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Abstract
Universal healthcare access remains a critical unmet need, especially in resource-limited settings. Large Language 
Models (LLMs) hold immense promise for democratizing healthcare globally, offering sophisticated diagnostic tools 
even in remote areas. However, responsible clinical deployment, especially in resource-scarce and trust-dependent 
environments, demands comprehensive reliability evaluation. This must go beyond accuracy to encompass diagnostic 
consistency, manipulation resilience, and intelligent contextual integration, ensuring the safe and ethical application of 
LLMs for universal healthcare.

This study strictly evaluated the diagnostic reliability of leading LLMs, focusing on: (1) evaluating their diagnostic 
consistency across repeated queries and minor demographic variations of identical clinical cases; (2) examining their 
susceptibility to diagnostic manipulation through prompt engineering, narrative shifts, and irrelevant information 
insertion; and (3) evaluating the extent of their contextual awareness and ability to incorporate patient history and 
lifestyle factors into diagnostic reasoning.

We employed a controlled experimental methodology utilizing a dataset of 52 original patient cases, each expanded into 
multiple variants. These variants included demographic alterations (age, gender, race, country), rewording of symptom 
descriptions, and slight modifications to physical examination de- tails while maintaining core diagnostic markers 
unchanged. Susceptibility to manipulation was tested by strategically inserting misleading narratives and irrelevant 
details into diagnostic prompts. Contextual awareness was evaluated by comparing diagnoses generated with and 
without supplementary patient history and lifestyle information. We analyzed both quantitative diagnostic change rates 
and qualitative patterns in LLM responses across these manipulations.

Both LLMs demonstrated perfect (100%) diagnostic consistency for identical clinical information, reflecting their 
deterministic nature and focus on core data. However, significant susceptibility to manipulation emerged: Gemini 
exhibited a 40% diagnosis change rate, and Chat GPT 30% when irrel- evant details were added. While Chat GPT 
showed a higher context influence rate (77.8% vs. Gemini’s 55.6%) quantitatively, qualitative analysis revealed 
limitations in clinically subtle contextual integration for both. Both models exhibited anchoring bias, prioritizing salient 
clinical data, superfi- cially incorporating context, and sometimes overemphasizing demographics, and medical history 
while underweighting contradictory evidence.

Despite remarkable consistency in controlled settings, LLMs’ demonstrated susceptibility to manipulation and limitations 
in sophisticated contextual understanding pose critical challenges for real-world clinical deployment. Specifically, LLMs 
exhibit weaknesses in contextual awareness and are highly susceptible to input manipulation, unlike human clinicians 
who leverage iterative questioning, critical evaluation, and comprehensive contextual integration. Human clinicians 
also express uncertainty and seek validation, contrasting with LLMs’ tendency to overstate diagnostic certainty. 
These findings strongly emphasize the urgent need for domain-specific architectures, reliable input safeguards, and 
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careful validation frameworks to ensure ethical and reliable LLM application in healthcare. Until these fundamental 
vulnerabilities are decisively overcome, broad clinical implementation of LLMs outside of highly controlled, human-
supervised research settings would be premature, ethically questionable, and potentially harmful.	

Due to their inability to critically evaluate input validity or request clarifying information, LLMs are demonstrably 
more susceptible to manipulation than clinicians. 

While more susceptible to manipulation and less sophisticated in contextual reasoning than clinicians, LLMs, when 
used responsibly under human over- sight, can still enhance diagnostics. Future research must prioritize improving 
LLMs’ manipulation resistance and contextual reasoning to responsibly realize their promise for global healthcare 
democratization.

I. Introduction
Pursuing universally accessible healthcare is a cornerstone of 
global equity and social justice, deeply intertwined with the 
fundamental human right to health. Yet, despite unprecedented 
advancements in medical science, vast disparities persist, 
particularly in resource-constrained regions where access to 
timely and accurate diagnostics remains a formidable challenge. 
Imagine a transformative paradigm shift in a world where even 
the most geographically remote and underserved communities 
possess access to sophisticated diagnostic capabilities that are 
readily available and free of prohibitive costs. Large Language 
Models (LLMs), sophisticated artificial intelligence systems 
capable of understanding and generating human-like text, emerge 
as a revolutionary force poised to democratize healthcare on a 
global scale. By offering the potential to automate and augment 
complex clinical tasks, LLMs hold the promise of bridging critical 
gaps in healthcare access, especially in settings lacking specialist 
expertise or advanced infrastructure. From assisting in differential 
diagnosis and interpreting medical imaging to personalizing patient 
education and streamlining administrative processes, the scope 
of LLM applications in medicine appear boundless, heralding 
a new era of enhanced efficiency and broader reach. However, 
accurate evaluation of LLM performance in clinical practice is 
crucial. While initial enthusiasm focuses on diagnostic accuracy, 
safe and ethical real-world deployment necessitates evaluating 
broader reliability dimensions. In medicine, reliability transcends 
accuracy, encompassing consistency, manipulation resilience, and 
contextual integration factors determining clinical appropriateness 
and trustworthiness. Understanding these reliability parameters is 
essential for LLMs to become dependable clinical tools. Currently, 
the research landscape surrounding LLMs in healthcare, while 
rapidly expanding, reveals a significant gap in our understanding 
of these critical reliability dimensions, particularly within the 
specific domain of medical diagnostics. Much of the existing work 
has focused on benchmarking diagnostic accuracy against expert 
clinicians in highly controlled settings, demonstrating encouraging, 
albeit preliminary, results. However, a systematic investigation 
into the consistency of LLM diagnostic recommendations, their 
potential susceptibility to manipulation through adversarial prompts 
or misleading information, and their capacity for contextual 
reasoning remain critically under- explored. This knowledge 
gap is not merely academic; it carries profound implications 
for the responsible and ethical integration of LLMs into clinical 
workflows. Imagine a scenario where an LLM, while accurate 

under ideal conditions, exhibits inconsistent diagnoses when 
presented with slightly varied patient demographics or clinical 
narratives. Or consider the vulnerability of a system susceptible 
to manipulation through engineered prompts, potentially leading 
to misdiagnoses based on subtle, yet clinically irrelevant, input 
alterations. Furthermore, a failure to effectively integrate crucial 
contextual factors such as patient history, lifestyle, or socio- 
economic background could lead to diagnostic errors rooted in a 
superficial understanding of the patient’s holistic clinical picture. 
Such shortcomings, if unaddressed, could erode clinician trust, 
compromise patient safety, and ultimately undermine the very 
goal of democratizing healthcare that these technologies aspire to 
achieve.

To address these critical gaps in our understanding of LLM 
reliability in medical diagnostics, this study is guided by the 
following core research questions:
•	 How consistent are the diagnostic recommendations provided 

by LLMs for the same clinical scenario presented on different 
occasions, particularly when minor demographic or clinical 
variations are introduced?

•	 How susceptible are LLMs to manipulation through carefully 
crafted prompts or the introduction of irrelevant information, 
and how does this susceptibility compare to the known 
resilience and critical evaluation skills of human clinicians?

•	 How effectively do LLMs utilize contextual information 
(e.g., patient history, lifestyle factors) in making diagnostic 
recommendations, and how does this contextual integration 
compare to the comprehensive, patient-centered approach of 
human clinicians?

To answer these questions and enhance understanding of LLM 
reliability in diagnostics, this study empirically evaluates the 
diagnostic consistency, susceptibility to manipulation, and con- 
textual awareness of LLMs. Utilizing a controlled experimental 
methodology, this research aims to provide critical insights 
into the strengths and limitations of these AI tools, informing 
comprehensive validation and responsible translation of LLM 
technology for safe, ethical, and democratized clinical practice, 
ensuring patient safety and clinical trust remains a prime concern 
[1].

2. Method
This section details the methodological framework designed for a 
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three-dimensional evaluation of Large Language Models (LLMs) 
in medical diagnosis. To ensure transparency and facilitate 
reproducibility, we provide a comprehensive account encompassing 
experimental design, synthetic data generation, standardized model 
interaction protocols, and analytical techniques for examining 
diagnostic reliability. Specifically, this chapter delineates the 
procedures used to evaluate LLM performance across three critical 
dimensions: diagnostic consistency, susceptibility to manipulation, 
and contextual awareness. For each dimension, we outline scenario 
modification strategies, prompting structures, data collection, and 
the mixed-methods data analysis approach integrating quantitative 
metrics and qualitative physician review.

2.1. Study Design
This study employed a controlled experimental and comparative 
design to evaluate the di- agnostic reliability of Large Language 
Models (LLMs) in medical diagnostic scenarios. The primary 
objective was to evaluate and compare the performance of 
prominent LLMs across three critical dimensions of diagnostic 
reliability: diagnostic consistency, susceptibility to manipulation, 
and contextual awareness [2]. The experimental nature of 
the study was achieved through systematic manipulation of 
various prompt parameters, including demographic alterations, 
rewording of symptom descriptions, and the introduction of 
irrelevant details, allowing for a direct investigation into how 
these factors influence the diagnostic outputs of the LLMs. The 
study involved the systematic manipulation of clinical scenarios 
to examine how variations in input affected the LLMs’ diagnostic 
outputs. The experimental framework was structured to isolate 
causal relationships between input modifications and diagnostic 
responses, ensuring controlled evaluation conditions.

2.2. Primary Objectives
The primary objectives of this study were to evaluate the diagnostic 
reliability of Large Language Models (LLMs) across three key 
dimensions in medical contexts. Specifically, the study aimed to:

•	 Quantify Diagnostic Consistency: To examine the 
consistency of diagnostic recommendations provided by 
LLMs when presented with identical clinical scenarios across 
multiple queries, including variations in demographic details 
and presentation phrasing.

•	 Measure Susceptibility to Manipulation: To determine the 
extent to which LLM di- agnostic outputs are susceptible to 
manipulation through adversarial prompt engineering and the 
insertion of irrelevant clinical information.

•	 Evaluate Contextual Awareness: To evaluate the 
effectiveness of LLMs in integrating and utilizing contextual 
patient information, such as medical history and lifestyle 
factors, in their diagnostic reasoning processes.

•	 Compare Model Performance: To directly compare the 
diagnostic reliability of Google’s Gemini and Open AI’s 
ChatGPT across the aforementioned dimensions, aiming to 
identify model-specific strengths and limitations in clinical 
diagnostic tasks.

•	 Qualitatively Evaluate Clinical Appropriateness: To 

qualitatively evaluate the clinical appropriateness of LLM 
diagnostic reasoning in context by employing expert physician 
review to examine the validity and clinical soundness of LLM 
diagnostic changes in response to relevant contextual patient 
information.

2.3. LLM Selection and Configuration
Two commercially available, state-of-the-art Large Language 
Models (LLMs) were selected for evaluation in this study:
•	 Google Gemini 2.0 Flash (Accessed between February 2 and 

February 7, 2025)
•	 Open AI ChatGPT-4o (Accessed between February 2 and 

February 7, 2025)

Rationale for Model Selection
•	 Clinical Relevance: Both models demonstrate excellent 

reasoning capabilities in biomedical domains, with 
documented applications in symptom analysis and differential 
diagnosis.

•	 Their increasing exploration and integration into healthcare 
applications, such as diagnostic support tools and clinical 
decision assistance, underscored their relevance for this study, 
which aimed to gauge their utility and reliability in real-world 
clinical settings.

All interactions in this study were conducted via these direct chat 
interfaces to simulate realistic user interaction and to reflect how 
clinicians or healthcare professionals might typically engage with 
these tools in practice.

2.4. Clinical Scenarios
To evaluate the diagnostic reliability of Large Language Models 
(LLMs), this study employed a constructed dataset of 52 clinical 
scenarios. These scenarios were developed de novo, specifically for 
this research, ensuring direct alignment with the study’s objectives 
and enabling precise experimental control over case characteristics 
and manipulations. The dataset was designed to comprehensively 
evaluate three key dimensions of LLM reliability: diagnostic 
consistency, susceptibility to manipulation, and contextual 
awareness [4].

2.4.1. Scenario Characteristics
The dataset comprises 52 clinical cases, originating from a 
carefully curated selection of 39 unique medical conditions. This 
approach, utilizing a slightly larger number of scenarios than unique 
conditions, allowed for the creation of varied presentations and 
refined cases within similar diagnostic categories, enhancing the 
reliability of the evaluation. The medical conditions were chosen 
to represent a broad spectrum of clinical presentations, medical 
specialities, and levels of diagnostic complexity, effectively 
mirroring the diversity encountered in real-world clinical practice 
and aligning with standards commonly used in medical education 
and clinical training.

To ensure comprehensive coverage, the scenarios spanned eight 
major medical specialties:
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•	 Cardiovascular Diseases: Including conditions such as 
Myocardial Infarction (STEMI), Angina Pectoris, Stage I and 
Stage II Hypertension, and Heart Failure (both HFrEF and 
HFpEF subtypes).

•	 Pulmonary Diseases: Encompassing conditions like Acute 
Bronchitis, Acute Exacerbation of COPD, COPD (GOLD 
Stages II and IV), Asthma (Mild Persistent, Exacerbation, 
General presentations), COVID-19 (Mild and Moderate 
severity), and Influenza A (Un- complicated and with 
Pneumonia).

•	 Neurological Diseases: Covering Ischemic Stroke, Transient 
Ischemic Attack (TIA), Subarachnoid Hemorrhage, Migraine 
(With and Without Aura), Diabetic Neuropathy, and 
Generalized Anxiety Disorder.

•	 Endocrine & Metabolic Disorders: Including Type 1 and 
Type 2 Diabetes Mellitus, and Hypothyroidism.

•	 Gastrointestinal Diseases: Featuring Peptic Ulcer Disease 
(Duodenal and Gastric sub- types), Acute Appendicitis, Acute 
Diverticulitis, Viral Gastroenteritis, Functional Constipation, 
and Chronic Constipation.

•	 Musculoskeletal Diseases: Representing Lumbar Muscle 
Strain, Lumbar Osteoarthritis, Knee Osteoarthritis, Hip 
Osteoarthritis, Rheumatoid Arthritis, and Distal Radius 
Fracture (Colles’ Fracture).

•	 Infectious Diseases: Including Urinary Tract Infection 
(Cystitis and Pyelonephritis subtypes), Common Cold, Strep 
Throat, Viral Exanthem (with possible reference to Varicella), 
and Acute Otitis Media.

•	 Pain & Miscellaneous: Covering Musculoskeletal Pain and 
Functional Constipation (also listed in Gastrointestinal due to 
dual classification in some medical contexts).

The complexity of the scenarios was intentionally varied to 
evaluate LLM performance across different levels of diagnostic 
difficulty. Cases ranged from common, relatively straight- 
forward outpatient presentations (e.g., Viral Gastroenteritis, 
Uncomplicated Influenza, Strep Throat) to acute, complex, or 
intricate conditions requiring more intricate diagnostic reasoning 
(e.g., STEMI, Subarachnoid Hemorrhage, Acute Exacerbation of 
COPD, Heart Failure subtypes, COPD staging, UTI subtypes). 
This range ensured that the LLMs were tested on both routine and 
more challenging diagnostic problems [5].

2.4.2. Dataset Construction and Structure
The clinical accuracy and medical validity of the scenarios were 
supreme. The dataset was constructed by drawing upon evidence-
based and authoritative medical resources. The primary sources 
for clinical details, including symptoms, vital signs, diagnostic 
criteria, risk factors, differential diagnoses, final diagnoses, 
and treatment recommendations, were the point-of-care 
medical databases UpToDate and DynaMed. These resources 
were chosen for their comprehensive coverage of clinical topics, 
their continuous updating to reflect current medical knowledge, 
and their focus on providing practical, evidence-based information 
for clinical decision-making. To further enrich the contextual 

accuracy and depth of the medical information, especially for 
more complex or specialized cases, Clinical Key and Pub- Med/
MEDLINE were utilized as supplementary resources. This 
multi-faceted approach to data sourcing ensured a high degree of 
medical fidelity and clinical relevance for each scenario. Each of 
the 52 clinical scenarios was structured to ensure consistency and 
completeness, using a standardized set of parameters to document 
patient information and clinical findings
comprehensively. Each scenario record included the following 
structured fields:
•	 Patient Information: patient_id (unique identifier), age, 

gender.
•	 Medical Background: medical_history, current_

medications.
•	 Presenting Complaint: presenting_complaint (the patient’s 

primary reason for seeking medical attention).
•	 Symptoms: A detailed profile of symptoms, with each 

symptom described using granular attributes including: name, 
severity (e.g., mild, moderate, severe), character (e.g., sharp, 
dull, crushing), associated_symptoms, exacerbating_
factors, relieving_factors, and type (e.g., productive cough).

•	 Vital Signs: Physiological measurements including heart_
rate (beats per minute), blood_pressure (systolic/diastolic in 
mmHg), temperature (in Fahrenheit), and respiratory_rate 
(breaths per minute).

•	 Physical Examination: A concise summary of pertinent 
physical examination findings.

•	 Diagnostic Test Results: Results from relevant diagnostic 
tests, including but not limited to ecg (electrocardiogram 
findings), troponin levels, cbc (complete blood count findings), 
cxr and other condition-specific laboratory or imaging results 
as clinically in- dicated.

•	 Differential Diagnosis: A curated list of possible conditions 
considered in the diagnostic process.

•	 Final Diagnosis: The confirmed or most likely diagnosis for 
the presented scenario.

•	 Treatment: Recommended medications, therapies, or 
management strategies aligned with clinical guidelines and 
best practices.

•	 Additional Notes: A field for supplementary clinical 
observations, relevant contextual details, or follow-up 
information as needed.

2.4.3. Data Modification and Open Access
While the foundational medical knowledge within the scenarios 
was thoroughly derived from authoritative sources, certain non-
clinical parameters and scenario variations were intentionally 
modified for experimental purposes. Specifically, elements such as 
patient_id, age, gender, and details within the medical_history and 
presenting_complaint fields were manually created and adjusted 
to create diverse patient presentations and to facilitate the testing 
of consistency, susceptibility, and contextual awareness. These 
modifications were carefully implemented to maintain clinical 
plausibility while achieving the experimental objectives.
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• Treatment: Recommended medications, therapies, or management strategies aligned
with clinical guidelines and best practices.

• Additional Notes: A field for supplementary clinical observations, relevant contextual
details, or follow-up information as needed.

2.4.3. Data Modification and Open Access
While the foundational medical knowledge within the scenarios was thoroughly derived

from authoritative sources, certain non-clinical parameters and scenario variations were inten-
tionally modified for experimental purposes. Specifically, elements such as patient_id, age,
gender, and details within the medical_history and presenting_complaint fields were man-
ually created and adjusted to create diverse patient presentations and to facilitate the testing
of consistency, susceptibility, and contextual awareness. These modifications were carefully
implemented to maintain clinical plausibility while achieving the experimental objectives.

Figure 1: Dataset Construction Methodology

To ensure transparency, promote reproducibility, and contribute to the broader research com-
munity, the complete dataset of all 52 clinical scenarios will be made openly accessible
in the Supplementary Materials. This includes detailed structured data for each case and will
be provided via a link to a public repository or as a direct appendix to this publication, serving
as a valuable resource for future investigations in clinical decision-making with AI and medical
education.

2.5. Consistency Assessment Protocol
To evaluate the diagnostic consistency of Large Language Models (LLMs), a structured and

detailed protocol was designed and implemented. The core objective was to determine whether
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Figure 1: Dataset Construction Methodology
To ensure transparency, promote reproducibility, and contribute 
to the broader research com- munity, the complete dataset of 
all 52 clinical scenarios will be made openly accessible in the 
Supplementary Materials. This includes detailed structured data 
for each case and will be provided via a link to a public repository 
or as a direct appendix to this publication, serving as a valuable 
resource for future investigations in clinical decision-making with 
AI and medical education.

