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Abstract
Thisarticleproposesarevolutionarytheoreticalmodelthatintroducesafifthspatialdimension—”spacedensity”—as a fundamental 
property governing gravitational, electromagnetic, strong, and weak interactions. The model is based on the hypothesis that 
changes in space density can lead to phenomena analogous to known fundamental forces. Through a series of mathematical 
derivations, it is shown how the distribution of space density around spherical objects influences classical field theories. The main 
results include:

1. Theoretical Proof of Bohr’s Postulate: For the first time, a theoretical justification for Bohr’s postulate on the quantization of 
the electron’s angular momentum in a hydrogen atom is proposed, which is key to quantum mechanics.
2. Relationship Between Charge and Mass: Anovel relationship between charge and mass is established, allowing mass to be 
interpreted as the energy required to compress a clump of space density.
3. Complex Solution and Imaginary Energy: It is shown that the interaction of two clumps of space density has only a complex 
solution, where the imaginary part determines the resonant frequency of the system.
4. Strong and Weak Interactions: The model offers an explanation for strong and weak interactions through the properties of 
space density, opening new possibilities for understanding nuclear forces.
This work not only reproduces known physical patterns but also provides a new perspective on the nature of fundamental 
interactions, linking them to the intrinsic properties of space.

Diploma in theoretical physics, Lobachevsky Nizhny Novgorod State 
University, UK

1. Introduction
Electromagnetic and gravitational forces are among the most fundamental interactions known in physics. These forces govern the 
behavior of matter and energy at scales ranging from subatomic particles to the cosmos. Despite extensive empirical data and theoretical 
models describing the behavior of these forces, their true nature and the material essence from which they arise remain subjects of deep 
investigation. From a physical standpoint, we understand how these forces act and can predict their effects with high accuracy. However, 
questions remain: What exactly are these forces? How are they interconnected? And most importantly, what is the protomatter, the 
fundamental substance from which these forces emerge? These questions touch not only on physical principles but also on philosophical 
reflections on the nature of reality.

In this article, we propose a theoretical model that introduces a fifth spatial dimension called ”space density.” We suggest that this 
dimension plays a critical role in the formation of gravitational and electric fields. Our model posits that traditional threedimensional 
space combined with time is insufficient to fully explain the origin of these forces. Instead, space itself may possess intrinsic properties 
that contribute to the formation of these fields. By expanding our understanding of space to include an additional dimension, we explore 
the potential for new interpretations of gravitational and electromagnetic interactions.

2. Hypothesis
We propose that electromagnetic and gravitational fields are manifestations of a more fundamental property of space, which we call 
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”space density.” This property is defined in a fivedimensional system, where the fifth dimension is orthogonal to the traditional three 
spatial and one temporal dimensions.

In this model, “space density” represents a measure of how space itself can be compressed or expanded independently of its metric. This 
density is not analogous to the density of matter as we know it in threedimensional space but rather reflects a fundamental characteristic 
of space that influences the formation of gravitational and electric fields.

Our hypothesis is based on several key postulates:
• Space Density: In fivedimensional space, the density ρ(r) characterizes the state of space and can change, thereby allowing us to speak 
of the curvature of space without curving its metric. Let us call this phenomenon firstorder space curvature. A similar term is used in the 
Theory of Relativity, but within this theory, it will have a slightly different context.
• Spherical Symmetry of Perturbations: The distribution of space density upon perturbation assumes spherical symmetry. The 
distribution of space density ρ(r) is assumed to be symmetric relative to the point that is the center of the perturbation.
• Conservation of Space Density Quantity: When a region of space is perturbed, the surrounding space can change its density such that 
the total density of the entire space remains unchanged. In other words, in a certain approximation, it can be said that the total ”density” 
of space over an infinite volume must remain constant.
• Postulate of Maximum Entropy in Space Density Distribution: Space tends toward states of maximum entropy, striving for a 
uniform distribution of space density. This principle defines the natural tendency of space to return to a uniform density distribution after 
perturbations, analogous to thermodynamic principles governing physical systems.

By exploring these postulates within a fivedimensional space, we aim to provide a deeper understanding of the origin of gravitational 
and electromagnetic fields. This model challenges the traditional view that these fields are independent and instead suggests that they 
are interconnected through the intrinsic properties of space itself. In the course of our research, we obtain entirely unexpected results: 
Coulomb’s law in logarithmic form, containing an expression accounting for the correction of elementary charge interactions at distances 
comparable to their ”classical” physical sizes (this phenomenon is wellstudied in QED—screening). And the most unexpected result is 
the connection of this mathematical model to the foundation of Quantum Mechanics—Bohr’s Postulate on the quantization of electron 
states in a hydrogen atom. The solution for the interaction quantity of two clumps of space density in logarithmic form has only a 
complex solution, and as it turns out, the complex part of the solution determines the resonant frequency of the interaction quantity of 
the two clumps. Using the complex part of the solution as an expression for the resonant frequency of the two clumps of space density, 
we obtained the resonance condition for one clump orbiting another, which fully corresponds to the quantization condition of orbits 
derived from Bohr’s Postulate on the quantization of the electron’s angular momentum in a hydrogen atom. When analyzing the obtained 
formulas, we attempt to explain the physical meaning of such an empirically obtained quantity as Planck’s constant, which has two 
values within the presented mathematical model: the size of the electron and the ratio of the total energy of the electron in the atom to its 
imaginary energy. If you are interested in how all this follows from simple ideas about space density and its tendency toward maximum 
entropy, I will begin to outline the main approaches that form the basis of my theory presented in this article.

3. Methodology
3.1. Distribution of Space Density Around a Single Compressed Spherical Region of Space
We have two states of the universe: in the first state, the density throughout space is ρ0 and is a constant. In the second state of the 
system, we have a certain region of space bounded by a sphere S(R1), which we compress to 	 We need to find the distribution of 
space density inside the sphere and outside it, based on the laws established in our hypothetical universe.

3.1.1. Density Distribution After Compression
The density after compression inside the sphere is defined as ρinside = ρ0 + ρ1, where ρ1 is the added density, determined from the ratio 
of volumes before and after compression: 

Substituting the volumes of the spheres: 

Simplifying:

elementary charge interactions at distances comparable to their ”classical” physical
sizes (this phenomenon is well­studied in QED—screening). And the most unexpected
result is the connection of this mathematical model to the foundation of Quantum
Mechanics—Bohr’s Postulate on the quantization of electron states in a hydrogen
atom. The solution for the interaction quantity of two clumps of space density in
logarithmic form has only a complex solution, and as it turns out, the complex part
of the solution determines the resonant frequency of the interaction quantity of the
two clumps. Using the complex part of the solution as an expression for the resonant
frequency of the two clumps of space density, we obtained the resonance condition
for one clump orbiting another, which fully corresponds to the quantization condition
of orbits derived from Bohr’s Postulate on the quantization of the electron’s angular
momentum in a hydrogen atom. When analyzing the obtained formulas, we attempt
to explain the physical meaning of such an empirically obtained quantity as Planck’s
constant, which has two values within the presented mathematical model: the size of
the electron and the ratio of the total energy of the electron in the atom to its imaginary
energy. If you are interested in how all this follows from simple ideas about space
density and its tendency toward maximum entropy, I will begin to outline the main
approaches that form the basis of my theory presented in this article.

III Methodology

3.1 Distribution of Space Density Around a Single Compressed Spherical
Region of Space
We have two states of the universe: in the first state, the density throughout space is
ρ0 and is a constant. In the second state of the system, we have a certain region of
space bounded by a sphere S(R1), which we compress to S(R′

1). We need to find
the distribution of space density inside the sphere and outside it, based on the laws
established in our hypothetical universe.

3.1.1 Density Distribution After Compression
The density after compression inside the sphere is defined as ρinside = ρ0 + ρ1,
where ρ1 is the added density, determined from the ratio of volumes before and after
compression:

ρ0V (R1) = ρinsideV (R′
1)

Substituting the volumes of the spheres:

ρ0
4

3
πR3

1 = (ρ0 + ρ1)
4

3
πR′3

1

Simplifying:

ρ0R
3
1 = (ρ0 + ρ1)R

′3
1

3

elementary charge interactions at distances comparable to their ”classical” physical
sizes (this phenomenon is well­studied in QED—screening). And the most unexpected
result is the connection of this mathematical model to the foundation of Quantum
Mechanics—Bohr’s Postulate on the quantization of electron states in a hydrogen
atom. The solution for the interaction quantity of two clumps of space density in
logarithmic form has only a complex solution, and as it turns out, the complex part
of the solution determines the resonant frequency of the interaction quantity of the
two clumps. Using the complex part of the solution as an expression for the resonant
frequency of the two clumps of space density, we obtained the resonance condition
for one clump orbiting another, which fully corresponds to the quantization condition
of orbits derived from Bohr’s Postulate on the quantization of the electron’s angular
momentum in a hydrogen atom. When analyzing the obtained formulas, we attempt
to explain the physical meaning of such an empirically obtained quantity as Planck’s
constant, which has two values within the presented mathematical model: the size of
the electron and the ratio of the total energy of the electron in the atom to its imaginary
energy. If you are interested in how all this follows from simple ideas about space
density and its tendency toward maximum entropy, I will begin to outline the main
approaches that form the basis of my theory presented in this article.

III Methodology

3.1 Distribution of Space Density Around a Single Compressed Spherical
Region of Space
We have two states of the universe: in the first state, the density throughout space is
ρ0 and is a constant. In the second state of the system, we have a certain region of
space bounded by a sphere S(R1), which we compress to S(R′

1). We need to find
the distribution of space density inside the sphere and outside it, based on the laws
established in our hypothetical universe.

3.1.1 Density Distribution After Compression
The density after compression inside the sphere is defined as ρinside = ρ0 + ρ1,
where ρ1 is the added density, determined from the ratio of volumes before and after
compression:

ρ0V (R1) = ρinsideV (R′
1)

Substituting the volumes of the spheres:

ρ0
4

3
πR3

1 = (ρ0 + ρ1)
4

3
πR′3

1

Simplifying:

ρ0R
3
1 = (ρ0 + ρ1)R

′3
1

3

elementary charge interactions at distances comparable to their ”classical” physical
sizes (this phenomenon is well­studied in QED—screening). And the most unexpected
result is the connection of this mathematical model to the foundation of Quantum
Mechanics—Bohr’s Postulate on the quantization of electron states in a hydrogen
atom. The solution for the interaction quantity of two clumps of space density in
logarithmic form has only a complex solution, and as it turns out, the complex part
of the solution determines the resonant frequency of the interaction quantity of the
two clumps. Using the complex part of the solution as an expression for the resonant
frequency of the two clumps of space density, we obtained the resonance condition
for one clump orbiting another, which fully corresponds to the quantization condition
of orbits derived from Bohr’s Postulate on the quantization of the electron’s angular
momentum in a hydrogen atom. When analyzing the obtained formulas, we attempt
to explain the physical meaning of such an empirically obtained quantity as Planck’s
constant, which has two values within the presented mathematical model: the size of
the electron and the ratio of the total energy of the electron in the atom to its imaginary
energy. If you are interested in how all this follows from simple ideas about space
density and its tendency toward maximum entropy, I will begin to outline the main
approaches that form the basis of my theory presented in this article.

III Methodology

3.1 Distribution of Space Density Around a Single Compressed Spherical
Region of Space
We have two states of the universe: in the first state, the density throughout space is
ρ0 and is a constant. In the second state of the system, we have a certain region of
space bounded by a sphere S(R1), which we compress to S(R′

1). We need to find
the distribution of space density inside the sphere and outside it, based on the laws
established in our hypothetical universe.

3.1.1 Density Distribution After Compression
The density after compression inside the sphere is defined as ρinside = ρ0 + ρ1,
where ρ1 is the added density, determined from the ratio of volumes before and after
compression:

ρ0V (R1) = ρinsideV (R′
1)

Substituting the volumes of the spheres:

ρ0
4

3
πR3

1 = (ρ0 + ρ1)
4

3
πR′3

1

Simplifying:

ρ0R
3
1 = (ρ0 + ρ1)R

′3
1

3

elementary charge interactions at distances comparable to their ”classical” physical
sizes (this phenomenon is well­studied in QED—screening). And the most unexpected
result is the connection of this mathematical model to the foundation of Quantum
Mechanics—Bohr’s Postulate on the quantization of electron states in a hydrogen
atom. The solution for the interaction quantity of two clumps of space density in
logarithmic form has only a complex solution, and as it turns out, the complex part
of the solution determines the resonant frequency of the interaction quantity of the
two clumps. Using the complex part of the solution as an expression for the resonant
frequency of the two clumps of space density, we obtained the resonance condition
for one clump orbiting another, which fully corresponds to the quantization condition
of orbits derived from Bohr’s Postulate on the quantization of the electron’s angular
momentum in a hydrogen atom. When analyzing the obtained formulas, we attempt
to explain the physical meaning of such an empirically obtained quantity as Planck’s
constant, which has two values within the presented mathematical model: the size of
the electron and the ratio of the total energy of the electron in the atom to its imaginary
energy. If you are interested in how all this follows from simple ideas about space
density and its tendency toward maximum entropy, I will begin to outline the main
approaches that form the basis of my theory presented in this article.

III Methodology

3.1 Distribution of Space Density Around a Single Compressed Spherical
Region of Space
We have two states of the universe: in the first state, the density throughout space is
ρ0 and is a constant. In the second state of the system, we have a certain region of
space bounded by a sphere S(R1), which we compress to S(R′

1). We need to find
the distribution of space density inside the sphere and outside it, based on the laws
established in our hypothetical universe.

3.1.1 Density Distribution After Compression
The density after compression inside the sphere is defined as ρinside = ρ0 + ρ1,
where ρ1 is the added density, determined from the ratio of volumes before and after
compression:

ρ0V (R1) = ρinsideV (R′
1)

Substituting the volumes of the spheres:

ρ0
4

3
πR3

1 = (ρ0 + ρ1)
4

3
πR′3

1

Simplifying:

ρ0R
3
1 = (ρ0 + ρ1)R

′3
1

3



OA J Applied Sci Technol, 2025 Volume 3 | Issue 1 | 3

3.1.2. Density Distribution Outside the Sphere
We assume that outside the sphere, the amount of removed space density must equal the amount added inside it, 	      Therefore, 
when integrating the perturbation from the surface of the compressed sphere to infinity, the integral must yield a finite number, i.e., 
converge, and accordingly, the integrand must be convergent. In threedimensional space, such a function is 1/r4. Suppose the distribution 
of reduced density outside the compressed region of space satisfies this dependence on the distance from the center of the perturbation. 
Then we obtain the following dependence for the distribution of space density outside the compressed sphere:

3.1.3. Normalization Coefficient A
To satisfy the law of conservation of space density, the integral of ∆ρdecrease(r) over the volume from    to infinity must equal the added 
density inside the sphere:

Or, considering the law of spherical symmetry, in spherical coordinates, the integral simplifies to: 
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1)

4πr4

Thus, we obtain the following formula for the distribution of density outside the
sphere∆ρdecrease(r):

∆ρdecrease(r) =
ρ1 ·R′

1 · V (R′
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4πr4
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Also, considering that the amount of added density in the volume of the compressed
sphere is expressed by the formula:

Q = (V (R1)− V (R′
1)) · ρ0

where V (R1) and V (R′
1) are the volumes of spheres with radii R1 and R′

1, respec­
tively. And also considering the formula for ρ1—the density of the added density
inside the sphere:

ρ1 =
Q

V (R′
1)

where V (R′
1) is the volume of the sphere after compression.

We can express the obtained formula for the distribution of space density
∆ρdecrease(r) as:

∆ρdecrease(r) =
Q ·R′
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4πr4
(2)

Where Q is the amount of density added to the volume of the sphere S(R1′), R1′

is the radius of the compressed sphere, and r is the distance from the center of the
sphere to a point in space in spherical coordinates.
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3.1.4 Verification of Conservation of Space Density Quantity
To satisfy the third law established in our system, the following equality must hold:

∫ ∞

R′
1

∆ρdecrease(r) · dV =

∫ ∞

R′
1

∆ρdecrease(r) · 4πr2 dr = ρ1V (R′
1)

Substituting the expression for∆ρdecrease(r):

∫ ∞

R′
1

ρ1 ·R′
1 · V (R′

1)

4πr4
· 4πr2 dr = ρ1 ·R′

1 · V (R′
1)

∫ ∞

R′
1

1

r2
dr

Integrating and substituting the limits of integration:

ρ1 ·R′
1 · V (R′

1)

[
−1

r

]∞
R′

1

= ρ1 ·R′
1 · V (R′

1)

(
1

R′
1

− 0

)
=

ρ1 ·R′
1 · V (R′

1)

R′
1

We obtain:
∫ ∞

R′
1

∆ρdecrease(r) · dV = ρ1V (R′
1) = ρ1

4

3
πR′3

1

Thus, we have verified that our distribution of space density outside the compressed
sphere, proportional to 1/r4, is consistent with our third law of conservation of space
density in the system, taking into account the normalization coefficient A.

6

3.1.4 Verification of Conservation of Space Density Quantity
To satisfy the third law established in our system, the following equality must hold:

∫ ∞

R′
1

∆ρdecrease(r) · dV =

∫ ∞

R′
1

∆ρdecrease(r) · 4πr2 dr = ρ1V (R′
1)

Substituting the expression for∆ρdecrease(r):

∫ ∞

R′
1

ρ1 ·R′
1 · V (R′

1)

4πr4
· 4πr2 dr = ρ1 ·R′

1 · V (R′
1)

∫ ∞

R′
1

1

r2
dr

Integrating and substituting the limits of integration:

ρ1 ·R′
1 · V (R′

1)

[
−1

r

]∞
R′

1

= ρ1 ·R′
1 · V (R′

1)

(
1

R′
1

− 0

)
=

ρ1 ·R′
1 · V (R′

1)

R′
1

We obtain:
∫ ∞

R′
1

∆ρdecrease(r) · dV = ρ1V (R′
1) = ρ1

4

3
πR′3

1

Thus, we have verified that our distribution of space density outside the compressed
sphere, proportional to 1/r4, is consistent with our third law of conservation of space
density in the system, taking into account the normalization coefficient A.

