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Abstract
Estimating water quality has been one of the significant challenges faced by the world in recent decades. Ensuring 
efficient and sustainable irrigation relies heavily on accurate water quality assessment. Contaminated water can harm 
soil health, crop yield, and the agricultural ecosystem. Developing precise water quality classification models is crucial, 
especially with the increasing demand for precision irrigation systems. This study proposes a water quality prediction 
model using Principal Component Regression (PCR) and Gradient Boosting Classifier (GBC). The Water Quality Index 
(WQI) is calculated, and Principal Component Analysis (PCA) extracts dominant water quality parameters. Several 
regression algorithms, including Support Vector Regression (SVR), are applied to predict WQI values. Experimental 
results show that the PCR model with SVR achieves 95% prediction accuracy. The Gradient Boosting Classifier achieves 
100% accuracy in classifying water quality levels. The proposed approach enhances prediction reliability while reducing 
required parameters.
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1. Introduction
Water is a fundamental resource for life and is essential for various 
sectors, including agriculture, industry, and domestic consumption. 
In irrigation systems, water quality plays a crucial role in ensuring 
optimal crop growth and soil health [1-3]. However, increasing 
industrialization and urbanization have led to severe water 
pollution, making water quality assessment a critical concern for 
sustainable agriculture. Contaminated water can introduce harmful 
chemicals, heavy metals, and pathogens into agricultural lands, 
negatively affecting crop yield and food safety [3-9].

Traditional water quality assessment methods rely on chemical and 
biological testing, which are often expensive, time-consuming, 
and require specialized laboratory facilities [11,12]. In contrast, 
recent advancements in machine learning (ML) offer a promising 
alternative by enabling automated and data-driven analysis of 
water quality parameters. By leveraging historical water quality 
data and advanced computational techniques, ML models can 

predict the Water Quality Index (WQI) and classify water quality 
status with high accuracy [13].

This study focuses on developing a machine learning-based water 
quality classification model for precision irrigation systems. It 
employs Principal Component Regression (PCR) for prediction and 
a Gradient Boosting Classifier (GBC) for classification to achieve 
high accuracy in water quality assessment. The proposed model is 
tested on a Gulshan Lake dataset, demonstrating its effectiveness in 
accurately predicting and classifying water quality. The goal is to 
provide an efficient, cost-effective, and scalable solution for real-
time water quality monitoring in agricultural irrigation systems.

2. Literature Review
This section demonstrated the existing literature survey. The 
author took the most common approaches to detect and classify 
water quality, including deep neural networks, recurrent neural 
networks, neuro-fuzzy inference, and support vector regression.
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Several studies have explored machine learning techniques for 
water quality assessment, focusing on prediction and classification 
models. Applied a hybrid CNN-LSTM model to predict water 
quality parameters such as Dissolved Oxygen (DO) and 
Chlorophyll-a, outperforming traditional machine learning models 
like Support Vector Regression (SVR) and Decision Trees [2,3,14-
17]. Similarly, compared Fuzzy Logic Inference (FLI) and WQI-
based models for evaluating water quality, concluding that FLI 
provided better accuracy [18].

For classification tasks, used a Decision Tree algorithm to classify 
water quality status in Klang River, Malaysia, achieving an 
accuracy of 84%. However, their model was limited to a small 
number of water quality parameters [16,17,19]. Demonstrated 
that Gradient Boosting and Polynomial Regression are effective 
for WQI prediction but noted challenges in model generalization 
[20,22]. Proposed a Recurrent Neural Network (RNN) combined 
with Dempster-Shafer Theory (DST) to analyze time-series water 
quality data, achieving high accuracy but requiring complex data 
preprocessing [1,5,19-23].

Despite these advancements, many existing models lack robustness, 
require extensive datasets, or focus solely on prediction rather than 
classification. This study addresses these gaps by combining PCA-
based feature extraction, Principal Component Regression (PCR) 
for WQI prediction, and Gradient Boosting Classifier (GBC) for 
classification, ensuring improved accuracy and efficiency in water 
quality assessment for precision irrigation.