2.5. Consistency Assessment Protocol
To evaluate the diagnostic consistency of Large Language Models 
(LLMs), a structured and detailed protocol was designed and 
implemented. The core objective was to determine whether LLMs 
would generate stable and consistent diagnostic recommendations 
when presented with clinically equivalent but superficially varied 
patient scenarios. This evaluation was essential to evaluate 
the reliability of these models in delivering consistent clinical 
judgments, even when faced with minor, clinically inconsequential 
variations in patient case presentation.

2.5.1. Clinical Scenario Variations for Consistency Testing
For each of the 52 baseline clinical scenarios, a systematic 
approach was used to generate four distinct variations. These 
variations were designed to introduce minor, clinically irrelevant 
alterations, ensuring that the underlying diagnostic essence of each 
case remained unchanged [6]. The intention was to test the LLMs’ 
sensitivity and reliability to superficial changes in input while 
maintaining the core clinical problem. The three specific types of 
variations created were:

•	 Patient Demographics: To examine for potential 
demographic biases and sensitivity to patient characteristics 
irrelevant to diagnosis, the following demographic parameters 
were systematically altered across the four variations:

•	 Country: Patient’s country of origin.
•	 Race: Patient’s self-identified race.
•	 Ethnicity: Patient’s ethnicity.

•	 Age: Patient’s age.
•	 Gender: Patient’s gender identity.

These demographic modifications were carefully chosen to be 
superficial, ensuring they did not introduce clinically significant 
differences in disease prevalence, presentation, or risk factors for 
the specific medical conditions represented in the scenarios.

•	 Presenting Complaint Phrasing Variations: To evaluate the 
LLMs’ reliable to variations in natural language and phrasing, 
the presenting_complaint field was subtly reworded in each 
variation. This involved the use of synonyms and similar 
sentence structures to express the same core complaint in 
slightly different linguistic forms. This manipulation tested the 
LLMs’ ability to recognize and process clinically equivalent 
in- formation expressed through different linguistic forms.

•	 Minor Rephrasing in Medical History and Physical Exam: 
To examine sensitivity to subtle changes in descriptive 
language within clinical narratives, minor rephrasing was 
applied to the medical_history and physical_exam sections. 
These modifications consisted of minor rephrasing of 
descriptive terms and sentence structure, ensuring that the 
core clinical meaning and findings remained consistent across 
the variations. The intent was to evaluate whether LLMs were 
sensitive to superficial textual changes in background clinical 
information.

2.5.2. Standardized Prompt Structure and Procedure
To ensure consistent interaction with the LLMs, a standardized 
prompt structure was employed for presenting each scenario 
variation for all LLMs. The prompt was designed to be direct 
and unambiguous, instructing the LLMs to focus on providing a 
diagnostic conclusion based on the clinical information provided:

You are a medical doctor. Diagnose the following patient case:
[Patient Data]
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Provide patient_id and the corresponding diagnosis for that 
patient. Provide only your final diagnosis. Do not include 
explanations or differential diagnoses.
This consistent prompt phrasing was used for all 624 diagnostic 
queries per LLM (52 base scenarios x 4 variations x 3 repetitions), 
eliminating prompt variability as a potential confounding factor 
[7].

2.5.3. Diagnostic Consistency Testing Protocol
Each of the four variations derived from a single baseline clinical 
scenario was presented to LLMs on three independent occasions. 
This resulted in a total of 624 diagnostic queries per LLM (52 
base scenarios × 4 variations × 3 repetitions). For each query, 
the LLM’s diagnostic response was automatically recorded for 
subsequent analysis. The three repetitions per variation were 
designed to account for potential minor stochasticity in LLM 
outputs, even for identical inputs, and to ensure the reliability of 
the consistency assessment.

2.5.4. Criteria for Determining Diagnostic Consistency
Diagnostic consistency was evaluated at the level of the original 
52 baseline clinical scenarios.
A hierarchical set of criteria was applied to determine consistency:

•	 Internal Variation Consistency: For each of the four 
variations of a given baseline scenario and for each LLM, 
the three repeated diagnostic outputs were examined. If all 
three outputs for a given variation were identical (clinically 
same diagnosis), that variation was classified as internally 
consistent.

•	 Baseline Scenario Consistency: A baseline clinical scenario 
was classified as yielding a consistent diagnosis for a specific 
LLM only if all four of its variations (across demo- graphic, 
phrasing, and minor rephrasing manipulations) resulted in 
clinically equivalent final diagnoses. Conversely, if any one 
of the four variations produced a diagnostic output that was 
not clinically equivalent to the others for a given baseline 
scenario, that scenario was classified as inconsistent for that 
LLM.

•	 Consistency was defined as the LLM providing clinically 
equivalent diagnoses across all four variations of a given 
base clinical scenario. Diagnostic outputs were considered 
equivalent if they matched exactly or were determined to 
be clinically synonymous (e.g., gastroesophageal reflux 
disease vs. acid reflux). If any single variation produced a 
diagnosis that deviated from the others in a way that altered 
clinical interpretation, the scenario was deemed inconsistent.

This multi-layered protocol, incorporating systematic scenario 
variations, repeated trials, a standardized prompt, and a precise 
definition of consistency, allowed for a thorough and distinct 
evaluation of the diagnostic consistency of Gemini and ChatGPT 
under experimentally controlled conditions [8].

2.6. Susceptibility to Manipulation Protocol
To evaluate the susceptibility of Large Language Models (LLMs) 
to diagnostic manipulation, a structured experimental protocol was 
designed. This protocol examined whether the diagnostic outputs 
of Gemini and ChatGPT could be influenced by the introduction 
of irrelevant, yet superficially plausible, information into the 
clinical prompts. The study aimed to simulate real-world clinical 
scenarios where patient narratives often include extraneous details, 
subjective interpretations, and information not directly pertinent 
to the core diagnosis [9]. The main objective was to determine 
if LLMs could effectively prioritize clinically relevant data while 
demonstrating reliability against diagnostically inconsequential 
noise, thus evaluating their suitability for use in complex, real-
world clinical environments.

2.6.1. Manipulation Strategy
The manipulation strategy focused on enriching a subset of 
clinical scenarios with six distinct categories of irrelevant, non-
clinical information. Ten original clinical scenarios were randomly 
selected from the 52-case baseline dataset to undergo manipulation. 
For each of these ten scenarios, a manipulated counterpart was 
created by systematically embedding extraneous details, while 
crucially ensuring that all diagnostically critical information (e.g., 
symptoms, medical his- tory, vital signs, test results) remained 
unchanged. The six categories of irrelevant information, designed 
to mimic the types of noise encountered in clinical practice, were 
as follows [10].

Example of Original vs. Manipulated Prompt
To illustrate how manipulation alters a prompt while retaining 
core clinical information, consider the following representative 
example (Case ID 27):

Original Prompt (Case ID 27, Hypothetical Example)
A 45-year-old female presents with substernal chest pain radiating 
to the left arm, worsened by exertion. History of hypertension 
and hyperlipidemia. ECG shows ST-segment elevation. Troponin 
levels elevated.

Manipulated Prompt (Case ID 27, Hypothetical Example)
A 45-year-old female (who collects vintage teacups and always 
knows when it will rain) presents with substernal chest pain 
like a lightning bolt, radiating to the left arm. Pain worsens with 
exertion, but she’s more worried about missing yoga class. 
Insists her recent Sedona retreat cleared her chakras. History of 
hypertension. Patient dismisses cholesterol as a myth and prefers 
ginger supplements. ECG shows ST-segment elevation. Troponin 
levels elevated.

As demonstrated in this example, the manipulated prompt retains 
all core clinical information (age, symptoms, medical history, 
ECG, troponin) while including elements from the irrelevant 
information categories (figurative language, alternative medicine 
beliefs, irrelevant lifestyle de- tails, subjective claims) [11, 12].
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Category Manipulation Strategy Examples of Introduced Irrelevant Information
Whimsical/Figurative Language Use of metaphorical, humorous, or exaggerated 

symptom descriptions.
Abdominal pain rated 9/10, like stepping on a Lego 
barefoot; Fatigue feels like wading through treacle; 
Chest pain described as a balloon popping in my 
chest.

Alternative Medicine Beliefs References to unproven therapies or dismissive 
attitudes toward conventional medicine.

Patient insists apple cider vinegar is a universal 
cure; Prefers chakra alignment therapy over 
conventional pain relievers; Believes high 
cholesterol is a modern myth.

Anecdotal/Subjective Claims Inclusion of unverified patient intuitions, 
personal theories, or irrelevant boasts.

Claims to predict rain based on joint pain; Boasts of 
being healthy as a horse; Attributes mood changes 
to the aurora borealis seen online.

Cultural/Regional References Location-specific idioms, habits, or travel 
history not relevant to diagnosis.

Uses British idioms such as getup- and-go just got 
up and went; Mentioned returning from a yoga 
retreat in Sedona; Observed wearing a woolly scarf 
indoors despite mild temperatures.

Patient Demeanor/ Psychology Descriptions of emotional states, personality
traits, or consultation behaviors.

Sighed wistfully throughout the consultation; More 
concerned about missing a yoga class than chest 
pain; Used excessive air quotes and wellness jargon.

Irrelevant Lifestyle Details Unrelated hobbies, family history, or personal 
preferences.

Collects vintage teacups as a hobby; Father 
is an avid vinyl record collector; Takes ginger 
supplements daily for an energy boost; Enjoys 
knitting and watching period dramas.

Table 1: Examples of Manipulation Strategies and Irrelevant Information Introduced in Diagnostic Scenarios

2.6.2. Prompt Structure and Susceptibility Testing Procedure
Both the original and manipulated versions of the ten selected 
clinical scenarios were presented to Gemini and ChatGPT using a 
standardized prompt:
You are a medical doctor. Diagnose the following patient case:
[Patient Data]
Provide patient_id and the corresponding diagnosis for that 
patient. Provide only your final diagnosis. Do not include 
explanations or differential diagnoses.

For each of the ten selected scenarios, both the original and the 
manipulated versions were presented once to each LLM. The 
diagnostic outputs were recorded and then compared.

2.6.3. Criteria for Determining Susceptibility to Manipulation
To evaluate whether manipulation led to a diagnostically significant 
change, the diagnoses generated by each LLM for the original 
and manipulated versions of each scenario were com- pared. The 
criteria for determining susceptibility were as follows:
•	 Diagnosis Change (Susceptible to Manipulation): 

Susceptibility was defined as occurring when the manipulation 
resulted in a clinically distinct diagnosis. This was determined 
by evaluating if the diagnosis provided for the manipulated 
scenario represented a different medical condition from the 
diagnosis provided for the original scenario, reflecting a 
change that could alter clinical interpretation or management. 
For example, a change from acute appendicitis in the original 
scenario to irritable bowel syndrome in the manipulated 
scenario would be considered a clinically distinct diagnosis 
change, indicating susceptibility.

•	 No Diagnosis Change (Reliability to Manipulation): It was 

defined as occurring when the LLM’s diagnostic outputs for 
the original and manipulated scenarios remained clinically 
equivalent, despite the introduction of irrelevant information.

By quantifying the number of scenarios for which each LLM 
exhibited a change in diagnosis following manipulation, we 
calculated the overall susceptibility rate for all LLMs. This 
thorough protocol, using categorized irrelevant information and 
a direct comparison of diagnostic outputs, provided a reliable 
measure of the LLMs’ vulnerability to diagnostic manipulation in 
clinically realistic contexts.

This detailed protocol, which incorporated systematically 
designed categories of irrelevant information, controlled 
comparison of original and manipulated scenarios, and clinically 
in- formed criteria for evaluating diagnosis change, provided a 
precise framework for evaluating the susceptibility of Gemini and 
ChatGPT to diagnostic manipulation [13].

2.7. Contextual Awareness Assessment Protocol
This protocol was designed to systematically evaluate the 
contextual awareness of Large Language Models (LLMs) in 
medical diagnostics. Specifically, it aimed to determine how 
effectively LLMs could incorporate clinically relevant contextual 
information such as patient demographics, medical history, 
lifestyle factors, and intricate clinical presentations into their 
diagnostic reasoning processes. The core of this assessment was to 
compare LLM performance against clinically expected diagnostic 
shifts, induced by intentionally crafted contextual modifications to 
baseline clinical scenarios.
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2.7.1. Approach to Scenario Modification
To evaluate contextual awareness, we employed a targeted approach 
using a subset of clinical scenarios from the larger dataset. Two 
original patient cases were randomly selected from the 52 baseline 
scenarios to serve as the foundation for this evaluation.
•	 Dataset Creation
•	 Case 1: One baseline case was modified to create four 

contextually varied versions.
•	 Case 2: A second baseline case was modified to create five 

contextually varied versions.
•	 Total: Nine contextually varied scenarios derived from two 

distinct baseline cases.
•	 Types of Contextual Modifications: Clinically meaningful 

modifications were systematically introduced, altering 
key contextual parameters known to influence diagnostic 
probabilities and clinical decision-making. These 
modifications spanned several categories:

•	 Demographics: Patient demographics were varied, including:
•	 Age, gender, and race/ethnicity – to account for variations 

in disease prevalence, typical presentations, and risk factors.
•	 Country of origin – primarily to explore potential biases or 

sensitivities related to geographical context.
•	 Clinical Presentation (Symptoms and Exam Findings): 

Substantial alterations were made to the core clinical 
presentation, modifying:

•	 Presenting complaint
•	 Symptom characteristics (severity, duration, location, 

character, associated symptoms, relieving/aggravating factors)
•	 Physical examination findings
These changes created clinically distinct yet related symptom 

complexes and exam findings to steer diagnostic reasoning.
•	 Medical History and Medications: Adjustments ensured 

clinical coherence with altered presentations by:
•	 Adding, removing, or modifying pre-existing conditions.
•	 Altering medication regimens to reflect different diagnostic 

possibilities.
•	 Diagnostic Test Results: Key test results (e.g., ECG findings, 

lab values, imaging results) were systematically altered to 
align with varied clinical presentations, guiding the LLMs 
toward different, clinically appropriate diagnoses [14].

2.7.2. Standardized Prompt Structure
To ensure consistent interaction and minimize variability due to 
prompting, all LLMs (Gemini 2.0 Flash and ChatGPT GPT-4o) 
received identical prompts with a standardized structure:
You are a medical doctor. Diagnose the following patient case:
[Manipulated Patient Data]
Provide patient_id and the corresponding diagnosis for that 
patient. Provide only your final diagnosis. Do not include 
explanations or differential diagnoses.

This prompt format was designed to elicit concise final diagnoses, 
focusing the LLMs on the diagnostic task and minimizing 
extraneous outputs.

2.7.3. Context-Rich and Context-Absent Scenarios
To clarify the nature of contextual variation, Table 2 provides 
examples of how contextual layers were manipulated to create 
context-rich scenarios compared to a hypothetical context- 
absent baseline.

Context Layer Context-Rich Example Context-Absent Example
Demographics 35-year-old South Asian male Adult patient
Medical History History of hypertension, GERD, currently on 

pantoprazole
No significant past medical history reported

Symptoms Epigastric pain radiating to back, worsens after 
spicy meals

Abdominal pain

Lifestyle/Geographic Current smoker, works night shifts in a factory 
setting

[Omitted - no lifestyle/geographic Details]

Diagnostic Test Results H. pylori stool antigen test is positive Routine lab results are within normal limits

Table 2: Examples of Contextual Layers and Variations
2.7.4. Illustrative Scenario Modifications
To further illustrate the contextual modifications, consider these 
examples derived from a hypothetical Original Case 1 (presented 
in a context-absent format): A 60-year-old male presents with 
chest pressure. ECG shows ST elevation. Troponin elevated.
•	 Context-Rich Variation 1 Example:
◦	 Contextual Additions: Demographic shift to a 35-year-old 

female; addition of anxiety disorder and GERD history; 
presenting complaint changed to upper back discomfort 
related to emotional stress; ECG reported as normal and H. 
pylori positive test result added [15].

◦	 Resulting Scenario Fragment: 35-year-old female with anxiety 
disorder and GERD history reports upper back discomfort 
after emotional stress. Normal ECG.

H. pylori positive.
◦	 Intended Contextual Shift: Away from acute cardiac event 

towards musculoskeletal or gastrointestinal etiology.

•	 Context-Rich Variation 2 Example:
◦	 Contextual Additions: Demographic shift to 70-year-old 

Black male; addition of atherosclerotic risk factors: diabetes, 
hypertension, and smoking history; presenting complaint 
described as crushing substernal chest pain; ECG showing ST 
depression; and LDL 190 mg/dL reported.

◦	 Resulting Scenario Fragment: 70-year-old Black male 
with diabetes, hypertension, and smoking history describes 
crushing substernal chest pain. ECG shows ST depression. 
LDL 190 mg/dL.
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◦	 Intended Contextual Shift: Reinforces high-risk cardiac 
scenario, shifting to- wards possible angina or non-ST 
elevation myocardial infarction.

2.7.5. Example Prompts: Context-Absent vs. Context-Rich
To provide concrete examples of the prompts used, Table 3 

presents illustrative prompts for both context-absent and context-
rich variations, derived from the two baseline cases used in this 
assessment.

Note:- The patient data presented in Table 3 is only for 
demonstration and does not represent the experimental data.

Case VariationType Prompt Example
Case 1 Context- Absent You are a medical doctor. Diagnose the following patient case: A patient presents with 

chest discomfort. ECG abnormal. Provide diagnosis. Provide ONLY your final diagnosis.
Do not provide explanations. 

Case 1 Context- Rich You are a medical doctor. Diagnose the following patient case: A 28-year-old Nepalese 
female with no cardiac history reports sharp left-sided chest pain worsening with deep 
inspiration. Recent travel to a high-altitude region. D-dimer 0.3 μg/mL. ECG normal. 
Diagnose. Provide ONLY your final diagnosis. Do not provide explanations.

Case 2 Context- Absent You are a medical doctor. Diagnose the following patient case: Patient complains of 
abdominal pain and nausea. Endoscopy shows ulcer. Provide diagnosis. Provide ONLY 
your final diagnosis. Do not provide explanations. 

Case 2 Context- Rich You are a medical doctor. Diagnose the following patient case: A 65-year-old Japanese male 
with daily NSAID use for osteoarthritis presents with melena and epigastric tenderness. H. 
pylori negative. Hemoglobin 9.2 g/dL. Diagnose. Provide ONLY your final diagnosis. Do 
not provide explanations.

Table 3: Comparison of Context-Absent and Context-Rich Variations in Diagnostic Prompts
2.7.6. Methodology for Diagnosis Comparison and Contextual 
Awareness Scoring Quantitative and Qualitative Analysis
To evaluate the LLMs’ contextual awareness, a mixed-methods 
approach was used, combining quantitative and qualitative 
analyses of their diagnostic outputs.

2.7.6.1. Quantitative Diagnostic Match Rate
For each contextually varied scenario, we quantitatively examined 
whether the LLM’s generated diagnosis matched the clinically 
expected diagnosis given the introduced contextual modifications. 
The clinically expected diagnosis was determined a priori by 
the physician reviewers during the scenario design phase. This 
pre-determined diagnosis represented the clinically appropriate 
diagnostic shift that a human physician would be expected to make 
in response to the specific contextual alterations in each scenario 
variation. Essentially, for each context-rich scenario, there was a 
target correct diagnosis based on the contextual cues [16].

To calculate the Diagnostic Match Rate, we employed the 
following process:
•	 Diagnosis Categorization: For each contextually varied 

scenario presented to each LLM (Gemini and ChatGPT), the 
generated diagnosis was recorded.

•	 Comparison to Clinically Expected Diagnosis: Each LLM-
generated diagnosis was then compared to the pre-defined 
clinically expected diagnosis for that specific context-rich 
scenario.