6

3.1.4 Verification of Conservation of Space Density Quantity
To satisfy the third law established in our system, the following equality must hold:

∫ ∞

R′
1

∆ρdecrease(r) · dV =

∫ ∞

R′
1

∆ρdecrease(r) · 4πr2 dr = ρ1V (R′
1)

Substituting the expression for∆ρdecrease(r):

∫ ∞

R′
1

ρ1 ·R′
1 · V (R′

1)

4πr4
· 4πr2 dr = ρ1 ·R′

1 · V (R′
1)

∫ ∞

R′
1

1

r2
dr

Integrating and substituting the limits of integration:

ρ1 ·R′
1 · V (R′

1)

[
−1

r

]∞
R′

1

= ρ1 ·R′
1 · V (R′

1)

(
1

R′
1

− 0

)
=

ρ1 ·R′
1 · V (R′

1)

R′
1

We obtain:
∫ ∞

R′
1

∆ρdecrease(r) · dV = ρ1V (R′
1) = ρ1

4

3
πR′3

1

Thus, we have verified that our distribution of space density outside the compressed
sphere, proportional to 1/r4, is consistent with our third law of conservation of space
density in the system, taking into account the normalization coefficient A.

6

3.1.4 Verification of Conservation of Space Density Quantity
To satisfy the third law established in our system, the following equality must hold:

∫ ∞

R′
1

∆ρdecrease(r) · dV =

∫ ∞

R′
1

∆ρdecrease(r) · 4πr2 dr = ρ1V (R′
1)

Substituting the expression for∆ρdecrease(r):

∫ ∞

R′
1

ρ1 ·R′
1 · V (R′

1)

4πr4
· 4πr2 dr = ρ1 ·R′

1 · V (R′
1)

∫ ∞

R′
1

1

r2
dr

Integrating and substituting the limits of integration:

ρ1 ·R′
1 · V (R′

1)

[
−1

r

]∞
R′

1

= ρ1 ·R′
1 · V (R′

1)

(
1

R′
1

− 0

)
=

ρ1 ·R′
1 · V (R′

1)

R′
1

We obtain:
∫ ∞

R′
1

∆ρdecrease(r) · dV = ρ1V (R′
1) = ρ1

4

3
πR′3

1

Thus, we have verified that our distribution of space density outside the compressed
sphere, proportional to 1/r4, is consistent with our third law of conservation of space
density in the system, taking into account the normalization coefficient A.

6



OA J Applied Sci Technol, 2025 Volume 3 | Issue 1 | 5

4. Expression for the Total Distribution of Space Density for a Single Compressed Sphere.
Let us write our distribution taking into account boundary conditions using the Heaviside function. This representation of space density 
distribution will be needed to find the total interaction quantity of two clumps, taking into account the space density added to the first 
clump, as well as the gradient at the transition boundary—the sphere limiting the first clump. Why this is important will become clear 
in the next section of my article.
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pressed Sphere.

Let us write our distribution taking into account boundary conditions using the Heavi­
side function. This representation of space density distribution will be needed to find
the total interaction quantity of two clumps, taking into account the space density
added to the first clump, as well as the gradient at the transition boundary—the sphere
limiting the first clump. Why this is important will become clear in the next section
of my article.

Figure 1: Graphs of space density distribution along a line passing through the center of the compressed sphere.

4.1 Representation of Space Density Distribution Using the Heaviside Func­
tion
The space density distribution, ρ(r), for a single sphere can be expressed using the
Heaviside function H(x) to accurately describe the density inside and outside the
compressed sphere. The main density distribution is defined as:

ρ(r) =

{
ρ0 + ρ1, if r ≤ R′

1

ρ0 − R′
1·ρ1·V (R′

1)
4πr4 , if r > R′

1
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The increase in density ∆ρincrease(r) inside the compressed region can be expressed as: 

Similarly, the decrease in density ∆ρdecrease(r) outside the sphere: 
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Thus, the total change in density ∆ρ(r):
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V Quantity of Space Density Perturbation Created by Two Compressed
Spheres at Distance D. Interaction Quantity. Coulomb’s Law for Two
Charges in Logarithmic Form

In this section, we investigate the interaction between two compressed spherical
regions of space. By analyzing the space density distribution around these spheres,
we derive the influence of one sphere on the density distribution of the other. This
analysis is important for understanding the nature of their interaction arising from
variations in space density.

5.1 Illustration of Space Density Distribution
Before proceeding to the mathematical derivation of the influence of space density
distribution created by two spheres on each other, I present a graphical representation
of the space density distribution around two compressed spheres, constructed based
on the mathematical model using the formula for ∆ρdecrease(r) (formula (2)). This
figure allows us to visually understand how the density distribution created by each
sphere changes depending on the distance between them.

Figure 2: Space density distribution around two compressed spheres. The graph illustrates how space density changes
along the line connecting the centers of the spheres as they approach each other.
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Figure 2: Space density distribution around two compressed spheres. The graph illustrates how space density changes along the line 
connecting the centers of the spheres as they approach each other

5.2. Problem Formulation, Integral Expression for the Total Perturbation Created by Two Clumps of Space Density
To solve the problem, we start by writing the initial expression for the total perturbation Wtotal, using Fubini’s theorem and gradient 
properties. We write the expression for the gradient of the product of functions:
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5.2.1. Initial Expression for Total Perturbation
The total perturbation Wtotal is defined as the integral over the entire space of the modulus of the gradient of the product of functions 
                                                  According to the assumption, the total quantity of space density perturbation created by two clumps relative 
to the reference system associated with the center of the first clump is determined by the formula: 

5.2.2. Substitution of Function Expressions
Substitute the expressions for

Now substitute these expressions under the gradient sign: 

Note that the gradient must be taken with respect to both V1 (variable r1) and       (variable      ). Rewrite the expression taking into account 
gradients in both spaces.

5.2.3. Simplification of the Expression
For convenience, represent the expression in the following form:

5.2.4. Simplification Considering Function Independence Note that: 

Thus, the gradients can be separated: 

5.2.5. Separation of Gradients
Now the expression can be rewritten as the product of gradients:

Substitute the expressions for

5.2 Problem Formulation, Integral Expression for the Total Perturbation
Created by Two Clumps of Space Density
To solve the problem, we start by writing the initial expression for the total perturbation
Wtotal, using Fubini’s theorem and gradient properties. We write the expression for
the gradient of the product of functions:

∆ρ1(r1) and ∆ρ2(r
′
1 −D).

5.2.1 Initial Expression for Total Perturbation
The total perturbation Wtotal is defined as the integral over the entire space of the
modulus of the gradient of the product of functions ∆ρ1(r1) and ∆ρ2(r

′
1 − D).

According to the assumption, the total quantity of space density perturbation created
by two clumps relative to the reference system associated with the center of the first
clump is determined by the formula:

Wtotal =

∫

V1

∫

V ′
1

dV1 dV
′
1

∣∣∇r1∇r′1
(∆ρ1(r1) ·∆ρ2(r

′
1 −D))

∣∣ .

5.2.2 Substitution of Function Expressions
Substitute the expressions for∆ρ1(r1) and∆ρ2(r

′
1 −D):

∆ρ1(r1) = ρ1

[
H(R′

1 − r1)−
R′4

1

3r41
H(r1 −R′

1)

]
,

∆ρ2(r
′
1 −D) =

R′
2 ρ2 V (R′

2)

4π (r′1 −D)4
.

Now substitute these expressions under the gradient sign:

Wtotal =

∫

V1

∫

V ′
1

dV1 dV
′
1

∣∣∇r1∇r′1
(ρ1 [H(R′

1 − r1)

−R′4
1

3r41
H(r1 −R′

1)

]
· R

′
2 ρ2 V (R′

2)

4π (r′1 −D)4

)∣∣∣∣ .

Note that the gradient must be taken with respect to both V1 (variable r1) and V ′
1

(variable r′1). Rewrite the expression taking into account gradients in both spaces.

5.2.3 Simplification of the Expression
For convenience, represent the expression in the following form:

Wtotal = ∇r1∇r′1

(
ρ1R

′
2 ρ2 V (R′

2)

4π (r′1 −D)4
·H(R′

1 − r1)

)
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the gradient of the product of functions:

∆ρ1(r1) and ∆ρ2(r
′
1 −D).

5.2.1 Initial Expression for Total Perturbation
The total perturbation Wtotal is defined as the integral over the entire space of the
modulus of the gradient of the product of functions ∆ρ1(r1) and ∆ρ2(r

′
1 − D).

According to the assumption, the total quantity of space density perturbation created
by two clumps relative to the reference system associated with the center of the first
clump is determined by the formula:

Wtotal =

∫

V1

∫

V ′
1

dV1 dV
′
1

∣∣∇r1∇r′1
(∆ρ1(r1) ·∆ρ2(r

′
1 −D))

∣∣ .

5.2.2 Substitution of Function Expressions
Substitute the expressions for∆ρ1(r1) and∆ρ2(r

′
1 −D):

∆ρ1(r1) = ρ1

[
H(R′

1 − r1)−
R′4

1

3r41
H(r1 −R′

1)

]
,

∆ρ2(r
′
1 −D) =

R′
2 ρ2 V (R′

2)

4π (r′1 −D)4
.

Now substitute these expressions under the gradient sign:
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Note that the gradient must be taken with respect to both V1 (variable r1) and V ′
1

(variable r′1). Rewrite the expression taking into account gradients in both spaces.

5.2.3 Simplification of the Expression
For convenience, represent the expression in the following form:

Wtotal = ∇r1∇r′1

(
ρ1R

′
2 ρ2 V (R′
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−∇r1∇r′1

(
ρ1R

′
2 ρ2 V (R′

2)R
′4
1

12π (r′1 −D)4 r41
·H(r1 −R′

1)

)
.

5.2.4 Simplification Considering Function Independence
Note that:

1. ∆ρ1(r1) = ρ1
[
H(R′

1 − r1)− R′4
1

3r41
H(r1 −R′

1)
]
does not depend on r′1.

2. ∆ρ2(r
′
1 −D) = R′

2 ρ2 V (R′
2)

4π (r′1−D)4 does not depend on r1.

Thus, the gradients can be separated:

• ∇r1 acts only on∆ρ1(r1).

• ∇r′1
acts only on∆ρ2(r

′
1 −D).

5.2.5 Separation of Gradients
Now the expression can be rewritten as the product of gradients:

∇r1 (∆ρ1(r1)) · ∇r′1
(∆ρ2(r

′
1 −D)) .

Substitute the expressions for∆ρ1(r1) and∆ρ2(r
′
1 −D):

∇r1

(
ρ1

[
H(R′

1 − r1)−
R′4

1

3r41
H(r1 −R′

1)

])
· ∇r′1

(
R′

2 ρ2 V (R′
2)

4π (r′1 −D)4

)
.

5.2.6 Final Expression
Now the expression takes the form:

∇r1 (H(R′
1 − r1)) · ∇r′1

(
ρ1R

′
2 ρ2 V (R′

2)

4π (r′1 −D)4

)
−

−∇r1

(
1

r41
·H(r1 −R′

1)

)
· ∇r′1

(
ρ1R

′
2 ρ2 V (R′

2)R
′4
1

12π (r′1 −D)4

)
. (4)

5.2.7 Justification of the Approach
Here the question arises as to why the Leibniz rule is not applied when taking the
gradient of the function. The reason is that we utilize the fact that the functions
∆ρ1(r1) and∆ρ2(r

′
1 −D) are completely independent of each other. To ensure this

complete independence, we place them in different spaces V1 and V ′
1 . We need to

determine the total amount of perturbation, which is equal to the product of the density
perturbation created by each of the clusters. For this purpose, in each space, for its
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5.2.6. Final Expression
Now the expression takes the form:

5.2.7. Justification of the Approach
Here the question arises as to why the Leibniz rule is not applied when taking the gradient of the function. The reason is that we utilize the 
fact that the functions ∆ρ1(r1) and  	                   are completely independent of each other. To ensure this complete independence, we place 
them in different spaces V1 and     We need to determine the total amount of perturbation, which is equal to the product of the density 
perturbation created by each of the clusters. For this purpose, in each space, for its corresponding function, we construct a continuous 
matrix of the absolute values of the gradient of each function and then compute the integral of each function over its respective space. In 
doing so, we must take into account that since the desired function is the product of two continuous sets of values (each corresponding 
to the integrals of the modulus of the gradient in the regions where one of the functions is nonzero), it does not make sense to integrate 
the second function in regions where the first is zero (and vice versa) because, when multiplying, a region where either function is zero 
will yield zero. In other words, the limits of integration, when representing the integral as a sum of products of several integrals with 
different limits for the first and second functions, must coincide. This is very important for constructing the total perturbation produced 
by the second cluster relative to the total perturbation of the first cluster.

5.2.8. Analogy with a ThreeDimensional Array
This approach can be compared to the methodology used when working with arrays of values obtained as the product of two functions. 
We can construct a threedimensional array of values separately for each function with the same metric (i.e. the same array dimensions 
along all coordinates), and then multiply the cells of each array with matching indices to obtain the desired array of the product of the 
two functions. This is a kind of sublimation of a sixdimensional space, but it is not a sixdimensional space in the full sense of the word. 
We are seeking the projection onto our threedimensional space of the product of the values of the two functions in two other independent 
spaces.

5.2.9. Justification forthe Impossibility of the Solution in aThreeDimensional Space
Next, I will explain why this problem cannot be solved in the usual threedimensional space. The gradient of the function 1/r4 is given by 
1/r5. For such a function, Gauss’s theorem holds only in a space with L = 6, because in spaces of lower dimensionality the vector field in 
the form of the gradient of 1/r4 does not have a source.

5.3. Calculation of the Gradient and the Integral of the Gradient for the Total Perturbation Distribution of the TwoCluster 
System Relative to the Reference Frame Associated with the Origin of the First Cluster
At this stage, we bring the gradient operators outside the parentheses for each expression, taking into account that:

5.3.1. Original Expression The original expression is: 

5.3.2 Bringing the Gradient Operators Outside the Parentheses First Term: 

Here:
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5.2.7 Justification of the Approach
Here the question arises as to why the Leibniz rule is not applied when taking the
gradient of the function. The reason is that we utilize the fact that the functions
∆ρ1(r1) and∆ρ2(r
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1 −D) are completely independent of each other. To ensure this

complete independence, we place them in different spaces V1 and V ′
1 . We need to

determine the total amount of perturbation, which is equal to the product of the density
perturbation created by each of the clusters. For this purpose, in each space, for its
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corresponding function, we construct a continuous matrix of the absolute values of
the gradient of each function and then compute the integral of each function over
its respective space. In doing so, we must take into account that since the desired
function is the product of two continuous sets of values (each corresponding to the
integrals of the modulus of the gradient in the regions where one of the functions is
nonzero), it does not make sense to integrate the second function in regions where the
first is zero (and vice versa) because, when multiplying, a region where either function
is zero will yield zero. In other words, the limits of integration, when representing
the integral as a sum of products of several integrals with different limits for the first
and second functions, must coincide. This is very important for constructing the total
perturbation produced by the second cluster relative to the total perturbation of the
first cluster.

5.2.8 Analogy with a Three­Dimensional Array
This approach can be compared to the methodology used when working with arrays of
values obtained as the product of two functions. We can construct a three­dimensional
array of values separately for each function with the same metric (i.e. the same array
dimensions along all coordinates), and then multiply the cells of each array with
matching indices to obtain the desired array of the product of the two functions. This
is a kind of sublimation of a six­dimensional space, but it is not a six­dimensional
space in the full sense of the word. We are seeking the projection onto our three­
dimensional space of the product of the values of the two functions in two other
independent spaces.

5.2.9 Justification for the Impossibility of the Solution in aThree­Dimensional
Space
Next, I will explain why this problem cannot be solved in the usual three­dimensional
space. The gradient of the function 1/r4 is given by 1/r5. For such a function, Gauss’s
theorem holds only in a space with L = 6, because in spaces of lower dimensionality
the vector field in the form of the gradient of 1/r4 does not have a source.

5.3 Calculation of the Gradient and the Integral of the Gradient for the Total
Perturbation Distribution of the Two­Cluster System Relative to the Reference
Frame Associated with the Origin of the First Cluster
At this stage, we bring the gradient operators outside the parentheses for each expres­
sion, taking into account that:
1. ∇r1 acts only on functions that depend on r1.
2. ∇r′1

acts only on functions that depend on r′1.

5.3.1 Original Expression
The original expression is:
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Thus, we can write: 
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Now the expression becomes:

5.3.4. Calculation of the Gradients
1. Calculation of 		      : The function		        is the Heaviside step function. Its gradient can be expressed in terms 
of the Dirac delta function:

where: 
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• rˆ1 is the unit vector in the direction of r1.
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5.3.4 Calculation of the Gradients
1. Calculation of∇r1 (H(R′

1 − r1)): The functionH(R′
1− r1) is the Heaviside step

function. Its gradient can be expressed in terms of the Dirac delta function:

∇r1 (H(R′
1 − r1)) = −δ(R′

1 − r1) · r̂1,

where:

• δ(R′
1 − r1) is the Dirac delta function,

• r̂1 is the unit vector in the direction of r1.

2. Calculation of ∇r′1

(
ρ1 R

′
2 ρ2 V (R′

2)
4π (r′1−D)4

)
: We compute the gradient of the function

1
(r′1−D)4 . The gradient of the scalar function f(r) =

1
r4 is given by:

∇
(
1

r4

)
= − 4

r5
r̂.

Applying this to our function:

∇r′1

(
1

(r′1 −D)4

)
= − 4

(r′1 −D)5
r̂′1.

Thus:

∇r′1

(
ρ1R

′
2 ρ2 V (R′

2)

4π (r′1 −D)4

)
=

ρ1R
′
2 ρ2 V (R′

2)

4π
·
(
− 4

(r′1 −D)5
r̂′1

)
= −ρ1R

′
2 ρ2 V (R′

2)

π (r′1 −D)5
r̂′1.

