
 Volume 1| Issue 1 | 01

A Deep Learning Prototype Tested Against 2nd Order Statistical Central Composite
Design (CCD) Models

Research Article

1Adjunct Professor, IIT Kharagpur, West Bengal, India.

2Chief Consultant & Former Vice Chancellor, SOA
University, Bhubaneswar, Odisha, India

Tapan Bagchi1 and R P Mohanty2*

*Corresponding Author
R P Mohanty, Chief Consultant & Former Vice Chancellor, SOA University,
Bhubaneswar, Odisha, India

Submitted: 2024, Apr 01; Accepted: 2024, May 01; Published: 2024, May 27

Citation: Bagchi, T., Mohanty, R. P. (2024). A Deep Learning Prototype Tested Against 2nd Order Statistical Central Composite
Design (CCD) Models. J Data Analytic Eng Decision Making, 1(1), 01-10.

Keywords: Artificial Intelligence, Machine Learning, Deep Learning, Design of Experiments, Process Modeling, Data Analytic,
Process Optimization

Journal of Data Analytics and Engineering Decision Making

Abstract
This paper aims to examine the effectiveness of deep learning (DL), a burgeoning aspect of machine learning and artificial
intelligence, in exploring input-response dependencies from observed data, especially when complex nonlinearities are pres-
ent. DL has the potential to be at least as effective as, if not better than, traditional statistical techniques such as response
surface methodology (RSM). To test this hypothesis, we developed DL models using Tensor flow and compared their predic-
tions against those of well-established statistical models. Our DL models were hyper parameter tuned using grid search. We
found that, for identical input data, DL's predictions closely matched the results of published central composite designs, and
often resulted in smaller root mean square errors, indicating greater predictability, particularly in cases where higher order
nonlinearities might be present but missed. Therefore, it is recommended that Industrial Engineers, Data Scientists and R&D
Professionals incorporate DL in their study of complex processes, along with classical statistical methods, if they have ap-
propriately collected input data. Overall, this study provides evidence that DL can be a valuable tool for exploring complex
relationships in data.

J Data Analytic Eng Decision Making, 2024

1. Introduction
Data Science and its related models has had tremendous
applications this decade, speeding up various applications
in design, engineering, manufacturing and Research and
Development (R & D) processes. This rapidly emerging field
of knowledge coupled with Artificial Intelligence (AI) and
Machine Learning (ML) enables engineers and scientists to
develop more robust design of experiments and triggers an
innovative surge in more reliable design and analysis. While
data science deals with analysis and visualization which are
key to making sense of data, the fundamental challenge for all
engineers, scientists and managers is building an infrastructure
capable of collecting and processing data from a variety of
sources. Data Science, Machine Learning and AI are a must for
the contemporary researchers to make meaningful innovations.
Through generating intelligence, accelerating innovation and
fully enabling mobility, data science professionals can remove
barriers to adoption, improve efficiencies, mitigate risk and
look forward to improved productivity. Traditionally, we were
designing to sequentially process data and to use specific
program code instructions in the processing. Deep learning
(DL) which is a subset of Machine Learning allows computer
systems to analyze data to provide insights and predictions

about the data. Machine learning refers to any type of computer
program that can learn by itself without being programmed by a
human. Deep learning, also known as deep structured learning
that uses artificial neural networks. Deep learning systems can
be supervised, partially supervised or unsupervised. This effort
often starts with improving data storage and retrieval, enabling
better utilization of data to improve service levels and thereby
competitive and comparative advantages.

2. Problem Background
(Statistical Models derived from CCD Experiments formed
the basis for evaluating DL)
The central composite design (CCD) is the most commonly used
fractional factorial design used in the response surface model.
In this design, the center points are augmented with a group of
axial points called star points. With this design, attempts are
made to estimate quickly the first-order and second-order terms.
While our more than forty years of experience with statistical
process modeling and optimization have been valuable,
we believe that deep learning (DL), an emerging aspect of
machine learning and artificial intelligence, can produce even
better results than traditional mathematical and statistical
techniques, including response surface methodology (RSM)

 Volume 1| Issue 1 | 02J Data Analytic Eng Decision Making, 2024

[1]. The two key applications of artificial neural networks are
found in classification, and regression [2]. In the later, DL's
ability to accurately represent complex non-linear multivariable
relationships between process control (input) factors and
response (output) variables has shown promise, where the
basic modeling theory based on scientific principles and laws
is unavailable. Furthermore, quadratic second-order response
functions, which are commonly used to build empirical process
models, may not be flexible enough to capture complex non-linear
relationships, making DL a more suitable approach for these
cases [2]. The success of machine learning in combination with
evolutionary optimization genetic algorithm (GA) in optimizing
discontinuous functions further highlights the potential of DL in
complex modeling problems [3]. A very significant application
modeling processes by neural nets is in optimization, an area
in which the problems that must be optimized are not linear or
polynomial; they cannot be precisely resolved, and they must be
approximated [4].