•	 Binary Match Determination: A binary match was 
determined based on clinical equivalence. A diagnosis was 
considered a match if it was either:

•	 An Exact Match: Identical to the pre-defined clinically 
expected diagnosis (e.g., LLM diagnosed Gastric Ulcer and 

the expected diagnosis was Gastric Ulcer).
•	 Clinically Equivalent: Synonymous or clinically 

interchangeable with the expected diagnosis, as determined 
by physician reviewers. Clinical equivalence ac- counted for 
minor variations in terminology or phrasing that did not alter 
the clinical meaning (e.g., LLM diagnosed Unstable Angina 
Pectoris and the expected diagnosis was Unstable Angina). 
Disagreements on clinical equivalence, if any, would have 
been resolved through physician consensus, although in this 
study, such disagreements were minimal due to the clear 
nature of the expected diagnostic shifts.

•	 Calculation of Match Rate: For each LLM (Gemini and 
ChatGPT), the Diagnostic Match Rate was calculated as 
the percentage of contextually varied scenarios for which the 
LLM’s generated diagnosis was deemed a match (either exact 
or clinically equivalent) to the pre-defined clinically expected 
diagnosis. This was calculated as:

Where:
•	 Number of Matched Diagnoses refers to the count of 

scenarios where the LLM’s diagnosis was deemed a match 
(exact or clinically equivalent) to the expected diagnosis.

•	 Total Number of Contextually Varied Scenarios represents 
the total number of clinical variations analyzed.

Interpretation: A higher Diagnostic Match Rate indicates greater 
alignment between the LLM’s diagnostic reasoning and expected 
clinical decision-making, suggesting a reliable ability to integrate 
contextual modifications. Conversely, lower match rates suggest 

modifications. The clinically expected diagnosis was determined a priori by the physi-
cian reviewers during the scenario design phase. This pre-determined diagnosis represented the
clinically appropriate diagnostic shift that a human physician would be expected to make in
response to the specific contextual alterations in each scenario variation. Essentially, for each
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diagnosis was Unstable Angina). Disagreements on clinical equivalence, if any,
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disagreements were minimal due to the clear nature of the expected diagnostic shifts.

• Calculation of Match Rate: For each LLM (Gemini and ChatGPT), the Diagnostic
Match Rate was calculated as the percentage of contextually varied scenarios for which
the LLM’s generated diagnosis was deemed a match (either exact or clinically equivalent)
to the pre-defined clinically expected diagnosis. This was calculated as:

Diagnostic Match Rate =
(

Number of Matched Diagnoses
Total Number of Contextually Varied Scenarios

)
× 100% (1)

Where:

• Number of Matched Diagnoses refers to the count of scenarios where the LLM’s
diagnosis was deemed a match (exact or clinically equivalent) to the expected diagnosis.

• Total Number of Contextually Varied Scenarios represents the total number of
clinical variations analyzed.

Interpretation: A higher Diagnostic Match Rate indicates greater alignment between the
LLM’s diagnostic reasoning and expected clinical decision-making, suggesting a reliable ability
to integrate contextual modifications. Conversely, lower match rates suggest susceptibility to
contextual misinterpretation or diagnostic instability.
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susceptibility to contextual misinterpretation or diagnostic 
instability [17].

2.7.6.2. Qualitative Review of Contextual Appropriateness
In addition to the quantitative Diagnostic Match Rate, a 
qualitative review was con- ducted by two independent board-
certified physicians to gain deeper insights into the nature and 
clinical appropriateness of the LLMs’ responses to contextual 
information. This qualitative analysis aimed to understand why the 
LLMs achieved or failed to achieve a diagnostic match in certain 
scenarios and to identify patterns in their contextual reasoning. 
The qualitative review process involved the following steps:
•	 Physician Review of LLM Diagnoses: Two independent 

board-certified physicians were provided with:
•	 The context-absent baseline scenario.
•	 Each context-rich variation of that baseline scenario, 

including the specific con- textual modifications introduced.
•	 The diagnoses generated by both Gemini and ChatGPT for 

each context-rich scenario.
•	 The pre-defined clinically expected diagnosis for each 

context-rich scenario.
•	 Categorization of Diagnostic Changes: For each context-

rich scenario and for each LLM, the physicians independently 
categorized the diagnostic shift (or lack thereof) from the 
baseline scenario to the context-rich scenario based on its 
clinical appropriateness, using pre-defined categories:

•	 Appropriate Change: The LLM’s diagnostic shift from the 
baseline to the context- rich scenario was deemed clinically 
justified, evidence-based, and aligned with the intended 
contextual shift. It indicated that the LLM effectively utilized 
the contextual information to refine the diagnosis in a clinically 
sound manner.

•	 Inappropriate Change: The LLM’s diagnostic shift was 
considered clinically un- justified, erroneous, illogical, or 
mis interpretive of the contextual information. It indicated a 
failure in contextual reasoning, leading to a clinically invalid 
or less accurate diagnosis.

•	 Ambiguous Change: The clinical appropriateness of the 
diagnostic shift was not definitively clear-cut based on the 
provided information alone and required further clinical detail 
or investigation. These cases represented scenarios where 
the con- textual modification introduced genuine clinical 
ambiguity, or where the LLM’s response, while not clearly 
incorrect, was not definitively the most clinically appropriate 
shift.

•	 Assessment of Inter-Rater Reliability and Resolution of 
Discrepancies: To ensure the reliability of the qualitative 
categorization, the agreement between the two physicians’ 
independent assessments was quantified using Cohen’s 
kappa (κ). The calculated Cohen’s kappa coefficient (κ = 
0.85 ) indicated near-perfect agreement between the physician 
reviewers, demonstrating a high degree of consistency in their 
clinical judgments [18]. Any cases where the initial physician 
categorizations differed (ambiguous cases and disagreements) 
underwent secondary review and discussion, involving a third 
senior clinician, to reach a final consensus categorization and 

resolve any discrepancies.

2.7.7. Rationale for Protocol Design
This mixed-methods protocol, combining quantitative Diagnostic 
Match Rates with in- depth qualitative physician review, was 
specifically designed to provide a comprehensive and clinically 
meaningful assessment of LLM contextual awareness. The 
quantitative metric pro- vided an overall measure of how frequently 
the LLMs’ diagnostic outputs aligned with clinically expected 
shifts, while the qualitative analysis provided essential insights 
into the clinical validity and reasoning processes underlying these 
responses. This combined approach allowed for a sound and subtle 
evaluation of the extent to which Gemini and ChatGPT could 
effec- tively emulate human-like clinical judgment in integrating 
and responding to clinically relevant contextual information within 
complex diagnostic scenarios [19].

2.8. Data Analysis
The diagnostic outputs from all LLMs across experimental 
conditions (consistency, susceptibility to manipulation, and 
contextual awareness) were systematically analyzed using mixed 
methods to comprehensively evaluate diagnostic reliability.

2.8.1. Quantitative Analysis: Performance Metrics for 
Diagnostic Reliability
To quantitatively examine the LLMs’ performance across the three 
key dimensions of diagnostic reliability, we calculated specific 
metrics for each dimension. These metrics were designed to provide 
objective, numerical measures of consistency, susceptibility to 
manipulation, and the influence of clinically relevant context on 
diagnostic outputs.

2.8.1.1. Consistency Rates: Measuring Output Stability
•	 Definition: The Consistency Rate was defined as the 

percentage of baseline clinical scenarios for which an LLM 
produced an identical final diagnosis across three repeated 
presentations of the same unmanipulated clinical scenario 
with different variations. This metric evaluates the internal 
stability and reproducibility of the LLMs’ diagnostic outputs 
when provided with the same input multiple times.

•	 Calculation Formula:

Where:
•	 Number of Baseline Scenarios with Consistent Diagnoses 

refers to the count of baseline scenarios (out of 52) for which 
all three diagnostic outputs from an LLM were clinically 
identical.

•	 Total Number of Baseline Scenarios is the total number 
of original, unmanipulated clinical scenarios used in the 
consistency assessment (n = 52).
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baseline scenarios (out of 52) for which all three diagnostic outputs from an LLM were
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Interpretation: A higher Consistency Rate indicates greater 
stability and reliability in the LLM’s diagnostic outputs under 
identical input conditions, suggesting a reliable and deterministic 
response to consistent clinical information. Conversely, lower 
Consistency Rates would suggest potential instability or variability 
in the LLM’s diagnostic reasoning process [20].

2.8.1.2. Susceptibility Rates: Evaluating Vulnerability to 
Manipulation
• Definition: The Susceptibility Rate quantifies the percentage of 
manipulated scenarios in which an LLM’s final diagnosis changed 
when compared to the diagnosis generated for the corresponding 
original, unmanipulated prompt of the same clinical scenario. 
This metric evaluates the LLMs’ vulnerability to diagnostically 
irrelevant but superficially plausible information introduced into 
the prompt.
Calculation Formula:

Where:
•	 Number of Manipulated Scenarios Resulting in a Changed 

Diagnosis is the count of manipulated scenarios (out of 10 
tested) for which the LLM’s diagnosis differed from the 
baseline diagnosis of the original, unmanipulated scenario.

•	 Total Number of Manipulated Scenarios is the total number 
of scenarios subjected to manipulation testing (n=10).

Interpretation: A higher Susceptibility Rate indicates a greater 
vulnerability of the LLM to manipulation, suggesting that its 
diagnostic output is more easily swayed by irrelevant information. 
This would highlight a potential weakness in the model’s ability to 
filter noise and focus on core clinical data. A lower Susceptibility 
Rate suggests greater stability against such manipulation [21].

2.8.1.3. Context Influence Rates: Evaluating Responsiveness to 
Contextual Variations
•	 Definition: The Context Influence Rate measures the 

percentage of contextually varied scenario sets in which 
the LLM’s final diagnosis changed across the different con- 
textually modified versions of a single, original clinical 
case. This metric evaluates the LLMs’ responsiveness to 
clinically meaningful contextual factors, such as changes in 
demographics, medical history, or clinical presentation.

•	 Calculation Formula:

	

Where:

•	 Number of Contextually Varied Scenario Sets Showing 
Diagnostic Changes is the count of original scenario sets 
for which the LLM produced different diagnoses across the 
contextually varied versions.

•	 Total Number of Contextually Varied Scenario Sets is 
the total number of original scenarios used as the basis for 
contextual variation.

Interpretation: The Context Influence Rate should be interpreted 
with detail. While it quantifies the LLMs’ responsiveness to 
contextual changes, a higher rate is not inherently indicative 
of better performance. It merely suggests a greater degree of 
diagnostic variability in response to contextual shifts. The clinical 
appropriateness and validity of these diagnostic changes—
whether they represent clinically justified adaptations to context or 
inappropriate over-sensitivity—were critically evaluated through 
the qualitative analysis described below.

2.8.2. Qualitative Analysis: Clinician-Informed Review of 
Diagnostic Changes
To provide a deeper understanding of the clinical relevance and 
appropriateness of the diagnostic changes observed—particularly 
in the Contextual Awareness experiments—a structured qualitative 
review was conducted. This analysis aimed to move beyond simple 
numerical metrics and evaluate the clinical meaningfulness of the 
LLMs’ diagnostic variability.

2.8.3. Qualitative Review Process:
•	 Case Selection for Review: As described previously, 

qualitative review focused on cases exhibiting diagnostic 
variability. Specifically, all instances where LLM diagnoses 
differed across compared prompts (original vs. manipulated, 
or across contextually varied prompts) were flagged for in-
depth clinical evaluation. This targeted approach ensured 
that qualitative analysis concentrated on scenarios where the 
nature of diagnostic changes was most pertinent.

•	 Establishment of Reference Standards: To provide a 
benchmark for evaluating the clinical validity of LLM 
diagnoses, we established ground-truth diagnoses for each 
clinical scenario. These reference standard diagnoses were 
derived from UpToDate and DynaMed, two widely respected 
and evidence-based clinical decision support systems.

•	 Independent Review by Board-Certified Physicians: The 
qualitative review of di- agnostic changes was performed by 
two board-certified physicians, who remained anonymous 
to protect their privacy and ensure unbiased assessments. 
These physicians possessed expertise in internal medicine 
and relevant subspecialties, aligning with the clinical 
domains covered by the study’s scenarios. The physicians 
independently reviewed each flagged case, provided with the 
original and compared prompts (manipulated or contextually 
varied), and the corresponding diagnostic outputs from 
Gemini and ChatGPT.

•	 Categorization of Clinical Appropriateness: Physicians 
categorized each diagnostic change based on clinical validity 

• Total Number of Baseline Scenarios is the total number of original, unmanipulated
clinical scenarios used in the consistency assessment (n=52).

Interpretation: A higher Consistency Rate indicates greater stability and reliability in the
LLM’s diagnostic outputs under identical input conditions, suggesting a reliable and determin-
istic response to consistent clinical information. Conversely, lower Consistency Rates would
suggest potential instability or variability in the LLM’s diagnostic reasoning process.

2.8.1.2. Susceptibility Rates: Evaluating Vulnerability to Manipulation

• Definition: The Susceptibility Rate quantifies the percentage of manipulated scenar-
ios in which an LLM’s final diagnosis changed when compared to the diagnosis generated
for the corresponding original, unmanipulated prompt of the same clinical scenario. This
metric evaluates the LLMs’ vulnerability to diagnostically irrelevant but superficially
plausible information introduced into the prompt.

• Calculation Formula:

Susceptibility Rate =




Number of Manipulated Scenarios
Resulting in a Changed Diagnosis

Total Number of Manipulated Scenarios




× 100% (3)

Where:

• Number of Manipulated Scenarios Resulting in a Changed Diagnosis is the
count of manipulated scenarios (out of 10 tested) for which the LLM’s diagnosis differed
from the baseline diagnosis of the original, unmanipulated scenario.

• Total Number of Manipulated Scenarios is the total number of scenarios subjected
to manipulation testing (n=10).

Interpretation: A higher Susceptibility Rate indicates a greater vulnerability of the LLM
to manipulation, suggesting that its diagnostic output is more easily swayed by irrelevant
information. This would highlight a potential weakness in the model’s ability to filter noise
and focus on core clinical data. A lower Susceptibility Rate suggests greater stability against
such manipulation.

2.8.1.3. Context Influence Rates: Evaluating Responsiveness to Contextual Varia-
tions

• Definition: The Context Influence Rate measures the percentage of contextually
varied scenario sets in which the LLM’s final diagnosis changed across the different con-
textually modified versions of a single, original clinical case. This metric evaluates the
LLMs’ responsiveness to clinically meaningful contextual factors, such as changes in de-
mographics, medical history, or clinical presentation.
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2.8.1.2. Susceptibility Rates: Evaluating Vulnerability to Manipulation

• Definition: The Susceptibility Rate quantifies the percentage of manipulated scenar-
ios in which an LLM’s final diagnosis changed when compared to the diagnosis generated
for the corresponding original, unmanipulated prompt of the same clinical scenario. This
metric evaluates the LLMs’ vulnerability to diagnostically irrelevant but superficially
plausible information introduced into the prompt.

• Calculation Formula:

Susceptibility Rate =




Number of Manipulated Scenarios
Resulting in a Changed Diagnosis

Total Number of Manipulated Scenarios




× 100% (3)

Where:

• Number of Manipulated Scenarios Resulting in a Changed Diagnosis is the
count of manipulated scenarios (out of 10 tested) for which the LLM’s diagnosis differed
from the baseline diagnosis of the original, unmanipulated scenario.

• Total Number of Manipulated Scenarios is the total number of scenarios subjected
to manipulation testing (n=10).

Interpretation: A higher Susceptibility Rate indicates a greater vulnerability of the LLM
to manipulation, suggesting that its diagnostic output is more easily swayed by irrelevant
information. This would highlight a potential weakness in the model’s ability to filter noise
and focus on core clinical data. A lower Susceptibility Rate suggests greater stability against
such manipulation.

2.8.1.3. Context Influence Rates: Evaluating Responsiveness to Contextual Varia-
tions

• Definition: The Context Influence Rate measures the percentage of contextually
varied scenario sets in which the LLM’s final diagnosis changed across the different con-
textually modified versions of a single, original clinical case. This metric evaluates the
LLMs’ responsiveness to clinically meaningful contextual factors, such as changes in de-
mographics, medical history, or clinical presentation.
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• Calculation Formula:

Context Influence Rate =




Number of Contextually Varied Scenario
Sets Showing Diagnostic Changes

Total Number of Contextually Varied
Scenario Sets




× 100% (4)

Where:

• Number of Contextually Varied Scenario Sets Showing Diagnostic Changes is
the count of original scenario sets for which the LLM produced different diagnoses across
the contextually varied versions.

• Total Number of Contextually Varied Scenario Sets is the total number of original
scenarios used as the basis for contextual variation.

Interpretation: The Context Influence Rate should be interpreted with detail. While it
quantifies the LLMs’ responsiveness to contextual changes, a higher rate is not inherently
indicative of better performance. It merely suggests a greater degree of diagnostic variability
in response to contextual shifts. The clinical appropriateness and validity of these diagnostic
changes—whether they represent clinically justified adaptations to context or inappropriate
over-sensitivity—were critically evaluated through the qualitative analysis described below.

2.8.2. Qualitative Analysis: Clinician-Informed Review of Diagnostic Changes
To provide a deeper understanding of the clinical relevance and appropriateness of the

diagnostic changes observed—particularly in the Contextual Awareness experiments—a struc-
tured qualitative review was conducted. This analysis aimed to move beyond simple numerical
metrics and evaluate the clinical meaningfulness of the LLMs’ diagnostic variability.

2.8.3. Qualitative Review Process:

• Case Selection for Review: As described previously, qualitative review focused on
cases exhibiting diagnostic variability. Specifically, all instances where LLM diagnoses
differed across compared prompts (original vs. manipulated, or across contextually varied
prompts) were flagged for in-depth clinical evaluation. This targeted approach ensured
that qualitative analysis concentrated on scenarios where the nature of diagnostic changes
was most pertinent.

• Establishment of Reference Standards: To provide a benchmark for evaluating the
clinical validity of LLM diagnoses, we established ground-truth diagnoses for each clin-
ical scenario. These reference standard diagnoses were derived from UpToDate and
DynaMed, two widely respected and evidence-based clinical decision support systems.

• Independent Review by Board-Certified Physicians: The qualitative review of di-
agnostic changes was performed by two board-certified physicians, who remained anony-
mous to protect their privacy and ensure unbiased assessments. These physicians pos-
sessed expertise in internal medicine and relevant subspecialties, aligning with the clinical
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using pre-defined categories: Clinically Appropriate 
Diagnostic Change, Clinically Inappropriate Diagnostic 
Change, and Ambiguous Diagnostic Change.

•	 Assessment of Inter-Rater Reliability and Resolution of 
Discrepancies: The agreement between the two physicians’ 
assessments was measured using Cohen’s kappa ((κ = 0.85 
), showing near-perfect consistency. Disagreements were 
resolved through secondary review and discussion with a third 
senior clinician to reach a consensus.

2.8.4. Integration of Qualitative and Quantitative Findings
The insights gained from the qualitative analysis were directly 
integrated with the quantitative metrics (Context Influence Rates) 
to provide a more holistic and clinically grounded interpretation of 
the LLMs’ diagnostic performance. Specifically:
•	 Contextual Awareness Cases: The qualitative review was 

essential for determining whether the diagnostic shifts observed 
in contextually varied scenarios were genuinely contextually 
appropriate—reflecting clinically sound adaptations to 
new contextual in- formation—or represented erroneous or 
clinically illogical changes. This allowed us to interpret the 
Context Influence Rates in terms of true contextual awareness 
versus mere diagnostic variability.