3. Calculation of∇r1

(
1
r41
·H(r1 −R′

1)
)
: Here we apply the product rule:

∇r1

(
1

r41
·H(r1 −R′

1)

)
= ∇r1

(
1

r41

)
·H(r1 −R′

1)

+
1

r41
· ∇r1 (H(r1 −R′

1)) .

We compute each term:

1. The gradient of 1
r41
:

∇r1

(
1

r41

)
= − 4

r51
r̂1.

2. The gradient of the Heaviside function:

∇r1 (H(r1 −R′
1)) = δ(r1 −R′

1) · r̂1.

Thus:

∇r1

(
1

r41
·H(r1 −R′

1)

)
= − 4

r51
r̂1 ·H(r1 −R′

1) +
1

r41
· δ(r1 −R′

1) · r̂1.
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4. Calculation of∇r′1

(
ρ1 R

′
2 ρ2 V (R′

2)R
′4
1

12π (r′1−D)4

)
: This gradient is analogous to the second

case:
∇r′1

(
1

(r′1 −D)4

)
= − 4

(r′1 −D)5
r̂′1.
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ρ1R

′
2 ρ2 V (R′

2)R
′4
1

12π (r′1 −D)4

)
=

ρ1R
′
2 ρ2 V (R′

2)R
′4
1

12π

·
(
− 4

(r′1 −D)5
r̂′1

)
= −ρ1R

′
2 ρ2 V (R′

2)R
′4
1

3π (r′1 −D)5
r̂′1.

5.3.5 Final Integrand Expression
Now substitute the computed gradients back into the original expression:

∇r1 (H(R′
1 − r1)) · ∇r′1

(
ρ1R

′
2 ρ2 V (R′

2)

4π (r′1 −D)4

)

−∇r1

(
1

r41
·H(r1 −R′

1)

)
· ∇r′1

(
ρ1R

′
2 ρ2 V (R′

2)R
′4
1

12π (r′1 −D)4

)
.

Substituting the results:

(−δ(R′
1 − r1) · r̂1) ·

(
−ρ1R

′
2 ρ2 V (R′

2)

π (r′1 −D)5
r̂′1

)

−
(
− 4

r51
r̂1 ·H(r1 −R′

1) +
1

r41
· δ(r1 −R′

1) · r̂1
)
·
(
−ρ1R

′
2 ρ2 V (R′

2)R
′4
1

3π (r′1 −D)5
r̂′1

)
.

5.3.6 Simplification of the Expression
We simplify the expression, taking into account that r̂1 · r̂′1 = 1 (if the directions
coincide):

δ(R′
1 − r1) ·

ρ1R
′
2 ρ2 V (R′

2)

π (r′1 −D)5

−
(
− 4

r51
H(r1 −R′

1) +
1

r41
δ(r1 −R′

1)

)
· ρ1R

′
2 ρ2 V (R′

2)R
′4
1

3π (r′1 −D)5
.
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5.3.7. Final Integrand Expression
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5.3.8. Consideration of the Regions Where the Functions are NonZero
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5.3.7 Final Integrand Expression
Now we substitute this expression into the integral:

Wtotal =

∫

V1

∫

V ′
1

dV1 dV
′
1

∣∣∣∣δ(R′
1 − r1) ·

ρ1R
′
2 ρ2 V (R′

2)

π (r′1 −D)5
−

−
(
− 4

r51
H(r1 −R′

1) +
1

r41
δ(r1 −R′

1)

)
· ρ1R

′
2 ρ2 V (R′

2)R
′4
1

3π (r′1 −D)5

∣∣∣∣ . (5)

5.3.8 Consideration of the Regions Where the Functions are Non­Zero
a) The Heaviside FunctionH(R′

1 − r1):
• H(R′

1 − r1) = 1 for r1 ≤ R′
1,

• H(R′
1 − r1) = 0 for r1 > R′

1.
b) The Heaviside FunctionH(r1 −R′

1):
• H(r1 −R′

1) = 1 for r1 ≥ R′
1,

• H(r1 −R′
1) = 0 for r1 < R′

1.
c) The Dirac Delta Function δ(R′

1 − r1):
• δ(R′

1 − r1) ”selects” the value r1 = R′
1.

d) The Dirac Delta Function δ(r1 −R′
1):

• δ(r1 −R′
1) also ”selects” the value r1 = R′

1.

5.3.9 Matching the Limits of Integration
To ensure that the domains of the functions coincide, the integration limits for r1 and
r′1 must be identical. This means that:
1. The integration limits for r1 and r′1 are set the same.
2. The regions where the Heaviside and Delta functions are non­zero are taken into

account.

5.3.10 Adjustment of the Integration Limits
Now we rewrite the integrals, specifying **identical integration limits** for r1 and
r′1:
First Integral:
∫ R′

1

r1=0

∫ R′
1

r′1=0

∣∣∣∣δ(R′
1 − r1) ·

ρ1R
′
2 ρ2 V (R′

2)

π (r′1 −D)5

∣∣∣∣ dV1 dV
′
1 .

Here:
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1 (whereH(R′

1 − r1) = 1),

• r′1 ranges from 0 to R′
1 (to ensure matching limits).

Second Integral:
∫ ∞

r1=R′
1

∫ ∞

r′1=R′
1

∣∣∣∣
4

r51
· ρ1R

′
2 ρ2 V (R′

2)R
′4
1

3π (r′1 −D)5

∣∣∣∣ dV1 dV
′
1 .

Here:
• r1 ranges from R′

1 to∞ (whereH(r1 −R′
1) = 1),

• r′1 ranges from R′
1 to∞ (to ensure matching limits).

Third Integral:
∫ ∞

r1=R′
1

∫ ∞

r′1=R′
1

∣∣∣∣
1

r41
δ(r1 −R′

1) ·
ρ1R

′
2 ρ2 V (R′

2)R
′4
1

3π (r′1 −D)5

∣∣∣∣ dV1 dV
′
1 .

Here:
• r1 ranges from R′

1 to∞ (where δ(r1 −R′
1) ”selects” r1 = R′

1),

• r′1 ranges from R′
1 to∞ (to ensure matching limits).

5.4 Transition to Surface Integrals Using the Properties of the Dirac Delta
Function

5.4.1 Properties of the Dirac Delta Function
The Dirac delta function δ(R′

1 − r1) has the following property:∫

V1

f(r1) δ(R
′
1 − r1) dV1 = f(R′

1),

where f(r1) is an arbitrary function, and the integral is taken over the volume V1.
This means that the delta function ”selects” the value of the function f(r1) on the
surface of the sphere with radius R′

1.

5.4.2 Transition to Surface Integrals
a) First Integral: The original integral:

∫

V1

∫

V ′
1

∣∣∣∣δ(R′
1 − r1) ·

ρ1R
′
2 ρ2 V (R′

2)

π (r′1 −D)5

∣∣∣∣ dV1 dV
′
1 .

The delta function δ(R′
1 − r1) ”selects” the value on the surface of the sphere with

radius R′
1. Thus, the integral over dV1 reduces to a surface integral over the sphere of

radius R′
1: ∫

V1

f(r1) δ(R
′
1 − r1) dV1 = f(R′

1),
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Third Integral:
                   .

Here:
 

5.4. Transition to Surface Integrals Using the Properties of the Dirac Delta Function
5.4.1. Properties of the Dirac Delta Function
The Dirac delta function		  has the following property:

                           

where f(r1) is an arbitrary function, and the integral is taken over the volume V1. This means that the delta function ”selects” the value of 
the function f(r1) on the surface of the sphere with radius r'1.

5.4.2. Transition to Surface Integrals
a) First Integral: The original integral:

The delta function	     ”selects” the value on the surface of the sphere with radius R'1. Thus, the integral over dV1 reduces to a 
surface integral over the sphere of radius R'1:

                                 
 
where S1 denotes the surface of the sphere with radius R'1.
Similarly, the integral over dV'1 also reduces to a surface integral over the sphere with radius R'1:

Thus, the first integral takes the form:

b) Third Integral: The original integral:

The delta function  also		  ”selects” the value on the surface of the sphere with radius R'1. Thus, the integral over dV1 reduces 
to a surface integral over the sphere with radius R'1:

Similarly, the integral over dV'1 reduces to a surface integral over the sphere with radius R'1:
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1 (whereH(R′
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where S1 denotes the surface of the sphere with radius R′
1.

Similarly, the integral over dV ′
1 also reduces to a surface integral over the sphere

with radius R′
1:∫

V ′
1

ρ1R
′
2 ρ2 V (R′

2)

π (r′1 −D)5
dV ′

1 =

∫

S′
1

ρ1R
′
2 ρ2 V (R′

2)

π (r′1 −D)5
dS ′

1.

Thus, the first integral takes the form:
∫

S1

∫

S′
1

∣∣∣∣
ρ1R

′
2 ρ2 V (R′

2)

π (r′1 −D)5

∣∣∣∣ dS1 dS
′
1.

b) Third Integral: The original integral:
∫

V1

∫

V ′
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∣∣∣∣
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δ(r1 −R′
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ρ1R

′
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2)R
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′
1 .

The delta function δ(r1 − R′
1) also ”selects” the value on the surface of the sphere

with radius R′
1. Thus, the integral over dV1 reduces to a surface integral over the

sphere with radius R′
1: ∫

V1

1

r41
δ(r1 −R′

1) dV1 =

∫

S1

1

R′4
1

dS1.

Similarly, the integral over dV ′
1 reduces to a surface integral over the sphere with

radius R′
1: ∫

V ′
1

ρ1R
′
2 ρ2 V (R′

2)R
′4
1

3π (r′1 −D)5
dV ′

1 =

∫

S′
1

ρ1R
′
2 ρ2 V (R′

2)R
′4
1

3π (r′1 −D)5
dS ′

1.

Thus, after applying the delta function δ(r1−R′
1) and transitioning to surface integrals,

the third integral takes the form:
∫

S1

∫

S′
1

∣∣∣∣
ρ1R

′
2 ρ2 V (R′

2)R
′4
1

3π R′4
1 (r′1 −D)5

∣∣∣∣ dS1 dS
′
1.

Here, the R′4
1 factors in the numerator and denominator cancel:

∫

S1

∫

S′
1

∣∣∣∣
ρ1R

′
2 ρ2 V (R′

2)

3π (r′1 −D)5

∣∣∣∣ dS1 dS
′
1.

5.4.3 Application of Fubini’s Theorem
Fubini’s theorem allows us to separate double integrals into a product of integrals.
We apply it to the first and third integrals.

a) First Integral:
∫

S1

∫

S′
1

∣∣∣∣
ρ1R

′
2 ρ2 V (R′

2)

π (r′1 −D)5

∣∣∣∣ dS1 dS
′
1.
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Thus, we have transitioned from volume integrals to surface integrals using the properties of the Dirac delta function and Fubini’s 
theorem. This simplifies the calculations and allows us to focus on integrating over the surfaces of the spheres.

5.5. Calculation of the Second Integral The original second integral is:

We apply Fubini’s theorem to separate the integral into the product:

5.5.1. Calculation of the Integral over dV1
The integral over dV1 is given by:

In spherical coordinates,		      , so:

Evaluating this integral:

5.5.2. Final Formula for the Second Integral
Thus, the final formula for the second integral becomes:

5.6. Final Expression for the Total Perturbation
The original expression for the total perturbation integral was:

5.6.1. Calculation of the Integrals with Respect to the Coordinate r1 First Integral: 

The second integral in the first term is taken over the surface S'1:

5.5 Calculation of the Second Integral
The original second integral is:

∫ ∞

r1=R′
1

∫ ∞

r′1=R′
1

∣∣∣∣
4

r51
· ρ1R

′
2 ρ2 V (R′

2)R
′4
1

3π (r′1 −D)5

∣∣∣∣ dV1 dV
′
1 .

We apply Fubini’s theorem to separate the integral into the product:
(∫ ∞
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dV1
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·
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5.5.1 Calculation of the Integral over dV1

The integral over dV1 is given by: ∫ ∞

r1=R′
1

4
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dV1.

In spherical coordinates, dV1 = 4πr21 dr1, so:∫ ∞
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4

r51
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1
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Evaluating this integral:

16π
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r1=R′
1

1

r31
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[
− 1

2r21

]∞
R′

1
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(
0 +

1

2R′2
1

)
=

8π

R′2
1

.

5.5.2 Final Formula for the Second Integral
Thus, the final formula for the second integral becomes:

8π
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The second integral in the first term is taken over the surface S ′
1:∫

S′
1

ρ1R
′
2 ρ2 V (R′

2)

π (r′1 −D)5
dS ′

1.

Substituting into the first term:

4πR′2
1 ·

∫

S′
1

ρ1R
′
2 ρ2 V (R′

2)

π (r′1 −D)5
dS ′

1.

Second Integral: ∫

V1

4

r51
H(r1 −R′

1) dV1 =
8π

R′2
1

.

The second integral in the second term is taken over the volume V ′
1 :∫

V ′
1

ρ1R
′
2 ρ2 V (R′

2)R
′4
1

3π (r′1 −D)5
dV ′

1 .

Substituting into the second term:

8π

R′2
1

·
∫

V ′
1

ρ1R
′
2 ρ2 V (R′

2)R
′4
1

3π (r′1 −D)5
dV ′

1 .

Third Integral: ∫

V1

1

r41
δ(r1 −R′

1) dV1 = 4πR′2
1 .

23The second integral in the third term is taken over the surface S ′
1:∫

S′
1

ρ1R
′
2 ρ2 V (R′

2)

3π (r′1 −D)5
dS ′

1.

Substituting into the third term:

4πR′2
1 ·

∫

S′
1

ρ1R
′
2 ρ2 V (R′

2)

3π (r′1 −D)5
dS ′

1.

Final Expression for the Total Perturbation
Now, substituting the calculated integrals into the original expression:

Wtotal = 4πR′2
1 ·

∫

S′
1

ρ1R
′
2 ρ2 V (R′

2)

π (r′1 −D)5
dS ′

1

+
8π

R′2
1

·
∫

V ′
1

ρ1R
′
2 ρ2 V (R′

2)R
′4
1

3π (r′1 −D)5
dV ′

1

− 4πR′2
1 ·

∫

S′
1

ρ1R
′
2 ρ2 V (R′

2)

3π (r′1 −D)5
dS ′

1. (7)

5.6.2 Simplification of the First and Third Terms

The first and third integrals share a common factor 4πR′2
1 . We factor this out:

4πR′2
1 ·

(∫

S′
1

ρ1R
′
2 ρ2 V (R′

2)

π (r′1 −D)5
dS ′

1 −
∫

S′
1

ρ1R
′
2 ρ2 V (R′

2)

3π (r′1 −D)5
dS ′

1

)
.

Simplify the expression inside the parentheses:∫

S′
1

ρ1R
′
2 ρ2 V (R′

2)

π (r′1 −D)5
dS ′

1 −
∫

S′
1

ρ1R
′
2 ρ2 V (R′

2)

3π (r′1 −D)5
dS ′

1 =

∫

S′
1

2ρ1R
′
2 ρ2 V (R′

2)

3π (r′1 −D)5
dS ′

1.

Now, recall that
ρ1 =

Q1
4
3πR

′3
1

,

and also ρ2 V (R′
2) = Q2. Thus, we obtain:

4πR′2
1 ·

∫

S′
1

2 · Q1
4
3πR

′3
1
·R′

2 ·Q2

3π (r′1 −D)5
dS ′

1.

Simplifying the coefficients:

4πR′2
1 · 2Q1Q2R

′
2

3π · 4
3πR

′3
1

∫

S′
1

dS ′
1

(r′1 −D)5
=

8Q1Q2R
′
2

πR′
1

∫

S′
1

dS ′
1

(r′1 −D)5
.
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The second integral in the third term is taken over the surface S ′
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∫
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3π (r′1 −D)5
dS ′

1

)
.

Simplify the expression inside the parentheses:∫
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4
3πR
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1.
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4πR′2
1 · 2Q1Q2R
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2

3π · 4
3πR
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1

∫

S′
1

dS ′
1

(r′1 −D)5
=

8Q1Q2R
′
2
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∫

S′
1

dS ′
1

(r′1 −D)5
.
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1.
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1

)
.
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,
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2 · Q1
4
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′3
1
·R′

2 ·Q2

3π (r′1 −D)5
dS ′

1.
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4πR′2
1 · 2Q1Q2R

′
2

3π · 4
3πR
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1

∫

S′
1

dS ′
1

(r′1 −D)5
=

8Q1Q2R
′
2

πR′
1
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S′
1

dS ′
1

(r′1 −D)5
.
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2 ρ2 V (R′
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1.
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∫

S′
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3π (r′1 −D)5
dS ′

1.

Final Expression for the Total Perturbation
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1

+
8π

R′2
1

·
∫
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1

ρ1R
′
2 ρ2 V (R′

2)R
′4
1

3π (r′1 −D)5
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1

− 4πR′2
1 ·

∫

S′
1

ρ1R
′
2 ρ2 V (R′
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3π (r′1 −D)5
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1. (7)

5.6.2 Simplification of the First and Third Terms

The first and third integrals share a common factor 4πR′2
1 . We factor this out:

4πR′2
1 ·

(∫

S′
1

ρ1R
′
2 ρ2 V (R′

2)

π (r′1 −D)5
dS ′

1 −
∫

S′
1

ρ1R
′
2 ρ2 V (R′

2)

3π (r′1 −D)5
dS ′

1

)
.

Simplify the expression inside the parentheses:∫

S′
1

ρ1R
′
2 ρ2 V (R′

2)

π (r′1 −D)5
dS ′

1 −
∫

S′
1

ρ1R
′
2 ρ2 V (R′

2)

3π (r′1 −D)5
dS ′
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∫

S′
1

2ρ1R
′
2 ρ2 V (R′

2)

3π (r′1 −D)5
dS ′

1.

Now, recall that
ρ1 =

Q1
4
3πR

′3
1

,

and also ρ2 V (R′
2) = Q2. Thus, we obtain:

4πR′2
1 ·

∫

S′
1

2 · Q1
4
3πR

′3
1
·R′

2 ·Q2

3π (r′1 −D)5
dS ′

1.

Simplifying the coefficients:

4πR′2
1 · 2Q1Q2R

′
2

3π · 4
3πR

′3
1

∫

S′
1

dS ′
1

(r′1 −D)5
=

8Q1Q2R
′
2

πR′
1

∫

S′
1

dS ′
1

(r′1 −D)5
.