To test the claims of DL's superior modeling capability, it
is attempted here in this paper to build a compact DL model
by using Tensorflow. In the field of engineering and scientific
processes where theory is not yet sufficiently advanced, the
commonly used statistical process engineering methodology
is the central composite experimental design (CCD), which
involves a series of planned experiments with prescribed input
variable levels and observed response data [3]. CCD is useful for
studying non-linear response surfaces or significant low-order
interactions among input variables. However, its mathematical
complexity limits its ability to study only up to second-order
effects, potentially missing out on higher order non-linearities
present in the process. DL, on the other hand, can learn these non-
linearities through its modeling parameters updated from sample
input-response data presented during training. DL models use
multiple computational layers and advanced techniques such as
convolutional neural networks (CNN) to extend their predictive
capability in object detection, voice and image classification,
and segmentation. These artifacts, now common in our physical
world, such as self-driving cars and language modeling, can
handle a significant degree of non-linearity. Therefore, we
believe that incorporating DL into the study of input-response

relationships in engineering and scientific processes, in
conjunction with traditional statistical methods, can provide a
more comprehensive understanding of complex systems.

To objectively compare the efficacy of deep learning (DL) and
response surface methodology (RSM) in data-based process
modeling, we undertook and utilized a standard problem from
the well-respected and widely followed textbook, "Design
and Analysis of Statistical Experiments" [3]. The problem
involve modeling a chemical process using Center Composite
Experimental Design (CCD) to produce a second-order
regression model with two input variables and three responses,
with its complete statistical analysis provided in the text. This
provided a baseline for comparison with a DL-based prediction
model we developed using the same data [5]. The DL model was
hyperparameter tuned using guidance from current literature
and showed excellent performance, closely matching the results
from the text. In fact, in several examples, the DL model yielded
smaller root mean square errors. This experience is becoming
increasingly common for machine learning and DL investigators
[1,6]. Therefore, incorporating DL in process studies with
suitably collected input data before invoking RSM could lead to
more accurate results. The Python/Tensorflow code for the DL
model used in this study is enclosed in the Appendix.

3. Montgomery’s Second-Order Chemical Process Model
The current state-of-the-art approach to empirically model
multi-factor processes and optimize them is clearly explained
in [3]. In this study, a chemical process was investigated by
manipulating two operating conditions, reaction time (x1) and
reaction temperature (x2), following the central composite
design (CCD) experimental scheme. The responses observed in
each experiment were yield (y1), viscosity (y2), and molecular
weight (y3) (see Table 1). According to this design allows the
development of second-order response models in x1 and x2,
enabling the optimization of responses y1, y2, and y3 when
required [3]. Although we do not follow the optimization steps
outlined in, we quote the multi-regression prediction model for
yield (y1) to which DL would be compared, using the relevant
data from Table 1 [3].

5

 Input Variable Settings Responses Observed
CCD

Expt #
x1 (Reaction

Time in Minutes)
x2 (Temperature

F)
y1 (yield) y2

(viscosity)
y3 (mol.
Weight)

1 80 170 76.5 62 2940
2 80 180 77.0 60 3470
3 90 170 78.0 66 3680
4 90 180 79.5 59 3890
5 85 175 79.9 72 3480
6 85 175 80.3 69 3200
7 85 175 80.0 68 3410
8 85 175 79.7 70 3290
9 85 175 79.8 71 3500
10 92.07 175 78.4 68 3360
11 77.93 175 75.6 71 3020
12 85 182.07 78.5 58 3630
13 85 167.93 77.0 57 3150

The author of (Montgomery, 2001) obtained the 2nd order regression model for yield (y1) as

follows:

Yield (y1) = -1430.52285 + 7.80749 Time + 13.27053 Temp – 0.055050 Time2 – 0.0400050

Temp2 + 0.010000 Time Temp …………………………………………………………………(1)

We used model presented in (1) to compare its predictions with the DL models we subsequently

built. Reference (Montgomery, 2001) provides two more regression models built using the data

of Table 1, as follows.

Viscosity (y2) = -9030.74 + 13.393 Time + 97.708 Temp – 2.75×0.01 Time2 – 0.26757 Temp2 –

5×0.01 Time Temp …………………………………………………………………………….(2)

Molecular Weight (y3) = -6308.8 + 41.025 Time + 35.473 Temp …………………………….(3)

Note that each of these process models (1), (2) and (3) are at best second order regression

models. The CCD scheme for conducting the experiments would not yield any information about

higher order effects or interactions. However, nature’s acts are not restricted to second order

effects only. Such higher order interactions and effects cannot be explored by CCD. Even in

Resolution V experimental designs two-factor interactions are aliased with three-factor

interactions (Montgomery, 2001, page 307). Such occurrences seriously affect experimental

investigation of complex factor effects and their interactions.

 Volume 1| Issue 1 | 03J Data Analytic Eng Decision Making, 2024

5

 Input Variable Settings Responses Observed
CCD

Expt #
x1 (Reaction

Time in Minutes)
x2 (Temperature

F)
y1 (yield) y2

(viscosity)
y3 (mol.
Weight)

1 80 170 76.5 62 2940
2 80 180 77.0 60 3470
3 90 170 78.0 66 3680
4 90 180 79.5 59 3890
5 85 175 79.9 72 3480
6 85 175 80.3 69 3200
7 85 175 80.0 68 3410
8 85 175 79.7 70 3290
9 85 175 79.8 71 3500
10 92.07 175 78.4 68 3360
11 77.93 175 75.6 71 3020
12 85 182.07 78.5 58 3630
13 85 167.93 77.0 57 3150

The author of (Montgomery, 2001) obtained the 2nd order regression model for yield (y1) as

follows:

Yield (y1) = -1430.52285 + 7.80749 Time + 13.27053 Temp – 0.055050 Time2 – 0.0400050

Temp2 + 0.010000 Time Temp …………………………………………………………………(1)

We used model presented in (1) to compare its predictions with the DL models we subsequently

built. Reference (Montgomery, 2001) provides two more regression models built using the data

of Table 1, as follows.