By combining quantitative metrics with the in-depth qualitative 
clinical review, this comprehensive data analysis approach 
provided a reliable and clinically meaningful evaluation of the 
diagnostic reliability and reasoning capabilities of Gemini and 
ChatGPT across the different dimensions.

2.9. Ethical Considerations and Limitations
2.9.1. Data Privacy and Anonymization
This study employed de novo synthetic patient data for all 
experiments, eliminating direct privacy risks associated with real-
world Protected Health Information (PHI). While synthetic data 
reduces re-identification risks, we upheld ethical data handling and 
security best practices throughout the study, acknowledging the 
sensitive healthcare context [22].

2.9.1. Potential for Bias and Fairness in Diagnostic AI
LLMs are trained on massive datasets that may reflect societal 
biases, potentially leading to disparities in diagnostic accuracy 
across demographic groups. While not directly investigated here, 
we acknowledge algorithmic bias as a critical ethical concern in 
healthcare AI, potentially exacerbating health inequities [24]. 
Future research must prioritize bias evaluation and mitigation to 
ensure equitable AI-augmented healthcare for all.

2.9.2. Transparency, Explainability, and the Black Box 
Challenge
Transparency and explainability are ethically essential in high-
stakes diagnostics. Clinician trust and accountability depend on 
understanding AI reasoning. This study recognizes the inherent 
limitations in the explainability of current LLMs like Gemini 
and ChatGPT. Future efforts must prioritize enhancing AI system 
transparency, utilizing techniques like attention mechanisms 

and explainable AI, to foster responsible clinical integration and 
oversight.

2.9.3. Responsible Clinical Use and the Imperative of Clinician 
Oversight
This research underscores the ethical imperative for LLMs to 
serve as adjunctive tools, augmenting, not replacing, human 
clinical expertise. Ethical AI deployment in healthcare requires 
reliable clinician oversight, including critical evaluation of AI 
outputs and safeguarding human clinical judgment in all patient 
care aspects. Over-reliance on unvalidated AI diagnoses risks 
clinician deskilling, inappropriate delegation, and compromised 
patient safety.

2.9.4. Potential for Misinformation, Misdiagnosis, and Impact 
on Patient Outcomes Our findings, particularly regarding 
manipulation susceptibility and limited contextual awareness, 
highlight the real risk of misinformation and misdiagnosis if 
LLMs are prematurely deployed without safeguards. Erroneous 
LLM outputs could negatively impact patient out- comes, causing 
treatment delays, inappropriate care, and eroded trust. This study 
aims to inform responsible deployment strategies, emphasizing 
comprehensive validation, monitoring, and integration under 
clinician direction to mitigate these risks [25].

2.9.5. Broader Ethical and Societal Landscape of AI in 
Healthcare
AI integration raises broader ethical, legal, and societal questions 
beyond this study’s scope. These include accountability for 
AI errors, evolving patient-physician relationships, impacts on 
healthcare equity, and the need for proactive policy. Ongoing 
multi-stakeholder ethical reflection—involving clinicians, 
patients, ethicists, policymakers, and developers—is crucial to 
responsibly guide AI development in healthcare and ensure it 
enhances beneficence, non- maleficence, autonomy, and justice.

In conclusion, this study endeavors to contribute to the growing 
body of empirical research critically exploring the capabilities 
and limitations of LLMs in the complex domain of health- care. 
We strongly advocate for continued and independent evaluation 
of these technologies, coupled with proactive and comprehensive 
ethical consideration, to ensure that AI-driven tools are developed 
and implemented in a manner that demonstrably enhances, rather 
than potentially compromising, the paramount goals of patient 
safety, clinical quality, equitable access, and the fundamental trust 
that underpins the patient-physician relationship.

3. Result
The detailed findings for each dimension are presented below, 
highlighting both the promising capabilities and key limitations of 
these LLMs in clinical diagnosis.

3.1. Diagnostic Consistency
The first dimension of our investigation systematically evaluated the 
diagnostic consistency of Gemini and ChatGPT. This assessment 
focused on the reproducibility of their diagnostic outputs across 
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variations of clinically equivalent scenarios and repeated trials, 
adhering to a comprehensive hierarchical methodology designed 
to comprehensively evaluate diagnostic stability [26]. The most 
significant finding of this analysis is that both LLMs demonstrated 

perfect diagnostic consistency across all 52 baseline clinical 
scenarios when evaluated against our defined criteria for clinical 
equivalence .

LLM Baseline Scenario Consistency Rate (%) 
Gemini 100.0

Gemini 100.0
ChatGPT 100.0

Table 4: Baseline Scenario Consistency Rates of LLMs

III. Result

The detailed findings for each dimension are presented below, highlighting both the promis-
ing capabilities and key limitations of these LLMs in clinical diagnosis.

3.1. Diagnostic Consistency

The first dimension of our investigation systematically evaluated the diagnostic consistency
of Gemini and ChatGPT. This assessment focused on the reproducibility of their diagnostic
outputs across variations of clinically equivalent scenarios and repeated trials, adhering to
a comprehensive hierarchical methodology designed to comprehensively evaluate diagnostic
stability. The most significant finding of this analysis is that both LLMs demonstrated perfect
diagnostic consistency across all 52 baseline clinical scenarios when evaluated against our
defined criteria for clinical equivalence.

LLM Baseline Scenario Consistency Rate (%)

Gemini 100.0
ChatGPT 100.0

Table 4: Baseline Scenario Consistency Rates of LLMs

Figure 2: Bar Chart Visualization of Baseline Scenario Consistency of LLMs

• Quantitative Analysis: 100% Baseline Scenario Consistency Rate for Both
LLMs: As numerically summarized in Table 4 and visually represented in Figure 2,
both Gemini and ChatGPT achieved a 100% Baseline Scenario Consistency Rate.
This key quantitative result signifies that, for each of the 52 distinct baseline clinical
scenarios, when subjected to our defined consistency evaluation process, the models were
consistently deemed to provide clinically equivalent diagnoses across all tested variations
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•	 Quantitative Analysis: 100% Baseline Scenario Consistency 
Rate for Both LLMs: As numerically summarized in Table 
4 and visually represented in Figure 2, both Gemini and 
ChatGPT achieved a 100% Baseline Scenario Consistency 
Rate. This key quantitative result signifies that, for each of 
the 52 distinct baseline clinical scenarios, when subjected to 
our defined consistency evaluation process, the models were 
consistently deemed to provide clinically equivalent diagnoses 
across all tested variations and repetitions [27]. This perfect 
consistency rate was uniformly observed across the entire set 
of baseline scenarios for both LLMs, demonstrating a high 
level of diagnostic stability as defined by our methodology.

•	 A consistent diagnosis for a baseline scenario was defined 
as the LLM pro- viding clinically equivalent diagnoses 
across all four variations (demographic, phrasing, 
rephrasing) and their repeated trials. This means that to 
achieve a consistent classification for a baseline scenario, the 
LLM had to demonstrate clinical equivalence across all minor 
alterations we introduced to that base case. Clinical equiva- 
lence was defined as exact matches or clinically synonymous 
diagnoses, as determined by physician reviewers.

•	 Interpretation of Perfect Baseline Scenario Consistency: 
The unequivocally high Baseline Scenario Consistency 
Rates achieved by both Gemini and ChatGPT demonstrate a 

significant degree of diagnostic stability and reproducibility 
under the controlled conditions of our study. This finding 
indicates that, when evaluated through the lens of our multi-
layered methodology incorporating scenario variations 
and repeated trials, both LLMs exhibit a reliable ability to 
provide clinically equivalent diagnostic outputs for a given 
baseline clinical scenario, across minor alterations in input 
phrasing and demo- graphics. This suggests a foundational 
level of algorithmic reliability in their diagnostic reasoning 
when examined for consistency across clinically similar 
presentations of the same underlying clinical problem.

3.2. Susceptibility to Manipulation
The second dimension of our investigation explored the 
susceptibility of LLMs to diagnostic manipulation. This assessment 
specifically examined their vulnerability to the introduction of 
clinically irrelevant, but superficially plausible, information 
into the clinical prompts, mirroring the presence of noise often 
encountered in real-world clinical narratives. Our findings 
revealed that while both models exhibited a degree of reliability by 
retaining their original diagnoses in the majority of manipulated 
scenarios, neither LLM was entirely impervious to manipulation, 
and they demonstrated distinct susceptibility profiles [28].



J Future Med Healthcare Innovation, 2025 Volume 3 | Issue 1 | 14

•	 Quantitative Susceptibility Analysis: Gemini Exhibits 
Numerically Higher Susceptibility Rate: The quantitative 
analysis of susceptibility, summarized in Table 5 and 
visualized in Figure 3, revealed differential vulnerability 
between the two LLMs. Gemini exhibited a Susceptibility 
Rate of 40.0%, indicating that in 4 out of 10 manipulated 

clinical scenarios, the introduction of irrelevant information 
led to a change in its primary diagnosis. In comparison, 
ChatGPT demonstrated a numerically lower Susceptibility 
Rate of 30.0%, with diagnostic alterations occurring in 3 out 
of 10 manipulated cases.

LLM Cases with Changed Diagnosis (%)
Gemini 40.0
ChatGPT 30.0

Table 5: Susceptibility Rates (Diagnosis Change) of LLMs Under Manipulation

LLM Cases with Changed Diagnosis (%)

Gemini 40.0
ChatGPT 30.0

Table 5: Susceptibility Rates (Diagnosis Change) of LLMs Under Manipulation

Figure 3: Bar Chart Comparing Susceptibility Rates (Diagnosis Change) of LLMs

• Manipulation Protocol and Irrelevant Information Categories: To systemati-
cally examine susceptibility, we selected a subset of ten original clinical scenarios from
our 52-case dataset for manipulation. For each of these ten scenarios, we created a ma-
nipulated counterpart by embedding clinically irrelevant, non-clinical information
across different distinct categories, while crucially maintaining all diagnostically critical
clinical data unchanged. These distinct categories of irrelevant information, designed to
simulate noise in clinical settings, were: 1) Whimsical/Figurative Language, 2) Alterna-
tive Medicine Beliefs, 3) Anecdotal/Subjective Claims, 4) Cultural/Regional References,
5) Patient Demeanor/Psychology, and 6) Irrelevant Lifestyle Details (detailed examples
of each category are provided in the Methodology section). This structured approach
ensured a systematic and clinically plausible form of manipulation.

• Criteria for Determining Susceptibility: Susceptibility to manipulation was deter-
mined by comparing the diagnoses generated by each LLM for the original and manipu-
lated versions of each of the ten scenarios. A diagnosis change, indicative of susceptibility,
was defined as occurring when the manipulation resulted in a clinically distinct diag-
nosis, meaning the diagnosis for the manipulated scenario represented a different medical
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•	 Manipulation Protocol and Irrelevant Information 
Categories: To systematically examine susceptibility, we 
selected a subset of ten original clinical scenarios from our 52-
case dataset for manipulation. For each of these ten scenarios, 
we created a manipulated counterpart by embedding clinically 
irrelevant, non-clinical information across different distinct 
categories, while crucially maintaining all diagnostically 
critical clinical data unchanged [29]. These distinct categories 
of irrelevant information, designed to simulate noise in 
clinical settings, were: 1) Whimsical/Figurative Language, 2) 
Alternative Medicine Beliefs, 3) Anecdotal/Subjective Claims, 
4) Cultural/Regional References, 5) Patient Demeanor/
Psychology, and 6) Irrelevant Lifestyle Details (detailed 
examples of each category are provided in the Methodology 
section). This structured approach ensured a systematic and 

clinically plausible form of manipulation.
•	 Criteria for Determining Susceptibility: Susceptibility to 

manipulation was deter- mined by comparing the diagnoses 
generated by each LLM for the original and manipulated 
versions of each of the ten scenarios. A diagnosis change, 
indicative of susceptibility, was defined as occurring when 
the manipulation resulted in a clinically distinct diagnosis, 
meaning the diagnosis for the manipulated scenario 
represented a different medical condition from the original 
diagnosis, and reflected a change that could potentially alter 
clinical interpretation or subsequent patient management. 
Conversely, reliability was defined as the LLM maintaining 
clinically equivalent diagnostic outputs for both the original 
and manipulated scenarios, despite the introduction of 
irrelevant information [30].
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Figure 4: Grouped Bar Chart of Diagnosis Change Status under Manipulation

condition from the original diagnosis, and reflected a change that could potentially alter
clinical interpretation or subsequent patient management. Conversely, reliability was
defined as the LLM maintaining clinically equivalent diagnostic outputs for both the
original and manipulated scenarios, despite the introduction of irrelevant information.

• Interpretation of Quantitative Susceptibility Findings: The quantitative Suscep-
tibility Rates reveal that both Gemini and ChatGPT are vulnerable to diagnostic shifts
when presented with clinically irrelevant, yet plausible, input modifications, although
Gemini exhibited a numerically higher rate of such susceptibility. This suggests that
while both models can be influenced by diagnostically inconsequential noise, ChatGPT
demonstrated slightly greater overall reliability against this specific form of manipulation
based on the aggregate rates of diagnostic change. However, the clinical significance of
these changes requires further examination through qualitative analysis.

The numerical susceptibility rates, while providing an overview of the frequency of diagnostic
changes, do not fully capture the clinical implications of these shifts. A Susceptibility Rate of
30-40% indicates a non-negligible vulnerability to manipulation, suggesting that in a significant
minority of cases, the introduction of irrelevant information can sway the diagnostic output
of these LLMs. This raises concerns about the potential for these models to be influenced by
extraneous details in real-world clinical settings, where patient narratives are often complex and
may include clinically unimportant information. Furthermore, the differential susceptibility
rates between Gemini and ChatGPT suggest potential architectural or training differences
influencing their reliability to noisy inputs.

30

Figure 4: Grouped Bar Chart of Diagnosis Change Status under Manipulation
•	 Interpretation of Quantitative Susceptibility Findings: The 

quantitative Susceptibility Rates reveal that both Gemini and 
ChatGPT are vulnerable to diagnostic shifts when presented 
with clinically irrelevant, yet plausible, input modifications, 
although Gemini exhibited a numerically higher rate of such 
susceptibility. This suggests that while both models can be 
influenced by diagnostically inconsequential noise, ChatGPT 
demonstrated slightly greater overall reliability against this 
specific form of manipulation based on the aggregate rates of 
diagnostic change. However, the clinical significance of these 
changes requires further examination through qualitative 
analysis. The numerical susceptibility rates, while providing 
an overview of the frequency of diagnostic changes, do 
not fully capture the clinical implications of these shifts. A 
Susceptibility Rate of 30-40% indicates a non-negligible 
vulnerability to manipulation, suggesting that in a significant 
minority of cases, the introduction of irrelevant information 
can sway the diagnostic output of these LLMs. This raises 
concerns about the potential for these models to be influenced 
by extraneous details in real-world clinical settings, where 
patient narratives are often complex and may include clinically 
unimportant information. Furthermore, the differential 
susceptibility rates between Gemini and ChatGPT suggest 
potential architectural or training differences influencing their 
reliability to noisy inputs.

3.3. Contextual Awareness
This third dimension of our investigation evaluated the contextual 
awareness of Gemini and ChatGPT, specifically examining 
their ability to appropriately adapt their diagnostic outputs in 
response to the introduction of clinically relevant contextual 
patient information. Our findings indicate that while both LLMs 
are influenced by context, ChatGPT demonstrated a higher 
degree of responsiveness in terms of overall diagnostic change, 
but this was not unequivocally associated with superior clinical 
appropriateness.

•	 Quantitative Context Influence Rates: ChatGPT 
Demonstrates a Higher Rate of Diagnostic Modification 
with Contextual Enrichment: As numerically summarized 
in Table 6 and visually compared in Figure 5, our analysis 
revealed that Chat- GPT exhibited a Context Influence 
Rate of 77.8%, which is significantly higher than Gemini’s 
Context Influence Rate of 55.6%. This core quantitative 
finding indicates that across the nine contextually varied 
scenarios tested, ChatGPT modified its initial diagnosis in a 
greater proportion of cases (approximately 78%) compared to 
Gemini (approximately 56%) when presented with clinically 
pertinent contextual information.

LLM Context Influence Rate (%)
Gemini 55.6
ChatGPT 77.8

Table 6: Context Influence Rates (Diagnosis Change due to Contextual Information) of LLMs

•	 Concise Methodological Foundation for Contextual 
Awareness Assessment: The Context Influence Rates 
were derived from a targeted protocol (detailed in Method- 
ology) using nine contextually varied scenarios, developed 

from two baseline cases. Specifically, four contextually 
varied versions were created from one baseline case and 
five from another, totaling nine enriched scenarios. These 
variations systematically incorpo- rated clinically meaningful 
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modifications across key parameters: demographics, clinical 
presentation, medical history/medications, and diagnostic 
test results. These modifications were designed to create 
clinically distinct scenarios by altering contextually relevant 
factors [31].

•	 Concise Calculation of Context Influence Rate: The 
Context Influence Rate quantifies the frequency of diagnostic 
change due to contextual modifications. For each of the nine 

scenario sets (from two baseline cases), we compared the 
LLM’s baseline diagnosis to diagnoses from each contextually 
enriched version. A diagnosis change was registered if any 
alteration occurred between the baseline and a contextually 
enriched scenario within a set. The Context Influence Rate is 
the percentage of these scenario sets exhibiting at least one 
such diagnosis change.

Figure 5: Bar Chart Comparing Context Influence Rates (Diagnosis Change due to Context) of LLMs

• Interpretation of Differential Context Influence Rates: The observed Context
Influence Rates indicate that both Gemini and ChatGPT demonstrate a capacity to alter
their diagnostic outputs when presented with clinically relevant contextual information.
However, ChatGPT’s substantially higher Context Influence Rate (77.8% vs. Gemini’s
55.6%) suggests a significantly greater tendency to modify its diagnoses in response to the
types of contextual variations introduced in our study. This quantitative finding implies
that ChatGPT’s diagnostic algorithm is, in purely numerical terms, more sensitive and
responsive to clinically relevant context, leading to diagnostic changes more frequently
than Gemini. It is crucial to emphasize, however, that this quantitative metric alone does
not determine the clinical quality or appropriateness of these context-driven diagnostic
changes. A higher rate of change does not automatically equate to improved diagnostic
accuracy or clinical reasoning. The subsequent qualitative analysis will critically evaluate
the clinical validity and appropriateness of these context-driven diagnostic adaptations to
determine whether this heightened responsiveness translates to clinically sound diagnostic
refinement or potentially introduces new forms of error or clinically inappropriate over-
sensitivity to context.

3.3.1. Contextual Awareness: Qualitative Analysis
To gain a clinically detailed understanding of the LLMs’ contextual awareness, a thorough

qualitative review was performed by two independent, board-certified physicians (inter-rater
reliability: Cohen’s Kappa = 0.85). These expert clinicians evaluated the diagnostic shifts
triggered by the introduction of clinically relevant contextual modifications (such as updated
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•	 Interpretation of Differential Context Influence Rates: The 
observed Context Influence Rates indicate that both Gemini 
and ChatGPT demonstrate a capacity to alter their diagnostic 
outputs when presented with clinically relevant contextual 
information. However, ChatGPT’s substantially higher 
Context Influence Rate (77.8% vs. Gemini’s 55.6%) suggests 
a significantly greater tendency to modify its diagnoses in 
response to the types of contextual variations introduced in 
our study. This quantitative finding implies that ChatGPT’s 
diagnostic algorithm is, in purely numerical terms, more 
sensitive and responsive to clinically relevant context, leading 
to diagnostic changes more frequently than Gemini. It is crucial 
to emphasize, however, that this quantitative metric alone does 
not determine the clinical quality or appropriateness of these 
context-driven diagnostic changes. A higher rate of change 
does not automatically equate to improved diagnostic accuracy 
or clinical reasoning. The subsequent qualitative analysis will 
critically evaluate the clinical validity and appropriateness 
of these context-driven diagnostic adaptations to determine 
whether this heightened responsiveness translates to clinically 

sound diagnostic refinement or potentially introduces new 
forms of error or clinically inappropriate over- sensitivity to 
context.

