higher order "terms" 
(which are attributable to the input factors, i.e., Time and Tem-
perature) more effectively. It is worth noting that the DL model's 
mean absolute error (MAE) is 0.119104923, indicating accept-
able predictive accuracy [11]. Furthermore, a chi-square test re-
vealed that the performance of CCD and DL were statistically 
indistinguishable for the present example. Figures 4 and 5 illus-
trate the predictions of process responses Viscosity and Molec-
ular Weight obtained by DL and CCD models, along with the 
actual experimental observations of those responses. The quality 
of these results is not substantially different from those observed 
for the response variable Yield.
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6. Hyperparameter Tuning
Perhaps the most taxing chore in building a reliable deep learn-
ing model from experimental data is tuning the hyperparameters 
of the  model. Even when you feel that you have “cornered” 
the “optimal hyperparameters”, there will remain the challenge 
in achieving convergence without overtraining the model. One 
issue we repeatedly bumped into was setting the random seed, 
which determines the computational path taken by the heuristic 
global optimization. We conducted multiple trials with differ-
ent seeds and epochs to heuristically attain convergence while 

avoiding overtraining. No reliable guidelines are known to us as 
yet and the approach seems to rely greatly on hit and trial [5]. 
An example is given in Table 3 using data obtained from a 23 
factorial experiment. Simple regression gave brutal predictions 
for it. The DL model was carefully developed by empirically 
optimizing the hyperparameters (see Figure 5). The gains of us-
ing deep learning to predict process outputs are quite prominent. 
Such results highlight the significance of careful and iterative 
tuning and optimization in the DL modeling approach. 
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Table 3:  Comparison of Experimental Responses, and Prediction by DL Model’s Output 
and Simple Regression 

Factorial 
Expt # 

Input Factor Settings Experimental 
Response 

DL 
Model’s 
Output 

Response by 
Regression X1 X2 X3 

1 0 0 0 67 66.99999 66.5 
2 1 0 0 79 79.00000 67.89286 
3 0 1 0 61 61.00000 69.28571 
4 1 1 0 75 75.00001 70.67857 
5 0 0 1 65 64.99999 72.07143 
6 1 0 1 60 60.000008 73.46429 
7 0 1 1 77 77.00001 74.85714 
8 1 1 1 87 86.99999 76.25 

 

7.0 Conclusions and Lessons Learned 

This study offers valuable insights into the modeling of processes with input-output 

configurations. The following key lessons were learned: 

 Modeling processes with input-output configurations has become relatively 

straightforward with the availability of modern tools and devices such as deep learning. 

This study demonstrates how one can easily break into this highly rewarding world of 

ease and unexpected insights. Using a simple and compact code in Python (see the 

Appendix) incorporating some TensorFlow calls, we were able to optimize a real 

chemical engineering process, surpassing the performance of reputed statistical 

experimental designs. 

 DL models can be built relatively easily using emergent computational aids such as 

TensorFlow, Keras, Numpy, PyTorch, and others. 

 Once built and tuned, DL models work very satisfactorily as substitutes for many 

relatively complex statistical techniques such as multiple regression and also reveal 

hidden nonlinearities.  

 Gathering training data for ML/DL projects remains a daunting challenge. However, it is 

important to sample the application domain thoroughly, reaching into every corner of 

interest. This helps in probing areas and factor setting combinations where complex 

factor effect interactions may be concealed but active in the process. In many cases where 
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7. Conclusions and Lessons Learned
This study offers valuable insights into the modeling of process-
es with input-output configurations. The following key lessons 
were learned:
• Modeling processes with input-output configurations has be-
come relatively straightforward with the availability of modern 
tools and devices such as deep learning. This study demonstrates 
how one can easily break into this highly rewarding world of 
ease and unexpected insights. Using a simple and compact code 
in Python (see the Appendix) incorporating some TensorFlow 
calls, we were able to optimize a real chemical engineering pro-
cess, surpassing the performance of reputed statistical experi-
mental designs.
• DL models can be built relatively easily using emergent com-
putational aids such as TensorFlow, Keras, Numpy, PyTorch, 
and others.
• Once built and tuned, DL models work very satisfactorily as 
substitutes for many relatively complex statistical techniques 
such as multiple regression and also reveal hidden nonlinearities. 