Viscosity (y2) = -9030.74 + 13.393 Time + 97.708 Temp – 2.75×0.01 Time2 – 0.26757 Temp2 –

5×0.01 Time Temp …………………………………………………………………………….(2)

Molecular Weight (y3) = -6308.8 + 41.025 Time + 35.473 Temp …………………………….(3)

Note that each of these process models (1), (2) and (3) are at best second order regression

models. The CCD scheme for conducting the experiments would not yield any information about

higher order effects or interactions. However, nature’s acts are not restricted to second order

effects only. Such higher order interactions and effects cannot be explored by CCD. Even in

Resolution V experimental designs two-factor interactions are aliased with three-factor

interactions (Montgomery, 2001, page 307). Such occurrences seriously affect experimental

investigation of complex factor effects and their interactions.

Table 1: The C C D Experimental Results extracted from Table 11-6 [2]

The author of [3] obtained the 2nd order regression model for
yield (y1) as follows:
Yield (y1) = -1430.52285 + 7.80749 Time + 13.27053 Temp –
0.055050 Time2 – 0.0400050
Temp2 + 0.010000 Time Temp (1)
We used model presented in (1) to compare its predictions with
the DL models we subsequently built. Reference (Montgomery,
2001) provides two more regression models built using the data
of Table 1, as follows.
Viscosity (y2) = -9030.74 + 13.393 Time + 97.708 Temp –
2.75×0.01 Time2 – 0.26757 Temp2 – 5×0.01 Time Temp..... (2)
Molecular Weight (y3) = -6308.8 + 41.025 Time + 35.473 Temp
...................................... (3)
Note that each of these process models (1), (2) and (3) are at
best second order regression models. The CCD scheme for
conducting the experiments would not yield any information
about higher order effects or interactions. However, nature’s
acts are not restricted to second order effects only. Such higher
order interactions and effects cannot be explored by CCD. Even
in Resolution V experimental designs two-factor interactions
are aliased with three-factor interactions [3]. Such occurrences
seriously affect experimental investigation of complex factor
effects and their interactions.

4. Process Model Building by Deep Learning (DL)
What follows is a brief outline of the DL model building
procedure. For more details, we refer the reader to citations [7,2].
DL is a machine learning algorithm that utilizes artificial neural
networks with multiple layers capable of learning a wide range
of computational tasks through modifiable parameters. After
setting up the network architecture, DL is trained to adjust its
weights, minimizing the difference between predicted and actual
output. This training process involves exposing the algorithm to
a large amount of labeled data to optimize the interconnecting
weights in the network. The complexity and accuracy of DL’s
performance increase with the number of layers [8]. This feature
is heavily utilized in tasks like speech and image recognition,
natural language processing, and decision making. However,
added complexity also affects DL efficiency [9]. Efforts are
being continually made to develop tools and frameworks such
as TensorFlow, PyTorch, and Keras to enhance DL efficiency.
These developments have significantly benefited industries like
healthcare, transportation, and finance, among many others.
DL is efficient and improves predictive accuracy compared to
simple ANNs. Building a DL model is a systematic process that
involves several steps. Firstly, the problem needs to be defined
and relevant data needs to be gathered. In our case, we aimed
to create a DL model that would emulate the statistical CCD/
RSM method to determine input-response relationships within a
suitably collected dataset, as demonstrated in Table 11-3 of [3].

The next step is to preprocess the data to ensure its compatibility
with the desired format. In our case, we strictly followed the
Python and TensorFlow coding conventions (as shown in the
Appendix), which can be seen in the code under the section #

Set up the input data. Once the data is preprocessed, the network
architecture needs to be specified. For our DL model, we used
the flow forward layout with two input nodes to receive the
input, and a hidden layer that was specified by us. This aspect
of the model can be empirically optimized to ensure the DL's
efficient and accurate performance, as shown in the code under
the section # Define the model architecture. After selecting the
appropriate architecture, we had options to build the model
using a deep learning framework, such as TensorFlow, PyTorch,
or Keras. In our case, we chose to use TensorFlow, Keras, and
numpy to define the layers of the model, connect them, and set
the hyperparameters like learning rate and batch size. Next, we
compiled the model and specified the performance metric as
the mean squared error between the observed response and the
DL's predicted response for the same experimental factor setting
(x1 and x2 in Table 1). To train the model, we provided it with
pairwise x (input data), y (corresponding output or response
data), and the epoch number to control the model's convergence
iterations. The connecting weights between the layers of the
model were optimized using the ADAM optimizer, a global
optima-seeking numerical heuristic.