3.3.1. Contextual Awareness: Qualitative Analysis
To gain a clinically detailed understanding of the LLMs’ contextual 
awareness, a thorough qualitative review was performed by two 
independent, board-certified physicians (inter-rater reliability: 
Cohen’s Kappa = 0.85). These expert clinicians evaluated the 
diagnostic shifts triggered by the introduction of clinically relevant 
contextual modifications (such as updated lab results, refined 
patient history, or new imaging findings). Each diagnostic change 
was then categorized, based on pre-defined criteria and reference 
standards derived from UpToDate and DynaMed, as either 
Appropriate, Inappropriate, or Ambiguous. This process, detailed 
in the Methodology section, focused on cases exhibiting diagnostic 
variability across contextually enriched prompts and involved 
resolving discrepancies through consensus with a third senior 
clinician to ensure reliable and clinically valid categorizations.
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Figure 6: Grouped Bar Chart of Diagnosis Change Status with Contextual Information

lab results, refined patient history, or new imaging findings). Each diagnostic change was then
categorized, based on pre-defined criteria and reference standards derived from UpToDate
and DynaMed, as either Appropriate, Inappropriate, or Ambiguous. This process, detailed in
the Methodology section, focused on cases exhibiting diagnostic variability across contextually
enriched prompts and involved resolving discrepancies through consensus with a third senior
clinician to ensure reliable and clinically valid categorizations.

3.3.2. Inter-Rater Agreement and Physician Consensus
The qualitative review process was marked by exceptionally strong inter-rater agreement

between the two physician reviewers, as evidenced by a Cohen’s Kappa coefficient of 0.85.
This near-perfect agreement underscores the reliability and consistency of their clinical judg-
ments and the reliability of the qualitative framework employed. Furthermore, in all cases,
the physicians reached identical categorizations, reinforcing the consensus-driven nature of the
qualitative findings. Table 7 presents the physician-consensus categorization of context-driven
diagnostic changes for Gemini and ChatGPT, providing an overview of the clinical appropriate-
ness distribution. Table 8 offers a more granular view, detailing the individual categorizations
(counts and percentages) provided by Physician X and Physician Y for each LLM.

Category Gemini (%) ChatGPT (%)

Appropriate Changes 66.7 55.6
Inappropriate Changes 22.2 33.3
Ambiguous Changes 11.1 11.1

Table 7: Consensus Categorization of Context-Driven Diagnostic Changes
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3.3.2. Inter-Rater Agreement and Physician Consensus
The qualitative review process was marked by exceptionally 
strong inter-rater agreement between the two physician reviewers, 
as evidenced by a Cohen’s Kappa coefficient of 0.85. This near-
perfect agreement underscores the reliability and consistency 
of their clinical judgments and the reliability of the qualitative 
framework employed. Furthermore, in all cases, the physicians 

reached identical categorizations, reinforcing the consensus-driven 
nature of the qualitative findings. Table 7 presents the physician-
consensus categorization of context-driven diagnostic changes 
for Gemini and ChatGPT, providing an overview of the clinical 
appropriate- ness distribution. Table 8 offers a more granular view, 
detailing the individual categorizations (counts and percentages) 
provided by Physician X and Physician Y for each LLM.

Category Gemini (%) ChatGPT (%)
Appropriate Changes 66.7 55.6
Inappropriate Changes 22.2 33.3
Ambiguous Changes 11.1 11.1

Table 7: Consensus Categorization of Context-Driven Diagnostic Changes

Model Physician Appropriate Inappropriate Ambiguous
Gemini X 6 (66.67%) 2 (22.22%) 1 (11.11%)
Gemini Y 6 (66.67%) 2 (22.22%) 1 (11.11%)
ChatGPT X 5 (55.56%) 3 (33.33%) 1 (11.11%)
ChatGPT Y 5 (55.56%) 3 (33.33%) 1 (11.11%)

Table 8: Physician-Specific Categorization (Counts/Percentages)
3.3.3. Key Trends in Clinical Appropriateness of Context-
Driven Changes
The qualitative analysis revealed distinct trends in the clinical 
appropriateness of diagnostic modifications driven by contextual 
information for both Gemini and ChatGPT, highlighting a critical 
trade-off between responsiveness and clinical soundness.

3.3.4. Prevalence of Appropriate Context-Driven Changes
A significant finding was the demonstration by both LLMs of 

Appropriate Context- Driven Changes. These were defined as 
diagnostic refinements that were clinically justifiable, aligned 
with evidence-based guidelines, and demonstrably enhanced 
diagnostic accuracy or specificity. As shown in Table 7 and Table 
8, Appropriate Changes constituted the largest proportion of 
context-driven modifications for both models. Gemini exhibited 
Appropriate Changes in 66.7% of context-driven diagnostic shifts, 
while ChatGPT demonstrated Appropriate Changes in 55.6% of 
cases, according to physician consensus.
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Model Physician Appropriate Inappropriate Ambiguous

Gemini X 6 (66.67%) 2 (22.22%) 1 (11.11%)
Gemini Y 6 (66.67%) 2 (22.22%) 1 (11.11%)
ChatGPT X 5 (55.56%) 3 (33.33%) 1 (11.11%)
ChatGPT Y 5 (55.56%) 3 (33.33%) 1 (11.11%)

Table 8: Physician-Specific Categorization (Counts/Percentages)

3.3.3. Key Trends in Clinical Appropriateness of Context-Driven Changes
The qualitative analysis revealed distinct trends in the clinical appropriateness of diagnostic

modifications driven by contextual information for both Gemini and ChatGPT, highlighting a
critical trade-off between responsiveness and clinical soundness.

3.3.4. Prevalence of Appropriate Context-Driven Changes
A significant finding was the demonstration by both LLMs of Appropriate Context-

Driven Changes. These were defined as diagnostic refinements that were clinically justifi-
able, aligned with evidence-based guidelines, and demonstrably enhanced diagnostic accuracy
or specificity. As shown in Table 7 and Table 8, Appropriate Changes constituted the largest
proportion of context-driven modifications for both models. Gemini exhibited Appropriate
Changes in 66.7% of context-driven diagnostic shifts, while ChatGPT demonstrated Appropri-
ate Changes in 55.6% of cases, according to physician consensus.

Figure 7: Diagnosis Category Distribution per LLM - pie chart

These findings indicate a fundamental capability in both LLMs to integrate and utilize
clinically pertinent contextual information to refine their diagnoses in a clinically meaningful
direction. For example, both models effectively demonstrated guideline-concordant diagnostic
refinement in scenarios involving acute coronary syndromes. When presented with a base-
line case of Angina Pectoris, and then provided with contextual ECG findings indicative of
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These findings indicate a fundamental capability in both LLMs 
to integrate and utilize clinically pertinent contextual information 
to refine their diagnoses in a clinically meaningful direction. 
For example, both models effectively demonstrated guideline-
concordant diagnostic refinement in scenarios involving acute 
coronary syndromes. When presented with a base- line case of 
Angina Pectoris, and then provided with contextual ECG findings 
indicative of ST-segment depression, both Gemini and ChatGPT 
appropriately upgraded the diag- nosis to Unstable Angina. 
This diagnostic shift aligns with established clinical guidelines 
from organizations like the ACC/AHA, which emphasize ECG 
findings in risk stratification and management of acute chest 
pain. This example showcases the LLMs’ ability to integrate key 
diagnostic findings (ECG changes) into the clinical context and 
appropriately modify their diagnosis towards a more specific and 
clinically actionable category. Similarly, in scenarios involving 
infectious diseases, both LLMs showed capacity for appropriate 
refinement. For in- stance, when given a baseline case suggestive 
of a Viral Upper Respiratory Infection and then provided with 
contextual data indicating prolonged fever and purulent nasal 
discharge, both Gemini and ChatGPT appropriately shifted 
their diagnoses to- wards Bacterial Sinusitis. This context-
driven change reflects sound clinical reasoning by incorporating 
key symptom characteristics (duration, nature of nasal discharge) 
to differentiate between viral and bacterial etiologies of upper 
respiratory complaints, demonstrating an ability to move beyond 
a general diagnosis to a more specific and clinically relevant 
bacterial infection diagnosis when warranted by the contextual 
clinical picture.

3.3.5. Risk of Inappropriate Context-Driven Changes
Despite the demonstrated capacity for appropriate context 
utilization, a critical finding was the identification of 
Inappropriate Context-Driven Changes in both LLMs. These 
changes were defined as diagnostic shifts that were clinically 
unjustified, erroneous, illogical, or led by misinterpretation of 
the contextual information, ultimately diminishing diagnostic 
accuracy or clinical relevance. Crucially, ChatGPT exhibited a 
higher proportion of Inappropriate Context-Driven Changes 
(33.3%) compared to Gemini (22.2%), according to physician 

consensus (Table 7 and Table 8). This disparity suggests that while 
ChatGPT is quantitatively more responsive to contextual cues (as 
indicated by its higher Context Influence Rate), this heightened 
responsiveness is accompanied by a greater propensity to make 
clinically unsound diagnostic modifications.

For example, in one illustrative case (Case ID: 024_4), ChatGPT 
erroneously shifted its diagnosis from Acute Bronchitis 
to Asthma Exacerbation based solely on the contextual 
information of a history of childhood asthma. Physician 
reviewers deemed this shift clinically inappropriate because it 
misclassified an acute infectious process (bronchitis, typically 
triggered by viral or bacterial infection) as a chronic inflammatory 
condition exacerbation (asthma), based predominantly on a remote 
historical factor (childhood asthma history) and neglecting the 
acute clinical presentation. This inappropriate shift occurred de- 
spite the absence of key clinical findings typically associated with 
asthma exacerbation in adults, such as wheezing or spirometric 
evidence of airflow obstruction in the presented clinical scenario. 
This example highlights a potential over-reliance of ChatGPT 
on historical context, even when it leads to clinically illogical 
diagnostic categorization based on the overall clinical picture. 
Similarly, Gemini, in one instance, inappropriately downgraded 
a diagnosis of Community-Acquired Pneumonia to Bronchiolitis 
in an adult patient, despite contextual chest X-ray findings 
clearly demonstrating consolidation. This downgrade represents 
a clinically inappropriate diagnostic shift as Bronchiolitis 
is predominantly a diagnosis in infants and young children, 
characterized by bronchiolar inflammation, and is not clinically 
consistent with the presence of lobar or segmental consolidation on 
chest X-ray in an adult patient. This example suggests a potential 
misapplication of pediatric diagnostic criteria or an under-
weighting of critical objective findings (chest X-ray consolidation) 
in Gemini’s con- textual reasoning in this particular scenario. 
These instances of Inappropriate Changes underscore a critical 
caveat: while contextual awareness is essential for sophisticated 
clinical reasoning, over-sensitivity to context, especially without 
reliable clinical validation, can lead to diagnostically unsound and 
potentially clinically misleading outputs.
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Figure 8: Distribution of Appropriateness Ratings by LLM (Physician Y)

Figure 9: Distribution of Appropriateness Ratings by LLM (Physician X)

sents a clinically inappropriate diagnostic shift as Bronchiolitis is predominantly a diagnosis
in infants and young children, characterized by bronchiolar inflammation, and is not clinically
consistent with the presence of lobar or segmental consolidation on chest X-ray in an adult
patient. This example suggests a potential misapplication of pediatric diagnostic criteria or
an under-weighting of critical objective findings (chest X-ray consolidation) in Gemini’s con-
textual reasoning in this particular scenario. These instances of Inappropriate Changes
underscore a critical caveat: while contextual awareness is essential for sophisticated clinical
reasoning, over-sensitivity to context, especially without reliable clinical validation, can lead to
diagnostically unsound and potentially clinically misleading outputs.

3.3.6. Ambiguous Context-Driven Changes
A smaller subset of context-driven diagnostic changes were categorized as Ambiguous
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underscore a critical caveat: while contextual awareness is essential for sophisticated clinical
reasoning, over-sensitivity to context, especially without reliable clinical validation, can lead to
diagnostically unsound and potentially clinically misleading outputs.

3.3.6. Ambiguous Context-Driven Changes
A smaller subset of context-driven diagnostic changes were categorized as Ambiguous

36

Figure 9: Distribution of Appropriateness Ratings by LLM (Physician X)

3.3.6. Ambiguous Context-Driven Changes
A smaller subset of context-driven diagnostic changes were 
categorized as Ambiguous Changes for both LLMs (11.1% for 
both Gemini and ChatGPT according to physician con- sensus). 
These Ambiguous Changes represented cases where the clinical 
appropriateness of the diagnostic shift was not definitively clear-
cut based solely on the information provided within the scenario. 
These were often cases involving subtle clinical presentations 

where further clinical details, more detailed patient history, 
or a higher degree of clinical judgment would be necessary to 
conclusively classify the change as definitively appropriate or 
inappropriate [32].

For example, Gemini’s diagnostic shift from Gastroesophageal 
Reflux Disease (GERD)

Changes for both LLMs (11.1% for both Gemini and ChatGPT according to physician con-
sensus). These Ambiguous Changes represented cases where the clinical appropriateness
of the diagnostic shift was not definitively clear-cut based solely on the information provided
within the scenario. These were often cases involving subtle clinical presentations where further
clinical details, more detailed patient history, or a higher degree of clinical judgment would be
necessary to conclusively classify the change as definitively appropriate or inappropriate.

For example, Gemini’s diagnostic shift from Gastroesophageal Reflux Disease (GERD)

Figure 10: Consistency Comparison: Physician Category Distribution by LLM

to Functional Dyspepsia in a patient presenting with overlapping symptoms of both con-
ditions was classified as Ambiguous. Physician reviewers noted that differentiating between
GERD and Functional Dyspepsia can be clinically challenging in certain presentations, often re-
quiring detailed dietary history, response to acid suppression therapy, or further investigations.
In the absence of such detailed contextual information in the scenario, the appropriateness of
this diagnostic shift remained ambiguous, highlighting the inherent limitations of diagnostic AI
in scenarios requiring highly subtle clinical data or longitudinal patient assessment.

3.3.7. Differential Handling of Contextual Information
The qualitative analysis also allowed for the identification of patterns in the types of contex-

tual information that were generally well-handled by both LLMs, as well as areas where they
exhibited weaknesses or inconsistencies in contextual reasoning.

• Contexts Generally Well-Handled:

◦ Integration of Biomarker Trends: Both Gemini and ChatGPT reliably inte-
grated and appropriately responded to trends in biomarker data. For example, in
scenarios involving acute kidney injury, both models appropriately escalated diag-
nostic concern when presented with contextual information indicating rising crea-
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to Functional Dyspepsia in a patient presenting with overlapping 
symptoms of both conditions was classified as Ambiguous. 
Physician reviewers noted that differentiating between GERD 
and Functional Dyspepsia can be clinically challenging in certain 
presentations, often re- quiring detailed dietary history, response 
to acid suppression therapy, or further investigations. In the 
absence of such detailed contextual information in the scenario, 
the appropriateness of this diagnostic shift remained ambiguous, 
highlighting the inherent limitations of diagnostic AI in scenarios 
requiring highly subtle clinical data or longitudinal patient 
assessment.

3.3.7. Differential Handling of Contextual Information
The qualitative analysis also allowed for the identification of 
patterns in the types of contextual information that were generally 
well-handled by both LLMs, as well as areas where they exhibited 
weaknesses or inconsistencies in contextual reasoning.

•	 Contexts Generally Well-Handled:
Integration of Biomarker Trends: Both Gemini and ChatGPT 
reliably integrated and appropriately responded to trends in 
biomarker data. For example, in scenarios involving acute kidney 
injury, both models appropriately escalated diagnostic concern 
when presented with contextual information indicating rising 
crea- tinine levels, demonstrating effective use of longitudinal 
biomarker data to refine diagnostic assessment.

Figure 11: Comparison of Physician X and Physician Y Ratings

tinine levels, demonstrating effective use of longitudinal biomarker data to refine
diagnostic assessment.

◦ Utilization of Imaging Correlates: Both LLMs effectively utilized imaging find-
ings to guide diagnostic shifts in clinically appropriate directions. For instance, in
cases presenting with potential pulmonary embolism, the provision of contextual CT
evidence of pulmonary embolism appropriately prompted diagnostic escalation
towards pulmonary embolism as the primary diagnosis for both models, showcasing
effective integration of objective imaging data into their diagnostic reasoning process.

• Contexts Less Reliably Handled:

◦ Overemphasis on Social History: In some scenarios, contextual social history
information, such as homelessness, appeared to lead to unwarranted diagnostic
shifts towards potentially stigmatizing diagnoses, such as substance-related psy-
chosis. This suggests a potential bias or over-reliance on social determinants of
health context, leading to diagnostic choices that may not be clinically justified
based on the core clinical presentation and objective findings.

◦ Overinterpretation of Non-Specific Vital Signs: Both models, in some in-
stances, exhibited a tendency to overinterpret non-specific vital signs, such as
tachycardia, as strong indicators of specific conditions like sepsis, even in the ab-
sence of other corroborating clinical data or specific infectious signs. This suggests a
potential over-sensitivity to isolated abnormal vital signs, without sufficient weight-
ing of overall clinical context and the need for more specific evidence to support
high-acuity diagnoses like sepsis.
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◦	 Utilization of Imaging Correlates: Both LLMs effectively 
utilized imaging findings to guide diagnostic shifts in clinically 
appropriate directions. For instance, in cases presenting with 
potential pulmonary embolism, the provision of contextual CT 
evidence of pulmonary embolism appropriately prompted 
diagnostic escalation towards pulmonary embolism as the 
primary diagnosis for both models, showcasing effective 
integration of objective imaging data into their diagnostic 
reasoning process.

•	 Contexts Less Reliably Handled:
◦	 Overemphasis on Social History: In some scenarios, 

contextual social history information, such as homelessness, 
appeared to lead to unwarranted diagnostic shifts towards 
potentially stigmatizing diagnoses, such as substance-related 
psychosis. This suggests a potential bias or over-reliance on 
social determinants of health context, leading to diagnostic 
choices that may not be clinically justified based on the core 
clinical presentation and objective findings.

◦	 Overinterpretation of Non-Specific Vital Signs: Both 
models, in some in- stances, exhibited a tendency to 

overinterpret non-specific vital signs, such as tachycardia, 
as strong indicators of specific conditions like sepsis, even 
in the absence of other corroborating clinical data or specific 
infectious signs. This suggests a potential over-sensitivity to 
isolated abnormal vital signs, without sufficient weighting 
of overall clinical context and the need for more specific 
evidence to support high-acuity diagnoses like sepsis [33].

3.3.8. Balancing Diagnostic Responsiveness and Clinical 
Soundness
The qualitative physician review underscores a critical insight: while 
ChatGPT demonstrated a quantitatively higher Context Influence 
Rate, indicating greater overall responsiveness to contextual 
information, this heightened responsiveness was accompanied by 
a proportion- ally higher rate of clinically inappropriate diagnostic 
changes compared to Gemini. Conversely, Gemini, while 
exhibiting a lower overall quantitative responsiveness to context, 
demonstrated a comparatively higher proportion of clinically 
appropriate and clinically justified context-driven diagnostic 
refinements.
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3.3.8. Balancing Diagnostic Responsiveness and Clinical Soundness
The qualitative physician review underscores a critical insight: while ChatGPT demon-

strated a quantitatively higher Context Influence Rate, indicating greater overall responsiveness
to contextual information, this heightened responsiveness was accompanied by a proportion-
ally higher rate of clinically inappropriate diagnostic changes compared to Gemini. Conversely,
Gemini, while exhibiting a lower overall quantitative responsiveness to context, demonstrated a
comparatively higher proportion of clinically appropriate and clinically justified context-driven
diagnostic refinements.