3. Material and Methods
This study presents a machine learning-based framework for 
predicting and classifying water quality in precision irrigation 
systems. The proposed methodology consists of four key phases: 
data collection, preprocessing, feature extraction, and model 
implementation.

3.1. Data Collection
The study utilizes a Gulshan Lake-related dataset [10], which 
contains multiple water quality parameters, including pH, Dissolved 
Oxygen (DO), Suspended Solids (SS), Electrical Conductivity 
(EC), Turbidity, Chloride, Chemical Oxygen Demand (COD), 
Total Dissolved Solids (TDS), and Alkalinity.

3.2. Data Preprocessing
To handle missing values, a median imputation technique is 
applied. The dataset is then normalized using a Min-Max scaler, 
ensuring that all variables are on a uniform scale, which improves 
model performance.

3.3. Feature Extraction
Principal Component Analysis (PCA) is employed to reduce 
dimensionality while preserving key water quality information. 
PCA identifies the most significant parameters influencing the 
Water Quality Index (WQI).

3.4. Model Implementation
Principal Component Regression (PCR) is applied using 
different regression models, including Support Vector Regression 
(SVR), Multiple Linear Regression (MLR), and Random Forest 
Regression (RFR), to estimate WQI values. The Gradient Boosting 
Classifier (GBC) is used to categorize water quality into different 
classes, ensuring high classification accuracy. Model performances 
are evaluated using metrics such as R² score for regression and 
accuracy, recall, and confusion matrix for classification.

The combination of PCA for feature reduction, PCR for WQI 
prediction, and GBC for classification provides an efficient 
and scalable approach for real-time water quality assessment 
in irrigation systems. Support Vector Machine (SVM) Model 
The SVM model was developed in 1995 by Corinna Cortes and 
Vapnik. It has several unique benefits in solving small samples, 
and nonlinear and high-dimensional pattern recognition. It can be 
extended to function in the simulation of other machine-learning 
problems. It uses the hyperplane to separate the points of the input 
vectors and finds the needed coefficients. The best hyperplane 
is the line with the largest margin, which means the distance 
between the hyperplane and the nearest input objects. The input 
points defined in the hyperplane are called support vectors. In this 
work, the linear SVM model along with the Gaussian radial basis 
function is used to classify the tested water samples based on their 
quality.

  K(X,X′)=exp(−||X−X′||22σ2)

where X and X′ represent the feature vectors of the input dataset 
and the ‖X − X′‖2 is the squared Euclidean distance between the 
two feature inputs. The σ is a free parameter. K-Nearest Neighbor 
(K-NN) Model The K-NN algorithm is a basic classification and 
regression method. It is used to find the K values that are close 
to values in the training dataset. Most of these values belong to a 
certain class, and thus, tested data can be classified. The K value 
is used to find the closest points in the feature vectors, and the 
value should be unique. The following expression of the Euclidean 
distance function (Di) can be used.

  Di=(x1−x2)+(y1−y2)2,

where x1, x2, y1, and y2 are the variables for input data.

Naive Bayes Model The Bayesian method uses the knowledge of 
probability statistics to predict and classify datasets. The Bayesian 
algorithm combines prior and posterior probabilities to avoid the 
supervisor's bias and the overfitting phenomenon of using sample 
information alone.

This Naive Bayes is a type of classification algorithm based 
on Bayes' theorem and the assumption of the independence of 
characteristic conditions. Attributes are assumed to be conditionally 
independent of each other when the target value is given. This 
method greatly simplifies the complexity of the Bayesian method.



J Water Res, 2025 Volume 3 | Issue 1 | 3

In Bayesian analysis, the probability of an event A given an event 
B is not the same as the probability of B given A as in equation 
(18).

  P(A ∣ B)≠P(B ∣ A).  (19)

Assuming that A1, A2 ⋯ . An and C are the feature vectors and the 
class of the WQC dataset, respectively, the Bayes equation can be 

expressed as follows:

  P(C ∣ A)=P(C)×P(A ∣ C)P(A)

where P(A) is a prior probability representing the feature vectors 
of the WQC dataset and P(A | C) is the prior probability of the class 
of the WQC dataset.

In Bayesian analysis, the probability of an event A
given an event B is not the same as the probability of B
given A as in equation (18).