Once the model was trained, we were ready to predict the output
for new data and evaluate its performance. However, due to
the limited availability of experimental data dictated by Table
11-6, we used all 13 data points for training and performance
evaluation [3]. As a result, our ability to validate the model's
generalization performance to new data is limited. Access
to the process engineering setup that generated Table 11-6 in
was impossible, making the partitioning of the small amount
of available data into train/evaluate subsets impractical for the
sake of precision [3]. Therefore, while evaluation of the model's
performance using separate test data is integral to building a
DL model, in this exercise, it was not feasible. Nonetheless, our
reason for reusing the data from Table 11-6 was compelling,
given the circumstances [3]. Evaluating a DL model involves
fine-tuning its hyperparameters, which can significantly impact
the quality and performance of the model in production. The
hyperparameters include the learning rate, regularization
strength, number of hidden layers, number of nodes in each
layer, and batch size. Although there are some suggested
guidelines for training these hyperparameters, they are generally
domain-specific and may require modifications to the model's
architecture [10]. To address this, we used the grid search method
to find the optimal hyperparameters for our model.

However, even with the optimal hyperparameters, there are
still challenges in achieving convergence without overtraining
the model. One issue we encountered was setting the random
seed, which determines the computational path taken by the
heuristic global optimization. We conducted multiple trials with
different seeds and epochs to heuristically attain convergence
while avoiding overtraining. These challenges highlight the
importance of careful and iterative testing and optimization of
the DL model.

 Volume 1| Issue 1 | 04J Data Analytic Eng Decision Making, 2024

5. Comparison of CCD Results and DL Predictions
In order to compare the predictability performance of CCD
experiments and DL, we utilized the standard problem presented
in Chapter 11 of [3]. The DL's model training and validation
data were extracted from Table 11-6 of, which provided us with
a reliable dataset for our analysis [3]. To supplement this data,

we also used Table 1 of this paper, which displays the relevant
CCD experimental input and response data for yield, viscosity,
and molecular weight observed in the real chemical process.
By utilizing these data sources, we were able to conduct a
comprehensive analysis and compare the efficacy of CCD and
DL for modeling multi-factor processes.

8

seed, which determines the computational path taken by the heuristic global optimization. We

conducted multiple trials with different seeds and epochs to heuristically attain convergence

while avoiding overtraining. These challenges highlight the importance of careful and iterative

testing and optimization of the DL model.

5.0 Comparison of CCD results and DL Predictions

In order to compare the predictability performance of CCD experiments and DL, we utilized the

standard problem presented in Chapter 11 of (Montgomery, 2001). The DL's model training and

validation data were extracted from Table 11-6 of (Montgomery, 2001), which provided us with

a reliable dataset for our analysis. To supplement this data, we also used Table 1 of this paper,

which displays the relevant CCD experimental input and response data for yield, viscosity, and

molecular weight observed in the real chemical process. By utilizing these data sources, we were

able to conduct a comprehensive analysis and compare the efficacy of CCD and DL for

modeling multi-factor processes.

Table 2 Process Yield data: Actual Observed Response, Response Predicted by Statistical CCD
Model, and Response Predicted by Deep Learning (DL) Model

CCD
Experimental

Factor Settings
Time,

Temperature F

Actual Yield:
Response

Experimentally
Observed

Response
predicted by DL

Yield Model

Response
predicted by
CCD Yield

Model (Eq (1))

DL Residual =
DL yield –

Actual Yield

CCD Residual
= CCD yield –
Actual Yield

[[80. 170.] 76.5 76.49989 76.3 -0.00011 -0.2

[80. 180.] 77 76.83794 76.83 -0.16206 -0.17

[90. 170.] 78 77.85798 77.79 -0.14202 -0.21

[90. 180.] 79.5 79.56743 79.32 0.06743 -0.18

[85. 175.] 79.9 79.93311 79.94 0.03311 0.04

[85. 175.] 80.3 79.93311 79.94 -0.36689 -0.36

[85. 175.] 80 79.93311 79.94 -0.06689 -0.06

[85. 175.] 79.7 79.93311 79.94 0.23311 0.24

[85. 175.] 79.8 79.93311 79.94 0.13311 0.14

[92.07 175.] 78.4 78.53846 78.59 0.13846 0.19

[77.93 175.] 75.6 75.76752 75.78 0.16752 0.18

[85. 182.07] 78.5 78.500114 78.67 0.000114 0.17

[85. 167.93]] 77 76.96246 77.21 -0.03754 0.21

RMS

= 0.023989284 0.038376923

Table 2: Process Yield data: Actual Observed Response, Response Predicted by Statistical CCD Model, and Response Pre-
dicted by Deep Learning (DL) Model

9

Figure 1 Display shows proximity of Deep Learning (DL) Model’s Predictions to Actual
Observations contrasting the Predictions by CCD

Figure 2 Displays that the Deep Learning (DL) Model’s Prediction residuals are not materially
different (if not smaller) from those produced by the CCD model

0.00011

0.16206 0.14202

-0.06743
-0.03311

0.36689

0.06689

-0.23311

-0.13311 -0.13846 -0.16752

-0.000114

0.03754

0.2
0.17

0.21
0.18

-0.04

0.36

0.06

-0.24

-0.14
-0.19 -0.18 -0.17

-0.21
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 10 11 12 13

DL and CCD Model Residuals

DL Residual CCD Residual

Figure 1: Display shows proximity of Deep Learning (DL) Model’s Predictions to Actual Observations Contrasting the Predictions
by CCD