Figure 12: Stacked Bar Chart of Appropriateness Ratings by LLM (Physician X)

This divergence highlights a fundamental trade-off in the design and application of LLMs for
clinical diagnostic support: achieving an optimal balance between diagnostic respon-
siveness and clinical soundness. While contextual awareness and adaptability are crucial
for sophisticated clinical reasoning and emulating human-like diagnostic judgment, excessive
sensitivity to contextual cues, particularly without reliable mechanisms for clinical validation
and evidence-based weighting, can inadvertently amplify clinically irrelevant variability and
increase the risk of diagnostically inaccurate or even misleading outputs.

The findings from this qualitative analysis strongly emphasize the critical need for incor-
porating contextual guardrails in the development and deployment of LLMs for clinical
diagnostic applications. These guardrails are essential to ensure that diagnostic adaptability
and responsiveness are tightly coupled with evidence-based clinical reasoning and guideline ad-
herence, preventing over-interpretation of peripheral context and promoting diagnostic shifts
that are not only responsive to new information but also consistently valid and clinically jus-
tifiable. Future research and development efforts should prioritize the exploration of hybrid
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This divergence highlights a fundamental trade-off in the design 
and application of LLMs for clinical diagnostic support: achieving 
an optimal balance between diagnostic responsiveness and 
clinical soundness. While contextual awareness and adaptability 
are crucial for sophisticated clinical reasoning and emulating 
human-like diagnostic judgment, excessive sensitivity to 
contextual cues, particularly without reliable mechanisms for 
clinical validation and evidence-based weighting, can inadvertently 
amplify clinically irrelevant variability and increase the risk of 
diagnostically inaccurate or even misleading outputs.

The findings from this qualitative analysis strongly emphasize 
the critical need for incorporating contextual guardrails in the 
development and deployment of LLMs for clinical diagnostic 
applications. These guardrails are essential to ensure that 

diagnostic adaptability and responsiveness are tightly coupled 
with evidence-based clinical reasoning and guideline ad- 
herence, preventing over-interpretation of peripheral context and 
promoting diagnostic shifts that are not only responsive to new 
information but also consistently valid and clinically jus- tifiable. 
Future research and development efforts should prioritize the 
exploration of hybrid approaches that effectively integrate the 
benefits of contextual awareness with stricter validity checks, 
clinical reasoning constraints, and mechanisms to filter clinically 
irrelevant or misleading contextual noise. This will be crucial 
to harness the potential of LLMs for enhanced clinical decision 
support while mitigating the risks associated with unchecked 
contextual sensitivity and ensuring that LLM-driven diagnostic 
adaptations consistently improve, rather than com- promise, the 
quality and safety of patient care [34, 35].

Figure 13: Stacked Bar Chart of Appropriateness Ratings by LLM (Physician Y)

approaches that effectively integrate the benefits of contextual awareness with stricter validity
checks, clinical reasoning constraints, and mechanisms to filter clinically irrelevant or mislead-
ing contextual noise. This will be crucial to harness the potential of LLMs for enhanced clinical
decision support while mitigating the risks associated with unchecked contextual sensitivity
and ensuring that LLM-driven diagnostic adaptations consistently improve, rather than com-
promise, the quality and safety of patient care.

In conclusion, our comprehensive, three-dimensional evaluation of Gemini and ChatGPT’s
diagnostic reliability reveals an intricate performance profile with critical implications for their
clinical application. Across Diagnostic Consistency, both LLMs achieved a perfect 100%
Baseline Scenario Consistency Rate, demonstrating reliable reproducibility in providing
clinically equivalent diagnoses for consistent clinical inputs. However, in the Susceptibility
to Manipulation assessment, we observed differential vulnerability. While ChatGPT exhib-
ited a numerically lower Susceptibility Rate of 30.0%, Gemini showed a higher rate at
40.0%, indicating that both models are susceptible to diagnostically irrelevant noise, albeit to
varying degrees. Most significantly, the Contextual Awareness analysis highlighted a crucial
trade-off. Quantitatively, ChatGPT displayed a higher Context Influence Rate of 77.8%
compared to Gemini’s 55.6%, suggesting greater responsiveness to contextual cues. However,
the qualitative physician review revealed that this heightened responsiveness in ChatGPT came
at the cost of clinical soundness. While Gemini demonstrated Appropriate Context-Driven
Changes in a higher proportion of cases (66.7%) compared to ChatGPT (55.6%), ChatGPT
exhibited a notably elevated rate of Inappropriate Context-Driven Changes (33.3%),
exceeding Gemini’s rate of 22.2%. This qualitative divergence, evidenced by physician consen-
sus and a near-perfect inter-rater reliability (Cohen’s Kappa = 0.85), underscores a key finding:
ChatGPT’s greater quantitative responsiveness to context is accompanied by a higher risk of
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In conclusion, our comprehensive, three-dimensional evaluation 
of Gemini and ChatGPT’s diagnostic reliability reveals an 
intricate performance profile with critical implications for their 
clinical application. Across Diagnostic Consistency, both LLMs 
achieved a perfect 100% Baseline Scenario Consistency Rate, 

demonstrating reliable reproducibility in providing clinically 
equivalent diagnoses for consistent clinical inputs. However, in 
the Susceptibility to Manipulation assessment, we observed 
differential vulnerability. While ChatGPT exhibited a numerically 
lower Susceptibility Rate of 30.0%, Gemini showed a higher 
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rate at 40.0%, indicating that both models are susceptible to 
diagnostically irrelevant noise, albeit to varying degrees. Most 
significantly, the Contextual Awareness analysis highlighted 
a crucial trade-off. Quantitatively, ChatGPT displayed a higher 
Context Influence Rate of 77.8% compared to Gemini’s 55.6%, 
suggesting greater responsiveness to contextual cues. However, 
the qualitative physician review revealed that this heightened 
responsiveness in ChatGPT came at the cost of clinical soundness. 
While Gemini demonstrated Appropriate Context-Driven 
Changes in a higher proportion of cases (66.7%) compared to 
ChatGPT (55.6%), ChatGPT exhibited a notably elevated rate of 
Inappropriate Context-Driven Changes (33.3%), exceeding 
Gemini’s rate of 22.2%. This qualitative divergence, evidenced 
by physician consensus and a near-perfect inter-rater reliability 
(Cohen’s Kappa = 0.85), underscores a key finding: ChatGPT’s 
greater quantitative responsiveness to context is accompanied by 
a higher risk of clinically unjustified diagnostic modifications. 
In contrast, Gemini, while less frequently altering diagnoses in 
response to context, demonstrated a greater tendency for clinically 
appropriate and justified contextual refinements. Taken together, 
these results indicate that while both Gemini and ChatGPT possess 
strengths in diagnostic consistency and context integration, their 
vulnerabilities to manipulation and, more critically, the differential 
clinical appropriateness of their context-driven adaptations—with 
ChatGPT showing a higher risk of clinically unsound changes 
despite greater responsiveness—necessitate cautious interpretation 
and implementation in clinical settings. Future applications of 
these LLMs for diagnostic support must carefully weigh the trade-
off between contextual sensitivity and clinical validity, prioritizing 
strategies that maximize clinically justified adaptations while 
mitigating the risk of inappropriate diagnostic shifts driven by 
noise or over-sensitivity to non-critical contextual factors.

4. Discussion
The aim of this study was to evaluate the diagnostic reliability 
of two prominent Large Language Models (LLMs), Gemini and 
ChatGPT, by examining their diagnostic consistency, susceptibility 
to manipulation, and contextual awareness in simulated clinical 
scenarios [36]. This section interprets the key findings, discusses 
their implications for the application of LLMs in healthcare, 
acknowledges the study’s limitations, and suggests directions for 
future research.

4.1. Diagnostic Consistency
Both LLMs demonstrated 100% consistency across 52 clinical 
scenarios, reflecting their deterministic nature and reproducibility 
under controlled conditions. This outcome highlights a fundamental 
characteristic of these Large Language Models (LLMs): their 
capacity to consistently produce identical diagnostic outputs when 
presented with clinically equivalent input data repeatedly. This 
level of unwavering consistency warrants careful consideration in 
the context of clinical applications.

•	 Implications of Perfect Diagnostic Consistency: The 
achievement of 100% diagnostic consistency by both 
Gemini and ChatGPT underscores the inherent reliability 

and exceptional reproducibility of their underlying diagnostic 
algorithms, at least within the controlled parameters of our 
experimental design. This stability suggests that, under 
conditions of consistent and clinically equivalent but 
superficially varied patient input data, these LLMs operate in 
a deterministic manner, processing information and arriving 
at diagnostic conclusions with remarkable fidelity each 
time the clinically equivalent scenario is presented. From 
an engineering standpoint, such reliable reproducibility is 
generally viewed as a highly desirable attribute, indicating 
a predictable and stable system behavior, essential for 
dependable application.

•	 Crucial Caveat: Consistency Does Not Equate to Accuracy: 
While the perfect consistency observed is a notable strength, 
it is critically important to emphasize that di- agnostic 
consistency should not be misconstrued as a guarantee of 
diagnostic accuracy. An LLM could, with perfect consistency, 
reproducibly generate an incorrect diagnosis. Our study, 
in this initial phase, deliberately focused on evaluating the 
reliability of LLMs, specifically their consistency, rather than 
examining the absolute correctness or clinical validity of their 
diagnostic outputs [37]. The crucial next step in evaluating 
the clinical utility of these models necessitates thorough, 
accuracy-focused validation studies, comparing LLM 
diagnoses against established clinical gold standards and 
expert physician consensus. Furthermore, the deterministic 
nature that underpins this consistency also implies that any 
biases or inaccuracies embedded within the LLMs’ training 
data will also be consistently propagated in their outputs.

•	 Possible Explanations for Uniform Consistency: The 
observed perfect diagnostic consistency is likely attributable 
to the inherent deterministic nature of contemporary LLMs, 
particularly when functioning within the controlled and well-
defined parameters of a simulated experimental environment. 
Unlike human clinicians, whose diagnostic judgments can 
exhibit inherent variability influenced by factors such as 
cognitive load, subjective interpretation of detailed clinical 
data, potential biases, and even transient states of fatigue, 
LLMs, under these controlled conditions, operate primarily 
through algorithmic processing. Given identical input 
prompts, the fixed parameters and algorithmic processes 
within these models predictably lead to identical outputs in 
each instance, resulting in the 100% consistency we observed. 
This algorithmic determinism is a core characteristic of their 
current architecture and operational mode.

•	 Contrasting LLM Consistency with Human Clinician 
Variability: When considering diagnostic consistency, a 
significant contrast emerges between LLMs and human 
clinicians. While direct, head-to-head comparisons are 
complex and context-dependent, it is well-established that 
human clinician diagnostic consistency is not absolute and 
exhibits inherent variability. This variability arises from 
numerous factors, including the complexity and ambiguity of 
clinical cases, differences in individual clinician experience 
and expertise, evolving interpretations of clinical guidelines 
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and evidence, and unavoidable inter-observer variations in the 
subjective assessment of clinical signs and symptoms. Indeed, 
studies on inter-rater reliability in clinical diagnosis, even 
among expert physicians in well-defined specialities, often 
reveal agreement rates ranging from approximately 60% to 
80% for complex or detailed conditions. In this context, the 
100% consistency demonstrated by Gemini and ChatGPT in our 
study represents a level of output stability and reproducibility 
that may surpass that achievable by human clinicians in 
similar, repeated diagnostic tasks when provided with strictly 
identical information. However, it is paramount to remember 
that human diagnostic expertise is far more multifaceted than 
simply applying consistent algorithms. It encompasses critical 
elements absent in current LLMs, including subtle clinical 
judgment honed by years of experience, adaptive reasoning 
in the face of novel or incomplete information, crucial ethical 
considerations in patient care, and the capacity for empathy 
and effective patient communication.

4.2. Susceptibility to Manipulation
Our investigation into the susceptibility of LLMs to manipulation, 
through the introduction of irrelevant yet plausible information 
into clinical prompts, revealed that both models are vulnerable to 
such influence, albeit to differing degrees. Quantitatively, Gemini 
exhibited a higher susceptibility rate of 40%, compared 
to ChatGPT’s 30%. These rates, while seemingly moderate, 
indicate a clinically significant vulnerability, highlighting a 
potential fragility in the diagnostic reasoning of these LLMs when 
confronted with subtly altered or noisy input data.
•	 Clinical Significance of Susceptibility Rates and Diagnostic 

Examples: Even a 30-40% susceptibility rate to manipulation 
is not inconsequential in a clinical context. It implies that 
in a non-trivial proportion of cases, seemingly minor or 
irrelevant modifications to patient histories while keeping the 
core clinically relevant information consistent, can lead to 
changes in the LLM’s diagnostic output. These changes are 
not merely academic; they can represent shifts with profound 
clinical implications. For example, in our study, manipulation 
led Gemini to revise a diagnosis of Acute ST-elevation my- 
ocardial infarction (STEMI) – a critical cardiac emergency 
– to Angina pectoris – a condition requiring different and less 
urgent management. Similarly, ChatGPT, un- der manipulation, 
shifted a diagnosis of Acute Exacerbation of COPD to Heart 

Failure Exacerbation – two distinct respiratory conditions 
with divergent therapeutic pathways. These concrete examples 
underscore that manipulation-induced diagnostic changes are 
not always subtle refinements; they can involve clinically 
significant alterations with direct implications for patient care 
pathways and treatment decisions.

•	 Qualitative Insights into LLM Reasoning Vulnerabilities: 
The qualitative analysis of diagnosis changes induced 
by manipulation provided valuable insights into the 
underlying reasoning vulnerabilities of the LLMs. Several 
key patterns emerged from the physician review:

•	 Over-Reliance on Key Phrases and Underweighting of 
Holistic Con- text: A recurrent theme was both models’ 
apparent over-reliance on specific keywords or phrases 
within the clinical prompts, sometimes at the expense of a 
more holistic and balanced consideration of the entire clinical 
context. For instance, the presence of phrases like chest 
pain radiating to the left arm seemed to disproportionately 
anchor the LLMs towards cardiac diagnoses, even when other 
clinical features might have suggested alternative etiologies. 
Conversely, subtle contextual intricacies, which a human 
clinician would typically integrate into a broader clinical 
picture, appeared to be underweighted or missed by the LLMs.

•	 Manifestation of Anchoring Bias: The manipulation 
experiments also revealed a form of anchoring bias in 
both LLMs’ diagnostic processes. The manipulated, often 
irrelevant, inputs seemed to anchor the LLMs to peripheral 
details or subtly altered aspects of the clinical presentation. 
This phenomenon mirrors the well-documented cognitive bias 
in human clinicians where initial pieces of information can 
disproportionately influence subsequent judgments, hindering 
objective re-evaluation. However, unlike human clinicians 
who possess metacognitive abilities and can be trained to 
recognize and mitigate anchoring biases, the LLMs in our 
study demonstrated less capacity for self-correction or critical 
appraisal of the manipulated inputs, treating all prompt 
information as equally valid and relevant.

•	 LLM Susceptibility Compared to Human Clinician 
Strengths and Weak- nesses: When comparing LLM 
susceptibility to manipulation with the known vulnerabilities 
of human clinicians, several key distinctions emerge, as 
summarized in the table below:

Factor LLM Weaknesses Human Clinician Strengths Human Clinician Weaknesses
Anchoring Bias Highly susceptible to leading or 

anchoring prompts.
Resists bias through clinical protocols 
and awareness.

Susceptible, but can be mitigated
with training and awareness.

Contextual Gaps Struggles with missing, 
conflicting, or irrelevant data.

Probes actively for missing details 
(history, tests, etc.).

May make assumptions based on 
incomplete or conflicting data.

Red Herrings (Irrelevant 
Info)

Overweights irrelevant 
information in prompts.

Filters irrelevant information 
effectively using clinical reasoning and 
judgment.

Can be distracted by salient but 
irrelevant findings.

Diagnostic Certainty/- 
Calibration

May overstate confidence without 
sufficient evidence.

Expresses uncertainty appropriately 
and orders further
tests when needed.

May exhibit overconfidence 
or premature closure without 
sufficient data.
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Input Validity Assessment Lacks ability to question input 
validity; treats all input as factual.

Critically evaluates input validity, 
seeks corroboration, and questions 
inconsistencies.

May be influenced by
source credibility bias.

Table 9: Comparison of LLM and Human Clinician Di-agnostic Factors
As highlighted in this comparison, LLMs exhibit a pronounced 
weakness in their inability to critically evaluate the validity 
or relevance of input information. Human clinicians, through 
training and experience, develop crucial metacognitive skills that 
allow them to identify inconsistencies, question the reliability of 
data sources, and actively seek clarifying information when faced 
with ambiguous or potentially mis- leading clinical presentations. 
LLMs, in their current form, lack this critical appraisal ability. 
They process all prompt information as factual and relevant, 
rendering them particularly vulnerable to adversarial or 
unintentional manipulation through the in- troduction of irrelevant 
or misleading details. In contrast, human clinicians, while also 
susceptible to cognitive biases, possess the capacity for critical 
reasoning, contextual filtering, and iterative questioning that can 
mitigate the impact of manipulation and enhance the reliability of 
their diagnostic judgments.

•	 Implications for Trust, Safety, and Responsible Clinical 
Integration: The demonstrated susceptibility of LLMs 
to manipulation has significant implications for trust and 
safety considerations surrounding their potential integration 
into clinical diagnostic workflows. If even subtle, irrelevant 
manipulations can induce clinically meaningful diagnostic 
changes, it underscores the critical imperative for caution 
and reliable safeguards. Uncritical reliance on LLM 
diagnostic outputs, without close clinician oversight and 
validation, would be imprudent and potentially unsafe. 
Furthermore, the vulnerability to manipulation raises 
concerns about the potential for malicious exploitation. 
Intentionally crafted, subtly misleading prompts could 
be designed to steer LLMs towards erroneous diagnoses, 
potentially for nefarious purposes. Therefore, ensuring 
the safe and responsible application of LLMs in healthcare 
necessitates the implementation of multi-layered safeguards, 
in- cluding careful input data validation and pre-processing; 

output verification and clinical plausibility checks by human 
experts; reliable clinician-in-the-loop oversight throughout 
the diagnostic process; and ongoing research into methods 
for enhancing LLM reliability against both intentional and 
unintentional manipulation. LLMs, in this context, should be 
conceptualized and deployed as powerful tools to augment, 
rather than replace, the essential critical thinking, contextual 
understanding, and ethical judgment of human clinicians in 
medical diagnosis.

4.3. Contextual Awareness
Our investigation into contextual awareness, examining how 
Gemini and ChatGPT utilize clinically relevant contextual 
variations to modify their diagnoses, revealed a subtle landscape of 
capabilities and limitations. Quantitatively, ChatGPT exhibited a 
significantly higher Context Influence Rate (77.8%) compared 
to Gemini (55.6%). This finding under- scores fundamental 
differences in their contextual reasoning and raises important 
questions about the clinical utility of context integration in current 
LLM diagnostic applications.
•	 Interpreting Context Influence Rates: Responsiveness 

vs. Clinical Validity: The higher Context Influence Rate for 
ChatGPT initially suggests a greater sensitivity to contextual 
information. However, it is crucial to understand that a 
high Influence Rate, in isolation, does not equate to better 
diagnostic quality. It merely indicates a greater propensity for 
diagnostic change in response to context. The critical question 
is whether these context-driven changes are clinically 
appropriate and lead to more accurate or safer diagnoses. Our 
qualitative physician review directly addressed this question 
of clinical validity, revealing a more complex picture than the 
quantitative rates alone suggest. As summarized in Table 10, a 
higher Context Influence Rate for ChatGPT was accompanied 
by a lower percentage of Appropriate Changes and a higher 
percentage of Inappropriate Changes compared to Gemini.