P(A ∣ B)≠P(B ∣ A). (19)

Assuming that A1, A2 ⋯ . An and C are the feature
vectors and the class of the WQC dataset, respectively,
the Bayes equation can be expressed as follows:

P(C ∣ A)=P(C)×P(A ∣ C)P(A)

where P(A) is a prior probability representing the
feature vectors of the WQC dataset and P(A | C) is the
prior probability of the class of the WQC dataset.

Fig 1. Overall Methology Flowchart

Figure 1: Overall Methology Flowchart
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4. Experiments and Results
4.1. Regression Model Performance
The PCR model with Support Vector Regression (SVR) achieved 
the highest prediction accuracy of 95%, outperforming Random 
Forest Regression and Multiple Linear Regression. The PCA 
with the Multiple Linear Regression model also performed well, 
especially when the number of components was optimized.

4.2. Feature Selection Impact
A comparison of different PCA-based regression models revealed 
that models using eight or nine principal components (PCR8 and 
PCR9) achieved the best accuracy, with an R² score of 0.932 in the 
testing phase. When fewer components were used, performance 
dropped significantly.

4.3. Classification Model Performance
The Gradient Boosting Classifier (GBC) achieved 100% accuracy in 
classifying water quality levels, outperforming the Random Forest 
Classifier, Support Vector Classifier, and AdaBoost Classifier. The 
confusion matrix confirmed that GBC correctly classified all test 
samples, while other models showed minor misclassifications.

4.4. Comparison with Existing Models
Compared to traditional methods, the proposed approach improves 

both prediction and classification accuracy. While earlier studies 
reported classification accuracies of 71%–90%, the GBC model 
in this study reached 100% accuracy, demonstrating superior 
performance.
• PCR with SVR is the most effective model for WQI prediction, 

achieving 95% accuracy.
• PCA-based feature reduction helps optimize model 

performance while reducing computational cost.
• GBC outperforms other classifiers, achieving perfect accuracy 

in water quality classification.
The proposed machine learning framework provides an accurate, 
scalable, and cost-effective solution for water quality assessment in 
precision irrigation systems. Future work will focus on expanding 
datasets and integrating deep learning techniques to enhance 
model robustness.

4.5 PCR Model Result Assessment
The proposed PCR method was implemented using Python. The 
results of different PCR models are shown in Table 5. From this 
table, PCA with Support Vector Regression has achieved the 
highest accuracy compared to the other PCR techniques. Although 
other PCR models also performed well, PCA with Gradient 
Boosting Regression proved to be a less useful model.

Model R² RMSE MAE
PCA+ Multiple Linear Regressor 0.932 5.72 5.42
PCA+ Random Forest Regressor 0.839 8.87 7.82
PCA+ Support Vector Regressor 0.95 4.93 4.37
PCA+ Gradient Boosting Regressor 0.722 11.6 9.15

Table 1: This Table Presents the Performance Metrics (R², Rmse, and Mae) for Different Regression Models Combined with 
Principal Component Analysis (PCA).

Since the PCR model works with fewer parameters, we reduced 
the number of components instead of taking all the features. The 
results of taking different features are shown in Table 6. For this 
technique, PCA with Multiple linear regression is selected since 
PCA is mostly related to multiple linear regression to create 
new principal components. Table 6 illustrates that, with nine and 
eight components, the PCR9 and PCR8 models showed the best 
performance, where PCR9 clarified all the variance. The PCR8 
model gives the same result as the PCR9 model, and the number 
of parameters is also reduced. 

The R^2 value for the PCR8 model in the testing steps is .932. 
If we reduce one more component from the PCR8 model, that 
model produces almost the same result as operating with all the 
components. The R^2 value in the PCR7 model is .927. After 
reducing one more component, the R^2 value reduced in the 
testing phases is .709. That shows less accuracy compared with 
the PCR7 and PCR8 models. Yet in the water samples, PCR6 still 
performed well. If we reduce more components from the PCR 
model, the R^2 value is barely 50 percent, which shows low PCR 
model efficiency.