 Volume 1| Issue 1 | 05J Data Analytic Eng Decision Making, 2024

9

Figure 1 Display shows proximity of Deep Learning (DL) Model’s Predictions to Actual
Observations contrasting the Predictions by CCD

Figure 2 Displays that the Deep Learning (DL) Model’s Prediction residuals are not materially
different (if not smaller) from those produced by the CCD model

0.00011

0.16206 0.14202

-0.06743
-0.03311

0.36689

0.06689

-0.23311

-0.13311 -0.13846 -0.16752

-0.000114

0.03754

0.2
0.17

0.21
0.18

-0.04

0.36

0.06

-0.24

-0.14
-0.19 -0.18 -0.17

-0.21
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 10 11 12 13

DL and CCD Model Residuals

DL Residual CCD Residual

Figure 2: Displays that the Deep Learning (DL) Model’s Prediction Residuals are not Materially Different (if not smaller) from
those Produced by the CCD model

10

Figure 3 The scatter of the CCD model’s predictions about the actual observations of yield (the
dotted line) is slightly wider than the scatter of the Deep Learning (DL) Predictions

Figure 4 The Deep Learning and the CCD model’s predictions of Viscosity relative to actual
observations of Viscosity

y = x
R² = 1

75

76

77

78

79

80

81

75 76 77 78 79 80 81

Scatter Plot of Actual Yield vs. DL and
CCD Models

DL Model Actual Yield

CCD Model Linear (Actual Yield)

0
10
20
30
40
50
60
70
80

VI
SC

OS
IT

Y

Minutes and Temp (F)
 Factor Settings

viscosity by Deep Learning, CCD AND
ACTUAL

DL Model CCD Model Actual Yield

Figure 3: The scatter of the CCD model’s Predictions about the Actual Observations of yield (the dotted line) is Slightly Wider than
the Scatter of the Deep Learning (DL) Predictions

 Volume 1| Issue 1 | 06J Data Analytic Eng Decision Making, 2024

10

Figure 3 The scatter of the CCD model’s predictions about the actual observations of yield (the
dotted line) is slightly wider than the scatter of the Deep Learning (DL) Predictions

Figure 4 The Deep Learning and the CCD model’s predictions of Viscosity relative to actual
observations of Viscosity

y = x
R² = 1

75

76

77

78

79

80

81

75 76 77 78 79 80 81

Scatter Plot of Actual Yield vs. DL and
CCD Models

DL Model Actual Yield

CCD Model Linear (Actual Yield)

0
10
20
30
40
50
60
70
80

VI
SC

OS
IT

Y

Minutes and Temp (F)
 Factor Settings

viscosity by Deep Learning, CCD AND
ACTUAL

DL Model CCD Model Actual Yield

Figure 4: The Deep Learning and the CCD Model’s Predictions of Viscosity Relative to Actual Observations of Viscosity

11

Figure 5 The Deep Learning and the CCD model’s predictions of Molecular Weight relative to
actual observations of Molecular Weight

The effectiveness of the deep learning (DL) model building approach in comparison to the

central composite design (CCD)-based regression model can be evaluated in several ways.

Firstly, examining the model residuals in the last two columns of Table 2 reveals that each of the

DL's residuals is smaller than the corresponding residual for the CCD model, even though we did

not run the DL algorithm beyond a reasonable limit (epoch = 100000). This qualitative edge of

DL over CCD is depicted graphically in Figure 3. Quantitatively, we observe that the root mean

square error, which represents the standard deviation of the residuals, is 0.161209012 for DL,

whereas it is 0.202432181 for the CCD model. We suggest that the DL model's apparent superior

prediction performance is due to its ability to incorporate the response's true nonlinearities and

higher order "terms" (which are attributable to the input factors, i.e., Time and Temperature)

more effectively. It is worth noting that the DL model's mean absolute error (MAE) is

0.119104923, indicating acceptable predictive accuracy (Machine Learning (ML), 2023).

Furthermore, a chi-square test revealed that the performance of CCD and DL were statistically

indistinguishable for the present example.

Figures 4 and 5 illustrate the predictions of process responses Viscosity and Molecular Weight

obtained by DL and CCD models, along with the actual experimental observations of those

0
1000
2000
3000
4000
5000

 [[80. 170.] [80. 180.] [90. 170.] [90. 180.] [85. 175.] [85. 175.] [85. 175.] [85. 175.] [85. 175.] [92.07 175.] [77.93 175.] [85. 182.07] [85. 167.93]]

VI
SC

OS
IT

Y

Minutes and Temp (F)
 Factor Settings

molecular wt by Deep Learning, CCD AND
ACTUAL

DL Model CCD Model Actual Mol Wt

Figure 5: The Deep Learning and the CCD Model’s Predictions of Molecular Weight Relative to Actual Observations of Molecular
Weight

