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Abstract
The Goldbach Conjecture, frequently abbreviated as “2 = 1 + 1”, has been a fascinating goal for many mathematicians over 
centuries. In spite of numberless painstaking attempts by various mathematicians, this question remains unconquerable until 
recently. Among them, a Chinese mathematician, Dr. Jingrun Chen, proved “1 + 2”, which is the best result the human beings 
had achieved previously. The complexity of this question is hinged with the notorious random occurrence of prime numbers in 
natural numbers. Taking advantage of the periodicity of prime numbers revealed recently, here the author provides a concise, 
straight-forward, rigorous proof for the conjecture using mathematical induction.
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1.Introduction
Goldbach Conjecture states "Every even number greater than 2 is a 
sum of a pair of prime numbers" (frequently abbreviated as “2 = 1 + 
1”). Although simple-appearing, the conjecture has been tantalizing 
mathematicians over centuries since 1742 and remains not fully 
and convincingly conquered [1-11]. Although the conjecture has 
been tested valid for all evens up to 4 x 1018 and several proofs 
were given for the conjecture, these proofs are too tediously long, 
complicated, or unclear to be accepted by the general public 
[5-7,11-13]. A simple, comprehendible but rigorous proof public 
is still lacking. Taking advantage of periodicity of prime numbers 
revealed recently, the author gives a concise and rigorous proof for 
the conjecture using mathematical induction.

2.Techniques and Methods
The author first elucidates the periodicity of prime numbers. 
Basing on the revealed periodicity, the author proves that the 
validity of Goldbach Conjecture can be expanded from one super 
product of prime numbers to another, which increases rapidly into 
the infinite. This is a typical proving process used in mathematics, 
namely, mathematical induction. 

Definition 1  The nth prime is denoted as Pn. 
Definition 2  A super product of prime Pn, denoted as Xn, is defined 
as the product of all prime numbers smaller than Pn (X1 is defined 
as 1). Namely,                       (Wang, 2021[14]).

n Pn Super Product Expression Value
1 2 X1 1 1
2 3 X2 2 2
3 5 X3 2 x 3 6
4 7 X4 2 x 3 x 5 30
5 11 X5 2 x 3 x 5 x 7 210
6 13 X6 2 x 3 x 5 x 7 x 11 2,310
7 17 X7 2 x 3 x 5 x 7 x 11 x 13 30,030
8 19 X8 2 x 3 x 5 x 7 x 11 x 13 x 17 510,510
9 23 X9 2 x 3 x 5 x 7 x 11 x 13 x 17 x 19 9,699,690
10 29 X10 2 x 3 x 5 x 7 x 11 x 13 x 17 x 19 x 23 223,092,870
11 31 X11 2 x 3 x 5 x 7 x 11 x 13 x 17 x 19 x 23 x 29 6,469,693,230

Table 1: The first eleven super products of prime numbers
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3. Results
3.1 Periodicity of Prime Numbers
Although prime numbers are notorious of their random occurrence, 
Dirichlet’s theorem did predict the regular occurrence of certain 
prime numbers in natural numbers. The theorem states that there 
are infinitely many prime numbers in the collection of all 

numbers of the form na + b, in which the constants a and b are 
integers without a common divisor except 1 (namely, being 
relatively prime) and the variable n is any natural number. It 
is easy to see that the numbers in the collection constitute an 
arithmetic progression (A.P.) with a common difference of a. 
This implication is clearly demonstrated in Figure 1 and 2.
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Figure 3. Combining the right sides in Figure 1, 2 as well as their counterparts corresponding to other 

prime numbers (13, 17, 19, 23, 29, and 31, data not shown), the distribution of all prime numbers in 

[7, 211] becomes regular. Each prime numbers in [7, 31] has its own 7-element array of prime 

numbers with a common difference of 30 (= 2 x 3 x 5 = X4), with 12 exceptions. Modified from 

Wang 14. 
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The above cases of 7 and 11, shown in Figure 1 and 2 respectively, 
are not exceptional. Indeed, through similar operations shown 
in Figure 1 and 2, more arrays of seven prime numbers may be 
derived from greater prime numbers (i.e., 13, 17, 19, 23, 29, 
and 31), and these 7-element arithmetic progressions have a 

common difference of 30 and cover all prime numbers (and also 
rare composite numbers) in the scope [7, 211]. Arranging these 
arithmetic progressions orderly on radii of a circle, the regular 
distribution of prime numbers in [7, 211] (roughly the scope of X5) 
is demonstrated in Figure 3.