Model Components R² RMSE MAE
PCR1 n=1 0.042 21.64 19.56
PCR2 n=2 0.411 16.97 14.57
PCR3 n=3 0.589 14.52 12.51
PCR4 n=4 0.564 14.59 12.54
PCR5 n=5 0.565 14.58 11.67
PCR6 n=6 0.709 11.92 9.44
PCR7 n=7 0.927 5.97 5.33
PCR8 n=8 0.932 5.72 5.42
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PCR9 n=9 0.932 5.72 5.42

Table 2: This Table Presents the Performance Metrics (R², Rmse, and Mae) for Principal Component Regression (Pcr) Models 
Using Different Numbers of Components.

The accuracy comparison of the PCR model in each principal 
component is shown in Figure 3. The model performed well 
with six, seven, and eight components. After that, it showed poor 
performance. Since PCR7 and PCR8 showed the same results as 
working with PCR9, we could infer that the PCR method allows 
operating with fewer parameters instead of taking all the features.

Figure 2, illustrates the plot between the observed and predicted 
WQI values for a better understanding of those models. Among 
them, the value appeared closer to the regression fit line in the 
PCA+ Support Vector Regression model because of the high 
training and testing accuracy.

Table 2. This table presents the performance metrics (R²,
RMSE, and MAE) for Principal Component Regression
(PCR) models using different numbers of components.

Model Components R² RMSE MAE

PCR1 n=1 0.042 21.64 19.56

PCR2 n=2 0.411 16.97 14.57

PCR3 n=3 0.589 14.52 12.51

PCR4 n=4 0.564 14.59 12.54

PCR5 n=5 0.565 14.58 11.67

PCR6 n=6 0.709 11.92 9.44

PCR7 n=7 0.927 5.97 5.33

PCR8 n=8 0.932 5.72 5.42

PCR9 n=9 0.932 5.72 5.42

The accuracy comparison of the PCR model in each
principal component is shown in Fig 3. The model
performed well with six, seven, and eight components.
After that, it showed poor performance. Since PCR7
and PCR8 showed the same results as working with
PCR9, we could infer that the PCR method allows
operating with fewer parameters instead of taking all
the features.
Fig 2, illustrates the plot between the observed and
predicted WQI values for a better understanding of
those models. Among them, the value appeared closer
to the regression fit line in the PCA+ Support Vector
Regression model because of the high training and
testing accuracy.

Fig. 2. Prediction and Classification of water quality
indexPlot between observed and predicted WQI a.
PCA+ Multiple Linear Regression model b.
PCA+ Random Forest Regression model c.
PCA+ Support Vector Regression model d.
PCA+ Gradient Boosting Regression model.

Fig 3. The number of principal components is the
regression model

4.6. Classification Model Result Assessment

Different classification algorithms are implemented
using Python. The results of varying classification
models are presented in 3. Among them, the Gradient
Boosting Classifier has achieved the highest accuracy
and proved to be an efficient model to predict water
quality status. The second-best model is the Random
Forest Classifier, but to calculate recall, the Support
Vector Classifier performs better than the Random
Forest Classifier. Ada-Boost Classifier is found less
effective model compared to the other techniques. In
Fig 4, the confusion matrix for those models is
presented we can observe that the Gradient Boosting
Classifier classifies all the testing data according to the
water quality level whereas other models misclassifies
some of the testing data.

Table 3. This table compares the performance metrics
(Accuracy, Precision, Recall, and F1-score) of different
classification models.

Model Accuracy Precision Recall F1-
score

Random
Forest
Classifier

0.91 0.96 0.85 0.89

Support
Vector
Classifier

0.86 0.82 0.91 0.84

Gradient
Boosting
Classifier

1 1 1 1

Adaboost
Classifier 0.77 0.53 0.6 0.56Figure 2: Prediction and Classification of Water Quality Indexplot Between Observed and Predicted WQI a. PCA+ Multiple Linear 

Regression Model b. PCA+ Random Forest Regression Model c. PCA+ Support Vector Regression Model d. PCA+ Gradient 
Boosting Regression Model.

Table 2. This table presents the performance metrics (R²,
RMSE, and MAE) for Principal Component Regression
(PCR) models using different numbers of components.