The effectiveness of the deep learning (DL) model building ap-
proach in comparison to the central composite design (CCD)-
based regression model can be evaluated in several ways. First-
ly, examining the model residuals in the last two columns of
Table 2 reveals that each of the DL's residuals is smaller than
the corresponding residual for the CCD model, even though we
did not run the DL algorithm beyond a reasonable limit (epoch
= 100000). This qualitative edge of DL over CCD is depicted
graphically in Figure 3. Quantitatively, we observe that the root
mean square error, which represents the standard deviation of
the residuals, is 0.161209012 for DL, whereas it is 0.202432181
for the CCD model. We suggest that the DL model's apparent
superior prediction performance is due to its ability to incorpo-

rate the response's true nonlinearities and higher order "terms"
(which are attributable to the input factors, i.e., Time and Tem-
perature) more effectively. It is worth noting that the DL model's
mean absolute error (MAE) is 0.119104923, indicating accept-
able predictive accuracy [11]. Furthermore, a chi-square test re-
vealed that the performance of CCD and DL were statistically
indistinguishable for the present example. Figures 4 and 5 illus-
trate the predictions of process responses Viscosity and Molec-
ular Weight obtained by DL and CCD models, along with the
actual experimental observations of those responses. The quality
of these results is not substantially different from those observed
for the response variable Yield.

 Volume 1| Issue 1 | 07J Data Analytic Eng Decision Making, 2024

6. Hyperparameter Tuning
Perhaps the most taxing chore in building a reliable deep learn-
ing model from experimental data is tuning the hyperparameters
of the model. Even when you feel that you have “cornered”
the “optimal hyperparameters”, there will remain the challenge
in achieving convergence without overtraining the model. One
issue we repeatedly bumped into was setting the random seed,
which determines the computational path taken by the heuristic
global optimization. We conducted multiple trials with differ-
ent seeds and epochs to heuristically attain convergence while

avoiding overtraining. No reliable guidelines are known to us as
yet and the approach seems to rely greatly on hit and trial [5].
An example is given in Table 3 using data obtained from a 23
factorial experiment. Simple regression gave brutal predictions
for it. The DL model was carefully developed by empirically
optimizing the hyperparameters (see Figure 5). The gains of us-
ing deep learning to predict process outputs are quite prominent.
Such results highlight the significance of careful and iterative
tuning and optimization in the DL modeling approach.

12

responses. The quality of these results is not substantially different from those observed for the

response variable Yield.

6.0 Hyperparameter Tuning

Perhaps the most taxing chore in building a reliable deep learning model from experimental data

is tuning the hyperparameters of the model. Even when you feel that you have ―cornered‖ the

―optimal hyperparameters‖, there will remain the challenge in achieving convergence without

overtraining the model. One issue we repeatedly bumped into was setting the random seed,

which determines the computational path taken by the heuristic global optimization. We

conducted multiple trials with different seeds and epochs to heuristically attain convergence

while avoiding overtraining. No reliable guidelines are known to us as yet and the approach

seems to rely greatly on hit and trial (Pannakkong et al; 2023). An example is given in Table 3

using data obtained from a 23 factorial experiment. Simple regression gave brutal predictions for

it. The DL model was carefully developed by empirically optimizing the hyperparameters (see

Figure 5). The gains of using deep learning to predict process outputs are quite prominent. Such

results highlight the significance of careful and iterative tuning and optimization in the DL

modeling approach.

Figure 5 A properly hyperparameter-tuned DL model showing the steady reduction of
RMS

Figure 5: A properly hyperparameter-tuned DL model showing the steady reduction of RMS

13

Table 3: Comparison of Experimental Responses, and Prediction by DL Model’s Output
and Simple Regression

Factorial
Expt #

Input Factor Settings Experimental
Response

DL
Model’s
Output

Response by
Regression X1 X2 X3

1 0 0 0 67 66.99999 66.5
2 1 0 0 79 79.00000 67.89286
3 0 1 0 61 61.00000 69.28571
4 1 1 0 75 75.00001 70.67857
5 0 0 1 65 64.99999 72.07143
6 1 0 1 60 60.000008 73.46429
7 0 1 1 77 77.00001 74.85714
8 1 1 1 87 86.99999 76.25

7.0 Conclusions and Lessons Learned

This study offers valuable insights into the modeling of processes with input-output

configurations. The following key lessons were learned:

 Modeling processes with input-output configurations has become relatively

straightforward with the availability of modern tools and devices such as deep learning.

This study demonstrates how one can easily break into this highly rewarding world of

ease and unexpected insights. Using a simple and compact code in Python (see the

Appendix) incorporating some TensorFlow calls, we were able to optimize a real

chemical engineering process, surpassing the performance of reputed statistical

experimental designs.

 DL models can be built relatively easily using emergent computational aids such as

TensorFlow, Keras, Numpy, PyTorch, and others.

 Once built and tuned, DL models work very satisfactorily as substitutes for many

relatively complex statistical techniques such as multiple regression and also reveal

hidden nonlinearities.