24



OA J Applied Sci Technol, 2025 Volume 3 | Issue 1 | 17

The second integral in the third term is taken over the surface S ′
1:∫

S′
1

ρ1R
′
2 ρ2 V (R′

2)

3π (r′1 −D)5
dS ′

1.

Substituting into the third term:

4πR′2
1 ·

∫

S′
1

ρ1R
′
2 ρ2 V (R′

2)

3π (r′1 −D)5
dS ′

1.

Final Expression for the Total Perturbation
Now, substituting the calculated integrals into the original expression:

Wtotal = 4πR′2
1 ·

∫

S′
1

ρ1R
′
2 ρ2 V (R′

2)

π (r′1 −D)5
dS ′

1

+
8π

R′2
1

·
∫

V ′
1

ρ1R
′
2 ρ2 V (R′

2)R
′4
1

3π (r′1 −D)5
dV ′

1

− 4πR′2
1 ·

∫

S′
1

ρ1R
′
2 ρ2 V (R′

2)

3π (r′1 −D)5
dS ′

1. (7)

5.6.2 Simplification of the First and Third Terms

The first and third integrals share a common factor 4πR′2
1 . We factor this out:

4πR′2
1 ·

(∫

S′
1

ρ1R
′
2 ρ2 V (R′

2)

π (r′1 −D)5
dS ′

1 −
∫

S′
1

ρ1R
′
2 ρ2 V (R′

2)

3π (r′1 −D)5
dS ′

1

)
.

Simplify the expression inside the parentheses:∫

S′
1

ρ1R
′
2 ρ2 V (R′

2)

π (r′1 −D)5
dS ′

1 −
∫

S′
1

ρ1R
′
2 ρ2 V (R′

2)

3π (r′1 −D)5
dS ′

1 =

∫

S′
1

2ρ1R
′
2 ρ2 V (R′

2)

3π (r′1 −D)5
dS ′

1.

Now, recall that
ρ1 =

Q1
4
3πR

′3
1

,

and also ρ2 V (R′
2) = Q2. Thus, we obtain:

4πR′2
1 ·

∫

S′
1

2 · Q1
4
3πR

′3
1
·R′

2 ·Q2

3π (r′1 −D)5
dS ′

1.

Simplifying the coefficients:

4πR′2
1 · 2Q1Q2R

′
2

3π · 4
3πR

′3
1

∫

S′
1

dS ′
1

(r′1 −D)5
=

8Q1Q2R
′
2

πR′
1

∫

S′
1

dS ′
1

(r′1 −D)5
.

245.6.3. Simplification of the Second Term
The second integral is

5.6.3 Simplification of the Second Term
The second integral is

8π

R′2
1

·
∫ ∞

r′1=R′
1

ρ1R
′
2 ρ2 V (R′

2)R
′4
1

3π (r′1 −D)5
dV ′

1 .

Substitute ρ1 = Q1
4
3πR

′3
1
and ρ2 V (R′

2) = Q2:

8π

R′2
1

·
∫ ∞

r′1=R′
1

Q1
4
3πR

′3
1
·R′

2 ·Q2 ·R′4
1

3π (r′1 −D)5
dV ′

1 .

Simplify the coefficients:

8π

R′2
1

· Q1Q2R
′
2R

′
1

4
3π · 3π

∫ ∞

r′1=R′
1

dV ′
1

(r′1 −D)5
=

2Q1Q2R
′
2

πR′
1

∫ ∞

r′1=R′
1

dV ′
1

(r′1 −D)5
.

5.6.4 Final Expression
Now, combining all the terms we obtain:

Wtotal =
8Q1Q2R

′
2

πR′
1

∫

S′
1

dS ′
1

(r′1 −D)5
+

2Q1Q2R
′
2

πR′
1

∫ ∞

r′1=R′
1

dV ′
1

(r′1 −D)5
. (8)

5.7 Let Us Now Compute the First Integral:
8Q1Q2R

′
2

πR′
1

∫

S′
1

dS ′
1

|r′1 − D|5
.

Where:

• S ′
1 is the sphere centered at the origin with radius R′

1, i.e. for any point on the
sphere its position vector r′1 satisfies |r′1| = R′

1;

• D is a fixed vector, whose modulus we denote byD = |D|;
• The notation |r′1 − D| denotes the distance between the point r′1 and the point
specified by the vector D.

5.7.1 Calculation of the Surface Integral
Choose the coordinate system such that the z­axis is directed along D. Then a point
on the sphere can be written in spherical coordinates as:

r′1 = R′
1 (sin θ cosφ, sin θ sinφ, cos θ),
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5.6.3 Simplification of the Second Term
The second integral is

8π

R′2
1

·
∫ ∞

r′1=R′
1

ρ1R
′
2 ρ2 V (R′

2)R
′4
1

3π (r′1 −D)5
dV ′

1 .
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4
3πR

′3
1
and ρ2 V (R′

2) = Q2:

8π

R′2
1

·
∫ ∞

r′1=R′
1

Q1
4
3πR

′3
1
·R′

2 ·Q2 ·R′4
1

3π (r′1 −D)5
dV ′

1 .

Simplify the coefficients:

8π

R′2
1

· Q1Q2R
′
2R

′
1

4
3π · 3π

∫ ∞

r′1=R′
1

dV ′
1

(r′1 −D)5
=

2Q1Q2R
′
2

πR′
1

∫ ∞

r′1=R′
1

dV ′
1

(r′1 −D)5
.
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1;

• D is a fixed vector, whose modulus we denote byD = |D|;
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specified by the vector D.

5.7.1 Calculation of the Surface Integral
Choose the coordinate system such that the z­axis is directed along D. Then a point
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1, i.e. for any point on the
sphere its position vector r′1 satisfies |r′1| = R′

1;

• D is a fixed vector, whose modulus we denote byD = |D|;
• The notation |r′1 − D| denotes the distance between the point r′1 and the point
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5.7.1 Calculation of the Surface Integral
Choose the coordinate system such that the z­axis is directed along D. Then a point
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5.6.3 Simplification of the Second Term
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∫ ∞
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2 ρ2 V (R′

2)R
′4
1

3π (r′1 −D)5
dV ′

1 .
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4
3πR

′3
1
and ρ2 V (R′

2) = Q2:

8π

R′2
1
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r′1=R′
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Q1
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3πR

′3
1
·R′

2 ·Q2 ·R′4
1
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dV ′

1 .
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πR′
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and the surface element is

dS ′
1 = R′2

1 sin θ dθ dφ .

The modulus of the difference of the vectors is:

|r′1 − D| =
√
R′2

1 +D2 − 2R′
1D cos θ .

Then the integral becomes

I =

∫

S′
1

dS ′
1

|r′1 − D|5
=

∫ 2π

0

∫ π

0

R′2
1 sin θ dθ dφ

(
R′2

1 +D2 − 2R′
1D cos θ

)5/2
.

Integration over φ gives a factor of 2π:

I = 2πR′2
1

∫ π

0

sin θ dθ
(
R′2

1 +D2 − 2R′
1D cos θ

)5/2
.

5.7.2 Change of Variable u = cos θ
Let u = cos θ, then du = − sin θ dθ. When θ = 0, we have u = 1, and when θ = π,
u = −1. Thus, we obtain:

I = 2πR′2
1

∫ −1

u=1

−du
(
R′2

1 +D2 − 2R′
1Du

)5/2
= 2πR′2

1

∫ 1

−1

du
(
R′2

1 +D2 − 2R′
1Du

)5/2
.

Let us denote:
A = R′2

1 +D2, B = 2R′
1D .

Then the integral takes the form

I = 2πR′2
1

∫ 1

−1

du(
A− Bu

)5/2 .

5.7.3 Evaluation of the Integral with Respect to u

Perform the substitution: v = A − Bu so that dv = −B du or du = −dv
B . When

u = −1 we get v = A+ B, and when u = 1 we have v = A− B. Then:
∫ 1

−1

du

(A− Bu)5/2
=

1

B

∫ A+B

v=A−B

dv

v5/2
= − 1

B

∫ A−B

v=A+B

dv

v5/2

= − 2

3B

[
v−3/2

]A−B

v=A+B
=

2

3B

[
(A− B)−3/2 − (A+ B)−3/2

]
.

Thus,
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∫ 1
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du
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=

1
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Thus,
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5.7.2. Change of Variable u = cos θ

5.7.3. Evaluation of the Integral with Respect to u

I = 2πR′2
1 · 1

B
· 2
3

[
(A− B)−3/2 − (A+ B)−3/2

]

=
4πR′2

1

3B

[
(A− B)−3/2 − (A+ B)−3/2

]
.

Returning to the original notations:

A± B = R′2
1 +D2 ∓ 2R′

1D = (R′
1 ∓D)2 .

Therefore,
(A∓ B)−3/2 =

1[
(R′

1 ∓D)2
]3/2 =

1

(R′
1 ∓D)3

.

Also, B = 2R′
1D. Then,

I =
4πR′2

1

3 · 2R′
1D

[
1

(R′
1 −D)3

− 1

(R′
1 +D)3

]

=
2πR′

1

3D

[
1

(R′
1 −D)3

− 1

(R′
1 +D)3

]
.

5.7.4 Final Result
Substituting the obtained I into the original expression, we have:

8Q1Q2R
′
2

πR′
1

I =
8Q1Q2R

′
2

πR′
1

· 2πR
′
1

3D
·
[

1

(R′
1 −D)3

− 1

(R′
1 +D)3

]
.

Canceling π and R′
1, we finally obtain:
16Q1Q2R

′
2

3D

[
1

(R′
1 −D)3

− 1

(R′
1 +D)3

]
.

8Q1Q2R
′
2

πR′
1

∫

S′
1

dS ′
1

|r′1 − D|5
=

16Q1Q2R
′
2

3D

[
1

(R′
1 −D)3

− 1

(R′
1 +D)3

]
(9)

5.8 Calculation of the Second Integral in the Expression for the Total Pertur­
bation of the Two­Cluster Spatial Density System Relative to the Reference
Frame r′1 Associated with the Center of the First Cluster’s Sphere
In the obtained solution for the total perturbation, the second integral has the form:

I =
2Q1Q2R

′
2

πR′
1

∫ ∞

r′1=R′
1

dV ′
1

|r′1 − D|5
,

where:

27
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5.7.4. Final Result
Substituting the obtained I into the original expression, we have:

5.8. Calculation of the Second Integral in the Expression for the Total Perturbation of the TwoCluster Spatial Density System 
Relative to the Reference Frame r0

1 Associated with the Center of the First Cluster’s Sphere

In the obtained solution for the total perturbation, the second integral has the form:

where:

5.8.1. Transition to the r0
2 System

The transformation to the r0
2 system is performed via the relation:

• r′1 is the position vector in the r′1 system,

• D is a vector lying along the Z­axis, directed from the origin of the r′1 system to
the origin of the r′2 system,

• dV ′
1 is the volume element in the r′1 system.

5.8.1 Transition to the r′2 System
The transformation to the r′2 system is performed via the relation:

r′2 = r′1 − D.

In this case,
r′2 = |r′2| = |r′1 − D|.

Since D lies along the Z­axis, theX and Y axes coincide, and the angle between the
vector r′1 and D is the same as the angle θ in the r′2 system.

5.8.2 Writing the Integral in the Spherical Coordinate System r′1
In the r′1 system, the volume element in spherical coordinates is given by:

dV ′
1 = (r′1)

2 sin θ dr′1 dθ dφ.

Thus, the integral is written as:

I =
2Q1Q2R

′
2

πR′
1

∫ ∞

r′1=R′
1

∫ π

θ=0

∫ 2π

φ=0

(r′1)
2 sin θ

|r′1 − D|5
dφ dθ dr′1.

5.8.3 Transition to the Spherical Coordinate System r′2
Consider the integral in the original spherical coordinate system r′1:

I =
2Q1Q2R

′
2

πR′
1

∫ ∞

r′1=R′
1

∫ π

θ=0

∫ 2π

φ=0

(r′1)
2 sin θ

|r′1 − D|5
dφ dθ dr′1.

Weneed to change to another spherical coordinate system r′2, recalculate the integration
limits and the volume element, and write the integral in the new coordinate system.

5.8.4 Calculate the Jacobian of the Transformation and Compare the Volume
Elements in the r′1 and r′2 Systems, Bearing in Mind that r′2 = r′1 − D.
Relationship Between the Coordinate Systems Transformation Conditions:

Given:
r′2 = |r′1 − D|,

where:

• r′1 = (r′1, θ
′
1, φ

′
1) is the position vector in the first coordinate system,

• D = (0, 0, D) is a fixed vector lying along the Z­axis,
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5.8.3. Transition to the Spherical Coordinate System r0
2

Consider the integral in the original spherical coordinate system r0
1:

We need to change to another spherical coordinate system r0
2, recalculate the integration limits and the volume element, and write the 

integral in the new coordinate system.

5.8.4. Calculate the Jacobian of the Transformation and Compare the Volume Elements in the r0
1 and r0

2 Systems, Bearing in 
Mind that 	
Relationship between the Coordinate Systems Transformation Conditions:
Given:

• θ′2 = θ′1 and φ′
2 = φ′

1 (the angular coordinates coincide).
The norm of the difference of the vectors is expressed as:

r′2 =
√
r′21 sin2 θ′1 + (r′1 cos θ′1 −D)2.

The Jacobian of the transformation is determined solely by the partial derivative
∂r′2
∂r′1

, since the angular coordinates remain the same:

J =
∂r′2
∂r′1

.

Differentiating r′2 with Respect to r′1 We compute the derivative:
∂r′2
∂r′1

=
1

2
√
r′21 sin2 θ′1 + (r′1 cos θ′1 −D)2

· ∂

∂r′1

(
r′21 sin2 θ′1 + (r′1 cos θ

′
1 −D)2

)
.

First Part:
∂

∂r′1
(r′21 sin2 θ′1) = 2r′1 sin

2 θ′1.

Second Part:
∂

∂r′1
(r′1 cos θ

′
1 −D)2 = 2(r′1 cos θ

′
1 −D) cos θ′1.

Combining the Parts Now, the full derivative is:

∂r′2
∂r′1

=
2r′1 sin

2 θ′1 + 2(r′1 cos θ′1 −D) cos θ′1
2
√
r′21 sin2 θ′1 + (r′1 cos θ′1 −D)2

.

We can write:
∂r′2
∂r′1

=
r′1 sin

2 θ′1 + (r′1 cos2 θ′1 −D cos θ′1)√
r′21 sin2 θ′1 + r′21 cos2 θ′1 − 2Dr′1 cos θ′1 +D2

.

Using the identity sin2 θ′1 + cos2 θ′1 = 1:
∂r′2
∂r′1

=
r′1 −D cos θ′1√

r′21 − 2Dr′1 cos θ′1 +D2
.

Note that:
r′21 − 2Dr′1 cos θ

′
1 +D2 = (r′1 −D cos θ′1)

2.

Thus, we have:
∂r′2
∂r′1

=
r′1 −D cos θ′1
r′1 −D cos θ′1

= 1.

Since the Jacobian of the Transformation is 1, the Following Holds in Our
System:

dV ′
1 = dV ′

2 .

29
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Since the Jacobian of the Transformation is 1, the Following Holds in Our System:

5.8.5. Recalculation of the Integration Limits
The Original Integral
In the original r01 coordinate system, the integral is defined by:

5.8.5 Recalculation of the Integration Limits
The Original Integral

In the original r′1 coordinate system, the integral is defined by:

I =
2Q1Q2R

′
2

πR′
1

∫ ∞

r′1=R′
1

∫ π

θ=0

∫ 2π

φ=0

(r′1)
2 sin θ

|r′1 − D|5
dφ dθ dr′1.

The Lower Limit of Integration
In the new r′2 coordinate system, the lower limit for r′2 is determined by the condition

r′1 = R′
1:

r′2 =
√
(R′

1)
2 +D2 − 2R′

1D cos θ.

Thus, the lower limit for r′2 is:

r′2 ≥
√
(R′

1)
2 +D2 − 2R′

1D cos θ.

The Transformed Integral
After changing to the r′2 coordinate system, the integral becomes:

I =
2Q1Q2R

′
2

πR′
1

∫ ∞

r′2=
√
(R′

1)
2+D2−2R′

1D cos θ

∫ π

θ=0

∫ 2π

φ=0

(r′2)
2 sin θ

(r′2)
5

dφ dθ dr′2.

5.8.6 Integration with Respect to r′2
We compute the inner integral with respect to r′2:∫ ∞

r′2=
√
(R′

1)
2+D2−2R′

1D cos θ

dr′2
(r′2)

3
=

[
− 1

2(r′2)
2

]∞
r′2=

√
(R′

1)
2+D2−2R′

1D cos θ

=
1

2 ((R′
1)

2 +D2 − 2R′
1D cos θ)

.

Thus, we have:

I =
2Q1Q2R

′
2

πR′
1

∫ π

0

∫ 2π

0

sin θ
2 ((R′

1)
2 +D2 − 2R′

1D cos θ)
dφ dθ.

5.8.7 Integration with Respect to φ
The integral over φ is: ∫ 2π

0
dφ = 2π.

Thus,

I =
2Q1Q2R

′
2

πR′
1

· 2π · 1
2

∫ π

0

sin θ
(R′

1)
2 +D2 − 2R′

1D cos θ
dθ.

Simplifying:

I =
2Q1Q2R

′
2

R′
1

∫ π

0

sin θ
(R′

1)
2 +D2 − 2R′

1D cos θ
dθ.
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5.8.6. Integration with Respect to r'2
We compute the inner integral with respect to r'2:

5.8.7. Integration with Respect to φ 
The integral over φ is:
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5.8.8. Integration with Respect to θ Make the substitution:
	 u = cosθ, du = −sinθ dθ.

The integration limits become:
•	 When θ = 0: u = 1.
•	 When θ = π: u = −1.

Thus, we obtain:

5.8.8 Integration with Respect to θ
Make the substitution:

u = cos θ, du = − sin θ dθ.