Feature Gemini (55.56% CIR) ChatGPT (77.78% CIR) Interpretation
Context Influence Rate 55.56% 77.78% ChatGPT is quantitatively more responsive to 

contextual changes.
% Clinically Appropriate 
Changes

66.7% 55.6% Gemini demonstrates a higher proportion of 
clinically justified context driven refinements, 
despite a lower overall influence rate.

% Clinically Inappropriate 
Changes

22.2% 33.3% ChatGPT exhibits a higher proportion of 
clinically inappropriate diagnostic shifts in 
response to context, suggesting a potential 
trade-off between responsiveness and clinical 
soundness.

Table 10: Quantitative Context Influence vs. Qualitative Appropriateness

• Qualitative Analysis: The qualitative physician review revealed 
that both models demonstrated the capability for Clinically 
Appropriate Context-Driven Diagnostic Refinements. These 

instances, detailed with examples in Table 11, showcase how 
LLMs can utilize context to enhance diagnostic specificity and, in 
some cases, align with clinical guideline recommendations.
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LLM Case ID Original Diagnosis Contextual 
Information 
Added

Context- Driven 
Diagnosis 
Refinement

Clinical Benefit

Gemini 001_3_2 Angina Pectoris ECG findings 
suggestive of 
instability

Unstable Angina More accurate risk stratification 
and appropriate escalation of 
care.

ChatGPT 024_1 Peptic Ulcer Disease Context of 
gastrointestinal
bleeding

Gastric Ulcer with 
Gastrointestinal 
Bleeding

Improved specificity, guiding
appropriate management of 
potential  complications.

Gemini ChatGPT Multiple Initial Broad 
Diagnosis

Lifestyle factors, 
demographic 
details

More Specific
Subtype or Clinical 
Qualifier Added

Enhanced diagnostic precision, 
potentially informing 
personalized treatment strategies.

Table 11: Examples of Clinically Appropriate Context- Driven Diagnostic Refinements
This table provides illustrative examples of cases where both 
Gemini and ChatGPT appropriately refined their initial diagnoses 
based on added contextual information. These examples demon- 

strate the potential of LLMs to leverage context for clinically 
justifiable diagnostic enhancement, such as improving diagnostic 
specificity and aligning with clinical guidelines.

LLM Case ID Original Diagnosis Contextual
Information
Added

Context-
Driven Diagnosis
Shift

Clinical Concern

Gemini 001_3_3 Atypical MI
(NSTEMI)

Recent history
of "heavy lifting"

Musculoskeletal
Back Pain

Dangerous shift from a 
critical cardiac condition 
to a musculoskeletal issue, 
disregarding cardiac markers.

ChatGPT 024_4 Acute Bronchitis Childhood
asthma history

Asthma Exacerbation Misclassification of infection as
chronic inflammation, potentially
leading to incorrect treatment.

Gemini 024_3 Peptic Ulcer
Disease

Vague symptoms, 
no confirmatory 
tests

Possible Malignancy 
(Gastric Cancer)

Overconfidence in ambiguity, 
suggesting serious diagnosis 
without biopsy emphasis.

Both Multiple Diagnosis requiring 
test results

Scenarios designed 
to necessitate data

Diagnosis without 
requesting tests

Critical Data Handling 
Deficiency: LLMs attempt 
diagnoses without essential test 
results, unlike clinicians.

Table 12: Examples of Clinically Inappropriate Shifts and Diagnostic Overconfidence
This table provides illustrative examples of clinically concerning 
context-driven diagnostic shifts observed in Gemini and 
ChatGPT. These examples highlight critical limitations, including 
illogical diagnostic changes (system-hopping errors), diagnostic 
overconfidence in ambiguous scenarios, and a failure to request 
essential test results before making diagnoses—raising concerns 
about the reliability and safety of LLM contextual reasoning in 
clinical settings.

•	 However, a critical limitation emerged in the form of Clinically 
Inappropriate Shifts, System-Hopping Errors, and 
Diagnostic Overconfidence. As quantified and exemplified 
in Table 10 and Table 12, both models, particularly ChatGPT, 
tended to diagnostically illogical or clinically unsupported 
changes in response to context. Further- more, a significant 

concern was the observation of Diagnostic Overconfidence, 
where LLMs rendered definitive diagnoses even in the absence 
of crucial information, such as essential test results, instead of 
appropriately requesting further data.

•	 LLM Contextual Understanding vs. Human Clinical 
Expertise: These qualitative findings point to fundamental 
differences between LLM contextual reasoning and human 
clinical expertise. Human clinicians integrate context in a 
hierarchical manner, prioritizing clinically significant data and 
filtering irrelevant noise. They also exhibit crucial diagnostic 
restraint, explicitly recognizing and addressing data gaps, 
particularly the need for essential test results before reaching 
definitive diagnoses. In contrast, as summarized in Table 
13, current LLMs demonstrate limitations in hierarchical 
weighting, noise filtering, and, critically, data handling [37].
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Aspect LLMs Human Clinicians
Data Reliance Static training data; no real-time updates. Dynamic integration of evolving guidelines, 

patient feedback, and new evidence.
Hierarchical Weighting Inconsistent prioritization; may conflate 

relevant and irrelevant details.
Expert prioritization; e.g., lab results carry more 
weight than social history in cardiac cases.

Clinical Prioritization Focuses on terminology and statistical 
associations.

Prioritizes life-threatening conditions (e.g., ruling 
out ACS before GERD).

Contextual Integration Flat attention mechanisms; lacks
domain-specific heuristics.

Hierarchical integration; leverages experiential 
learning and domain expertise.

Red Herring Filtering Limited ability to filter distractions;
may overemphasize irrelevant details.

Effective filtering; pattern recognition helps 
prioritize relevant data.

Bias Resistance Vulnerable to leading prompts or 
misinformation.

Uses protocols to minimize cognitive biases.

Input Assessment Accepts all inputs uncritically. Validates data via history-taking and tests.  
Ambiguity Handling Generates speculative diagnoses without 

flagging uncertainty.
Explicitly acknowledges ambiguity and orders 
confirmatory tests.

Ambiguity Resolution Generates guesses without flagging gaps. Proactively seeks missing data (e.g., labs).
Error Patterns System-hopping errors (e.g., cardiac → 

musculoskeletal).
Anchoring biases or overreliance on experience.

Error Correction Cannot self-audit; repeats training patterns. Revises diagnoses iteratively with new data.
Diagnostic Appropriateness Higher rate of inappropriate diagnostic 

adjustments (ChatGPT in this study).
Clinically validated contextual adjustments; 
guided by protocols and experience.

Data Handling Diagnostic Restraint Deficient: Often diagnose without essential 
test results, lack request for data.

Reliable: Defer diagnosis pending essential data, 
explicitly request and prioritize test results.

Table 13: Comparison of LLMs and Human Clinicians in Contextual Reasoning
•	 Implications for Clinical Translation: The limitations 

highlighted, particularly the data handling deficiencies and 
the propensity for clinically inappropriate shifts, under- 
score the critical need for targeted development and strict 
validation before LLMs can be responsibly deployed in 
clinical diagnostic settings. Future research and development 
must prioritize enhancing the discriminative contextual 
reasoning of LLMs, enabling them to: hierarchically weight 
contextual information; filter irrelevant noise; recognize and 
address data gaps; and demonstrate appropriate diagnostic 
restraint, including the explicit request for and integration 
of essential test results. Until these critical limitations are 
substantially mitigated, LLMs should be considered 
investigational assistive tools only, requiring stringent 
clinician oversight and serving to augment, not replace, 
human clinical judgment in diagnostic workflows. The 
focus must shift towards developing LLMs that not only 
respond to context quantitatively but also integrate and utilize 
contextual information in a manner that is demonstrably safe, 
clinically valid, and aligned with the principles of expert 
human diagnostic reasoning.

4.4. Integrated Discussion and Broader Implications
This study undertook a comprehensive, multi-dimensional 
evaluation of the diagnostic re- liability of LLMs, examining 
their consistency, susceptibility to manipulation, and contextual 
awareness within simulated clinical scenarios. Synthesizing our 
findings across these three critical axes reveals a complex and 

paradoxical performance profile: while LLMs exhibit remark- 
able algorithmic consistency, this very determinism paradoxically 
underpins vulnerabilities in reliability, contextual reasoning, 
and ultimately, clinical appropriateness. Our integrated analysis 
illuminates both the promising avenues and the inherent perils of 
deploying current LLM technology in safety-critical diagnostic 
applications, underscoring the crucial imperative for cautious, 
human-guided, and ethically grounded implementation.

4.5. Synthesizing Across Consistency, Susceptibility, and 
Context
The most salient overarching finding is the fundamental 
decoupling of diagnostic consistency from clinical validity and 
reliability. The 100% diagnostic consistency demonstrated by both 
Gemini and ChatGPT across repeated presentations of identical 
clinical scenarios initially suggests a bedrock of reliability. 
However, this algorithmic stability proves to be a double-edged 
sword, inadvertently amplifying inherent vulnerabilities rather 
than guaranteeing clinical safety.
•	 Consistency Paradox: The observed perfect consistency, 

while highlighting the impressive reproducibility of LLM 
algorithms, simultaneously unmasks a critical paradox: 
deterministic outputs can magnify inherent vulnerabilities. 
As our manipulation experiments revealed, even seemingly 
minor alterations, such as the introduction of irrelevant but 
plausible symptoms, could induce clinically significant 
diagnostic shifts in a substantial proportion of cases (30-40%). 
This underscores that the very algorithmic determinism that 
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ensures consistency also renders LLMs less adaptable and 
resilient to noisy or adversarial inputs. Unlike human clinicians 
who can leverage experience and contextual understanding to 
filter out noise and re-evaluate initial assumptions, LLMs, 
bound by their deterministic frameworks, tend to process all 
inputs with equal weight, lacking the sophisticated critical 
appraisal necessary to discern valid signals from irrelevant 
perturbations. Thus, consistency, in isolation, offers no 
guarantee of diagnostic safety and may, in fact, become a 
liability by consistently propagating errors embedded in 
training data or introduced via manipulation.

•	 Contextual Responsiveness: Our investigation into 
contextual awareness reveals a detailed trade-off in diagnostic 
performance. ChatGPT’s higher Context Influence Rate 
(77.8% vs. Gemini’s 55.6%) suggests superior contextual 
integration. However, this increased responsiveness comes at 
a cost.

While ChatGPT effectively refined diagnoses based on context—
such as escalating Pep- tic Ulcer Disease to Gastric Ulcer 
with Bleeding when warranted—it also demonstrated a higher 
frequency of clinically inappropriate shifts. For instance, 
ChatGPT’s overconfident diagnosis of Asthma Exacerbation for 
a bronchitis case, based solely on a history of childhood asthma, 
illustrates the risks of uncalibrated contextual sensitivity.

In contrast, Gemini, with its more conservative Context Influence 
Rate, paradoxically exhibited a higher percentage of clinically 
appropriate context-driven changes. This sug- gests a critical trade-
off: Greater sensitivity to context, without a corresponding 
ability to prioritize information hierarchically and apply 
clinically sound judgment, can increase the risk of diagnostic 
errors and inappropriate variability.

The flat attention mechanisms of current LLMs—lacking the 
domain-specific heuristics and hierarchical weighting of clinical 
information that human clinicians develop through experiential 
learning—likely contribute to this challenge.
•	 The Fragility Triad - A Framework for Understanding LLM 

Limitations: Synthesizing across these dimensions, we 
identify a Fragility Triad that characterizes the limitations of 
current LLMs in clinical diagnosis:

◦	 Deterministic Consistency Entrapment: Algorithmic 
consistency, while ensuring reproducibility, can entrench 
biases, amplify vulnerabilities, and hinder adaptive reasoning 
in the face of novel or noisy data.

◦	 Manipulation Susceptibility Reflects Input Blindness: 
Vulnerability to manipulation, even through subtle and 
clinically irrelevant input changes, reveals a fundamental lack 
of critical input validity assessment and an over-reliance on 
surface- level prompt information.

◦	 Contextual Reasoning Gaps: Noise Amplification and 
Hierarchical Blind- ness: Limitations in contextual awareness 
stem from a failure to effectively discriminate between 
clinically relevant and irrelevant contextual details, often 
overemphasizing less critical cues while under-weighting 

or disregarding diagnostically vital information. This flat" 
attention and lack of hierarchical contextual integration lead 
to both missed opportunities for valid diagnostic refinement 
and increased risks of inappropriate, context-driven diagnostic 
shifts.

This Fragility Triad underscores that deploying current LLMs in 
clinical settings involves navigating the inherent risks of applying 
rigid, algorithm-driven systems within the inherently dynamic, 
ambiguous, and noise-rich environment of real-world medical 
practice.

4.6. Implications for Clinical Use
Our findings carry significant implications for the responsible 
translation of LLMs into clinical diagnostic workflows, highlighting 
a careful balance between potential benefits and inherent risks.
•	 Potential Benefits: Streamlining Routine Tasks and 

Enhancing Standardization: The reliable diagnostic 
consistency demonstrated by LLMs suggests valuable 
applications in streamlining standardized diagnostic tasks, 
particularly in high-volume, low-complexity scenarios. LLMs 
could contribute to standardizing diagnostic terminology, 
enhancing guideline adherence in routine cases, and 
assisting in preliminary triage by efficiently processing and 
categorizing straightforward clinical presentations. In settings 
with high clinician workloads or resource constraints, LLMs 
could potentially augment diagnostic efficiency in handling 
stable or uncomplicated cases, freeing up clinician time for 
more complex or ambiguous patient encounters.

•	 Key Risks: Misdiagnosis, Overconfidence, and Erosion of 
Clinical Judgment: However, the identified vulnerabilities 
and limitations present substantial risks that out- weigh 
potential efficiency gains if LLMs are deployed without 
strict safeguards and a clear understanding of their current 
limitations. The susceptibility to manipulation poses a 
direct patient safety risk, highlighting the potential for 
both unintentional errors and malicious exploitation to 
induce clinically significant misdiagnoses. The observed 
diagnostic overconfidence in ambiguous scenarios, coupled 
with a failure to request essential test results, further amplifies 
the risk of premature diagnostic closure and potentially 
inappropriate treatment decisions. Moreover, the documented 
instances of clinically inappropriate context-driven shifts, 
particularly the system-hopping errors and misclassification 
of serious conditions, underscore the potential for LLMs 
to intro- duce new error modes into the diagnostic process, 
potentially delaying or undermining life-saving interventions. 
Uncritical reliance on LLM outputs, particularly in complex 
or detailed cases, could inadvertently erode critical clinical 
judgment skills and create a false sense of security, ultimately 
compromising patient safety.

•	 Practical Considerations for Responsible Deployment: 
The Imperative of Hu- man Oversight and Reliable 
Safeguards: Responsible and ethical deployment of LLMs 
in clinical diagnosis demands a cautious, incremental, and 
thoroughly controlled approach, prioritizing patient safety 
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and maintaining the centrality of human clinical expertise. 
Key practical considerations include:

◦	 Clinician-in-the-Loop Validation and Oversight: Strict 
clinician-in-the- loop oversight is not merely advisable, 
but an absolute prerequisite. LLM outputs must undergo 
mandatory validation and contextualization by human 
clinicians, particularly in all but the most routine and low-
risk scenarios. Safeguards must be implemented to flag 
inconsistencies, overconfidence, data gaps, and potentially 
inappropriate diagnostic shifts.

◦	 Reliable Input Sanitization and Adversarial Defense: 
Developing and implementing reliable input sanitization and 
pre-processing tools to detect and filter irrelevant, misleading, 
or adversarial inputs is crucial to mitigate manipulation 
risks. Research into adversarial training and other reliability-
enhancing techniques is essential to strengthen LLM resilience 
against malicious or unintentional prompt perturbations. 
Transparency and Explainability as Cornerstones of Trust: 
Transparency regarding LLM limitations, potential error 
modes, and the inherent uncertainty in AI-driven diagnostic 
suggestions is paramount for building appropriate trust and 
guiding responsible utilization. Developing Explainable AI 
(XAI) approaches to elucidate LLM reasoning pathways 
and provide clinicians with insights into the factors driving 
diagnostic outputs is crucial for fostering informed clinician 
oversight and promoting appropriate calibration of trust. Clear 
documentation of LLM capabilities and, critically, their data 
handling deficiencies (e.g., inability to actively request tests) 
is essential to prevent over-reliance and misuse.

◦	 Focus on Augmentation, Not Autonomous Replacement: 
LLMs should be conceptualized, developed, and deployed 
solely as assistive tools to augment and enhance human 
clinical expertise. The focus must remain on leveraging LLMs’ 
computational strengths to support, rather than supplant, 
the irreplaceable facets of human clinical judgment, ethical 
reasoning, empathy, and comprehensive patient care. The aim 
is to create collaborative clinician-AI diagnostic ecosystems 
where the strengths of both human and artificial intelligence 
are synergistically combined, with human clinicians retaining 
ultimate authority and responsibility for diagnostic accuracy 
and patient safety.

4.7. Limitations of the Study and Future Research Directions
This study, while providing critical insights into LLM diagnostic 
reliability, is inherently bounded by certain limitations that inform 
the direction of future research [38].
•	 Scope of Clinical Scenarios and Complexity: Our 

evaluation employed a focused set of 52 simulated clinical 
scenarios, primarily within specific medical domains. Future 
research must significantly expand the breadth, depth, 
and complexity of clinical scenarios to encompass the full 
spectrum of medical specialities, varying levels of disease 
severity and diagnostic ambiguity, rarer conditions, multi-
morbidity, and the de- tailed, longitudinal nature of real-world 
patient presentations. Incorporating cases with higher levels 
of clinical uncertainty, conflicting data points and evolving 

symptom pat- terns is essential to more comprehensively 
evaluate LLM performance in ecologically valid settings.

•	 Extend of Manipulation and Context Types: We explored 
specific, plausible text- based manipulations (irrelevant 
symptoms) and contextual variations (demographics, his- 
tory). Future investigations should broaden the spectrum of 
manipulation tactics, encompassing more subtle semantic 
distortions, biased framing, adversarial attacks de- signed 
to specifically exploit known LLM vulnerabilities and real-
world misinformation scenarios. Similarly, exploring a richer 
array of clinically relevant contextual fac- tors, including 
social determinants of health, cultural and linguistic diversity, 
patient- specific values and preferences, and longitudinal 
electronic health record data, is crucial for a more holistic 
assessment of LLM contextual reasoning in diverse clinical 
populations.

•	 Model Diversity and Evolution: Our study focused on two 
prominent but proprietary LLMs, Gemini and ChatGPT, at 
specific points in their development. Future research must 
expand the evaluated model landscape to include a wider 
array of LLM architectures, open-source models, specialized 
medical LLMs (such as Med-PaLM), and continuously 
evaluate the rapidly evolving performance of new model 
versions and interations. Comparative evaluations across 
diverse model types and developmental stages are essential 
to understand the generalizability of our findings and track 
the trajectory of LLM capabilities and limitations in medical 
diagnosis.

•	 Need for thorough Accuracy Benchmarking and Real-
World Outcomes Data: This study prioritized reliability and 
reliability metrics (consistency, susceptibility, con- textual 
influence). While these are crucial foundational assessments, 
future research must thoroughly prioritize diagnostic 
accuracy evaluation, directly comparing LLM diagnostic 
outputs against established diagnostic gold standards, expert 
physician consensus, and, critically, real-world clinical 
outcomes data (e.g., treatment appropriate- ness, time to 
diagnosis, patient safety outcomes, cost-effectiveness). 
Large-scale, prospective studies comparing LLM-augmented 
vs. standard clinical diagnostic workflows are essential to 
definitively ascertain their clinical utility and impact on 
patient care.