Model Components R² RMSE MAE

PCR1 n=1 0.042 21.64 19.56

PCR2 n=2 0.411 16.97 14.57

PCR3 n=3 0.589 14.52 12.51

PCR4 n=4 0.564 14.59 12.54

PCR5 n=5 0.565 14.58 11.67

PCR6 n=6 0.709 11.92 9.44

PCR7 n=7 0.927 5.97 5.33

PCR8 n=8 0.932 5.72 5.42

PCR9 n=9 0.932 5.72 5.42

The accuracy comparison of the PCR model in each
principal component is shown in Fig 3. The model
performed well with six, seven, and eight components.
After that, it showed poor performance. Since PCR7
and PCR8 showed the same results as working with
PCR9, we could infer that the PCR method allows
operating with fewer parameters instead of taking all
the features.
Fig 2, illustrates the plot between the observed and
predicted WQI values for a better understanding of
those models. Among them, the value appeared closer
to the regression fit line in the PCA+ Support Vector
Regression model because of the high training and
testing accuracy.

Fig. 2. Prediction and Classification of water quality
indexPlot between observed and predicted WQI a.
PCA+ Multiple Linear Regression model b.
PCA+ Random Forest Regression model c.
PCA+ Support Vector Regression model d.
PCA+ Gradient Boosting Regression model.

Fig 3. The number of principal components is the
regression model

4.6. Classification Model Result Assessment

Different classification algorithms are implemented
using Python. The results of varying classification
models are presented in 3. Among them, the Gradient
Boosting Classifier has achieved the highest accuracy
and proved to be an efficient model to predict water
quality status. The second-best model is the Random
Forest Classifier, but to calculate recall, the Support
Vector Classifier performs better than the Random
Forest Classifier. Ada-Boost Classifier is found less
effective model compared to the other techniques. In
Fig 4, the confusion matrix for those models is
presented we can observe that the Gradient Boosting
Classifier classifies all the testing data according to the
water quality level whereas other models misclassifies
some of the testing data.

Table 3. This table compares the performance metrics
(Accuracy, Precision, Recall, and F1-score) of different
classification models.

Model Accuracy Precision Recall F1-
score

Random
Forest
Classifier

0.91 0.96 0.85 0.89

Support
Vector
Classifier

0.86 0.82 0.91 0.84

Gradient
Boosting
Classifier

1 1 1 1

Adaboost
Classifier 0.77 0.53 0.6 0.56

Figure 3: The Number of Principal Components is the Regression Model
4.5.Classification Model Result Assessment
Different classification algorithms are implemented using Python. 
The results of varying classification models are presented in 3. 
Among them, the Gradient Boosting Classifier has achieved the 
highest accuracy and proved to be an efficient model to predict 

water quality status. The second-best model is the Random Forest 
Classifier, but to calculate recall, the Support Vector Classifier 
performs better than the Random Forest Classifier. Ada-Boost 
Classifier is found less effective model compared to the other 
techniques. In Figure 4, the confusion matrix for those models is 

https://www.sciencedirect.com/topics/computer-science/random-decision-forest
https://www.sciencedirect.com/topics/computer-science/support-vector-regression
https://www.sciencedirect.com/topics/computer-science/gradient-boosting
https://www.sciencedirect.com/topics/computer-science/gradient-boosting
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presented we can observe that the Gradient Boosting Classifier 
classifies all the testing data according to the water quality level 

whereas other models misclassifies some of the testing data.

Model Accuracy Precision Recall F1-score
Random Forest Classifier 0.91 0.96 0.85 0.89
Support Vector Classifier 0.86 0.82 0.91 0.84
Gradient Boosting Classifier 1 1 1 1
Adaboost Classifier 0.77 0.53 0.6 0.56

Table 3: This Table Compares the Performance Metrics (Accuracy, Precision, Recall, and F1-Score) of Different Classification 
Models.

Fig 4. Confusion matrix of overall models

5. Discussion

The results of this study highlight the effectiveness of
machine learning models in predicting and classifying
water quality for precision irrigation systems. The
Principal Component Regression (PCR) with Support
Vector Regression (SVR) demonstrated 95% accuracy,
making it a reliable approach for Water Quality Index
(WQI) prediction. Compared to traditional regression
models, PCR significantly reduced dimensionality
while maintaining high predictive accuracy. This
indicates that feature selection through PCA plays a
crucial role in improving model efficiency.