The integration limits become:
• When θ = 0: u = 1.

• When θ = π: u = −1.
Thus, we obtain:

I =
2Q1Q2R

′
2

R′
1

∫ −1

u=1

−du

(R′
1)

2 +D2 − 2R′
1Du

=
2Q1Q2R

′
2

R′
1
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−1

du

(R′
1)

2 +D2 − 2R′
1Du

.

5.8.9 Evaluation of the Integral with Respect to u
We use the standard integral:

∫ 1

−1

du

A− Bu
=

1

B
ln
∣∣∣∣
A+ B

A− B

∣∣∣∣ ,

where:
A = (R′

1)
2 +D2, B = 2R′

1D.

Thus:
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2Q1Q2R
′
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R′
1
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2R′
1D
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∣∣∣∣
(R′

1)
2 +D2 + 2R′

1D

(R′
1)

2 +D2 − 2R′
1D

∣∣∣∣ .

5.8.10 Simplification of the Expression Inside the Logarithm
The expression inside the logarithm is:

(R′
1)

2 +D2 + 2R′
1D

(R′
1)

2 +D2 − 2R′
1D

.

Notice that:
(R′

1)
2 +D2 + 2R′

1D = (R′
1 +D)2,
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1)

2 +D2 − 2R′
1D = (R′

1 −D)2.

Thus:
(R′

1)
2 +D2 + 2R′

1D

(R′
1)

2 +D2 − 2R′
1D

=
(R′

1 +D)2

(R′
1 −D)2

.

Since both (R′
1 +D)2 and (R′

1 −D)2 are positive, we can drop the absolute value:

ln
∣∣∣∣
(R′

1 +D)2

(R′
1 −D)2

∣∣∣∣ = ln
(
(R′

1 +D)2

(R′
1 −D)2

)
= 2 ln

(
R′

1 +D

R′
1 −D

)
.
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5.8.8 Integration with Respect to θ
Make the substitution:

u = cos θ, du = − sin θ dθ.

The integration limits become:
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• When θ = π: u = −1.
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5.8.8 Integration with Respect to θ
Make the substitution:

u = cos θ, du = − sin θ dθ.

The integration limits become:
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• When θ = π: u = −1.
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5.8.9. Evaluation of the Integral with Respect to u 
We use the standard integral:

5.8.10. Simplification of the Expression Inside the Logarithm 
The expression inside the logarithm is:

5.8.11. Final Result
Substitute the simplified expression into the integral:

5.9. Consider the Case When D > R1
In this case the expression inside the logarithm,

5.8.11 Final Result
Substitute the simplified expression into the integral:

I =
2Q1Q2R

′
2

R′
1

· 1

2R′
1D

· 2 ln
(
R′

1 +D

R′
1 −D

)
.

Simplifying, we obtain:

I =
2Q1Q2R

′
2

(R′
1)

2D
ln
(
R′

1 +D

R′
1 −D

)
(10)

5.9 Consider the Case When D > R′
1

In this case the expression inside the logarithm,
(
R′

1 +D

R′
1 −D

)
,

becomes negative because R′
1 − D < 0 while R′

1 + D > 0. To work with the
logarithm of a negative number, we use the formula for the logarithm of a complex
number.

5.9.1 Formula for the Logarithm of a Complex Number
The logarithm of a complex number z = x+ iy (where x and y are real numbers) is
defined as:

ln(z) = ln |z|+ i arg(z),
where:

• |z| =
√
x2 + y2 is the modulus of the complex number,

• arg(z) is the argument of the complex number (the angle in the complex plane).

For a negative real number z = −a (with a > 0):

ln(−a) = ln(a) + iπ,

since the modulus |z| = a and the argument arg(z) = π (because a negative number
lies on the negative real axis).

5.9.2 Application to Our Case
Consider the expression inside the logarithm:

R′
1 +D

R′
1 −D

.

32



OA J Applied Sci Technol, 2025 Volume 3 | Issue 1 | 23

becomes negative because		   while	          . To work with the logarithm of a negative number, we use the formula for the 
logarithm of a complex number.

5.9.1. Formula for the Logarithm of a Complex Number
The logarithm of a complex number z = x + iy (where x and y are real numbers) is defined as: 

				    ln(z) = ln|z| + iarg(z),
where:

•		                is the modulus of the complex number,
•	 arg(z) is the argument of the complex number (the angle in the complex plane).
	 For a negative real number z = −a (with a > 0):
	
				    ln(−a) = ln(a) + iπ,

since the modulus |z| = a and the argument arg(z) = π (because a negative number lies on the negative real axis).

5.9.2. Application to Our Case
Consider the expression inside the logarithm:

When	             , the denominator                  is negative while the numerator	        is positive. Thus, the expression inside the 
logarithm is negative:

Now applying the formula for the logarithm of a negative number:
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WhenD > R′
1, the denominator R′

1 −D is negative while the numerator R′
1 +D is

positive. Thus, the expression inside the logarithm is negative:

R′
1 +D

R′
1 −D

= −R′
1 +D

D −R′
1

.

Now applying the formula for the logarithm of a negative number:

ln
(
R′

1 +D

R′
1 −D

)
= ln

(
−R′

1 +D

D −R′
1

)
= ln

(
R′

1 +D

D −R′
1

)
+ iπ.

5.9.3 Substitution into the Integral
Now substitute this expression into our integral:

I =
2Q1Q2R

′
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ln
(
R′

1 +D

R′
1 −D

)
.

ForD > R′
1, we have:

I =
2Q1Q2R
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5.9.5. Physical Interpretation
• Real Part:

describes the physical quantity related to the interaction between the systems.

• Imaginary Part:

arises due to the sign change inside the logarithm and can be interpreted as a phase or additional energy associated with the geometry 
of the problem.

Thus, for	   , the solution becomes complex, reflecting a change in the physical nature of the problem in this region.

5.10. Taylor Series Expansion for D > R'1
For the case D > R'1, we can expand the logarithm in a Taylor series. Consider the expression inside the logarithm:

Im(I) =
2Q1Q2R

′
2π

R′2
1 D

(13)

arises due to the sign change inside the logarithm and can be interpreted as a
phase or additional energy associated with the geometry of the problem.

Thus, for D > R′
1, the solution becomes complex, reflecting a change in the

physical nature of the problem in this region.

5.10 Taylor Series Expansion forD > R′
1

For the case D > R′
1, we can expand the logarithm in a Taylor series. Consider the

expression inside the logarithm:

ln
(
R′

1 +D

D −R′
1

)
.

Let x = R′
1

D . Then the expression inside the logarithm can be rewritten as:

R′
1 +D

D −R′
1

=
1 + x

1− x
.

Now expand ln
(
1+x
1−x

)
in a Taylor series. Note that:
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For	    , expanding the logarithm in a Taylor series up to the second term, we obtain:

5.10.3 Physical Interpretation
• Real Part:

describes the physical quantity related to the interaction between the systems, including higherorder corrections.
• Imaginary Part:

remains unchanged and is associated with the phase or additional energy arising from the geometry of the problem.

Thus, the Taylor series expansion allows us to obtain an approximate expression for I in the region D > R'1,  which simplifies the analysis 
and interpretation of the result.
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(16)

remains unchanged and is associated with the phase or additional energy arising
from the geometry of the problem.

Thus, the Taylor series expansion allows us to obtain an approximate expression
for I in the region D > R′

1, which simplifies the analysis and interpretation of the
result.
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6. Graph of the Total Perturbation Based on the Obtained Approximation Formulas for the Real Part of the Integral Solution
Substitute the solutions for each of the integrals into the original expression for the total perturbation Wtotal. Recall that:

6.1. Solution for the First Integral 
The first integral equals:

6.2. Solution for the Second Integral
The second integral in complex form equals:

6.3. Substitution into the Expression for Wtotal
Now substitute the solutions for each integral into the original expression for Wtotal

6.4. Graph of the Real Part of the Obtained Expression for the Total Spatial Density Perturbation Wtotal and of Each Term for 
Detailed Analysis
Let us plot four graphs for each term of the real part of the total perturbation in logarithmic scale for the function values and in a linear 
scale for the variable D.

Breaking Down the Expression 
The full real part is given by:
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Parameters Adopted
We set:

Q1 = Q2 = R′
1 = R′

2 = 5,

and the variableD varies in the interval:
D ∈ [0.1, 5].

Figure 3: Graph of the Real Part of the Obtained Expression for the Total Spatial Density PerturbationWtotal

6.5 Analysis of the Result of the Interaction Quantity Wtotal Based on the
Representation of the Spatial Density
The obtained result, based on the analysis of the graph of the total interactionWtotal,
is very interesting and allows several important conclusions about the behavior of
the spatial density cluster system. Let us examine in detail what is happening on the
graph and how it is related to the physical interactions.
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6.5. Analysis of the Result of the Interaction Quantity Wtotal Based on the Representation of the Spatial Density
The obtained result, based on the analysis of the graph of the total interaction Wtotal, is very interesting and allows several important 
conclusions about the behavior of the spatial density cluster system. Let us examine in detail what is happening on the graph and how it 
is related to the physical interactions.

6.5.1. Graph Analysis
a) Region D > 2.5
In this region, Wtotal is positive, indicating **repulsion** between the spatial density clusters.
• The dependence Wtotal (D) ∼ D1

2 resembles **Coulomb repulsion** of like charges.
• As the distance D increases, the magnitude of the repulsion decreases, which is consistent with classical electrostatic interaction.

b) Region 1 < D < 2.5
In this range of distances, the function Wtotal becomes negative, indicating **attraction**.
• The attraction in this range is significantly stronger than the repulsion at larger distances.
• The behavior of the function resembles the **strong interaction** in nuclear physics.
• The maximum attraction is reached at some value Dmin ≈ 1.5.

c) Region D < 1
In this region, the function becomes positive again, indicating **repulsion** at very short distances.
• The repulsion may be related to the overlapping of spatial density clusters.
• At D = R'1 = 1a **singularity** is observed, which may be associated with a transition of the system between two interaction regimes.

6.5.2. Comparison with Known Physical Interactions
a) Coulomb Repulsion (D > 2.5)
At large distances, the interaction resembles classical Coulomb repulsion between like charges:

This is consistent with the hypothesis that spatial density clusters create a field analogous to the electric field of charges.

b) Strong Interaction (1 < D < 2.5)
The strong attraction in the range 1 < D < 2.5 in form resembles nuclear forces:

6.5.1 Graph Analysis
a) RegionD > 2.5

In this region, Wtotal is positive, indicating **repulsion** between the spatial
density clusters.

• The dependence Wtotal(D) ∼ 1
D2 resembles **Coulomb repulsion** of like

charges.

• As the distanceD increases, the magnitude of the repulsion decreases, which is
consistent with classical electrostatic interaction.

b) Region 1 < D < 2.5
In this range of distances, the function Wtotal becomes negative, indicating **at­

traction**.
• The attraction in this range is significantly stronger than the repulsion at larger
distances.

• The behavior of the function resembles the **strong interaction** in nuclear
physics.

• The maximum attraction is reached at some valueDmin ≈ 1.5.
c) RegionD < 1
In this region, the function becomes positive again, indicating **repulsion** at

very short distances.
• The repulsion may be related to the overlapping of spatial density clusters.

• AtD = R′
1 = 1 a **singularity** is observed, which may be associated with a

transition of the system between two interaction regimes.
—

6.5.2 Comparison with Known Physical Interactions
a) Coulomb Repulsion (D > 2.5)

At large distances, the interaction resembles classical Coulomb repulsion between
like charges:

Wtotal(D) ∼ 1

D2
.

This is consistent with the hypothesis that spatial density clusters create a field analo­
gous to the electric field of charges.
b) Strong Interaction (1 < D < 2.5)
The strong attraction in the range 1 < D < 2.5 in form resembles nuclear forces:

Wtotal(D) ∼ − 1

Dn
, n ≈ 6.

Such behavior may be associated with resonant effects in the spatial density model,
where a stable interaction arises at a certain distance.
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Such behavior may be associated with resonant effects in the spatial density model, where a stable interaction arises at a certain distance.

c) Repulsion at Short Distances (D < 1)
At very short distances, rapidly increasing repulsion arises:

This interaction may be related to the overlapping of spatial density and resembles exchange interactions arising from the Pauli exclusion 
principle in quantum mechanics.

6.5.3. Interpretation of the Point D = 1
The point D = 1 is of particular significance in the model since it corresponds to the scale of the spatial density cluster:

At this point, a singularity occurs, which may indicate a transition of the system from a state of strong attraction to a state of repulsion.

6.5.4. Physical Interpretation
The results obtained allow us to propose the following interpretation of the behavior of spatial density clusters:
• Repulsion at large distances resembles electrostatic interaction.
• Strong attraction at intermediate distances may be analogous to the strong interaction between hadrons.
• Repulsion at short distances is associated with the overlapping of spatial density and may be related to exchange effects.

Maximum Entropy of the System The cluster system tends toward minimal energy and maximum entropy. This leads to the formation 
of stable configurations at certain values of D.

Conclusion
The obtained result shows that the spatial density cluster model exhibits complex behavior that includes both repulsive and attractive 
components depending on the distance.
The main conclusions are:
•	 At large distances the interaction resembles Coulomb repulsion.
•	 At intermediate distances strong attraction, similar to nuclear forces, arises.
•	 At very short distances the interaction becomes repulsive due to the overlapping of spatial density.

7. Solution of the Gradient Integral over the Entire Volume for the Spatial Density Distribution Equation of a Single Sphere
In this section, we solve the gradient integral over the entire volume for the spatial density distribution equation of a single sphere. The 
approach utilizes the Heaviside function, which effectively describes the boundary conditions and sharp transitions in the spatial density 
distribution. This detailed derivation ensures that conservation laws are satisfied and provides insight into the nature of the spatial 
density perturbations. In Section IV of our study, we obtained that the formula for the total spatial density distribution around a sphere 
in terms of the Heaviside function is given by:
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In this region, the function becomes positive again, indicating **repulsion** at

very short distances.
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—

6.5.2 Comparison with Known Physical Interactions
a) Coulomb Repulsion (D > 2.5)

At large distances, the interaction resembles classical Coulomb repulsion between
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Wtotal(D) ∼ 1

D2
.

This is consistent with the hypothesis that spatial density clusters create a field analo­
gous to the electric field of charges.
b) Strong Interaction (1 < D < 2.5)
The strong attraction in the range 1 < D < 2.5 in form resembles nuclear forces:

Wtotal(D) ∼ − 1

Dn
, n ≈ 6.

Such behavior may be associated with resonant effects in the spatial density model,
where a stable interaction arises at a certain distance.
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and may be related to exchange effects.

Maximum Entropy of the System The cluster system tends toward minimal energy and
maximum entropy. This leads to the formation of stable configurations at certain
values ofD.
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6.5.5 Conclusion
The obtained result shows that the spatial density cluster model exhibits complex
behavior that includes both repulsive and attractive components depending on the
distance.

The main conclusions are:

• At large distances the interaction resembles Coulomb repulsion.

• At intermediate distances strong attraction, similar to nuclear forces, arises.

• At very short distances the interaction becomes repulsive due to the overlapping
of spatial density.
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VII Solution of the Gradient Integral over the Entire Volume for the Spatial
Density Distribution Equation of a Single Sphere

In this section, we solve the gradient integral over the entire volume for the spatial
density distribution equation of a single sphere. The approach utilizes the Heaviside
function, which effectively describes the boundary conditions and sharp transitions in
the spatial density distribution. This detailed derivation ensures that conservation laws
are satisfied and provides insight into the nature of the spatial density perturbations.

In Section IV of our study, we obtained that the formula for the total spatial density
distribution around a sphere in terms of the Heaviside function is given by:

∆ρ(r) = ρ1H(R′
1 − r)− ρ1 ·R′4

1

3r4
H(r −R′

1),

where r = |r|.
Now, we replace r with the norm of the difference of vectors |r− R′

1|:

∆ρ(|r− R′
1|) = ρ1H(R′

1 − |r− R′
1|)−

ρ1 ·R′4
1

3|r− R′
1|4

H(|r− R′
1| −R′

1).

7.1 Calculation of the Gradient
The gradient of the function∆ρ(|r− R′

1|) is calculated as:

∇∆ρ(|r− R′
1|) =

∂∆ρ

∂|r− R′
1|
· ∇|r− R′

1|.

7.1.1 Calculation of ∂∆ρ
∂|r−R′

1|

The function∆ρ(|r− R′
1|) consists of two parts:

1. ρ1H(R′
1 − |r− R′

1|),

2. − ρ1·R′4
1

3|r−R′
1|4
H(|r− R′

1| −R′
1).

The derivative of the Heaviside function H(x) is the Dirac delta function δ(x).
Thus:

∂

∂|r− R′
1|
(ρ1H(R′

1 − |r− R′
1|)) = −ρ1δ(R

′
1 − |r− R′

1|),

∂

∂|r− R′
1|

(
− ρ1 ·R′4

1

3|r− R′
1|4

H(|r− R′
1| −R′

1)

)
=

4ρ1 ·R′4
1

3|r− R′
1|5

H(|r−R′
1|−R′

1)−
ρ1 ·R′4

1

3|r− R′
1|4

δ(|r−R′
1|−R′

1).

7.1.2 Calculation of∇|r− R′
1|

The gradient of the norm of the vector difference is:

∇|r− R′
1| =

r− R′
1

|r− R′
1|
.
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VII Solution of the Gradient Integral over the Entire Volume for the Spatial
Density Distribution Equation of a Single Sphere

In this section, we solve the gradient integral over the entire volume for the spatial
density distribution equation of a single sphere. The approach utilizes the Heaviside
function, which effectively describes the boundary conditions and sharp transitions in
the spatial density distribution. This detailed derivation ensures that conservation laws
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1).
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1)−
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1

3|r− R′
1|4

δ(|r−R′
1|−R′

1).

7.1.2 Calculation of∇|r− R′
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The gradient of the norm of the vector difference is:

∇|r− R′
1| =
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1
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1|
.