•	 Translational Research in Real-World Clinical Settings: 
The controlled experimental nature of our study necessitates 
translational research to evaluate LLM performance in live 
clinical environments. Future studies must examine their 
integration into real-world clinical workflows, their impact on 
clinician-patient interactions, their usability and acceptability 
to clinicians and patients, their effects on clinician decision- 
making processes in complex, time-constrained clinical 
settings, and their broader impact on healthcare system 
efficiency, equity, and access to care across diverse healthcare 
set- tings and patient populations.

•	 Developing Reliability-Enhancing and Clinically-
Grounded AI Techniques: An essential direction for future 
research lies in the development and strict evaluation of 
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novel AI techniques specifically designed to address the 
identified limitations of current LLMs in clinical diagnosis.

This includes:
◦	 Developing and validating methods to enhance LLM 

reliability against manipulation and adversarial attacks, 
potentially through adversarial training, input sanitization, 
and uncertainty quantification frameworks.

◦	 Engineering more sophisticated contextual reasoning 
mechanisms that move beyond flat attention to incorporate 
hierarchical weighting of clinical information, explicit data 
gap recognition and handling, and clinically grounded causal 
reasoning approaches.

◦	 Exploring techniques for imbuing LLMs with diagnostic 
restraint and uncertainty awareness, enabling them to 
appropriately defer definitive diagnoses pending essential 
data and to transparently communicate diagnostic uncertainty 
to clinicians.

◦	 Developing Explainable AI (XAI) methodologies customized 
to the clinical domain to enhance the transparency and 
interpretability of LLM diagnostic reasoning, facilitating 
clinician trust, oversight, and error detection.

◦	 Designing and evaluating clinician-AI collaborative 
interfaces that optimize the synergistic integration of human 
clinical expertise and LLM computational strengths, fostering 
effective human-AI teamwork in diagnostic workflows.

◦	 Establishing reliable ethical frameworks and regulatory 
guidelines to govern the development, validation, deployment, 
and ongoing monitoring of LLM-based diagnostic tools, 
ensuring patient safety, data privacy, algorithmic fairness, 
and equitable access to the benefits of AI-augmented medical 
diagnosis [39].

This comprehensive evaluation of Gemini and ChatGPT offers a 
sophisticated and critical perspective on the current state of LLM-
based medical diagnosis. While highlighting the re- markable 
algorithmic consistency of these models and their potential for 
standardization and efficiency gains, our findings simultaneously 
illuminate significant vulnerabilities to manipulation, limitations 
in clinically sound contextual reasoning, and critical data handling 
deficiencies. These limitations unequivocally underscore that 
current LLMs are not yet suited for autonomous diagnostic 
decision-making in clinical practice. Instead, our results advocate 
for a cautious and ethically grounded approach, emphasizing 
responsible augmentation rather than premature automation. 
LLMs, in their current form, should be viewed as investigational 
assistive tools, deployed under stringent clinician oversight, within 
well-defined use cases, and with continuous monitoring and strict 
validation in real-world clinical settings [40]. The path forward 
requires a sustained and concerted research effort, prioritizing 
the enhancement of reliability, contextual discrimination, clinical 
validity, and, above all, patient safety, to responsibly unlock the 
potential of AI to augment and elevate, rather than inadvertently 
compromise, the essential art and science of human-centred 
medical diagnosis. The ultimate measure of success will not 
be algorithmic sophistication alone, but the demonstrable 

improvement of patient outcomes, the enhancement of clinician 
expertise, and the equitable advancement of healthcare for all [41].

5. Conclusion
This study undertook a comprehensive, three-dimensional 
evaluation of Large Language Models (LLMs), specifically 
Gemini and ChatGPT, as applied to the critical domain of medical 
diagnostics. Our investigation, designed to examine beyond 
superficial accuracy metrics, examined the essential dimensions 
of diagnostic consistency, susceptibility to manipulation, and 
contextual awareness. Employing a mixed-methods approach, 
we integrated quantitative performance metrics with qualitative 
physician review to furnish a clinically sophisticated and ethically 
grounded assessment of these transformative technologies.

While our findings reveal a reassuring algorithmic diagnostic 
consistency, with both Gemini and ChatGPT achieving a perfect 
100% Baseline Scenario Consistency Rate, this isolated strength 
is overshadowed by clinically critical vulnerabilities uncovered 
across other reliability dimensions. The Susceptibility to 
Manipulation assessment demonstrated that both models exhibit 
a concerning fragility in the face of diagnostically irrelevant 
noise, with susceptibility rates reaching 40.0% for Gemini and 
30.0% for ChatGPT. This input blindness reveals a fundamental 
lack of robust input validation mechanisms, allowing superficial 
prompt alterations to induce clinically significant diagnostic shifts.

Most critically, our in-depth Contextual Awareness analysis 
illuminated not merely quantitative differences but a qualitative 
divergence in clinical reasoning. While ChatGPT exhibited a higher 
Context Influence Rate (77.8% vs. Gemini’s 55.6%), indicating 
a greater tendency to alter diagnoses in response to contextual 
cues, the qualitative physician review exposed a disturbing 
trade-off between responsiveness and clinical soundness. 
Gemini demon- strated a higher proportion of Appropriate 
Context-Driven Changes (66.7%), signifying clinically justified 
diagnostic refinements. In stark contrast, ChatGPT, despite its 
greater quantitative responsiveness, exhibited a notably elevated 
rate of Inappropriate Context- Driven Changes (33.3%), 
exceeding Gemini’s 22.2%. This qualitative divergence, validated 
by near-perfect inter-rater reliability (Cohen’s Kappa = 0.85) 
among expert physician reviewers, underscores a critical insight: 
ChatGPT’s enhanced quantitative responsiveness to context is 
significantly undermined by a higher propensity for clinically 
unjustified and potentially erroneous diagnostic modifications. 
These findings, taken together, re- veal a Fragility Triad 
deterministic consistency, input blindness, and hierarchical 
contextual gaps—demonstrating that reliability in controlled, 
simplified settings does not translate to clinical safety in complex, 
real-world diagnostic scenarios.

The implications of these findings are significant and carry a 
warning for the field. While LLMs offer unprecedented algorithmic 
consistency and the potential for standardized diagnostic 
processes, our research demonstrates that their demonstrated 
susceptibility to manipulation and fundamental limitations 
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in sophisticated, clinically valid contextual reasoning render 
current LLMs unsuitable for autonomous diagnostic decision-
making in clinical practice. These are not minor limitations to 
be incrementally addressed; they are systemic deficiencies that, if 
unmitigated, pose unacceptable risks to patient safety, particularly 
in resource-constrained settings where robust clinician oversight 
may be compromised.

Unlike experienced clinicians who iteratively examine, critically 
weigh evidence, and deeply integrate complex patient contexts, 
current LLMs consistently overstate diagnostic certainty 
without proactively seeking essential clarifying information, 
exhibiting a concerning lack of clinical judgment.

Therefore, this study strongly advocates for a paradigm of 
cautious and ethically grounded augmentation, rather than 
premature automation. LLMs, in their current form, should 
be viewed as investigational assistive tools, deployed solely 
under clinician oversight, within defined use cases, and subject 
to continuous monitoring and validation in real-world clinical 
settings. The path forward necessitates a sustained and concerted 
research effort to develop enhanced, domain-specific LLM 
architectures. These next-generation models must incorporate 
uncompromising input safeguards to prevent manipulation, 
continuous uncertainty quantification to reflect appropriate 
diagnostic humility, and truly robust, clinically-validated 
contextual reasoning frameworks that prioritize clinical 
validity over mere responsiveness. Future research must focus on 
eliminating these critical limitations to responsibly open up the 
transformative potential of LLMs for safe and equitable healthcare 
for all. The ultimate measure of success will not be algorithmic 
sophistication alone, but the demonstrable improvement of 
patient outcomes, the enhancement of clinician expertise, and 
the equitable advancement of healthcare access for all patient 
populations, irrespective of demographic characteristics.

This study illuminates the dual-edged potential of LLMs in 
medical diagnosis, offering algorithmic reproducibility alongside 
critical vulnerabilities that demand careful management and 
proactive mitigation. By emphasizing the Fragility Triad of 
deterministic consistency, input blindness, and hierarchical 
contextual gaps, our research highlights that reliability in simplified, 
controlled environments does not equate to clinical safety in com- 
plex, real-world practice. We issue a stark warning against 
premature or unsupervised clinical deployment and advocate 
for a future where LLMs are validated and ethically implemented 
as adjunctive tools, operating under human oversight and within 
safety frameworks. Moving forward, responsible AI in medical 
diagnosis hinges upon human-AI collaboration, prioritizing 
safeguards against manipulation and inappropriate contextual 
reasoning, and maintaining commitment to thorough research 
focused on clinical validity and patient safety. Only through 
such a cautious, ethically grounded, and evidence-driven approach 
can we responsibly open up the transformative potential of LLMs 
to enhance diagnostic precision and democratize global healthcare 
access, ensuring that AI-driven tools consistently augment and 

elevate, rather than inadvertently compromise, the essential art and 
science of human-centered medical diagnosis and care.
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APPENDIX A: Data Availability
The complete dataset generated and analyzed during this study, 
including LLM interaction and result generation, is publicly 
available in a GitHub repository to ensure transparency and 
facilitate reproducibility. The repository can be accessed at the 
following URL:
https://github.com/Luke23-45/The-Reliability-of-LLMs-for-
Medical-Diagnosis-Data

The repository provides access to the following key datasets and 
resources:

•	 Clinical Scenarios Datasets (JSON format): Includes the 
full sets of baseline and modified clinical scenarios used for 
all evaluations.

•	 Large Language Model (LLM) Responses (JSON format): 
Contains the complete raw responses from Gemini and 
ChatGPT for all scenarios.

•	 Aggregated Results Datasets (JSON & CSV formats): 
Summarizes the key findings of the Consistency, Manipulation, 
and Contextual Awareness evaluations.

•	 Prompt Templates (Text files): Provides standardized 
prompt templates used for LLM interactions.

•	 README.md File: Offers a comprehensive description 
of the repository contents, data formats, and code usage 
instructions.

Appendix B: Example Baseline Scenarios
To illustrate the structure and content of the clinical scenarios used 
in this study’s baseline condition (prior to any modifications), we 
provide a representative example below. This scenario is presented 
in a structured format, mirroring the information provided to the 
LLMs for diagnostic assessment.
Example Baseline Scenario: Case 001 - Acute Coronary 
Syndrome
Patient Demographics and History:

•	 Patient ID: 001
•	 Age: 65 years
•	 Gender: Male
•	 Medical History:
•	 Hypertension
•	 Type 2 Diabetes

•	 Previous Myocardial Infarction (MI)
•	 Current Medications:
•	 Aspirin
•	 Lisinopril
•	 Metformin

Presenting Complaint and Symptoms:

•	 Presenting Complaint: Chest pain
•	 Symptoms:
•	 Chest Pain:
•	 Severity: Moderate

•	 Duration: 30 minutes
•	 Location: Retrosternal
•	 Character: Crushing
•	 Associated Symptoms: Radiating to left arm, diaphoresis
•	 Shortness of Breath:
•	 Severity: Mild
•	 Duration: Intermittent
•	 Exacerbating Factors: Exertion
•	 Relieving Factors: Rest
•	 Nausea:
•	 Severity: Mild
•	 Duration: Intermittent
•	 Diaphoresis:
•	 Severity: Mild
•	 Duration: Intermittent
•	 Type: Cold sweat

Vital Signs:

•	 Heart Rate: 100 bpm
•	 Blood Pressure: 150/90 mmHg
•	 Temperature: 98.6 °F (37 °C)
•	 Respiratory Rate: 20 bpm

Physical Exam Findings:

•	 Patient appears anxious.
•	 No murmurs, rubs, or gallops auscultated.
•	 Lungs clear to auscultation.

Test Results:

•	 ECG: ST elevation in leads II, III, aVF
•	 Troponin: 0.8 ng/mL (Elevated)
•	 CBC: White blood cell (WBC) count elevated

Diagnosis and Management (for reference in scenario design, 
not provided to LLMs):
•	 Differential Diagnosis:
•	 Myocardial Infarction
•	 Angina Pectoris
•	 Pericarditis
•	 Pulmonary Embolism
•	 Final Diagnosis: Myocardial Infarction (STEMI)
•	 Treatment: Aspirin, Clopidogrel, Thrombolytic therapy
•	 Notes: Patient responded well to thrombolytic therapy. 

Transferred to CCU for further monitoring.

Appendix C: Prompt Sample
To maintain consistent and transparent Large Language Model 
(LLM) interactions, standardized prompts were used for all clinical 
scenarios and with both Gemini and ChatGPT. This appendix 
illustrates the prompt structure designed to elicit diagnostic 
assessments. Prompts instructed the LLMs to act as medical 
doctors and diagnose patient cases provided in JSON format.
Here is the prompt and patient case presented in JSON format:

https://github.com/Luke23-45/The-Reliability-of-LLMs-for-Medical-Diagnosis-Data
https://github.com/Luke23-45/The-Reliability-of-LLMs-for-Medical-Diagnosis-Data
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Physical Exam Findings:

• Patient appears anxious.

• No murmurs, rubs, or gallops auscultated.

• Lungs clear to auscultation.

Test Results:

• ECG: ST elevation in leads II, III, aVF

• Troponin: 0.8 ng/mL (Elevated)

• CBC: White blood cell (WBC) count elevated

Diagnosis and Management (for reference in scenario design, not provided to
LLMs):

• Differential Diagnosis:

◦ Myocardial Infarction
◦ Angina Pectoris
◦ Pericarditis
◦ Pulmonary Embolism

• Final Diagnosis: Myocardial Infarction (STEMI)

• Treatment: Aspirin, Clopidogrel, Thrombolytic therapy

• Notes: Patient responded well to thrombolytic therapy. Transferred to CCU for further
monitoring.

Appendix C: Prompt Sample

To maintain consistent and transparent Large Language Model (LLM) interactions, stan-
dardized prompts were used for all clinical scenarios and with both Gemini and ChatGPT. This
appendix illustrates the prompt structure designed to elicit diagnostic assessments. Prompts
instructed the LLMs to act as medical doctors and diagnose patient cases provided in JSON
format.

Here is the prompt and patient case presented in JSON format:

You are a medical doctor. Diagnose the following patient case:

65

1 [
2 {
3 "patient_id": "001_1",
4 "age": 65,
5 "gender": "Male",
6 "country": "USA",
7 "race": "White",
8 "ethnicity": "Not Hispanic or Latino",
9 "medical_history": ["Hypertension", "Type 2 Diabetes", "History of MI"],

10 "current_medications": ["Aspirin", "Lisinopril", "Metformin"],
11 "presenting_complaint": "Chest discomfort",
12 "symptoms": [
13 {
14 "name": "Chest pain",
15 "severity": "moderate",
16 "duration": "30 minutes",
17 "location": "retrosternal",
18 "character": "crushing",
19 "associated_symptoms": ["radiating to left arm", "diaphoresis"]
20 },
21 {
22 "name": "Shortness of breath",
23 "severity": "mild",
24 "duration": "intermittent",
25 "exacerbating_factors": "exertion",
26 "relieving_factors": "rest"
27 },
28 {
29 "name": "Nausea",
30 "severity": "mild",
31 "duration": "intermittent"
32 },
33 {
34 "name": "Diaphoresis",
35 "severity": "mild",
36 "duration": "intermittent",
37 "type": "cold sweat"
38 }
39 ],
40 "vital_signs": {
41 "heart_rate": 100,
42 "blood_pressure": "150/90",
43 "temperature": 98.6,
44 "respiratory_rate": 20
45 },
46 "physical_exam": "Patient appears anxious. Cardiovascular exam unremarkable. Lungs

clear.",↪→

47 "test_results": {

66
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1 [
2 {
3 "patient_id": "001_1",
4 "age": 65,
5 "gender": "Male",
6 "country": "USA",
7 "race": "White",
8 "ethnicity": "Not Hispanic or Latino",
9 "medical_history": ["Hypertension", "Type 2 Diabetes", "History of MI"],

10 "current_medications": ["Aspirin", "Lisinopril", "Metformin"],
11 "presenting_complaint": "Chest discomfort",
12 "symptoms": [
13 {
14 "name": "Chest pain",
15 "severity": "moderate",
16 "duration": "30 minutes",
17 "location": "retrosternal",
18 "character": "crushing",
19 "associated_symptoms": ["radiating to left arm", "diaphoresis"]
20 },
21 {
22 "name": "Shortness of breath",
23 "severity": "mild",
24 "duration": "intermittent",
25 "exacerbating_factors": "exertion",
26 "relieving_factors": "rest"
27 },
28 {
29 "name": "Nausea",
30 "severity": "mild",
31 "duration": "intermittent"
32 },
33 {
34 "name": "Diaphoresis",
35 "severity": "mild",
36 "duration": "intermittent",
37 "type": "cold sweat"
38 }
39 ],
40 "vital_signs": {
41 "heart_rate": 100,
42 "blood_pressure": "150/90",
43 "temperature": 98.6,
44 "respiratory_rate": 20
45 },
46 "physical_exam": "Patient appears anxious. Cardiovascular exam unremarkable. Lungs

clear.",↪→

47 "test_results": {

66

48 "ecg": "ST elevation in leads II, III, aVF",
49 "troponin": 0.8,
50 "cbc": "WBC count elevated"
51 },
52 "differential_diagnosis": [],
53 "final_diagnosis": "",
54 "treatment": "",
55 "notes": ""
56 }
57 ]

1 Provide patient_id and corresponding diagnosis for that patient. Provide ONLY your final
diagnosis. Do not provide explanations or differential diagnoses. Write the response
in JSON format.

↪→

↪→

This sample prompt exemplifies the standardized structure used for all LLM interactions, en-
suring consistency across Gemini and ChatGPT. Key prompt elements include:

• Role Instruction: You are a medical doctor. – Instructs the LLM to adopt a
medical professional role for diagnostic reasoning.

• Task Definition: Diagnose the following patient case. – Clearly defines the
task as medical diagnosis.

• JSON Input: Patient case details are provided in a structured JSON format, including
demographics, history, symptoms, vitals, and test results. This format was consistent
across all scenarios.

• Output Constraints: Specific instructions for output formatting were enforced:

◦ Provide patient_id and final diagnosis in JSON.

◦ Provide ONLY the final diagnosis, without explanations or differential diagnoses.

These constraints standardized LLM responses, focused evaluation on diagnostic accuracy,
and ensured consistent input formats for both Gemini and ChatGPT, enhancing the rigor and
comparability of the study.
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This sample prompt exemplifies the standardized structure used 
for all LLM interactions, ensuring consistency across Gemini and 
Chat GPT. Key prompt elements include:
•	 Role Instruction: You are a medical doctor. – Instructs the 

LLM to adopt a medical professional role for diagnostic 
reasoning.

•	 Task Definition: Diagnose the following patient case. – 
Clearly defines the task as medical diagnosis.

•	 JSON Input: Patient case details are provided in a structured 
JSON format, including demographics, history, symptoms, 
vitals, and test results. This format was consistent across all 

scenarios.
•	 Output Constraints: Specific instructions for output 

formatting were enforced:
•	 Provide patient_id and final diagnosis in JSON.
•	 Provide ONLY the final diagnosis, without explanations or 

differential diagnoses.

These constraints standardized LLM responses, focused evaluation 
on diagnostic accuracy, and ensured consistent input formats for 
both Gemini and ChatGPT, enhancing the rigor and comparability 
of the study.