After similar operations, regular distribution of prime numbers in [11, 2311] (roughly the scope of X6) can be obtained, as shown in 
Figure 4.
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Figure 4. After similar operation as in Figure 1-3, each prime number in [11, 211] can generate its own 11-element 

arithmetic progressions of prime numbers (with rare composite exceptions)with a common difference of 210 (= 2 x 
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2.Regular sums of prime number pairs 

Since the Goldbach Conjecture is about sums of two prime numbers, let’s examine the sums of 

prime numbers first. Since we cannot obtain the sums of all primes, it does not hurt starting our 
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3.2 Regular Sums of Prime Number Pairs
Since the Goldbach Conjecture is about sums of two prime 
numbers, let’s examine the sums of prime numbers first. Since we 
cannot obtain the sums of all primes, it does not hurt starting our 
examining from smaller prime numbers, e.g. prime numbers in [7, 

31]. Increasing from 7 to 31, we add each number and all greater 
prime numbers in [7, 31], obtain sums, and put all sums orderly 
as below. Finally, we put all these sums into the corresponding 
hashes, as in Figure 5.
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It is easy to see from the above that all even numbers in [18, 54] 
are sums of two prime numbers. Given 4 = 2 + 2, 6 = 3 + 3, 8 = 
3 + 5, 10 = 3 + 7, 12 = 5 + 7, and 16 = 3 + 13, it can be said that 
Goldbach Conjecture holds up to 54.
To be conservative, we put it as Goldbach Conjecture holds up 
to 30 (=X4).

3.3 Expanding the Valid Scope of Goldbach Conjecture
Suppose Pa, Pb, Pc are prime numbers, S1, S2 are integers, and 
S1 = Pa + Pb                                                                                  (1)
S2 = Pa + Pc                                       (2)
Pc = Pb + 30           (3)

 If (2) - (1), we can obtain 
 S2 - S1 = (Pa + Pc) – (Pa + Pb,) 
                           = Pc – Pb 
                           = 30

As in Figure 3, the difference between two adjacent numbers 
(mostly prime numbers) on the same radius is 30. Since all prime 
numbers in [7, 31] are on the innermost circle of Figure 3, so if 
any prime number in [7, 31] is substituted by its neighbor on outer 
adjacent circle, its value increases by 30. If this prime number was 
in a prime number pair, then the sum of the prime number pair also 
increases by 30. 

If we apply this operation for every single prime number in [7, 31], 
then the sums of former prime number pairs covering all evens in 
[18, 54] increases by 30, covering all evens in [48, 84].
Repeating the same operation six times, we can prove that all 
evens in ranges [78, 114], [108, 144], [138, 174], [168, 204], and 
[198, 234], respectively, are sums of a pair of prime numbers.

Since these ranges overlap each other, it can be said that all 
evens up to 234 are sums of a pair of prime numbers. Namely, 
Goldbach Conjecture holds up to 234.

To be conservative, we put it as Goldbach Conjecture holds up to 
210 (=X5).

Referring to Figure 4, which shows arrays of numbers (most prime 
numbers, some composite numbers), applying the same proving 
process, it is not hard to prove that Goldbach Conjecture holds 
up to 2310 (=X6).

3.4 Extending to the Infinite Using Mathematical Induction
As seen in the above, we have proven that Goldbach Conjecture 
holds up to 30 (=X4). Taking advantage of revealed periodicity of 
prime number shown in Figure 3 and 4, we have expanded the 
valid scope of Goldbach Conjecture from X4 to X5, and further X6.

It is apparent that, compared to the standard steps of mathematical 
induction, all proving steps required for mathematical induction 
have been fully implemented above, considering super product Xn 
can be expanded into the infinite as n increases.

The above proves that the valid scope of Goldbach Conjecture 
can be expanded into the infinite, namely, Goldbach Conjecture 
holds.