417.1.3 Final Gradient
Combining the results, we have:

∇∆ρ(|r−R′
1|) =

(
−ρ1δ(R

′
1 − |r− R′

1|) +
4ρ1 ·R′4

1

3|r− R′
1|5

H(|r− R′
1| −R′

1)−
ρ1 ·R′4

1

3|r− R′
1|4

δ(|r− R′
1| −R′

1)

)
· r− R′

1

|r− R′
1|
.

7.2 Modulus of the Gradient
Now, we calculate the modulus of the gradient:

|∇∆ρ(|r−R′
1|)| =

∣∣∣∣−ρ1δ(R
′
1 − |r− R′

1|) +
4ρ1 ·R′4

1

3|r− R′
1|5

H(|r− R′
1| −R′

1)−
ρ1 ·R′4

1

3|r− R′
1|4

δ(|r− R′
1| −R′

1)

∣∣∣∣ .

7.3 Integral of the Modulus of the Gradient
Now, we compute the integral of the modulus of the gradient over the entire volume:

∫ ∞

0
|∇∆ρ(|r− R′

1|)| dV.

7.3.1 Separation into Parts
The integral is separated into three parts:
1. The contribution from −ρ1δ(R

′
1 − |r− R′

1|),

2. The contribution from 4ρ1·R′4
1

3|r−R′
1|5
H(|r− R′

1| −R′
1),

3. The contribution from − ρ1·R′4
1

3|r−R′
1|4
δ(|r− R′

1| −R′
1).

7.3.2 Calculation of Each Part
1. Contribution from the delta function −ρ1δ(R

′
1 − |r− R′

1|):∫ ∞

0
−ρ1δ(R

′
1 − |r− R′

1|) dV = −ρ1 · 4πR′2
1 .

2. Contribution from 4ρ1·R′4
1

3|r−R′
1|5
H(|r− R′

1| −R′
1):

∫ ∞

R′
1

4ρ1 ·R′4
1

3|r− R′
1|5

dV =
4ρ1 ·R′4

1

3
· 4π

∫ ∞

R′
1

1

s5
· s2 ds = 16πρ1R

′4
1

3

∫ ∞

R′
1

1

s3
ds.

The integral: ∫ ∞

R′
1

1

s3
ds =

[
− 1

2s2

]∞
R′

1

=
1

2R′2
1

.

Therefore:
16πρ1R

′4
1

3
· 1

2R′2
1

=
8πρ1R

′2
1

3
.
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1

s3
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1
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.

Therefore:
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′4
1

3
· 1

2R′2
1

=
8πρ1R
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1

3
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423. Contribution from − ρ1·R′4
1

3|r−R′
1|4
δ(|r− R′

1| −R′
1):

∫ ∞

0
− ρ1 ·R′4

1

3|r− R′
1|4

δ(|r− R′
1| −R′

1) dV = −ρ1 ·R′4
1

3R′4
1

· 4πR′2
1 = −4πρ1R

′2
1

3
.

7.3.3 Final Result
Now, combining all parts:

∫ ∞

0
|∇∆ρ(|r− R′

1|)| dV = −ρ1 · 4πR′2
1 +

8πρ1R
′2
1

3
− 4πρ1R

′2
1

3
.

Summing up:

−4πρ1R
′2
1 +

8πρ1R
′2
1

3
− 4πρ1R

′2
1

3
= −4πρ1R

′2
1 +

4πρ1R
′2
1

3
= −8πρ1R

′2
1

3
.

7.4 Conclusion
The integral of the modulus of the gradient of the function∆ρ(|r− R′

1|) is:
∫ ∞

0
|∇∆ρ(|r− R′

1|)| dV = −8πρ1R
′2
1

3
.

Thus, the final expression for the integral of the modulus of the gradient is:

∫ ∞

0
|∇∆ρ(|r− R′

1|)| dV =

∣∣∣∣−
8πρ1R

′2
1

3

∣∣∣∣ =
8πρ1R

′2
1

3
. (18)

Now, we express this in terms of Q1. Recall that:

Q1 = ρ1 ·
4

3
πR′3

1 .

Express ρ1 in terms of Q1:

ρ1 =
Q1

4
3πR

′3
1

.

Substitute ρ1 into the final expression:

8πρ1R
′2
1

3
=

8π
(

Q1
4
3πR

′3
1

)
R′2

1

3
.

Simplify:
8πQ1R

′2
1

4
3πR

′3
1 · 3

=
8πQ1R

′2
1

4πR′3
1

=
2Q1

R′
1

.
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ρ1 =
Q1

4
3πR

′3
1

.

Substitute ρ1 into the final expression:

8πρ1R
′2
1

3
=

8π
(

Q1
4
3πR

′3
1

)
R′2

1

3
.

Simplify:
8πQ1R

′2
1

4
3πR

′3
1 · 3

=
8πQ1R

′2
1

4πR′3
1

=
2Q1

R′
1

.

43

Conclusion



OA J Applied Sci Technol, 2025 Volume 3 | Issue 1 | 31

∫ ∞

0
|∇∆ρ(|r− R′

1|)| dV =
2Q1

R′
1

, (19)

where Q1 = ρ1 · 4
3πR

′3
1 .

We obtained the same dimensionality as in the formula for

∆Wtotal(D) ≈ 2
R′

2Q

D2
,

so that, after canceling R′
2 andD2, we get the same dimensionality as for the amount

of spatial density perturbation between two spheres, which by analogy with Coulomb’s
law has the physical meaning of force. This means that our reasoning is correct—the
integral of the gradient for the spatial density distribution from 0 to infinity shows the
force required to keep the spatial density in a compressed state.

We also see that, although the third postulate of our system—the conservation
of the spatial density quantity—is satisfied, the system is not in equilibrium and
remains perturbed. Thus, for fulfilling the fourth law of our universe—to maximize
the entropy of the spatial density distribution—it is necessary that the total perturbation
of the spatial density (from 0 to infinity) also tends to zero. However, if we make
an additional change in the density distribution outside the sphere and somehow
redistribute the spatial density outside the sphere, it will lead to a violation of the third
law, which is associated with the conservation of spatial density.

In this regard, one may assume that in order to compensate for this perturbation,
space will further curve, but now through the curvature of its metric. Only in this case
will both the third and fourth postulates of our hypothetical universe be satisfied.
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8. The Relationship between Spatial Density and the Mass of a Compressed Sphere
In the previous section, we obtained that
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Now, let us calculate the energy required to compress this sphere from S(R1) to

S(R'1). If the magnitude of the integral of the gradient is a measure of the force, then by integrating this force along the path we obtain 
the work required for the compression of the sphere, i.e. its internal energy.

Next, we will find the relationship between the internal energy of the charge—equal to the integral of the force necessary to compress 
the sphere from its initial radius R1 to the final radius R'1. This relationship is crucial for understanding how the energy contained within 
the compressed sphere determines the curvature of space, and consequently, the gravitational field created by the compressed region of 
space in the form of a sphere, i.e. its mass.
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8.1 Energy Required to Compress the Sphere from R1 to R′
1

8.1.1 Initial Equation
We have: ∫ ∞

0
∇∆ρ(r) · 4πr2 dr = 8πρ1(R

′
1)

2

3
,

where
ρ1 = ρ0

(
R3

1

R′3
1

− 1

)
.

Substituting the value of ρ1, we obtain:
∫ ∞

0
∇∆ρ(r) · 4πr2 dr = 8πρ0

3

(
R3

1

R′
1

− (R′
1)

2

)
.

8.1.2 Let Us Perform a Change of the Integration Variable from R′
1 to t, so

that our Expression Becomes:

F (t) =
8πρ0
3

(
R3

1

t
− t2

)
.
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We need to find the energy E expended to compress the sphere from R1 to R'1. To this end, we use the formula for work, which in this 
case is equal to the compression energy: 

Here, F (t) has the physical meaning of the force that must be applied to compress
the sphere S(t) from t = R1 to t = R′

1.

8.1.3 Calculation of the Energy Required to Compress the Sphere from R1

to R′
1

Consider the sphere S(t) with radius t, which is to be compressed from radius R1 to
radius R′

1. The force that holds the sphere in its compressed state S(R′
1) is given by

the function:
F (t) =

8πρ0
3

(
R3

1

t
− t2

)
.

We need to find the energy E expended to compress the sphere from R1 to R′
1. To

this end, we use the formula for work, which in this case is equal to the compression
energy:

E =

∫ R′
1

R1

F (t) dt.

Substituting the expression for F (t):

E =

∫ R′
1

R1

8πρ0
3

(
R3

1

t
− t2

)
dt.

We split the integral into two terms:

E =
8πρ0
3

[∫ R′
1

R1

R3
1

t
dt−

∫ R′
1

R1

t2 dt

]
.

Integrating each term with respect to t, for the first term we obtain:
∫

R3
1

t
dt = R3

1 ln t,

and for the second term: ∫
t2 dt =

t3

3
.

Substituting the integration results and the limits, we obtain:

E =
8πρ0
3

[
R3

1 ln
(
R′

1

R1

)
+

1

3

(
(R′

1)
3 −R3

1

)]
. (20)

This expression represents the energy required to compress the sphere from R1 to
R′

1. This energy is equivalent to the energy contained within the compressed sphere,
which causes the curvature of space along with its metric, thereby determining the
mass of the sphere.
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This expression represents the energy required to compress the sphere from R1 to
R'1 This energy is equivalent to the energy contained within the compressed sphere, which causes the curvature of space along with its 
metric, thereby determining the mass of the sphere.

8.2. Mass of the Compressed Sphere
Using Einstein’s famous equation E = mc2, we can find the mass m of the compressed sphere:

This expression determines the mass of the compressed sphere based on the energy required for its compression, which can also 
be interpreted as the energy that holds the sphere in a compressed state. This result illustrates how the energy associated with the 
compression of the sphere is converted into an equivalent mass, which (in order to satisfy our fourth postulate) creates curvature of space 
with respect to its metric and gives rise to effects such as mass and the gravitational field.
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When we obtained the expression for the internal energy of the spatial density cluster—which we interpret as the charge’s mass—we 
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sphere:

m =
E

c2
.

Substituting the expression for E:

m =
8πρ0
3c2

[
R3

1 ln
(
R′

1

R1

)
+

1

3

(
(R′

1)
3 −R3

1

)]
. (21)

This expression determines the mass of the compressed sphere based on the energy
required for its compression, which can also be interpreted as the energy that holds
the sphere in a compressed state. This result illustrates how the energy associated
with the compression of the sphere is converted into an equivalent mass, which (in
order to satisfy our fourth postulate) creates curvature of space with respect to its
metric and gives rise to effects such as mass and the gravitational field.
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motion can be related to the imaginary solution of the expression for the total perturbation of the twocharge system. For this purpose, we 
restrict ourselves to the quadratic term of our expression Wtotal, since the other corrections are significant only when 
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IX The Theoretical Justification of Bohr’s Postulate for the Electron in the
HydrogenAtom Based on the Imaginary Part of the Solution for the Total
Perturbation

When we obtained the expression for the internal energy of the spatial density clus­
ter—which we interpret as the charge’s mass—we can proceed to write the equation
for the equilibrium of forces acting on a cluster moving around an opposite charge
and check how this motion can be related to the imaginary solution of the expression
for the total perturbation of the two­charge system. For this purpose, we restrict
ourselves to the quadratic term of our expressionWtotal, since the other corrections
are significant only whenD ∼ R′

1.

9.1 Problem Statement
Consider two clusters that create spatial density perturbations. The first cluster is
in the reference frame r1, and the second is located at a distance D from the first.
The total spatial density perturbation produced by the two clusters, relative to the
coordinate system r1, is expressed as:

Wtotalr1 ≈
Q1Q2R

′
2

R′
1D

2
+ i

πQ1Q2R
′
2

2R′2
1 D

, (22)

where:

• Q1 = ρ1 V (R′
1) is the “charge” of the first cluster,

• Q2 = ρ2 V (R′
2) is the “charge” of the second cluster,

• R′
1 and R′

2 are the radii of the clusters,

• D is the distance between the clusters.

It is necessary to find the distanceD0 and the frequency ω0 at which the centrifugal
force is balanced by the attractive force determined by the real part of the perturbation,
and the orbital frequency ω0 is related to the imaginary part of the perturbation.

9.1.1 Force Balance
The equilibrium condition (balance between the centrifugal force and the attractive
force) for the first cluster of massm1 is given by:

m1ω
2
0D0 = Re(Wtotalr1).

Substituting the real part ofWtotalr1 :

m1ω
2
0D0 =

Q1Q2R
′
2

R′
1D

2
0

.
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It is necessary to find the distance D0 and the frequency ω0 at which the centrifugal force is balanced by the attractive force determined 
by the real part of the perturbation, and the orbital frequency ω0 is related to the imaginary part of the perturbation.

9.1.1. Force Balance
The equilibrium condition (balance between the centrifugal force and the attractive force) for the first cluster of mass m1 is given by:

9.1.3. Substituting ω0 into the Force Balance Equation Substitute
the expression for ω0 into the force balance condition:

9.1.2. Relation Between the Frequency and the Imaginary Part of the Perturbation
The orbital frequency ω0 is related to the imaginary part of the perturbation Im(Wtotalr1) through a proportionality constant H:

9.1.2 Relation Between the Frequency and the Imaginary Part of the Pertur­
bation
The orbital frequencyω0 is related to the imaginary part of the perturbation Im(Wtotalr1)
through a proportionality constantH:

ω0 = H · Im(Wtotalr1).

Substituting the imaginary part ofWtotalr1 :

ω0 = H · πQ1Q2R
′
2

2R′2
1 D0

.

9.1.3 Substituting ω0 into the Force Balance Equation
Substitute the expression for ω0 into the force balance condition:

m1

(
H · πQ1Q2R

′
2

2R′2
1 D0

)2

D0 =
Q1Q2R

′
2

R′
1D

2
0

.

Simplify the left­hand side:

m1 ·
H2π2Q2

1Q
2
2R

′2
2

4R′4
1 D

2
0

·D0 =
Q1Q2R

′
2

R′
1D

2
0

.

Cancel the common factors:

m1H
2π2Q1Q2R

′
2

4R′4
1 D0

=
1

R′
1D

2
0

.

Multiply both sides byD2
0:

m1H
2π2Q1Q2R

′
2

4R′4
1

D0 =
1

R′
1

.

Solving forD0:

D0 =
4R′3

1

m1H2π2Q1Q2R′
2

.

9.1.4 Expression for the Frequency ω0

SubstituteD0 into the expression for ω0:

ω0 = H · πQ1Q2R
′
2

2R′2
1 D0

.
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9.1.2 Relation Between the Frequency and the Imaginary Part of the Pertur­
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′
2

4R′4
1

D0 =
1

R′
1

.

Solving forD0:

D0 =
4R′3

1

m1H2π2Q1Q2R′
2

.

9.1.4 Expression for the Frequency ω0

SubstituteD0 into the expression for ω0:

ω0 = H · πQ1Q2R
′
2

2R′2
1 D0

.
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9.1.2 Relation Between the Frequency and the Imaginary Part of the Pertur­
bation
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2R′2
1 D0

.

9.1.3 Substituting ω0 into the Force Balance Equation
Substitute the expression for ω0 into the force balance condition:

m1

(
H · πQ1Q2R

′
2

2R′2
1 D0

)2

D0 =
Q1Q2R

′
2

R′
1D

2
0

.

Simplify the left­hand side:

m1 ·
H2π2Q2

1Q
2
2R
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4R′4
1 D

2
0
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Q1Q2R

′
2

R′
1D

2
0

.
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′
2
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1

R′
1D
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0

.
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m1H
2π2Q1Q2R

′
2

4R′4
1

D0 =
1

R′
1

.
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D0 =
4R′3
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m1H2π2Q1Q2R′
2
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9.1.4. Expression for the Frequency 
ω0 Substitute D0 into the expression for ω0:

9.2. Introducing the Constant h and Finding Dn and ωn for Lower Modes
9.2.1. Introducing the Constant h
For convenience, we introduce a constant h:

9.2.2. Rewriting the Formulas for D0 and ω0 Using h
Formula for D0:
The original formula for D0 is:

SubstituteD0 =
4R′3

1

m1H2π2Q1Q2R′
2
:

ω0 = H · πQ1Q2R
′
2

2R′2
1

· m1H
2π2Q1Q2R

′
2

4R′3
1

.

Simplify:

ω0 =
m1H

3π3Q2
1Q

2
2R

′2
2

8R′5
1

.

9.1.5 Final Solution
1. **DistanceD0 at Force Balance:**

D0 =
4R′3

1

m1H2π2Q1Q2R′
2

. (23)

2. **Orbital Frequency ω0:**

ω0 =
m1H

3π3Q2
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2R
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. (24)
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D0 =
4R′3

1

m1

(
2R′

1

hπ

)2
π2Q1Q2R′

2

.

Simplify:

D0 =
4R′3

1 h
2π2

4m1R′2
1 π

2Q1Q2R′
2

=
R′

1h
2

m1Q1Q2R′
2

.

Formula for ω0:
The original formula for ω0 is:

ω0 =
m1H

3π3Q2
1Q

2
2R

′2
2

8R′5
1

.

SubstituteH = 2R′
1

hπ :

ω0 =
m1

(
2R′

1

hπ

)3
π3Q2

1Q
2
2R

′2
2

8R′5
1

.

Simplify:

ω0 =
m1Q

2
1Q

2
2R

′2
2

h3R′2
1

. (25)

9.3 Finding Dn and ωn for Lower Modes
For lower modes n, we assume that the orbital frequency ωn is related to the imaginary
part of the perturbation as follows:

nωn = H · Im(Wtotalr1(Dn)). (26)

Substitute the imaginary part ofWtotalr1 :

nωn = H · πQ1Q2R
′
2

2R′2
1 Dn

.

Solve for ωn:

ωn =
HπQ1Q2R

′
2

2nR′2
1 Dn

.
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(
2R′

1

hπ

)2
π2Q1Q2R′

2

.
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1 h
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1 π
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=
R′

1h
2
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2
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.

Simplify:

ω0 =
m1Q

2
1Q

2
2R

′2
2

h3R′2
1

. (25)

9.3 Finding Dn and ωn for Lower Modes
For lower modes n, we assume that the orbital frequency ωn is related to the imaginary
part of the perturbation as follows:

nωn = H · Im(Wtotalr1(Dn)). (26)

Substitute the imaginary part ofWtotalr1 :

nωn = H · πQ1Q2R
′
2

2R′2
1 Dn

.