 Gathering training data for ML/DL projects remains a daunting challenge. However, it is

important to sample the application domain thoroughly, reaching into every corner of

interest. This helps in probing areas and factor setting combinations where complex

factor effect interactions may be concealed but active in the process. In many cases where

Table 3: Comparison of Experimental Responses, and Prediction by DL Model’s Output and Simple Regression

7. Conclusions and Lessons Learned
This study offers valuable insights into the modeling of process-
es with input-output configurations. The following key lessons
were learned:
• Modeling processes with input-output configurations has be-
come relatively straightforward with the availability of modern
tools and devices such as deep learning. This study demonstrates
how one can easily break into this highly rewarding world of
ease and unexpected insights. Using a simple and compact code
in Python (see the Appendix) incorporating some TensorFlow
calls, we were able to optimize a real chemical engineering pro-
cess, surpassing the performance of reputed statistical experi-
mental designs.
• DL models can be built relatively easily using emergent com-
putational aids such as TensorFlow, Keras, Numpy, PyTorch,
and others.
• Once built and tuned, DL models work very satisfactorily as
substitutes for many relatively complex statistical techniques
such as multiple regression and also reveal hidden nonlinearities.

• Gathering training data for ML/DL projects remains a daunt-
ing challenge. However, it is important to sample the application
domain thoroughly, reaching into every corner of interest. This
helps in probing areas and factor setting combinations where
complex factor effect interactions may be concealed but active in
the process. In many cases where nonlinearities are suspected to
be present, conventional experimental schemes such as fraction-
al or even full factorial experimental designs may not be enough.
This is a major limitation of even CCD and Box-Behnken statis-
tical experimental schemes. The authors recommend employing
grid search in critical situations, even if conducting such experi-
ments could become expensive [3].
• Tuning the hyperparameters of the learning models built may
present particular challenges. For instance, the model may give
no indication that its performance is being grossly affected by
the choice of the random seed set in the code. Such experiences
are not uncommon, as learning models including DL have yet to
become robust.

 Volume 1| Issue 1 | 08J Data Analytic Eng Decision Making, 2024

Summarily, we view that the proposed DL model provides a
novel way to design statistically a process experiment of a man-
ufacturing system based on a benchmark problem obtained
from a classical and significant author. On the other hand, the
effectiveness of the DL measure is limited when the data is in-
accurate or hard to collect. The proposed method uses a novel
concept which makes it unique and better than contemporary
CCD methods. In order to further investigate the efficacy of the
proposed model, some real-world case studies need to be carried
out. Another direction of future research is to link the actual pro-
duction systems to further pinpoint the potential improvement
opportunities. Finally, we submit that there is ample scope for
expanding the literature regarding refinements of our articula-
tions and postulations and bringing analytical rigours. However,
we have used the pragmatic research philosophy by integrating
some ideas and innovations towards enriching the state-of-the-
art in Data Science discipline, which is facilitating more rapid-
ly to our broader field of knowledge in Industrial Engineering.
Even then, in terms of towards the finality in refinement of the
modelling and analysis, we make no claim but surely we enrich
the profession.

References
1. Maran, J. P., Sivakumar, V., Thirugnanasambandham, K., &

Sridhar, R. (2013). Artificial neural network and response
surface methodology modeling in mass transfer parameters
predictions during osmotic dehydration of Carica papaya L.
Alexandria Engineering Journal, 52(3), 507-516.

2. IIT Kanpur (2023). Deep Learning Library
3. Montgomery, D. C. (2017). Design and analysis of experi-

ments. John wiley & sons.
4. Villarrubia, G., De Paz, J. F., Chamoso, P., & De la Prieta,

F. (2018). Artificial neural networks used in optimization
problems. Neurocomputing, 272, 10-16.

5. Pannakkong, W., Thiwa-Anont, K., Singthong, K., Part-
hanadee, P., & Buddhakulsomsiri, J. (2022). Hyperparam-
eter tuning of machine learning algorithms using response
surface methodology: a case study of ANN, SVM, and
DBN. Mathematical problems in engineering, 2022, 1-17.

6. Gupta, Sakshi (2022). AI vs. Machine Learning vs. Deep
Learning: What’s the Difference?

7. Zhang, A., Lipton, Z. C., Li, M., & Smola, A. J. (2023).
Dive into deep learning. Cambridge University Press.

8. Karazi, S. M., Issa, A., & Brabazon, D. (2009). Comparison
of ANN and DoE for the prediction of laser-machined mi-
cro-channel dimensions. Optics and Lasers in Engineering,
47(9), 956-964.

9. Kafritsas, Nicolos (2023). Time-Series Forecasting: Deep
Learning vs Statistics — Who Wins?

10. Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical
bayesian optimization of machine learning algorithms. Ad-
vances in neural information processing systems, 25.