For classification, the Gradient Boosting Classifier
(GBC) achieved 100% accuracy, outperforming other
models such as Random Forest and Support Vector
Classifier. The confusion matrix analysis confirmed that
GBC correctly classified all test samples, indicating its
strong generalization capability. The high classification
accuracy suggests that boosting techniques are highly
effective in handling complex water quality datasets.
These findings align with previous research, where deep
learning and ensemble learning models demonstrated
superior performance in water quality assessment.
However, this study achieves high accuracy with fewer
computational resources, making it suitable for real-
time applications in precision irrigation. Future research
should explore deep learning-based models and
integrate IoT sensors to enable continuous water quality
monitoring in agricultural settings.

6. Conclusion

This study presents an efficient machine learning-based
framework for water quality prediction and
classification in precision irrigation systems. The
proposed model combines Principal Component
Regression (PCR) for WQI prediction and Gradient

Boosting Classifier (GBC) for classification, achieving
95% and 100% accuracy, respectively. Key findings
indicate that PCA-based feature extraction optimizes
model performance, allowing for accurate predictions
with fewer computational requirements. The GBC
model outperformed other classifiers, confirming its
robustness in classifying water quality levels. Compared
to existing studies, this approach provides higher
accuracy, reduced dimensionality, and better
generalization, making it ideal for real-time water
quality assessment. The results demonstrate that
machine learning techniques can effectively address
water quality challenges in irrigation systems, helping
farmers make data-driven decisions for sustainable
agriculture.

Future research should focus on expanding datasets,
incorporating deep learning models, and integrating
IoT-based real-time monitoring to further enhance
prediction accuracy and scalability. By adopting such
intelligent systems, agriculture can move towards
smarter, more sustainable water management solutions.
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5. Discussion
The results of this study highlight the effectiveness of machine 
learning models in predicting and classifying water quality for 
precision irrigation systems. The Principal Component Regression 
(PCR) with Support Vector Regression (SVR) demonstrated 95% 
accuracy, making it a reliable approach for Water Quality Index 
(WQI) prediction. Compared to traditional regression models, 
PCR significantly reduced dimensionality while maintaining high 
predictive accuracy. This indicates that feature selection through 
PCA plays a crucial role in improving model efficiency.

For classification, the Gradient Boosting Classifier (GBC) 
achieved 100% accuracy, outperforming other models such as 
Random Forest and Support Vector Classifier. The confusion 
matrix analysis confirmed that GBC correctly classified all test 
samples, indicating its strong generalization capability. The high 
classification accuracy suggests that boosting techniques are 
highly effective in handling complex water quality datasets. These 
findings align with previous research, where deep learning and 
ensemble learning models demonstrated superior performance 
in water quality assessment. However, this study achieves 

high accuracy with fewer computational resources, making it 
suitable for real-time applications in precision irrigation. Future 
research should explore deep learning-based models and integrate 
IoT sensors to enable continuous water quality monitoring in 
agricultural settings.

6. Conclusion
This study presents an efficient machine learning-based framework 
for water quality prediction and classification in precision 
irrigation systems. The proposed model combines Principal 
Component Regression (PCR) for WQI prediction and Gradient 
Boosting Classifier (GBC) for classification, achieving 95% and 
100% accuracy, respectively. Key findings indicate that PCA-
based feature extraction optimizes model performance, allowing 
for accurate predictions with fewer computational requirements. 
The GBC model outperformed other classifiers, confirming 
its robustness in classifying water quality levels. Compared to 
existing studies, this approach provides higher accuracy, reduced 
dimensionality, and better generalization, making it ideal for 
real-time water quality assessment. The results demonstrate that 
machine learning techniques can effectively address water quality 
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challenges in irrigation systems, helping farmers make data-driven 
decisions for sustainable agriculture.

Future research should focus on expanding datasets, incorporating 
deep learning models, and integrating IoT-based real-time 
monitoring to further enhance prediction accuracy and scalability. 
By adopting such intelligent systems, agriculture can move 
towards smarter, more sustainable water management solutions.
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