• Gathering training data for ML/DL projects remains a daunt-
ing challenge. However, it is important to sample the application 
domain thoroughly, reaching into every corner of interest. This 
helps in probing areas and factor setting combinations where 
complex factor effect interactions may be concealed but active in 
the process. In many cases where nonlinearities are suspected to 
be present, conventional experimental schemes such as fraction-
al or even full factorial experimental designs may not be enough. 
This is a major limitation of even CCD and Box-Behnken statis-
tical experimental schemes. The authors recommend employing 
grid search in critical situations, even if conducting such experi-
ments could become expensive [3]. 
• Tuning the hyperparameters of the learning models built may 
present particular challenges. For instance, the model may give 
no indication that its performance is being grossly affected by 
the choice of the random seed set in the code. Such experiences 
are not uncommon, as learning models including DL have yet to 
become robust.
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Summarily, we view that the proposed DL model  provides a 
novel way to design statistically a process experiment of a man-
ufacturing system based on a benchmark problem obtained 
from a classical and significant author. On the other hand, the 
effectiveness of the DL measure is limited when the data is in-
accurate or hard to collect. The proposed method uses a novel 
concept which makes it unique and better than contemporary 
CCD methods. In order to further investigate the efficacy of the 
proposed model, some real-world case studies need to be carried 
out. Another direction of future research is to link the actual pro-
duction systems to further pinpoint the potential improvement 
opportunities. Finally, we submit that there is ample scope for 
expanding the literature regarding refinements of our articula-
tions and postulations and bringing analytical rigours. However, 
we have used the pragmatic research philosophy by integrating 
some ideas and innovations towards enriching the state-of-the-
art in Data Science discipline, which is facilitating more rapid-
ly to our broader field of knowledge in Industrial Engineering. 
Even then, in terms of towards  the finality in refinement of the 
modelling and analysis, we make no claim but  surely we enrich 
the profession. 
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Appendix:  A Prototype TensorFlow Code for Deep Learning 

# -*- coding: utf-8 -*- 

""" 

Created on Wed Apr 12 21:52:30 2023 

@author: lenovo 

""" 

import numpy as np 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense 

import tensorflow as tf 

# Set up the input data 

x = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0], [0, 0, 1], [1, 0, 1], [0, 1, 1], [1, 1, 1]]) 

y = np.array([[67], [79], [61], [75], [65], [60],[77], [87]]) 

import random 

tf.random.set_seed(987654) 

#model defination 

#Some hyperparameters we can tune to observe include 

# 1. Changing the the number of input layer nodes and using non-linear  activation function for the nodes. 
we can test from Relu to Tanh or sigmoid 

model = Sequential() 

model.add(Dense(10, input_dim=3, activation='relu')) 

#model.add(Dense(20, input_dim=3, activation='tanh')) 

model.add(Dense(24, activation='relu')) 

#model.add(Dense(44, activation='tanh')) 

model.add(Dense(1, activation='linear')) 

# We can also change the learning rate to see what effects are revealed 

model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001), loss='mean_squared_error', 
metrics=[tf.keras.metrics.RootMeanSquaredError()]) 

#model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.003), loss='mean_squared_error', 
metrics=[tf.keras.metrics.RootMeanSquaredError()]) 
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Appendix:  A Prototype TensorFlow Code for Deep Learning 

# -*- coding: utf-8 -*- 

""" 
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#model.add(Dense(20, input_dim=3, activation='tanh')) 

model.add(Dense(24, activation='relu')) 

#model.add(Dense(44, activation='tanh')) 

model.add(Dense(1, activation='linear')) 

# We can also change the learning rate to see what effects are revealed 

model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001), loss='mean_squared_error', 
metrics=[tf.keras.metrics.RootMeanSquaredError()]) 

#model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.003), loss='mean_squared_error', 
metrics=[tf.keras.metrics.RootMeanSquaredError()]) 
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model.summary() 

# The number of epochs can also be changed  

history= model.fit(x, y, batch_size=8, epochs=10000) 

from matplotlib import pyplot as plt 

plt.plot(history.history['loss']) 

plt.title('Loss graph') 

plt.xlabel('epochs') 

plt.ylabel('loss') 

plt.legend(['Training Loss'], loc=1) 

loss= model.evaluate(x, y, verbose=0) 

#print(f"Loss: {loss:.4f}") 

print(loss) 

 

# Predict on new data 

new_data = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0], [0, 0, 1], [1, 0, 1], [0, 1, 1], [1, 1, 1]]) 

predictions = model.predict(new_data) 

print(predictions) 

model.predict(x) 

 

# Evaluate the model 

loss, rmse = model.evaluate(x, y, verbose=0) 

print(f"Loss: {loss:.4f}, Root_Mean_SQ_error: {rmse:.4f}") 

 

# Predict on new data 

new_data = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0], [0, 0, 1], [1, 0, 1], [0, 1, 1], [1, 1, 1]]) 

predictions = model.predict(new_data) 

print(predictions) 
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model.summary() 

# The number of epochs can also be changed  

history= model.fit(x, y, batch_size=8, epochs=10000) 

from matplotlib import pyplot as plt 

plt.plot(history.history['loss']) 

plt.title('Loss graph') 

plt.xlabel('epochs') 

plt.ylabel('loss') 

plt.legend(['Training Loss'], loc=1) 

loss= model.evaluate(x, y, verbose=0) 

#print(f"Loss: {loss:.4f}") 

print(loss) 
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new_data = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0], [0, 0, 1], [1, 0, 1], [0, 1, 1], [1, 1, 1]]) 

predictions = model.predict(new_data) 

print(predictions) 

 