11. Mean Absolute Error ~ MAE [Machine Learning (ML)]
(2023).

Appendix: A Prototype TensorFlow Code for Deep Learning

17

Appendix: A Prototype TensorFlow Code for Deep Learning

-*- coding: utf-8 -*-

"""

Created on Wed Apr 12 21:52:30 2023

@author: lenovo

"""

import numpy as np

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

import tensorflow as tf

Set up the input data

x = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0], [0, 0, 1], [1, 0, 1], [0, 1, 1], [1, 1, 1]])

y = np.array([[67], [79], [61], [75], [65], [60],[77], [87]])

import random

tf.random.set_seed(987654)

#model defination

#Some hyperparameters we can tune to observe include

1. Changing the the number of input layer nodes and using non-linear activation function for the nodes.
we can test from Relu to Tanh or sigmoid

model = Sequential()

model.add(Dense(10, input_dim=3, activation='relu'))

#model.add(Dense(20, input_dim=3, activation='tanh'))

model.add(Dense(24, activation='relu'))

#model.add(Dense(44, activation='tanh'))

model.add(Dense(1, activation='linear'))

We can also change the learning rate to see what effects are revealed

model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001), loss='mean_squared_error',
metrics=[tf.keras.metrics.RootMeanSquaredError()])

#model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.003), loss='mean_squared_error',
metrics=[tf.keras.metrics.RootMeanSquaredError()])

https://doi.org/10.1016/j.aej.2013.06.007
https://doi.org/10.1016/j.aej.2013.06.007
https://doi.org/10.1016/j.aej.2013.06.007
https://doi.org/10.1016/j.aej.2013.06.007
https://doi.org/10.1016/j.aej.2013.06.007
https://doi.org/10.1016/j.neucom.2017.04.075
https://doi.org/10.1016/j.neucom.2017.04.075
https://doi.org/10.1016/j.neucom.2017.04.075
https://doi.org/10.1155/2022/8513719
https://doi.org/10.1155/2022/8513719
https://doi.org/10.1155/2022/8513719
https://doi.org/10.1155/2022/8513719
https://doi.org/10.1155/2022/8513719
https://doi.org/10.1016/j.optlaseng.2009.04.009
https://doi.org/10.1016/j.optlaseng.2009.04.009
https://doi.org/10.1016/j.optlaseng.2009.04.009
https://doi.org/10.1016/j.optlaseng.2009.04.009

 Volume 1| Issue 1 | 09J Data Analytic Eng Decision Making, 2024

17

Appendix: A Prototype TensorFlow Code for Deep Learning

-*- coding: utf-8 -*-

"""

Created on Wed Apr 12 21:52:30 2023

@author: lenovo

"""

import numpy as np

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

import tensorflow as tf

Set up the input data

x = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0], [0, 0, 1], [1, 0, 1], [0, 1, 1], [1, 1, 1]])

y = np.array([[67], [79], [61], [75], [65], [60],[77], [87]])

import random

tf.random.set_seed(987654)

#model defination

#Some hyperparameters we can tune to observe include

1. Changing the the number of input layer nodes and using non-linear activation function for the nodes.
we can test from Relu to Tanh or sigmoid

model = Sequential()

model.add(Dense(10, input_dim=3, activation='relu'))

#model.add(Dense(20, input_dim=3, activation='tanh'))

model.add(Dense(24, activation='relu'))

#model.add(Dense(44, activation='tanh'))

model.add(Dense(1, activation='linear'))

We can also change the learning rate to see what effects are revealed

model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001), loss='mean_squared_error',
metrics=[tf.keras.metrics.RootMeanSquaredError()])

#model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.003), loss='mean_squared_error',
metrics=[tf.keras.metrics.RootMeanSquaredError()])

18

model.summary()

The number of epochs can also be changed

history= model.fit(x, y, batch_size=8, epochs=10000)

from matplotlib import pyplot as plt

plt.plot(history.history['loss'])

plt.title('Loss graph')

plt.xlabel('epochs')

plt.ylabel('loss')

plt.legend(['Training Loss'], loc=1)

loss= model.evaluate(x, y, verbose=0)

#print(f"Loss: {loss:.4f}")

print(loss)

Predict on new data

new_data = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0], [0, 0, 1], [1, 0, 1], [0, 1, 1], [1, 1, 1]])

predictions = model.predict(new_data)

print(predictions)

model.predict(x)

Evaluate the model

loss, rmse = model.evaluate(x, y, verbose=0)

print(f"Loss: {loss:.4f}, Root_Mean_SQ_error: {rmse:.4f}")

Predict on new data

new_data = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0], [0, 0, 1], [1, 0, 1], [0, 1, 1], [1, 1, 1]])

predictions = model.predict(new_data)

print(predictions)

 Volume 1| Issue 1 | 10J Data Analytic Eng Decision Making, 2024

Copyright: ©2024 R P Mohanty, et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original author and source are credited.

https://opastpublishers.com

18

model.summary()

The number of epochs can also be changed

history= model.fit(x, y, batch_size=8, epochs=10000)

from matplotlib import pyplot as plt

plt.plot(history.history['loss'])

plt.title('Loss graph')

plt.xlabel('epochs')

plt.ylabel('loss')

plt.legend(['Training Loss'], loc=1)

loss= model.evaluate(x, y, verbose=0)

#print(f"Loss: {loss:.4f}")

print(loss)

Predict on new data

new_data = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0], [0, 0, 1], [1, 0, 1], [0, 1, 1], [1, 1, 1]])

predictions = model.predict(new_data)

print(predictions)

model.predict(x)

Evaluate the model

loss, rmse = model.evaluate(x, y, verbose=0)

print(f"Loss: {loss:.4f}, Root_Mean_SQ_error: {rmse:.4f}")

Predict on new data

new_data = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0], [0, 0, 1], [1, 0, 1], [0, 1, 1], [1, 1, 1]])

predictions = model.predict(new_data)

print(predictions)