Solve for ωn:

ωn =
HπQ1Q2R

′
2

2nR′2
1 Dn

.

51

D0 =
4R′3

1

m1

(
2R′

1

hπ

)2
π2Q1Q2R′

2

.

Simplify:

D0 =
4R′3

1 h
2π2

4m1R′2
1 π

2Q1Q2R′
2

=
R′

1h
2

m1Q1Q2R′
2

.

Formula for ω0:
The original formula for ω0 is:

ω0 =
m1H

3π3Q2
1Q

2
2R

′2
2

8R′5
1

.

SubstituteH = 2R′
1

hπ :

ω0 =
m1

(
2R′

1

hπ

)3
π3Q2

1Q
2
2R

′2
2

8R′5
1

.

Simplify:

ω0 =
m1Q

2
1Q

2
2R

′2
2

h3R′2
1

. (25)

9.3 Finding Dn and ωn for Lower Modes
For lower modes n, we assume that the orbital frequency ωn is related to the imaginary
part of the perturbation as follows:

nωn = H · Im(Wtotalr1(Dn)). (26)

Substitute the imaginary part ofWtotalr1 :

nωn = H · πQ1Q2R
′
2

2R′2
1 Dn

.

Solve for ωn:

ωn =
HπQ1Q2R

′
2

2nR′2
1 Dn

.

51

9.3. Finding Dn and ωn for Lower Modes
For lower modes n, we assume that the orbital frequency ωn is related to the imaginary part of the perturbation as follows:

9.3.1. Force Balance Condition for the nth Mode 
The force balance condition for the nth mode is:

9.3.1 Force Balance Condition for the nth Mode
The force balance condition for the nth mode is:

m1ω
2
nDn = Re(Wtotalr1(Dn)).

Substitute Re(Wtotalr1(Dn)):

m1ω
2
nDn =

Q1Q2R
′
2

R′
1D

2
n

.

Substitute ωn = HπQ1Q2R
′
2

2nR′2
1 Dn

:

m1

(
HπQ1Q2R

′
2

2nR′2
1 Dn

)2

Dn =
Q1Q2R

′
2

R′
1D

2
n

.

Simplify the left­hand side:

m1 ·
H2π2Q2

1Q
2
2R

′2
2

4n2R′4
1 D

2
n

·Dn =
Q1Q2R

′
2

R′
1D

2
n

.

Cancel common factors:

m1H
2π2Q1Q2R

′
2

4n2R′4
1 Dn

=
1

R′
1D

2
n

.

Multiply both sides byD2
n:

m1H
2π2Q1Q2R

′
2

4n2R′4
1

Dn =
1

R′
1

.

Solving forDn:

Dn =
4n2R′3

1

m1H2π2Q1Q2R′
2

.

SubstituteH = 2R′
1

hπ :

Dn =
4n2R′3

1 h
2π2

4m1R′2
1 π

2Q1Q2R′
2

=
n2R′

1h
2

m1Q1Q2R′
2

.

9.3.2 Expression for ωn

SubstituteDn into the expression for ωn:

ωn =
HπQ1Q2R

′
2

2nR′2
1 Dn

.

SubstituteDn = n2R′
1h

2

m1Q1Q2R′
2
:

52
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9.3.1 Force Balance Condition for the nth Mode
The force balance condition for the nth mode is:

m1ω
2
nDn = Re(Wtotalr1(Dn)).
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′
2

2nR′2
1 Dn
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′
2

R′
1D

2
n

.

Simplify the left­hand side:

m1 ·
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2R
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1 D

2
n
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R′
1D

2
n
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2
n

.
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′
2

4n2R′4
1

Dn =
1

R′
1

.

Solving forDn:
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1

m1H2π2Q1Q2R′
2
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1
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4n2R′3

1 h
2π2
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1 π
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2
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1h
2

m1Q1Q2R′
2

.
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9.3.2. Expression for ωn
Substitute Dn into the expression for ωn:

9.3.3. Final Solution

ωn =
HπQ1Q2R

′
2

2nR′2
1

· m1Q1Q2R
′
2

n2R′
1h

2
.

Simplify:

ωn =
Hπm1Q

2
1Q

2
2R

′2
2

2n3R′3
1 h

2
.

SubstituteH = 2R′
1

hπ :

ωn =

(
2R′

1

hπ

)
πm1Q

2
1Q

2
2R

′2
2

2n3R′3
1 h

2
=

m1Q
2
1Q

2
2R

′2
2

n3R′2
1 h

3
.

9.3.3 Final Solution
1. **DistanceDn for the nth Mode:**

Dn =
n2R′

1h
2

m1Q1Q2R′
2

.

2. **Orbital Frequency ωn for the nth Mode:**

ωn =
m1Q

2
1Q

2
2R

′2
2

n3R′2
1 h

3
.

3. **Relationship betweenD0 andDn:**

Dn = n2D0. (27)

4. **Relationship between ω0 and ωn:**

ωn =
ω0

n3
. (28)
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9.4.Obtaining the Expression of Bohr’s Postulate Based on the Expressions forthe Resonant Orbit Radius, the Product Vn·Dn, 
and the Angular Momentum Ln of the Two Spatial Density Cluster System
9.4.1. Orbital Speed Vn
The orbital speed Vn of the first cluster on the nth orbit is defined as:

9.4 Obtaining the Expression of Bohr’s Postulate Based on the Expressions
for theResonantOrbit Radius, the Product Vn·Dn, and theAngularMomentum
Ln of the Two­Spatial­Density­Cluster System

9.4.1 Orbital Speed Vn

The orbital speed Vn of the first cluster on the nth orbit is defined as:

Vn = ωn ·Dn.

Substitute the expressions for ωn andDn:

ωn =
m1Q

2
1Q

2
2R

′2
2

n3R′2
1 h

3
,

Dn =
n2R′

1h
2

m1Q1Q2R′
2

.

Then:
Vn =

(
m1Q

2
1Q

2
2R

′2
2

n3R′2
1 h

3

)
·
(

n2R′
1h

2

m1Q1Q2R′
2

)
.

Simplifying:

Vn =
m1Q

2
1Q

2
2R

′2
2 · n2R′

1h
2

n3R′2
1 h

3 ·m1Q1Q2R′
2

=
Q1Q2R

′
2 · n2R′

1h
2

n3R′2
1 h

3
.

Canceling common factors:

Vn =
Q1Q2R

′
2

nR′
1h

.

9.4.2 The Product Vn ·Dn

Now, find the product Vn ·Dn:

Vn ·Dn =

(
Q1Q2R

′
2

nR′
1h

)
·
(

n2R′
1h

2

m1Q1Q2R′
2

)
.

Simplify:

Vn ·Dn =
Q1Q2R

′
2 · n2R′

1h
2

nR′
1h ·m1Q1Q2R′

2

=
nh

m1
.

Thus:
Vn ·Dn =

nh

m1
.
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Vn = ωn ·Dn.

Substitute the expressions for ωn andDn:

ωn =
m1Q

2
1Q

2
2R

′2
2

n3R′2
1 h

3
,
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n2R′

1h
2

m1Q1Q2R′
2

.
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(
m1Q

2
1Q

2
2R

′2
2

n3R′2
1 h

3

)
·
(

n2R′
1h

2

m1Q1Q2R′
2

)
.

Simplifying:
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m1Q

2
1Q

2
2R

′2
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1h
2

n3R′2
1 h

3 ·m1Q1Q2R′
2

=
Q1Q2R

′
2 · n2R′

1h
2

n3R′2
1 h

3
.

Canceling common factors:

Vn =
Q1Q2R

′
2

nR′
1h

.

9.4.2 The Product Vn ·Dn

Now, find the product Vn ·Dn:

Vn ·Dn =

(
Q1Q2R

′
2

nR′
1h

)
·
(

n2R′
1h

2

m1Q1Q2R′
2

)
.

Simplify:

Vn ·Dn =
Q1Q2R

′
2 · n2R′

1h
2

nR′
1h ·m1Q1Q2R′

2

=
nh

m1
.

Thus:
Vn ·Dn =

nh

m1
.

54

9.4.2. The Product Vn · Dn
Now, find the product Vn · Dn:

9.4.3. Angular Momentum Ln
The angular momentum Ln of the first cluster on the nth orbit is defined as:

			       Ln = m1VnDn.

9.4.4. The Relation Between Vn · Dn and Ln
From the obtained expressions, it is clear that:

Thus, the angular momentum Ln is directly proportional to the product Vn · Dn:

9.4.3 Angular Momentum Ln

The angular momentum Ln of the first cluster on the nth orbit is defined as:

Ln = m1VnDn.

Substitute Vn ·Dn = nh
m1
:

Ln = m1 ·
nh

m1
= nh.

9.4.4 The Relation Between Vn ·Dn and Ln

From the obtained expressions, it is clear that:

Vn ·Dn =
nh

m1
,

so that
Ln = nh = m1 · (Vn ·Dn).

Thus, the angular momentum Ln is directly proportional to the product Vn ·
Dn:

Ln = m1 · (Vn ·Dn) = nh. (29)

9.4.5 Result Summary
• The product Vn ·Dn characterizes the ”torque” of the system, related to the orbital
speed and the orbit radius. It is proportional to the mode number n and the
constant h.

• The angular momentum Ln is directly proportional to nh, which corresponds
to the quantization of angular momentum in the system exactly as postulated
empirically by Bohr for the electron in the hydrogen atom based on the emission
spectrum.

Thus, the obtained expressions confirm that the angular momentum of the system
is quantized and is related to the orbital speed and orbit radius through the constant h.
This provides theoretical proof of Bohr’s postulate based on simple considerations of
the system of spatial density clusters striving for maximum entropy, suggesting that
the approach and the underlying mathematical model deserve at least attention and
discussion.
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mode number n and the constant h.
• The angular momentum Ln is directly proportional to nh, which corresponds to the quantization of angular momentum in the system 
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9.5. Total Energy En of the Two Spatial Density Cluster System and Its Relation to the Rotational Frequency ωn
9.5.1 The Total Energy of the First Cluster on the nth Orbit Consists of Kinetic and Potential Energy:
The total energy En of the first cluster on the nth orbit is the sum of kinetic and potential energy:

9.5.2 Kinetic Energy of the First Cluster:

9.5.3. Potential Energy
The potential energy is defined by the integral of the real part of the perturbation Re(Wtotalr1):

9.5.4. Total Energy En
Substitute Tn and Un into the expression for En:

9.5 Total Energy En of the Two­Spatial­Density­Cluster System and Its Rela­
tion to the Rotational Frequency ωn
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Kinetic and Potential Energy:
The total energy En of the first cluster on the nth orbit is the sum of kinetic and
potential energy:

En =
1

2
m1V

2
n −

∫ ∞

Dn

Re(Wtotalr1) dD.

9.5.2 Kinetic Energy of the First Cluster:

Tn =
1

2
m1V

2
n .

Substitute Vn = nh
m1Dn

:

Tn =
1

2
m1

(
nh

m1Dn

)2

=
1

2
m1 ·

n2h2

m2
1D

2
n

=
n2h2

2m1D2
n

.

9.5.3 Potential Energy
The potential energy is defined by the integral of the real part of the perturbation
Re(Wtotalr1):

Un = −
∫ ∞

Dn

Re(Wtotalr1) dD.

Substitute Re(Wtotalr1) =
Q1Q2R

′
2

R′
1D

2 :

Un = −
∫ ∞

Dn

Q1Q2R
′
2

R′
1D

2
dD.

Evaluate the integral:

Un = −Q1Q2R
′
2

R′
1

∫ ∞

Dn

1

D2
dD = −Q1Q2R

′
2

R′
1

[
− 1

D

]∞
Dn

= −Q1Q2R
′
2

R′
1Dn

.

9.5.4 Total Energy En

Substitute Tn and Un into the expression for En:

En =
n2h2

2m1D2
n

− Q1Q2R
′
2

R′
1Dn

.
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1h

2

m1Q1Q2R′
2
:

En =
n2h2

2m1
·
(
m1Q1Q2R

′
2

n2R′
1h

2

)2

− Q1Q2R
′
2

R′
1

· m1Q1Q2R
′
2

n2R′
1h

2
.
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Simplify:

En =
n2h2

2m1
· m

2
1Q

2
1Q

2
2R

′2
2

n4R′2
1 h

4
− m1Q

2
1Q

2
2R

′2
2

n2R′2
1 h

2
.

Cancel common factors:

En =
m1Q

2
1Q

2
2R

′2
2

2n2R′2
1 h

2
− m1Q

2
1Q

2
2R

′2
2

n2R′2
1 h

2
= −m1Q

2
1Q

2
2R

′2
2

2n2R′2
1 h

2
.

9.5.5 Comparison with the Rotational Frequency ωn

The rotational frequency ωn is given by:

ωn =
m1Q

2
1Q

2
2R

′2
2

n3R′2
1 h

3
.

Express En in terms of ωn:

En = −m1Q
2
1Q

2
2R

′2
2

2n2R′2
1 h

2
.

Substitute ωn:

En = −nh

2
· m1Q

2
1Q

2
2R

′2
2

n3R′2
1 h

3
= −nh

2
· ωn.

Thus:
En = −nh

2
ωn.

9.5.6 Final Solution
1. The total energy En:

En = −m1Q
2
1Q

2
2R

′2
2

2n2R′2
1 h

2
. (30)

2. The relation between En and ωn:

En = −nh

2
ωn. (31)

Thus, we obtain the expected result: the total energy is proportional to the rotational
frequency ωn and the constant h. This relation is analogous to the connection between
energy and frequency in quantum systems, confirming that the total energy of the
system is related to the rotation frequency through the constant h and the mode number
n.
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9.5.5. Comparison with the Rotational Frequency ωn The rotational frequency ωn is given by:

9.5.6. Final Solution
1. The total energy En:

Thus, we obtain the expected result: the total energy is proportional to the rotational frequency ωn and the constant h. This relation is 
analogous to the connection between energy and frequency in quantum systems, confirming that the total energy of the system is related 
to the rotation frequency through the constant h and the mode number n.

9.6. Interpreting the Result: The Ratio of En to Im(Wtotalr1(Dn))
9.6.1. Total Energy En
From the previous solution, the total energy En is given by:

9.6.2 The Imaginary Part of the Perturbation Im(Wtotalr1(Dn)) The imaginary part of the perturbation Wtotalr1 at a distance Dn is given by:
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9.6.1 Total Energy En

From the previous solution, the total energy En is given by:

En = −m1Q
2
1Q

2
2R

′2
2

2n2R′2
1 h

2
.

9.6.2 The Imaginary Part of the Perturbation Im(Wtotalr1(Dn))

The imaginary part of the perturbationWtotalr1 at a distanceDn is given by:

Im(Wtotalr1(Dn)) =
πQ1Q2R

′
2

2R′2
1 Dn

.

SubstituteDn = n2R′
1h

2

m1Q1Q2R′
2
:

Im(Wtotalr1(Dn)) =
πQ1Q2R

′
2

2R′2
1

· m1Q1Q2R
′
2

n2R′
1h

2
=

πm1Q
2
1Q

2
2R

′2
2

2n2R′3
1 h

2
.

9.6.3 The Ratio En

Im(Wtotalr1 (Dn))

Now, find the ratio:
En

Im(Wtotalr1(Dn))
=

−m1Q
2
1Q

2
2R

′2
2

2n2R′2
1 h

2

πm1Q2
1Q

2
2R

′2
2

2n2R′3
1 h

2

.

Simplifying:
En

Im(Wtotalr1(Dn))
= −

m1Q
2
1Q

2
2R

′2
2

2n2R′2
1 h

2

πm1Q2
1Q

2
2R

′2
2

2n2R′3
1 h

2

= −R′
1

π
.

9.6.4 Final Result
1. The ratio of En to Im(Wtotalr1(Dn)):

En

Im(Wtotalr1(Dn))
= −R′

1

π
. (32)

Thus, the ratio of En to Im(Wtotalr1(Dn)) is expressed in terms of the radius of the
first cluster R′

1 and the constant π, which confirms our hypothesis that the imaginary
part of the solution for the total perturbation represents the energy of the system that
determines the resonant frequency of the two spatial­density clusters.

58

9.6 Interpreting the Result: The Ratio of En to Im(Wtotalr1(Dn))

9.6.1 Total Energy En

From the previous solution, the total energy En is given by:

En = −m1Q
2
1Q

2
2R

′2
2

2n2R′2
1 h

2
.

9.6.2 The Imaginary Part of the Perturbation Im(Wtotalr1(Dn))

The imaginary part of the perturbationWtotalr1 at a distanceDn is given by:

Im(Wtotalr1(Dn)) =
πQ1Q2R

′
2

2R′2
1 Dn

.

SubstituteDn = n2R′
1h

2

m1Q1Q2R′
2
:

Im(Wtotalr1(Dn)) =
πQ1Q2R

′
2

2R′2
1

· m1Q1Q2R
′
2

n2R′
1h

2
=

πm1Q
2
1Q

2
2R

′2
2

2n2R′3
1 h

2
.

9.6.3 The Ratio En

Im(Wtotalr1 (Dn))

Now, find the ratio:
En

Im(Wtotalr1(Dn))
=

−m1Q
2
1Q

2
2R

′2
2

2n2R′2
1 h

2

πm1Q2
1Q

2
2R

′2
2

2n2R′3
1 h

2

.

Simplifying:
En

Im(Wtotalr1(Dn))
= −

m1Q
2
1Q

2
2R

′2
2

2n2R′2
1 h

2

πm1Q2
1Q

2
2R

′2
2

2n2R′3
1 h

2

= −R′
1

π
.