4. Discussions
The above reasoning is based on an assumption that all numbers 
shown in Figures 3 and 4 are prime numbers. However, this 
assumption is not true, as there are obvious exceptions (composite
numbers) in the figures. The existence of these exceptions appears
to undermine the validity of the above proof. It is necessary 
to remove the mines brought by these exceptions (composite 
numbers).
              S = Pa + Pb      
       
  = (Pa + C) + (Pb - C)    
      
If Pb is not a prime number (a composite number) and Pa is the only 
prime number smaller than S, the compositeness of Pb would make 
S an exception even number that negates Goldbach Conjecture. 
However, if there are extra prime numbers smaller S, then there 
may still be other prime number pairs, Pa + C and Pb – C, that have 
their sum equal to S. Our challenge is to find a constant C that 
satisfying S = (Pa + C) + (Pb - C), namely, a common difference 
between two prime numbers.
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4.1 Vertical Shifting
In Figures 3 and 4, the expected constant C (common difference 
between prime numbers) is 30 and 210, respectively.
For example, 119 is an exception (a composite number) in Figure 
3, and 186 = 119 + 67. We have to replace 119 with a prime number 
to satisfy Goldbach Conjecture. To offset the influence introduced 
to the sum by this replacing (as there must be a difference between 
119 and a prime number), the other prime number in the pair (67) 
has to be increased or decreased correspondingly. 

In Figure 3, there are 5 alternative prime number on the same radius 
to replace 67. The differences between 67 and these alternatives are 
either X4 (= 30) or its multiples. We can easily obtain the following 
five alternatives.
186 = 119 + 67 = (119 + 30) + (67 – 30) = 149 + 37
       = (119 + 60) + (67 – 60) = 179 + 7
       = (119 - 30) + (67 + 30) = 89 + 107
       = (119 - 60) + (67 + 60) = 59 + 127
       = (119 - 90) + (67 + 90) = 29 + 157
In Figure 4, X5 (= 210) or its multiples are ideal candidates for 
constant C.

To generalize, in any scope of Xn+1, Xn and its multiples are ideal 
candidates for constant C during vertical shifting.

4.2 Horizontal Shifting
We still use 186 = 119 + 67 as an example. 
There are limited choices for the values of differences among 8 
prime numbers on the innermost circle in Figure 3. For example, 6 
= 29 – 23 = 23 – 17 = 19 – 13 = 17 – 11 = 13 – 7 = 11 – 5. Please 
note that this value equals to X3 = 6.
Starting from 119 in Figure 3, we may shift left or right 
(horizontally), and find new prime number replacement for 119. 
186 = 119 + 67 = (119 - 6) + (67 + 6) = 113 + 73
       = (119 - 12) + (67 + 12) = 107 + 79
       = (119 - 30) + (67 + 30) = 89 + 97
In addition, we may still find more prime number replacements 

with other differences.
 186      = 119 + 67 = (119 - 16) + (67 + 16) = 103 + 83
              = (119 + 8) + (67 - 8) = 127 + 59
              = (119 + 20) + (67 - 20) = 139 + 47
To generalize, in any scope of Xn+1, Xn-1 and its multiples are ideal 
candidates for constant C during horizontal shiftings.

4.3 Block-Shifting
Again, we still use 186 = 119 + 67 as an example. 
186 = 150 + 36 
In Figure 3, there are four alternative prime number pairs having 
a sum of 36, if only all prime numbers smaller than 32 are taking 
into consideration.
36 = 5 + 31 
     = 7 + 29 
     = 13 + 23 
     = 17 + 19

As 150 = 30 x 5, we may allocate zero to five blocks of 30 to 
each prime number in above four prime number pairs. We use 
the second prime number pair, 7 + 29, as example to find more 
alternative prime number pairs having a sum of 186.
186 = 150 + 36
       = 150 + (7 + 29)
       = 157 + 29 = 127 + 59 = 97 + 89 = 37 + 149 = 7 + 179
Certainly, you may try other prime pairs yourselves to find other 
alternative solutions.\
In summary, in either of the above three shiftings, there are 
more than one alternative prime number pairs that satisfy 
Goldbach Conjecture, as Goldbach Conjecture requires only 
ONE such pair to hold.

It is noteworthy that the number of alternative solutions is hinged 
with the number of prime numbers in the scope of certain super 
product of prime numbers that increases monotonously, the number 
of potential alternative solutions grows monotonously, too.
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5. Conclusions
Taking advantage of periodicity of prime numbers in scopes 
defined by super products, the validity of Goldbach Conjecture 
is proven using mathematical induction. Although the periodicity 
shown in Figure 3 and 4 is imperfect, negative influence brought 
by this imperfectness may be offset  by increasing number of 
alternative solutions.
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