9.6.4 Final Result
1. The ratio of En to Im(Wtotalr1(Dn)):

En

Im(Wtotalr1(Dn))
= −R′

1

π
. (32)

Thus, the ratio of En to Im(Wtotalr1(Dn)) is expressed in terms of the radius of the
first cluster R′

1 and the constant π, which confirms our hypothesis that the imaginary
part of the solution for the total perturbation represents the energy of the system that
determines the resonant frequency of the two spatial­density clusters.
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Thus, the ratio of En to Im(Wtotalr1(Dn)) is expressed in terms of the radius of the
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1 and the constant π, which confirms our hypothesis that the imaginary
part of the solution for the total perturbation represents the energy of the system that
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first cluster R′
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part of the solution for the total perturbation represents the energy of the system that
determines the resonant frequency of the two spatial­density clusters.
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Thus, the ratio of En to Im(Wtotalr1(Dn)) is expressed in terms of the radius of the first cluster  and the constant π, which confirms our 
hypothesis that the imaginary part of the solution for the total perturbation represents the energy of the system that determines the 
resonant frequency of the two spatialdensity clusters.

9.7. The Physical Meaning of Planck’s Constant completed
In our model, we obtained that the constant h (analogous to Planck’s constant) is expressed as:

This relation allows us to interpret h as the ratio of the total energy of the system in the resonant state to its ”imaginary energy”. 
Thus, Planck’s constant h acquires a deep physical meaning: it characterizes the connection between the energy of the system and its 
imaginary (resonant) component.

9.8. Analogy with the Quantization of Angular Momentum
In our model, the angular momentum Ln of the first cluster is quantized according to the rule:

				    Ln = nh,

where n is an integer (the mode number). This is directly analogous to Bohr’s postulate for the quantization of the electron’s angular 
momentum in the hydrogen atom, where the electron’s angular momentum is quantized as L = nh¯ (with h¯ = h/2π being the reduced 
Planck’s constant).

9.7 The Physical Meaning of Planck’s Constant
In our model, we obtained that the constant h (analogous to Planck’s constant) is
expressed as:

h =
2R′

1

Hπ
,

where:

• R′
1 is the radius of the first cluster,

• H is the proportionality coefficient linking the rotational frequency ωn and the
imaginary part of the perturbation Im(Wtotalr1).

For H = 1 (i.e. the resonant frequency equals the imaginary part of the perturba­
tion), the constant h becomes:

h =
2R′

1

π
.

We also established that the ratio of the total energy En of the system to the
imaginary part of the perturbation Im(Wtotalr1) is:

En

Im(Wtotalr1)
= 2h. (33)

This relation allows us to interpret h as the ratio of the total energy of the system
in the resonant state to its ”imaginary energy”. Thus, Planck’s constant h acquires
a deep physical meaning: it characterizes the connection between the energy of the
system and its imaginary (resonant) component.

9.8 Analogy with the Quantization of Angular Momentum
In our model, the angular momentum Ln of the first cluster is quantized according to
the rule:

Ln = nh,

where n is an integer (the mode number). This is directly analogous to Bohr’s postulate
for the quantization of the electron’s angular momentum in the hydrogen atom, where
the electron’s angular momentum is quantized as L = nh̄ (with h̄ = h/2π being the
reduced Planck’s constant).

Thus, our model not only reproduces the well­known quantum­mechanical regular­
ities but also offers a new perspective on the nature of Planck’s constant, linking it to
the resonant properties of the system.

The obtained result allows us to consider Planck’s constant not as an abstract con­
stant, but as a physical quantity that determines the connection between the imaginary
and total energy of the two­cluster system.
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Thus, our model not only reproduces the wellknown quantummechanical regularities but also offers a new perspective on the nature of 
Planck’s constant, linking it to the resonant properties of the system.

The obtained result allows us to consider Planck’s constant not as an abstract constant, but as a physical quantity that determines the 
connection between the imaginary and total energy of the twocluster system.

Let us also recall that when we first encountered the need to introduce the normalization constant     to satisfy our postulate of the 
conservation of the spatial density, as introduced in the third section of our study, it became clear that Planck’s constant has a very deep 
physical meaning: it is both the normalization constant to fulfill the postulate of the spatial density conservation, and the constant in the 
quantization of the angular momentum of the twocluster system during the rotation of one around the other, as well as the ratio of the 
total energy of the twocluster system to its imaginary energy, and it also corresponds to the electron’s size divided by     .

Many might object that the size of the electron does not equal Planck’s constant based on measurements. I would answer that the 
electron’s size is beyond the limits of measurement. Thus, the electron’s size is taken to be equal to the minimal possible experimental 
measurement. Theoretical calculations predict that its size is much smaller than commonly believed. The obtained electron size agrees 
well with the formulas for the masses of the electron and proton based on the internal energy formula derived in this article, if one 
considers the electron as a spatial density cluster and the proton, on the contrary, as a depletion (expansion). This indirectly confirms our 
assumptions about the nature of the internal energy of the charge, which determines its mass. In this way, our theory closes upon itself, 
which, as a researcher, I find deeply impressive. My aim at the beginning of this investigation was to understand why the interaction 
between two charges falls off as              and I obtained the completely unexpected result that it actually has a logarithmic dependence, and 
the solution is only complex, the consequence of which is an imaginary energy of the twocluster system that determines their resonant 
frequency. At this frequency the system is in resonance and, therefore, does not radiate energy during uniform circular motion around 
the first spatial density cluster.

10. The Ratio of the Energy Required to Create Two Spatial Density Clusters (the Internal Energy of Two Charges) to the 
Potential Energy of Their Interaction. Internal Energy of Space.
Let us find the ratio of the energy expended to create two charges to the interaction energy that will arise between them if they are placed 
at a distance of  10R'1. Recall that we have:

Let us also recall that when we first encountered the need to introduce the normal­
ization constant R′

1

4π to satisfy our postulate of the conservation of the spatial density,
as introduced in the third section of our study, it became clear that Planck’s constant
has a very deep physical meaning: it is both the normalization constant to fulfill the
postulate of the spatial density conservation, and the constant in the quantization of
the angular momentum of the two­cluster system during the rotation of one around the
other, as well as the ratio of the total energy of the two­cluster system to its imaginary
energy, and it also corresponds to the electron’s size divided by 1

2π.
Many might object that the size of the electron does not equal Planck’s constant

based on measurements. I would answer that the electron’s size is beyond the limits
of measurement. Thus, the electron’s size is taken to be equal to the minimal possible
experimental measurement. Theoretical calculations predict that its size is much
smaller than commonly believed. The obtained electron size agrees well with the
formulas for the masses of the electron and proton based on the internal energy formula
derived in this article, if one considers the electron as a spatial density cluster and
the proton, on the contrary, as a depletion (expansion). This indirectly confirms our
assumptions about the nature of the internal energy of the charge, which determines
its mass. In this way, our theory closes upon itself, which, as a researcher, I find
deeply impressive.

My aim at the beginning of this investigation was to understand why the interaction
between two charges falls off as ∼ 1

D2 , and I obtained the completely unexpected
result that it actually has a logarithmic dependence, and the solution is only complex,
the consequence of which is an imaginary energy of the two­cluster system that
determines their resonant frequency. At this frequency the system is in resonance
and, therefore, does not radiate energy during uniform circular motion around the first
spatial density cluster.
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X The Ratio of the Energy Required to Create Two Spatial Density Clusters
(the Internal Energy of Two Charges) to the Potential Energy of Their
Interaction. Internal Energy of Space.

Let us find the ratio of the energy expended to create two charges to the interaction
energy that will arise between them if they are placed at a distance of 10R′

1.
Recall that we have:

Q1 =
(
V (R1)− V (R′

1)
)
ρ0,

V (R1) =
4

3
πR3

1,

V (R′
1) =

4

3
π(R′

1)
3,

where:

• ρ0 is the spatial density before perturbation,

• R′
1 andR1 are the radii of the spatial density spheres, respectively after and before

the compression of the spatial density.

10.1 The Initial Expression for the Force F (t) Holding the Cluster in Its
Compressed State, as Derived in Section IV of This Article
Given:

F (t) =
8πρ0
3

(
R3

1

t
− t2

)
.

This force describes the confinement of the spatial density in its compressed state.

10.2 Compression Energy Einside

The energy expended to compress the sphere from radius R1 to R′
1 is calculated as

the integral of F (t) with respect to t from R1 to R′
1:

Einside =

∫ R′
1

R1

F (t) dt.

Substituting F (t):

Einside =
8πρ0
3

∫ R′
1

R1

(
R3

1

t
− t2

)
dt.

We split the integral into two terms:

Einside =
8πρ0
3

(
R3

1

∫ R′
1

R1

1

t
dt−

∫ R′
1

R1

t2 dt

)
.
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X The Ratio of the Energy Required to Create Two Spatial Density Clusters
(the Internal Energy of Two Charges) to the Potential Energy of Their
Interaction. Internal Energy of Space.

Let us find the ratio of the energy expended to create two charges to the interaction
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1 andR1 are the radii of the spatial density spheres, respectively after and before

the compression of the spatial density.
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Einside =
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Einside =
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Evaluating the integrals:
∫

1

t
dt = ln |t|,

∫
t2 dt =

t3

3
.

Substituting the limits:

Einside =
8πρ0
3

(
R3

1

(
ln |R′

1| − ln |R1|
)
− (R′

1)
3 −R3

1

3

)
.

Simplifying:

Einside =
8πρ0
3

(
R3

1 ln
(
R′

1

R1

)
− (R′

1)
3 −R3

1

3

)
.

10.3 The Potential Energy of the Interaction EQ1,Q2(D)

Given:

EQ1,Q2(D) =

∫ 10R′
1

∞
WQ1,Q2 dD,

where
WQ1,Q2 =

Q2
1R

′
1

R′
1D

2
=

Q2
1

D2
.

Thus, the integral is:

EQ1,Q2(D) = Q2
1

∫ 10R′
1

∞

1

D2
dD.

Evaluating the integral: ∫
1

D2
dD = − 1

D
.

Substituting the limits:

EQ1,Q2(D) = Q2
1

(
− 1

10R′
1

−
(
− 1

∞

))
= − Q2

1

10R′
1

.

10.4 Expression for Q1

Given:
Q1 =

(
V (R1)− V (R′

1)
)
ρ0,

with
V (R1) =

4

3
πR3

1, V (R′
1) =

4

3
π(R′

1)
3.

Thus,
Q1 =

4

3
πρ0

(
R3

1 − (R′
1)

3
)
.
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10.5 The Ratio Einside(R
′
1)

EQ1,Q2(D)

Now substitute the expressions for Einside and EQ1,Q2(D):

Einside(R
′
1)

EQ1,Q2(D)
= −

8πρ0
3

(
R3

1 ln
(
R′

1

R1

)
− (R′

1)
3−R3

1

3

)

Q2
1

10R′
1

.

Substitute Q1:

Q2
1 =

(
4

3
πρ0(R

3
1 − (R′

1)
3)

)2

=
16

9
π2ρ20(R

3
1 − (R′

1)
3)2.

Now substitute Q2
1 in the denominator:

Einside(R
′
1)

EQ1,Q2(D)
= −

8πρ0
3

(
R3

1 ln
(
R′

1

R1

)
− (R′

1)
3−R3

1

3

)

16
9 π

2ρ20(R
3
1 − (R′

1)
3)2/(10R′

1)
.

Simplify:

Einside(R
′
1)

EQ1,Q2(D)
= −8πρ0

3
· 10R′

1 · 9
16π2ρ20(R

3
1 − (R′

1)
3)2

(
R3

1 ln
(
R′

1

R1

)
− (R′

1)
3 −R3

1

3

)
.

10.6 Final Expression

Einside(R
′
1)

EQ1,Q2(D)
= − 15R′

1

2πρ0 (R3
1 − (R′

1)
3)

2

(
R3

1 ln
(
R′

1

R1

)
− (R′

1)
3 −R3

1

3

)
. (34)

10.7 Let Us Plot the Graph of the Function Einside(R
′
1)

EQ1,Q2(D) Using the Following
Parameters:

• R1 = 10— a fixed value of R1.

• ρ0 = 1— a fixed value of ρ0.

• R′
1 varies from 1 to 20, i.e., R′

1 ∈ [1, 20].

To plot the graph, we use the range:

R′
1 = np.linspace(1, 20, 500).

After the numerical study of the graph of the function Einside(R
′
1)

EQ1,Q2(D) , we found that there

are two regions where Espace =
∣∣∣E(R′

1)
E(D)

∣∣∣ < 1, meaning that the ratio of the energy
required to create a spatial density cluster to the interaction energy between two spatial
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• R′
1 varies from 1 to 20, i.e., R′

1 ∈ [1, 20].

To plot the graph, we use the range:

R′
1 = np.linspace(1, 20, 500).

After the numerical study of the graph of the function Einside(R
′
1)

EQ1,Q2(D) , we found that there

are two regions where Espace =
∣∣∣E(R′

1)
E(D)

∣∣∣ < 1, meaning that the ratio of the energy
required to create a spatial density cluster to the interaction energy between two spatial

63



OA J Applied Sci Technol, 2025 Volume 3 | Issue 1 | 44

Figure 4: Graph of the Ratio of the Internal Energy of Two Spatial Density Clusters to Their Interaction Potential Energy
Einside(R

′
1)

EQ1,Q2(D)

density clusters is less than 1. This implies that after their creation, the energy released
from their interaction exceeds the energy spent on their creation. Although this is
difficult to grasp intuitively, our space is structured in such a way that it can generate
energy. We too might be able to do so if we understand how to compress spatial
density and maintain it in a compressed state, as observed in elementary charges.

10.8 How to Compress Spatial Density
If space is a “quasi­medium” that has density but does not possess mass, friction, or
viscosity—only a tendency toward maximum entropy—then, assuming Bernoulli’s
law applies, where higher flow speed corresponds to lower pressure, that region will
compress and the density will increase until the pressure equalizes. However, once
we compress the spatial density, it will cause a curvature in the spatial metric, leading
to the emergence of mass. Thus, the compressed region of space will acquire kinetic
energy (inertia) that will keep it in motion, i.e., in a compressed state. If we twist
the spatial density into a torus (such structures can be stable and self­sustaining) that
rotates in all degrees of freedom, we obtain a stable self­sustaining state—something
akin to a negatively charged elementary particle (electron). If this torus is stretched,
i.e., its radius is increased, we get something similar to a positively charged elementary
particle (proton). If, under high pressure, an electron and a proton are combined, a
neutron is formed; however, the mass of the neutron will be greater than the sum of
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density clusters is less than 1. This implies that after their creation, the energy released from their interaction exceeds the energy spent 
on their creation. Although this is difficult to grasp intuitively, our space is structured in such a way that it can generate energy. We too 
might be able to do so if we understand how to compress spatial density and maintain it in a compressed state, as observed in elementary 
charges.

10.8. How to Compress Spatial Density
If space is a “quasimedium” that has density but does not possess mass, friction, or viscosity—only a tendency toward maximum 
entropy—then, assuming Bernoulli’s law applies, where higher flow speed corresponds to lower pressure, that region will compress 
and the density will increase until the pressure equalizes. However, once we compress the spatial density, it will cause a curvature in 
the spatial metric, leading to the emergence of mass. Thus, the compressed region of space will acquire kinetic energy (inertia) that will 
keep it in motion, i.e., in a compressed state. If we twist the spatial density into a torus (such structures can be stable and selfsustaining) 
that rotates in all degrees of freedom, we obtain a stable selfsustaining state—something akin to a negatively charged elementary particle 
(electron). If this torus is stretched, i.e., its radius is increased, we get something similar to a positively charged elementary particle 
(proton). If, under high pressure, an electron and a proton are combined, a neutron is formed; however, the mass of the neutron will be 
greater than the sum of the electron’s and proton’s masses, since its mass will also include the energy required to compress the electron 
and proton, and according to our model they repel each other at about 2.5 electron radii. Thus, we obtain the process for the formation 
of the basic building blocks of our Universe—electron, neutron, and proton. In their production, energy will be released that fills our 
Universe, transforming from one form to another. Hence, the law of energy conservation for spatial density and its derived clusters 
does not hold, as observed, for example, in the electron’s tunneling effect in overcoming a potential barrier. During the formation of 
elementary charges, more energy is released than the energy expended to create them, thereby triggering a selfsustaining chain reaction 
for the production of matter and energy directly from space.

11. Conclusion and Summary
1. Space Density as a Universal Property: This article proposes a hypothesis that spatial density is a key property determining all 
fundamental interactions—gravitational, electromagnetic, strong, and weak. This property is described in a fivedimensional coordinate 
system, with the fifth dimension orthogonal to the conventional spatial and temporal dimensions.
2. Theoretical Proof of Bohr’s Postulate: For the first time, a theoretical justification of Bohr’s postulate regarding the quantization of 
the electron’s angular momentum in the hydrogen atom is presented. The model shows that the angular momentum of the twospatial
densitycluster system is quantized, in accordance with Bohr’s postulate. This confirms that the quantization of angular momentum can 
be explained through the properties of spatial density—a significant step in understanding quantum mechanics.
3. The Connection Between Charge and Mass: A novel connection between charge and its mass is established. It is shown that the 
mass of a spatial density cluster is equivalent to the energy required to compress it. This allows mass to be interpreted as a measure of 
the energy that holds the cluster in its compressed state, consistent with Einstein’s equation E = mc2.
4. Complex Solutions and Imaginary Energy: The solution for the interaction of two spatial density clusters is found to be purely 
complex, with the imaginary part determining the system’s resonant frequency. This opens new avenues for understanding the nature 
and stability of quantum systems.
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5. Strong and Weak Interactions: The model offers an explanation for the strong and weak interactions through the properties of spatial 
density. It is shown that strong interaction at short distances can be associated with resonant effects in the spatial density model, while 
the weak interaction is related to the redistribution of density.
6. The Physical Meaning of Planck’s Constant: In this model, Planck’s constant h is interpreted as the ratio of the total energy of the 
system to its imaginary (resonant) component. This provides a new perspective on the nature of this fundamental constant, linking it with 
the resonant properties of the system.
7. Connection with Quantum Mechanics: The results demonstrate that the spatial density model can reproduce wellknown quantum
mechanical phenomena such as angular momentum quantization and the energyfrequency relation. This confirms that the model can be 
used for further development of quantum theory.
8. New Research Directions: The model opens new avenues for research, such as the study of resonant phenomena in quantum systems, 
explanations for dark matter and dark energy, and the development of novel approaches to unifying fundamental interactions.
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